Угловая частота и частота – Угловая частота ω в записанном выражении для мгновенного значения напряжения определяется в зависимости от заданной частоты источника переменного тока

Содержание

Угловая частота — Википедия

Материал из Википедии — свободной энциклопедии

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω=2πν.{\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Примечания

  1. ↑ Угловая частота. Большой энциклопедический политехнический словарь. Проверено 27 октября 2016.

Угловая частота — Википедия

Материал из Википедии — свободной энциклопедии

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω=2πν.{\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Примечания

  1. ↑ Угловая частота. Большой энциклопедический политехнический словарь. Проверено 27 октября 2016.

Угловая частота — Википедия. Что такое Угловая частота

Материал из Википедии — свободной энциклопедии

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω=2πν.{\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Примечания

  1. ↑ Угловая частота. Большой энциклопедический политехнический словарь. Проверено 27 октября 2016.

Угловая частота Википедия

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω=2πν.{\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также[ | ]

Примечания[ | ]

  1. ↑ Угловая частота (неопр.). Большой энциклопедический политехнический словарь. Дата обращения 27 октября 2016.

Обсуждение:Угловая частота — Википедия

Материал из Википедии — свободной энциклопедии

«Угловая частота́ (синонимы: радиальная частота, циклическая частота, круговая частота)» — не ошибочно ли применять все эти термины для обозначения одного и того же процесса? Ведь «цикл» — это период Т: «11-летний цикл Солнечной активности», «цикл Карно», «биологический цикл». Поэтому правильнее было бы применять термин «циклическая» к «обычной» частоте f=1/Т, а не к круговой ω=2πf. Синонимом термина «угловая частота» скорее является «угловая скорость»,а не «циклическая частота». Термин «радиальный» коррелирует с термином «аксиальный» и характеризует скорее направление, чем скорость или частоту. Величину ω=2πf правомерно обозначать одним-единственным термином — «круговая», отражающем связь ω с f при переходе от векторной формы изображения процесса к временной (U=f(ωt). 80.64.175.6 15:02, 8 октября 2009 (UTC)2×22 13:52, 9 октября 2009 (UTC)Starik

Весьма странное определение: угловая частота — мера частоты Т. е. одна частота является мерой другой частоты? Поразительная способность у некоторых авторов писать бессмыслицу с умным видом Vladimir-sergin 09:36, 17 марта 2014 (UTC)

товарищи ученые, то, что это угловая частота, можно трактовать по разному и относительно. во-первых, можно рассматривать как радианную меру окружности/круга, а число этик полных кругов или радианов в секунду будет согласовано с частотой f. во-вторых, если рассматривать как градусную меру в 360* градусов, то вращательное движение с частотой f покажет полную градусную меру/величину на которую повернется вал с частотой вращения f в секунду. А, вот то, что пишут что это частота за секунд — еще просто нигде не встречал в прямом применении, всегда эту величину приводят к разумному трактованию данной величины. Ну, если только для удобства решения какой-то формулы и только. —128.69.221.110 18:22, 29 августа 2015 (UTC)

«Угловая частота связана с частотой ν соотношением»

Осталось пояснить, что же есть частота ν…

Угловая частота — WiKi

Углова́я частота́ (синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

ω=∂φ/∂t.{\displaystyle \omega =\partial \varphi /\partial t.}

Другое распространённое обозначение ω=φ˙.{\displaystyle \omega ={\dot {\varphi }}.}

Угловая частота связана с частотой ν соотношением[1]

ω=2πν.{\displaystyle \omega ={2\pi \nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

ω=360∘ν.{\displaystyle \omega ={360^{\circ }\nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости), в случае колебательного движения — приращению полной фазы колебания за единицу времени. Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ωLC=1/LC,{\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота νLC=1/(2πLC).{\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).}

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

УГЛОВАЯ ЧАСТОТА — это… Что такое УГЛОВАЯ ЧАСТОТА?


УГЛОВАЯ ЧАСТОТА

круговая частота, циклическая частота, — хар-ка периодич. колебат. процесса. У. ч. со равна произведению частоты колебаний на 2ПИ: w = 2ПИv = 2ПИ/Т, где v и Т — частота и период колебаний. Единица У. ч. (в СИ) — рад/с (см. Радиан).

Большой энциклопедический политехнический словарь. 2004.

  • УГЛОВАЯ СТАБИЛИЗАЦИЯ
  • УГЛОВОЕ УСКОРЕНИЕ

Смотреть что такое «УГЛОВАЯ ЧАСТОТА» в других словарях:

  • Угловая частота — Размерность T −1 Единицы измерения …   Википедия

  • угловая частота — периодических колебаний; угловая частота; отрасл. круговая частота Число периодов колебаний в 2π единиц времени. угловая частота синусоидального электрического тока; угловая частота Частота синусоидального электрического тока, умноженная на 2π …   Политехнический терминологический толковый словарь

  • угловая частота — Скорость изменения фазы синусоидального электрического тока, равная частоте синусоидального электрического тока, умноженной на 2π. Примечание — Аналогично определяют угловые частоты синусоидальных электрического напряжения,… …   Справочник технического переводчика

  • УГЛОВАЯ ЧАСТОТА — (круговая частота), число колебаний, совершаемое за 2p секунд. Угловая частота w=2pn=2p/T, где n число колебаний в 1 с., T период колебаний. Угловая частота при вращательном движении число оборотов, совершаемое вращающимся твердым телом за 1 с.,… …   Современная энциклопедия

  • Угловая частота — (круговая частота), число колебаний, совершаемое за 2p секунд. Угловая частота w=2pn=2p/T, где n число колебаний в 1 с., T период колебаний. Угловая частота при вращательном движении число оборотов, совершаемое вращающимся твердым телом за 1 с.,… …   Иллюстрированный энциклопедический словарь

  • УГЛОВАЯ ЧАСТОТА — (круговая частота) число колебаний, совершаемых за 2? секунд. Угловой частоты , где ? число колебаний в секунду, Т период колебаний …   Большой Энциклопедический словарь

  • угловая частота — 3.1.2 угловая частота w (angular frequency), рад/с: Циклическая частота, умноженная на 2π. Источник …   Словарь-справочник терминов нормативно-технической документации

  • угловая частота — (круговая частота), число колебаний, совершаемых за 2π единиц времени. Угловая частота ω = 2πn = 2π/T, где ν  число колебаний в единицу времени, Т  период колебаний. Обычно используемая единица времени  секунда; тогда угловая частота измеряется в …   Энциклопедический словарь

  • угловая частота — kampinis dažnis statusas T sritis fizika atitikmenys: angl. angular frequency; cyclic frequency; radian frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f; циклическая частота, f pranc. fréquence… …   Fizikos terminų žodynas

  • угловая частота — kampinis dažnis statusas T sritis automatika atitikmenys: angl. angular frequency; circular frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f pranc. fréquence angulaire, f; fréquence circulaire, f …   Automatikos terminų žodynas

  • угловая частота — kampinis dažnis statusas T sritis Standartizacija ir metrologija apibrėžtis Virpesio fazės kitimo sparta, išreiškiama formule: ω = 2πf; čia f – dažnis. Kampinio dažnio ω matavimo vienetas yra rad/s (radianas per sekundę), o dažnio f – Hz (hercas) …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *