Управляемый выпрямитель: 5.4. Управляемые выпрямители – 4. Управляемые выпрямители. Электропитание устройств и систем связи

Содержание

управляемый выпрямитель — это… Что такое управляемый выпрямитель?


управляемый выпрямитель

 

управляемый выпрямитель
выпрямитель с импульсным управлением

Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменное напряжение в постоянное, но имог изменять его значение. Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с управлением выпрямленным напряжением (током), называются управляемыми выпрямителями. Основным элементом управляемых выпрямителей является тиристор (или транзистор).

Управление выпрямленным напряжением сводится к управлению моментом отпирания тиристора. Это делается короткими импульсами с крутым фронтом. Если тиристор открыт в течении всего полупериода, то на выходе получается пульсирующее напряжение, аналогично неуправляемому выпрямителю. При изменении времени задержки отпирания тиристоров меняется действующее значение выпрямленного напряжения.  Каждой задержке соответствует угол сдвига по фазе между напряжением на тиристоре и сигналом управления. Этот угол называется углом управления или регулирования и определяется как α=ωtз, где tз -время задержки, ω — угловая частота (ω=2πf).

Схема управляемого однополупериодного выпрямителя

Зависимость выходного напряжения от времени задержки tз

[http://naf-st.ru/articles/ip/upv/]

Тематики

  • источники и системы электропитания

Синонимы

  • выпрямитель с импульсным управлением
  • импульсный выпрямитель

EN

  • rectifier based on switch mode technology
  • switched-mode rectifier

Справочник технического переводчика. – Интент. 2009-2013.

  • управляемый выключатель
  • управляемый газлифтный клапан

Смотреть что такое «управляемый выпрямитель» в других словарях:

  • управляемый выпрямитель — valdomasis lygintuvas statusas T sritis automatika atitikmenys: angl. controlled rectifier vok. gesteuerter Gleichrichter, m; steuerbarer Gleichrichter, m rus. управляемый выпрямитель, m pranc. redresseur commandé, m …   Automatikos terminų žodynas

  • кремниевый управляемый выпрямитель — valdomasis silicio lygintuvas statusas T sritis radioelektronika atitikmenys: angl. silicon controlled rectifier vok. gesteuerter Siliziumgleichrichter, m rus. кремниевый управляемый выпрямитель, m pranc. redresseur commandé à silicium, m …   Radioelektronikos terminų žodynas

  • выпрямитель источника бесперебойного питания — Устройство, преобразующее переменный ток в постоянный. В современных ИБП выпрямитель также выполняет функцию коррекции входного коэффициента мощности источник бесперебойного питания. [http://www.radistr.ru/misc/document423.phtml] EN rectifier… …   Справочник технического переводчика

  • Трёхфазный выпрямитель

    — (англ. Three phase rectifier) устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо Добровольского. Схемы трёхфазны …   Википедия

  • Электровоз ВЛ86ф — ВЛ86ф Основные данные Год постройки 1985 Страна постройки …   Википедия

  • ТЭ114 — ТЭ114 …   Википедия

  • ВЛ86ф — ВЛ86ф …   Википедия

  • ВЛ86Ф — ВЛ86Ф …   Википедия

  • ВЕНТИЛЬНЫЙ ЭЛЕКТРОПРИВОД — электропривод, в к ром для питания двигателя и регулирования его угловой скорости используется преобразователь на управляемых электрич. вентилях (напр., тиристорах). Содержит либо управляемый преобразователь частоты, питающий двигатель перем.… …   Большой энциклопедический политехнический словарь

  • Феррометр —         устройство для определения мгновенных значений индукции (Bt) и напряжённости (Ht) магнитного поля в ферромагнитных образцах. Ф. позволяет по точкам строить симметричные динамические петли перемагничивания ферромагнитных образцов (см.… …   Большая советская энциклопедия

Управляемые (регулируемые) выпрямители

В последние годы в источниках вторичного питания применяют управ­ляемые (регулируемые) выпрямители, содержащие управляемые вентили и позволяющие регулировать в широких пределах выпрямленное напряжение или ток. Как правило, управляемые выпрямители относятся к мощным пре­образователям электрической энергии, и в них чаще всего используются

тринисторы (тиристоры).

На рис. 9.8 представлены соответственно схема включения (отметим, что потенциал питания — Еа, как и в транзисторных схемах, обозначают корпусом — землей) и ВАХ тринистора.

Не вдаваясь в подробности описания этих активных элементов, кратко на­помним, что тринистор — полупроводниковый прибор, имеющий два ус­тойчивых электронных состояния —

включено выключено. Тринистор со­держит три вывода: катод, анод и управляющий электрод.

Регулировку тока, протекающего через тринистор и нагрузку, осущест­вляют с помощью цепи управления. Если ток в цепи управления Iу0 = 0 (рис. 9.8, а и б), то включение тринистора происходит при анодном на­пряжении Ua> Uвкл, называемом напряжением включения. Это напряжение достаточно велико (десятки вольт), и его можно снизить путем подачи в цепь управления импульса тока управления Iу > Iу0, влияние величины которого на работу тринистора видно из его вольт-амперной характеристики на рис. 9.8,

б.

Рис 9.8. Тринистор: а — схема включения; б — ВАХ

Величина падения напряжения на открытом и насыщенном тринисторе ΔUа = 0,5… 1,5 В; ток насыщения при этом Iа = Iан. Выключается тринистор пу­тем снижения анодного тока Iа до величины, меньшей тока удержания Iуд, или подачей на него обратного напряжения.

На рис. 9.9 показаны схема управляемого выпрямителя с активной нагрузкой

Rн и временные диаграммы токов и напряжений, поясняющие принцип его дей­ствия.

Тринисторы VS1 и VS2 в схеме (см. рис. 9.9, а) открываются поочередно при поступлении на их управляющие электроды импульсов управления с блока управления (БУ). Временное положение импульсов управления Uy1 и Uу2 по от­ношению к фазным напряжениям еa и еb определяется углом управления (регули­рования) α (см. рис. 9.9, б, в). Угол управления а соответствует задержке по фа­зе момента включения тринистора относительно естественного момента откры­вания выпрямительного диода, если он включен в схему вместо тринистора. При угле

α = 0 управляемый выпрямитель становится неуправляемым. Тринистор VS1 включается в момент времени, когда фазовый угол v = α, и в момент време­ни, соответствующий углу v = π, выключается. На этом интервале к нагрузке Rн практически напрямую подключается фазное напряжение еа, и через нее про­текает ток i1. Тринистор VS2 проводит ток на интервале (π + α)…2π, под­ключая к нагрузке Rн фазное напряжение
e
b. Выпрямленный ток iн на актив­ной нагрузке Rн имеет ту же форму, что и напряжение uн (см. рис. 9.9, г).

Рис. 9.9. Однофазный управляемый выпрямитель:

а — схема, б-г — временное диаграммы

Управляемые выпрямители характеризуются рядом специфических показа­телей. Зависимость среднего значения выпрямленного напряжения UНα от угла управления α называется регулировочной характеристикой и описывается формулой:

где — среднее значение выпрямленного напряжения при угле управления α = 0.

Итак, изменяя угол управления α от 0° до 180°, можно регулировать ам­плитуду напряжения на входе выпрямителя от номинального UHα до нулевого.

Литература: В.И. Нефедов, “Основы радиоэлектроники и связи”, Издательство «Высшая школа», Москва, 2002.

3.2. Структурная схема и принцип действия управляемого выпрямителя

Структурная схема УВ (рис. 3.6а) отличается от структурной схемы не-

управляемого выпрямителя (рис. 2.1) тем, что блок неуправляемых вентилей ВБ заменен на регулируемый вентильный блок РВБ и введена система управления СУ, синхронизируемая напряжением сети.

Регулирование выпрямленного напряжения U0,aпри помощи тиристоров основано на сдвиге момента включения управляемого вентиля по сравнению с

началом работы неуправляемого вентиля (рис. 3.6в). Соответствующий этому сдвигу угол называют углом включения a. Очевидно, что a можно регулировать в пределах положительной полуволны напряжения u1, т.е. 0≤α≤p. При этом, если тиристор включается при a=180°, то напряжение U0,a=0. Такой способ регулирования называется фазоим­пульс­ным.

Способность УВ изменять выпрямленное напряжение оценивают по его регулировочной характеристике, представляющей собой зависимость среднего значения выпрямленного напряжения U0,α от угла включения

Для общности результатов регулировочную характеристику U0,α=f(α) часто представляют в нормированном виде:

Рис. 3.6. Структурная схема выпрямителя (а), схема простейшего УВ (б) и графики напряжений на его входе и выходе (в) при резисторной нагрузке без фильтра; Uуи – управляющие импульсы для тиристоров РВБ

, (3.2)

где – напряжение при угле включения, равном нулю (m2 ³ 2). Вид регулировочной характеристики зависит от ряда факторов: схемы выпрямителя, типа фильтра, характера загрузки и т.д.

УВ строятся по тем же принципам, что неуправляемые выпрямители (см. рис. 2.3). В двухтактных УВ все вентили могут быть управляемыми (симметричная схема, рис. 3.7в, д). С целью упрощения СУ и удешевления УВ можно применить несимметричные схемы (рис. 3.7г), в которых одна группа вентилей (анодная или катодная) заменена на диоды. В УВ с индуктивной нагрузкой для улучшения энергетических характеристик вводится нулевой (ответвляющий) диод VD0 (рис. 3.7б, д).

3.3. Управляемые выпрямители при работе на активную нагрузку

Эквивалентные схемы тиристорных выпрямителей идентичны схемам замещения неуправляемых выпрямителей (см. схему на рис. 3.8а и на рис. 2.5б).

Отличие состоит только в том, что неуправляемые вентили заменяются на управляемые – тиристоры. Сохраняется и методика анализа выпрямительных схем (п. 2.5).

Многофазные УВ при малых углах включения работают в режиме непрерывного тока (рис. 3.8б), а при больших углах (рис. 3.8г) – в режиме прерывистого тока. Угол включения a, соответствующий границе режимов (рис. 3.8в) непрерывного и прерывистого токов, называется критическим углом:

. (3.3)

.

б)

Рис. 3.8. Эквивалентная схема (а) и диаграммы (б, в, г) выпрямленного напряжения U0,a для трехфазной однотактной схемы с активной нагрузкой при различных значениях угла a включения тиристоров

Рис. 3.9. Регулировочные характе­ристики выпрямителей при работе на активную нагрузку (а), вли­яние угла включения на коэффициент пульсации (б)

a)

У однофазных выпрямителей (рис. 3.10а, б) aкр=0 и при a>0 они работают в режиме прерывистого тока. С учётом формул (2.12) и (3.2) нормированное уравнение и график регулировочной характеристики УВ при активной нагрузке имеют вид (рис. 3.9)

(3.4)

Следует отметить, что с увеличением угла включения a тиристора имеет место быстрый рост коэффициента пульсаций

принцип работы, схема, область применения

С целью управления напряжением в сети используются электронные выпрямители. Данные устройства работают путем изменения частоты. Многие модификации разрешается применять в сети переменного тока.

К основным параметрам выпрямителей относится проводимость. Также стоит учитывать показатель допустимого перенапряжения. Для того чтобы более детально разобраться в вопросе, надо рассмотреть схему выпрямителя.

полупроводниковые выпрямители

Устройство модификаций

Схема выпрямителя предполагает использование контактного тиристора. Стабилизатор, как правило, применяется переходного типа. В некоторых случаях он устанавливается с системой защиты. Еще имеется множество модификаций на триодах. Работают данные устройства при частоте от 30 Гц. Для коллекторов они неплохо подходят. Также схема выпрямителя включает в себя компараторы низкой проводимости. Чувствительность у них соответствует показателю не менее 10 мВ. Определенный класс устройств оснащается варикапом. За счет этого модификации можно подключать к однофазной цепи.

как работает трансформатор

Как это работает?

Как говорилось ранее, выпрямитель работает за счет изменения частоты. Первоначально напряжение попадает на тиристоры силовые. Процесс преобразования тока осуществляется при помощи триода. Чтобы избежать перегрева устройства, имеется стабилизатор. При появлении волновых помех в работу включается компаратор.

Область применения устройств

Наиболее часто устройства устанавливаются в трансформаторы. Также есть модификации для приводных модулей. Еще не стоит забывать про автоматизированные устройства, которые используются на производстве. В модуляторах выпрямители играют роль регулятора напряжения. Однако в данном случае многое зависит от типа устройства.

Существующие типы модификаций

По конструкции выделяют полупроводниковые, тиристорные и мостовые модификации. В отдельную категорию относят силовые устройства, которые могут работать при повышенной частотности. Двухполупериодные модели для этих целей не подходят. Дополнительно выпрямители отличают по фазе. На сегодняшний день можно встретить одно-, двух- и трехфазные устройства.

Полупроводниковые модели

Полупроводниковые выпрямители замечательно подходят для понижающих трансформаторов. Многие модификации выпускаются на базе коннекторных конденсаторов. Проводимость на входе у них не превышает 10 мк. Также стоит отметить, что полупроводниковые выпрямители отличаются по чувствительности. Устройства до 5 мВ способны использоваться при напряжении 12 В.

Системы защиты у них применяются класса Р30. Для подключения модификаций используются переходники. При напряжении 12 В параметр перезарузки в среднем равен 10 А. Модификации с обкладками выделяются высоким параметром рабочей температуры. Многие устройства способны работать от транзисторов. Для понижения искажений используются фильтры.

Особенности тиристорных устройств

Тиристорный выпрямитель предназначен для регулировки напряжения в сети постоянного тока. Если говорить про модификации низкой проводимости, то у них используется только один триод. Предельное напряжение при загрузке в 2 А составляет не менее 10 В. Система защиты у представленных выпрямителей используется, как правило, класса Р44. Также стоит отметить, что модели хорошо подходят для силовых проводников. Как работает трансформатор на тиристорных выпрямителях? В первую очередь напряжение попадает на реле.

Преобразование постоянного тока происходит благодаря транзистору. Для контроля выходного напряжения используются конденсаторные блоки. У многих моделей имеется несколько фильтров. Если говорить про недостатки выпрямителей, то стоит отметить, что у них высокие тепловые потери. При выходном напряжении свыше 30 В, показатель перегрузки значительно снижается. Дополнительно стоит учитывать высокую цену на тиристорный выпрямитель.

Мостовые модификации

Мостовые выпрямители работают при частоте не более 30 Гц. Угол управления зависит от триодов. Компараторы в основном крепятся через диодные проводники. Для силового оборудования модели подходят не лучшим образом. Для модулей применяются стабилизаторы с низкоомным переходником. Если говорить про минусы, то следует учитывать низкую проводимость при высоком напряжении. Системы защиты, как правило, применяются класса Р33.

Многие модификации подключаются через дипольный триод. Как работает трансформатор на этих выпрямителях? Первоначально напряжение подается на первичную обмотку. При напряжении свыше 10 В в работу включается преобразователь. Изменение частоты осуществляется при помощи обычного компаратора. С целью уменьшения тепловых потерь на мостовой управляемый выпрямитель устанавливается варикап.

электронные выпрямители

Силовые устройства

Силовые выпрямители в последнее время считаются очень распространенными. Показатель перегрузки при невысоком напряжении у них не превышает 15 А. Система защиты в основном используется серии Р37. Модели применяются для понижающих трансформаторов. Если говорить про конструктивные особенности, то важно отметить, что устройства выпускаются с пентодами. Они выделяются хорошей чувствительностью, но у них низкий параметр рабочей температуры.

Конденсаторные блоки разрешается применять на 4 мк. Выходное напряжение свыше 10 В задействует преобразователь. Фильтры, как правило, используются на два изолятора. Также стоит отметить, что на рынке имеется множество выпрямителей с контроллерами. Основное их отличие кроется в возможности работы при частоте свыше 33 Гц. При этом перегрузка в среднем соответствует 10 А.

Двухполупериодные модификации

Двухполупериодный однофазный выпрямитель способен работать на разных частотах. Основное преимущество модификаций кроется в высоком параметре рабочей температуры. Если говорить про конструктивные особенности, то важно отметить, что тиристоры силовые используются интегрального типа, и проводимость у них не превышает 4 мк. При напряжении 10 В система в среднем выдает 5 А.

Системы защиты довольно часто применяются серии Р48. Подключение модификаций осуществляется через адаптеры. Также стоит отметить недостатки выпрямителей этого класса. В первую очередь это низкая восприимчивость к магнитным колебаниям. Параметр перегрузки порой может быстро изменяться. При частоте ниже 40 Гц чувствуются перепады тока. Еще эксперты отмечают, что модели не способны работать на одном фильтре. Дополнительно для устройств не подходят полевые транзисторы.

Однофазные устройства

Однофазный управляемый выпрямитель способен выполнять множество функций. Устанавливают модели чаще всего на силовые трансформаторы. При частоте 20 Гц параметр перегрузки в среднем не превышает 50 А. Система защиты у выпрямителей используется класса Р48. Многие эксперты говорят о том, что модели не боятся волновых помех и отлично справляются с импульсными скачками. Есть ли недостатки у моделей данного типа? В первую очередь они касаются низкого тока при высокой загруженности. Чтобы решить эту проблему, устанавливаются компараторы. Однако стоит учитывать, что они не могу работать в цепи переменного тока.

Дополнительно периодически возникают проблемы с проводимостью тока. В среднем данный параметр равен 5 мк. Понижение чувствительности сильно влияет на работоспособность триода. Если рассматривать однофазные неуправляемые выпрямители, то обкладки у них используется с переходником. У многих моделей имеется несколько изоляторов. Также стоит отметить, что выпрямители данного типа не подходят для понижающих трансформаторов. Стабилизаторы чаще всего применяются на три выхода, и предельное напряжение у них не должно превышает 50 В.

Параметры двухфазных устройств

Двухфазные выпрямители производятся для цепей постоянного и переменного тока. Многие модификации эксплуатируются на триодах контактного типа. Если говорить про параметры модификаций, то стоит отметить малое напряжение при больших перегрузках. Таким образом, устройства плохо подходят для силовых трансформаторов. Однако преимуществом устройств считается хорошая проводимость.

Чувствительность у моделей стартует от 55 мВ. При этом тепловые потери незначительные. Компараторы применяются на две обкладки. Довольно часто модификации подключают через один переходник. При этом изоляторы предварительно проверяются на выходное сопротивление.

тиристорный выпрямитель

Трехфазные модификации

Трехфазные выпрямители активно применяются на силовых трансформаторах. У них очень высокий параметр перегрузки, и они способны работать в условиях повышенной частотности. Если говорить про конструктивные особенности, то важно отметить, что модели собираются с конденсаторными блоками. За счет этого модификации разрешается подключать к цепи постоянного тока и не бояться про волновые помехи. Импульсные скачки блокируются за счет фильтров. Подключение через переходник осуществляется при помощи преобразователя. У многих моделей имеется три изолятора. Выходное напряжение при 3 А не должно превышать 5 В.

Дополнительно стоит отметить, что выпрямители этого типа используются при больших перегрузках сети. Многие модификации оснащаются блокираторами. Понижение частоты происходит при помощи компараторов, которые устанавливаются над конденсаторной коробкой. Если рассматривать релейные трансформаторы, то для подключения модификаций потребуется дополнительный переходник.

Модели с контактным компаратором

Управляемые выпрямители с контактным компаратором в последнее время пользуются большим спросом. Среди особенностей модификаций стоит отметить высокую степень перегрузки. Системы защиты в основном применяются класса Р55. Работают устройства с одной конденсаторной коробкой. При напряжении 12 В выходной ток равен не менее 3 А. Многие модели способны похвастаться высокой проводимостью при частоте 5 Гц.

Стабилизаторы довольно часто применяются низкоомного типа. Они хорошо себя показывают в цепи переменного тока. На производстве выпрямители применяются для работы силовых трансформаторах. Допустимый уровень проводимости у них равен не более 50 мк. Рабочая температура в данном случае зависит от типа динистора. Как правило, они устанавливаются с несколькими обкладками.

схема выпрямителя

Устройства с двумя компараторами

Электронные выпрямители с двумя компараторами ценятся за высокий параметр выходного напряжения. При перегрузке в 5 А модификации способны работать без тепловых потерь. Коэффициент сглаживания у выпрямителей не превышает 60 %. Многие модификации обладают качественной системой защиты серии Р58. В первую очередь она призвана справляться с волновыми помехами. При частоте 40 Гц устройства в среднем выдают 50 мк. Тетроды для модификаций используются переменного типа, и чувствительность у них равна не более 10 мВ.

Есть ли недостатки у выпрямителей данного типа? В первую очередь надо отметить, что их запрещается подключать к понижающим трансформаторам. В сети постоянного тока у моделей малый параметр проводимости. Рабочая частотность в среднем соответствует 55 Гц. Под однополюсные стабилизаторы модификации не подходят. Чтобы использовать устройства на силовых трансформаторах, применяется два переходника.

Отличие модификаций с электродным триодом

Управляемые выпрямители с электродными триодами ценятся за высокий параметр выходного напряжения. При низких частотах они работают без тепловых потерь. Однако стоит учитывать, что параметр перегрузки в среднем равен 4 А. Все это говорит о том, что выпрямители не способны работать в сети постоянного тока. Фильтры разрешается применять лишь на две обкладки. Выходное напряжение, как правило, соответствует 50 В, а система защиты используется класса Р58. Для того чтобы подключить устройство, применяется переходник. Коэффициент сглаживания у выпрямителей данного типа составляет не менее 60 %.

тиристоры силовые

Модели с емкостным триодом

Управляемые выпрямители с емкостным триодом способны работать в сети постоянного тока. Если рассматривать параметры модификаций, то можно отметить высокое входное напряжение. При этом перегрузка при работе не будет превышать 5 А. Система защиты используется класса А45. Некоторые модификации подходят для силовых трансформаторов.

В данном случае многое зависит от конденсаторного блока, который установлен в выпрямителе. Как утверждают эксперты, номинальное напряжение многих модификаций составляет 55 В. Выходной ток в системе составляет 4 А. Фильтры для модификаций подходят переменного тока. Коэффициент сглаживания у выпрямителей составляет 70 %.

управляемые выпрямители

Устройства на базе канального триода

Управляемые выпрямители с канальными триодами отличаются высокой степенью проводимости. Модели данного типа замечательно подходят для понижающих трансформаторов. Если говорить про конструкцию, то стоит отметить, что модели всегда производятся с двумя коннекторами, а фильтры у них используются на изоляторах. Если верить экспертам, то проводимость при частоте 40 Гц сильно не меняется.

Есть ли недостатки у данных выпрямителей? Тепловые потери являются слабой стороной модификаций. Многие эксперты отмечают низкую проводимость коннекторов, которые устанавливаются на выпрямители. Чтобы решить проблему, применяются кенотроны. Однако их не разрешается использовать в сети постоянного тока.

Отличие модификаций

Выпрямители на 12 В используются только для понижающих трансформаторов. Компараторы в устройствах устанавливаются с фильтрами. Предельная перегрузка модификаций составляет не более 5 А. Системы защиты довольно часто применяются класса Р48. Для преодоления волновых помех они замечательно подходят. Еще часто применяются преобразовательные стабилизаторы, у которых высокий коэффициент сглаживания. Если говорить про недостатки модификаций, то стоит отметить, что выходной ток в устройствах составляет не более 15 А.

8.3.4 Управляемые выпрямители

От выпрямителей часто требуется не только преобразовывать переменное напряжение в постоянное, но и плавно изменять значение выпрямленного напряжения. Управлять выпрямленным напряжением можно как в цепи переменного напряжения, так и в цепи выпрямленного тока. При управлении в цепи переменного напряжения применяют специальные регулируемые трансформаторы (автотрансформаторы, трансформаторы с подмагничиванием сердечника постоянным током и т.д.), реостаты или потенциометры. Однако подобные способы управления выпрямленным напряжением (током) при их относительной простоте имеют существенный недостаток, связанный с низким КПД. Такие регуляторы имеют, как правило, большие массу, габариты и стоимость.

Более экономичным и удобным способом управления, который получил широкое распространение, является управление выпрямленным напряжением (током) в процессе выпрямления, так называемое управляемое выпрямление.

Выпрямители, которые совмещают выпрямление переменного напряжения (тока) е управлением выпрямленным напряжением (током), называют управляемыми выпрямителями.

Основным элементом современных управляемых выпрямителей является тиристор VS. На рис.8.18представлена схема простейшего однофазного однополупериодного выпрямителя на тиристоре VS. Управление напряжением на выходе управляемого выпрямителя сводится к управлению во времени моментом отпирания (включения) тиристора. Это осуществляется за счет сдвига фаз между анодным напряжением и напряжением, подаваемым на управляющий электрод тиристора. Такой сдвиг фаз называют углом управления и обозначают а (рис.8.18,б), а способ управления называют фазовым. Управление значением, а осуществляют с помощью фазовращающей R2С-цепи, которая позволяет изменить угол α о т 0 до 90°. При этом выпрямленное напряжение регулируют от наибольшего значения до его половины. Резистором Rl изменяют напряжение, подаваемое на управляющий электрод тиристора. Диод VD обеспечивает подачу на управляющий электрод положительных однополярных импульсов.

Рисунок 8.18. Схема (а), временные диаграммы напряжения и тока (б) однофазного однополупериодного управляемого выпрямителя

Оптимальной формой управляющих сигналов для тиристоров является короткий импульс с крутым фронтом. Такая форма позволяет уменьшить нагрев управляющего электрода тиристора, а также обеспечить за счет высокой крутизны управляющего импульса четкое отпирание тиристора. Для формирования подобных импульсов и их сдвига во времени служат специальные импульсно-фазовые системы управления. Изменение угла управления осуществляют ручным или автоматическим способом, что обеспечивает изменение выпрямленного напряжения в требуемых пределах.

На рис.8.19 изображена схема однофазного двухполупериодного управляемого выпрямителя с импульсно-фазовым блоком управления (ИФБ), довольно часто применяемая на практике. Сдвиг управляющих импульсов по отношению к анодному напряжению тиристоров VS1 и VS2 производят вручную с помощью мостового фазовращателя (рис.8.20, а), векторная диаграмма которого изображена на рис. 8.20,б. Как известно, при изменении сопротивления переменного резистора R фаза напряжения ucd, являющегося выходным напряжением мостового фазовращателя, при постоянной амплитуде плавно изменяется от 0 до 180°. Напряжение ucd с выхода фазовращателя (см.рис.8.19) поступает на вход усилителей-ограничителей на транзисторах VT1, VT2, причем диоды VD1, VD2 срезают отрицательные полуволны этого напряжения. Выходные напряжения этих усилителей, имеющие трапецеидальную форму, далее дифференцируются цепочками R1C1 и R2C2. Появившиеся после этого импульсы с крутыми фронтами и малой длительностью являются двухполярными. Диоды VD3 и VD4 в управляющих цепях тиристоров делают их однополярными (не пропускают отрицательные импульсы).

Рисунок 8.19. Схема однофазного двухполупериодного управляемого выпря­мителя с импульсно-фазовым управлением

Рисунок 8.20 Схема (а) и векторная диаграмма фазовращателя (б)

Усилители-ограничители питаются от отдельного выпрямителя, который собран по мостовой схеме на диодах VD5 VD8 . В выпрямитель входит также сглаживающий RС-фильтр.

Среднее значение выпрямленного напряжения при угле управления α ≠ 0 без учета потерь определяют из выражения

(8.1)

где U2 — действующее напряжение фазы вторичной обмотки трансформатора,

—значение Uнα при a = 0.

5.5. Особенности работы полууправляемого выпрямителя

Для упрощения системы управления и удешевления выпрямителя применяются несимметричные мостовые схемы, у которых одна из групп тиристоров (обычно анодная) заменяется неуправляемыми дио­дами (рис. 5.13).

Рис. 5.13. Несимметричная мостовая схема

Такие выпрямители используются в устройствах небольшой мощности, а также в установках большой мощности при ограниченном диапазоне регулирования. В работе схемы при непрерывном токе нагрузки различают два режима: при 0 <α < π/З и α > π/3.

Временные диаграммы фазных напряжений и напряжения на нагрузке при 0 < α < π/3 показаны на рис. 5.14, а, б.

Рис. 5.14. Временные диаграммы фазных напряжений и напряжения на нагрузке

Кривая выходного напряжения получается несимметричной.

Работу схемы при углах управления α>π/3 иллюстрирует рис. 5.15.

В этом случае, как хорошо видно на диаграмме рис. 5.15, а, име­ются интервалы времени, когда ток проводят два вентиля, подклю­ченные к одной из фаз. Например, на интервале—Т3 ток прово­дит тиристор, подключенный к фазе с, и диод, подключенный к той же фазе. В этом случае ток нагрузки замыкается накоротко через эти вентили и в кривой выходного напряжения (рис. 5.15, б) получа­ются паузы, т. е. в нагрузке про­текает ток при нулевом напря­жении на выходе выпрямителя, который поддерживается энер­гией, накопленной в индуктив­ности нагрузки.

Рис. 5.15. Временные диаграммы фазных напряжений

В обмотках трансформатора и в сети на этих интервалах ток не проте­кает. Используя временные диа­граммы рис. 5.15, находим:

. (5.11)

Как следует из полученных выше соотношений, регулировочная характеристика полу управляемого выпрямителя, показанная на рис. 5.16, описывается одинаковыми соотношениями во всем диапа­зоне регулирования.

Рис. 5.16. Регулировочная характеристика полу управляемого выпрямителя

5.6. Коммутационные процессы в выпрямителях

Коммутацион­ным процессом (или явлением коммутации) называют процесс пере­хода тока с одного вентиля на другой. Рассмотрим процесс на примере схемы выпрямителя с нулевой точкой трансформатора (рис. 5.17). В этой схеме в анодной цепи каждого вентиля схематически изображена паразитная анодная индуктивность (индуктивное сопротивление рассеяния) трансфор­матора

Рис. 5.17. Схема выпрямителя с нулевой точкой трансформатора

. Временные диаграммы, поясняющие процессы коммутации при угле управления α = 0, показаны на рис. 5.18.

Р Рис. 5.18. Временные диаграммы при угле управления α = 0

Если ха = 0, то переход тока с одного вентиля на другой происхо­дит мгновенно. Если ха, то ток в цепи с анодной индуктивностью не может измениться мгновенно, т. е. требуется некоторое время, чтобы ток одного вентиля (например, VT1) уменьшился от Id до нуля, а ток другого вентиля (VT2) возрос от нуля до Id (рис. 5.18,). Ток вентиля VT3 при этом равен нулю.

Здесь и далее будем считать, что индуктивность нагрузки Ld достаточно велика и ток нагрузки id хорошо сглажен.

Время одновременного проводящего состояния двух вентилей называется временем коммутации, а угол, соответствующий этому времени, называется углом коммутации γ (рис. 5.18, б). Мгновенное значение напряжения на нагрузке определяется значением фазного напряжения, подключенного к нагрузке через проводящий вентиль. На анодной индуктивности не наводится противо ЭДС, так как ток фазы, являющийся током нагрузки, на интервале проводимости вен­тиля не изменяется.

Внешняя характеристика управляемого выпрямителя может быть представлена в следующем виде:

(5.12)

Для управляемого выпрямителя получаем несколько характеристик.

Выходная характеристика неуправляемого выпрямителя показана на рис. 5.19 при угле α=0. При увеличении угла α выходные характеристики располагаются параллельно естественной (α=0), но ниже, образуя семейство характеристик. На рис. 5.19 представлены совмещенные выход­ные и регулировочные характеристики.

Рис. 5.19. Совмещенная выход­ная и регулировочная характеристики

Как рассматривалось выше, в области больших углов управления и (или) малых токов нагрузки возникает режим прерывистого тока нагрузки. В кривой выходного напряжения исчезают отрицательные площадки и возникают паузы. В результате среднее значение выходного напряжения несколько растет. Это хорошо видно на внешних характеристиках в режиме малых токов.

Уравнение внешней характеристики удобно записывать не через ха, а использовать полученное соотношение, в котором ха выражено через напряжение короткого замыкания трансформатора Uк, %.

Тогда уравнение внешней характеристики можно записать в виде:

, (5.13)

где ик — выражено в процентах.

Учитывая, что коммутация в общем случае происходит на интервале от 0 до π∕2 и при этом ток вступающего в ра­боту вентиля изменяется от 0 до Id.

Вопросы для самоконтроля

  1. Что такое угол регулирования α. От какой точки он отсчитывается на вре­менных диаграммах: а) при т = 2; б) т = 3; в) т = 6?

  2. Что такое регулировочная характеристика?

  3. Что такое режим прерывистого и непрерывного тока? Когда возникает режим прерывистого тока при активной нагрузке: а) при т = 2; б) т = 3; в) т = 6? Может ли возникнуть режим прерывистого тока при активно- индуктивной нагрузке?

  4. Что такое анодная индуктивность и как она влияет на значение выходно­го напряжения выпрямителя?

  5. Что такое угол коммутации γ и от чего он зависит?

5.6.Используя временные диаграммы, объясните принцип работы многофаз­ных схем:

а) трехфазной схемы с нулевым выводом; б) трехфазной мостовой схемы; в) схемы две обратные звезды с уравнительным реактором.

5.7. Поясните принцип построения эквивалентных многофазных схем, объяс­ните природу возникновения потока вынужденного намагничивания и в каких схемах он возникает?

5.8. По каким параметрам выбирают вентили и трансформатор в

выпрями­тельных установках?

    1. . Какие существуют способы повышения пульсности выходного напряже­ния выпрямителей?

5.10. Какими способами можно получить фиксированный фазовый сдвиг меж­ду системами трехфазных напряжений, питающих выпрямитель?

управляемый выпрямитель — это… Что такое управляемый выпрямитель?


управляемый выпрямитель
controlled rectifier

Большой англо-русский и русско-английский словарь. 2001.

  • управляемый вручную
  • управляемый вычислительной машиной

Смотреть что такое «управляемый выпрямитель» в других словарях:

  • управляемый выпрямитель — выпрямитель с импульсным управлением Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменное напряжение в постоянное, но имог изменять его значение. Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с… …   Справочник технического переводчика

  • управляемый выпрямитель — valdomasis lygintuvas statusas T sritis automatika atitikmenys: angl. controlled rectifier vok. gesteuerter Gleichrichter, m; steuerbarer Gleichrichter, m rus. управляемый выпрямитель, m pranc. redresseur commandé, m …   Automatikos terminų žodynas

  • кремниевый управляемый выпрямитель — valdomasis silicio lygintuvas statusas T sritis radioelektronika atitikmenys: angl. silicon controlled rectifier vok. gesteuerter Siliziumgleichrichter, m rus. кремниевый управляемый выпрямитель, m pranc. redresseur commandé à silicium, m …   Radioelektronikos terminų žodynas

  • выпрямитель источника бесперебойного питания — Устройство, преобразующее переменный ток в постоянный. В современных ИБП выпрямитель также выполняет функцию коррекции входного коэффициента мощности источник бесперебойного питания. [http://www.radistr.ru/misc/document423.phtml] EN rectifier… …   Справочник технического переводчика

  • Трёхфазный выпрямитель — (англ. Three phase rectifier) устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо Добровольского. Схемы трёхфазны …   Википедия

  • Электровоз ВЛ86ф — ВЛ86ф Основные данные Год постройки 1985 Страна постройки …   Википедия

  • ТЭ114 — ТЭ114 …   Википедия

  • ВЛ86ф — ВЛ86ф …   Википедия

  • ВЛ86Ф — ВЛ86Ф …   Википедия

  • ВЕНТИЛЬНЫЙ ЭЛЕКТРОПРИВОД — электропривод, в к ром для питания двигателя и регулирования его угловой скорости используется преобразователь на управляемых электрич. вентилях (напр., тиристорах). Содержит либо управляемый преобразователь частоты, питающий двигатель перем.… …   Большой энциклопедический политехнический словарь

  • Феррометр —         устройство для определения мгновенных значений индукции (Bt) и напряжённости (Ht) магнитного поля в ферромагнитных образцах. Ф. позволяет по точкам строить симметричные динамические петли перемагничивания ферромагнитных образцов (см.… …   Большая советская энциклопедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *