Удельное электрическое сопротивление никелина – Удельное электрическое сопротивление — Википедия. Что такое Удельное электрическое сопротивление

Содержание

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Физика таблица

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы104 ρ (ом·см)Чистые металлы104 ρ (ом·см)
Серебро0,016Хром0,131
Медь0,017Тантал0,146
Золото0,023Бронза 1)0,18
Алюминий0,029Торий0,18
Дюралюминий0,0335Свинец0,208
Магний0,044Платинит 2)0,45
Кальций0,046Сурьма0,405
Натрий0,047Аргентан0,42
Марганец0,05Никелин0,33
Иридий0,063Манганин0,43
Вольфрам0,053Константан0,49
Молибден0,054Сплав Вуда 3)0,52 (0°)
Родий0,047Осмий0,602
Цинк0,061Сплав Розе 4)0,64 (0°)
Калий0,066Хромель0,70-1,10
Никель0,070
Кадмий0,076Инвар0,81
Латунь0,08Ртуть0,958
Кобальт0,097Нихром 5)1,10
Железо0,10Висмут1,19
Палладий0,107Фехраль 6)1,20
Платина0,110Графит8,0
Олово0,113

Таблица удельное сопротивление изоляторов

Изоляторыρ (ом·см)Изоляторыρ (ом·см)
Асбест108Слюда1015
Шифер108Миканит1015
Дерево сухое1010Фарфор2·1015
Мрамор1010Сургуч5·1015
Целлулоид2·1010Шеллак1016
Бакелит1011Канифоль1016
Гетинакс5·1011Кварц _|_ оси3·1016
Алмаз1012Сера1017
Стекло натр1012Полистирол1017
Стекло пирекс2·1014Эбонит1018
Кварц || оси1014Парафин3·1018
Кварц плавленый2·1014Янтарь1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Чистые металлыt (°С)Удельное сопротивление, 104 ρ (ом·см)
Висмут-2000,348
Золото-262,80,00018
Железо-252,70,00011
Медь-258,60,00014 1
Платина-2650,0010
Ртуть-183,50,0697
Свинец-252,90,0059
Серебро-258,60,00009

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлыТ (°К)RT/R0
Алюминий77,71,008
20,40,0075
Висмут77,80,3255
20,40,0810
Вольфрам78,20,1478
20,40,0317
Железо78,20,0741
20,40,0076
Золото78,80,2189
20,40,0060
Медь81,60,1440
20,40,0008
Молибден77,80,1370
20,40,0448
Никель78,80,0919
20,40,0066
Олово79,00,2098
20,40,0116
Платина91,40,2500
20,40,0061
Ртуть90,10,2851
20,40,4900
Свинец73,10,2321
20,50,0301
Серебро78,80,1974
20,40,0100
Сурьма77,70,2041
20,40,0319
Хром80,00,1340
20,60,0533
Цинк83,70,2351
20,40,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%)Nh5ClNaClZnSO4CuSO4КОНNaOHh3SO4
510,914,9
52,4
52,95,85,14,8
105,68,331,231,33,23,22,6
153,96,124,123,82,42,91,8
203,05,121,32,03,01,5
252,54,720,81,93,71,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

Электрическое сопротивление никеля и железа. Удельное электрическое сопротивление. Определение

В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

Для изготовления применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

Электропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. Удельное сопротивление меди при 20° С составляет 0,0172-0,018 ом х мм2/м.

Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

Латуни — сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. латуни 0,031 — 0,079 ом х мм2/м. Различают латунь — томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

Контакт из латуни

Бронзы — сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. Удельное сопротивление бронзы 0,021 — 0,052 ом х мм 2 /м.

Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

Алюминий — по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° — 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 — 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 — 0,029 ом х мм 2 /м.

При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

Для изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины — сплав алюминия с медью и марганцем.

Силумин — легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

Алюминиевый деформируемый сплав марки АД , имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 — 98,15 и прочих примесей 1,85 -2,65.

Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

Железо — температура плавления 1539°С. Плотность железа — 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

В электротехнике применяют стали различных марок, например:

Углеродистые стали — ковкие сплавы железа с углеродом и с другими металлургическими примесями.

Удельное сопротивление углеродистых сталей 0,103 — 0,204 ом х мм 2 /м.

Легированные стали — сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

Стали обладают хорошими .

В качестве добавок в сплавы, а также для изготовления припоев и осуществления токопроводящих металлов широко применяют:

Кадмий — ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

Никель — температура плавления 1455°С. Удельное сопротивление никеля 0,068 — 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

Олово — температура плавления 231,9°С. Удельное сопротивление олова 0,124 — 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

Свинец — температура плавления 327,4°С. Удельное сопротивление 0,217 — 0,227 ом х мм 2 /м. Свинец применяется в сп

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы

104 ρ (ом·см)

Чистые металлы

104 ρ (ом·см)

Серебро

0,016

Хром

0,131

Медь

0,017

Тантал

0,146

Золото

0,023

Бронза 1)

0,18

Алюминий

0,029

Торий

0,18

Дюралюминий

0,0335

Свинец

0,208

Магний

0,044

Платинит 2)

0,45

Кальций

0,046

Сурьма

0,405

Натрий

0,047

Аргентан

0,42

Марганец

0,05

Никелин

0,33

Иридий

0,063

Манганин

0,43

Вольфрам

0,053

Константан

0,49

Молибден

0,054

Сплав Вуда 3)

0,52 (0°)

Родий

0,047

Осмий

0,602

Цинк

0,061

Сплав Розе 4)

0,64 (0°)

Калий

0,066

Хромель

0,70-1,10

Никель

0,070

 

 

Кадмий

0,076

Инвар

0,81

Латунь

0,08

Ртуть

0,958

Кобальт

0,097

Нихром 5)

1,10

Железо

0,10

Висмут

1,19

Палладий

0,107

Фехраль 6)

1,20

Платина

0,110

Графит

8,0

Олово

0,113

 

 

Таблица удельное сопротивление изоляторов

Изоляторы

ρ (ом·см)

Изоляторы

ρ (ом·см)

Асбест

108

Слюда

1015

Шифер

108

Миканит

1015

Дерево сухое

1010

Фарфор

2·1015

Мрамор

1010

Сургуч

5·1015

Целлулоид

2·1010

Шеллак

1016

Бакелит

1011

Канифоль

1016

Гетинакс

5·1011

Кварц _|_ оси

3·1016

Алмаз

1012

Сера

1017

Стекло натр

1012

Полистирол

1017

Стекло пирекс

2·1014

Эбонит

1018

Кварц || оси

1014

Парафин

3·1018

Кварц плавленый

2·1014

Янтарь

1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Чистые металлы

t (°С)

Удельное сопротивление, 104 ρ (ом·см)

Висмут

-200

0,348

Золото

-262,8

0,00018

Железо

-252,7

0,00011

Медь

-258,6

0,00014 1

Платина

-265

0,0010

Ртуть

-183,5

0,0697

Свинец

-252,9

0,0059

Серебро

-258,6

0,00009

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы

Т (°К)

RT/R0

Алюминий

77,7

1,008

20,4

0,0075

Висмут

77,8

0,3255

20,4

0,0810

Вольфрам

78,2

0,1478

20,4

0,0317

Железо

78,2

0,0741

20,4

0,0076

Золото

78,8

0,2189

20,4

0,0060

Медь

81,6

0,1440

20,4

0,0008

Молибден

77,8

0,1370

20,4

0,0448

Никель

78,8

0,0919

20,4

0,0066

Олово

79,0

0,2098

20,4

0,0116

Платина

91,4

0,2500

20,4

0,0061

Ртуть

90,1

0,2851

20,4

0,4900

Свинец

73,1

0,2321

20,5

0,0301

Серебро

78,8

0,1974

20,4

0,0100

Сурьма

77,7

0,2041

20,4

0,0319

Хром

80,0

0,1340

20,6

0,0533

Цинк

83,7

0,2351

20,4

0,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%)

NH4Cl

NaCl

ZnSO4

CuSO4

КОН

NaOH

H2SO4

5

10,9

14,9

52,4

52,9

5,8

5,1

4,8

10

5,6

8,3

31,2

31,3

3,2

3,2

2,6

15

3,9

6,1

24,1

23,8

2,4

2,9

1,8

20

3,0

5,1

21,3

2,0

3,0

1,5

25

2,5

4,7

20,8

1,9

3,7

1,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.



Удельное электрическое сопротивление — это… Что такое Удельное электрическое сопротивление?

Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность препятствовать прохождению электрического тока.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм²/м. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

В технике часто применяется в миллион раз меньшая производная единица: Ом·мм²/м, равная 10−6 от 1 Ом·м: 1 Ом·м = 1·106 Ом·мм²/м. Физический смысл удельного сопротивления в технике: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв.мм.

Величина удельного сопротивления обозначается греческой буквой .

Сопротивление проводника с удельным сопротивлением , длиной и площадью сечения может быть рассчитано по формуле

Обобщение понятия удельного сопротивления

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией — коэффициентом, связывающим напряжённость электрического поля и плотность тока в данной точке

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства зависят от направления (вообще говоря, в нём векторы тока и напряжённости электрического поля в данной точке не сонаправлены). В этом случае удельное сопротивление является зависящим от координат тензором второго ранга:

Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

Металлρ, Ом·мм2
Серебро0,016
Медь0,0175
Золото0,023
Алюминий0,0271
Иридий0,0474
Молибден0,054
Вольфрам0,055
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,205
Титан0,5562 — 0,7837
Висмут1,2
Сплавρ, Ом·мм2
Сталь0,1400
Никелин0,42
Константан0,5
Манганин0,43…0,51
Нихром1,05…1,4
Фехраль1,15…1,35
Хромаль1,3…1,5
Латунь0,07…0,08

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Тонкие плёнки

Удельное сопротивление в тонких плёнках (когда толщина образца много меньше расстояния между контактами) характеризуется «удельным сопротивлением на квадрат», . В этом случае удельное сопротивление не зависит от линейных размеров образца если он имеет форму прямоугольника, а только от отношения (длины к ширине) L/W: , где R — измеренное сопротивление. В случае если форма образца отличается от прямоугольной используют метод ван дер Пау.

См. также

Ссылки

21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.

Мате­риалы высокого сопротивления должны быть высокостабильными, иметь удельное сопротивление не менее 0,3 мкОм•м, очень низкий ТКρ и малую термо-ЭДС относительно меди. Металлические сплавы, образующие твердые растворы, по на­значению разделяют на сплавы резистивные и нагревостойкие.

Резистивные сплавы широко используют в производстве прово­лочных резисторов, шунтов, реостатов, термопар и т.д. Самые рас­пространенные среди них — медно-никелевые сплавы: манганин, константан и др.

  1. Манганин — это сплав, состоящий из меди Си 85—89%, никеля Ni 2,5—3,5% и марганца Мп 11,5—13,5%. Примеси не должно быть более 0,9%. Удельное сопротивление манга­нина составляет 0,42—0,48 мкОм-м, предельно допустимая температу­ра 200°С. Хо­рошо протягивается в тонкую проволоку диаметром от 0,02 до 6,0 мм, а микро­провод в стеклянной изоляции производят диаметром в несколько мкм. Хорошо прокатывается в ленту толщиной 0,01—1 мм (ширина ленты 10—300 мм). Манганин применяют для изготовления образцовых (проволочных) резисторов, шунтов и некоторых измерительных приборов.

  2. Константин — сплав, содержащий 56—59% меди Си, 39—41% никеля Ni и 1—2% марганца Мп, примеси — не более 0,9%. Удельное сопротивление р = 0,48—0,52 мкОм•м, значение ТКр близ­ко к нулю и обычно имеет отрицательный знак. Может использоваться в реостатах и нагревательных элементах при температурах до 450—500°С. При быстром (3 с) нагреве константановой проволоки на воздухе до температуры 900°С на ее поверхности обра­зуется тонкая пленка оксида, обладающая электроизоляционными свойствами.

Нагревостойкие сплавы используют для изготовления нагрева­тельных элементов. К ним относятся сплавы на основе железа, нике­ля, хрома и алюминия. Высокая нагревостойкость этих сплавов обусловле­на образованием на их поверхностях сплошной плотной оксидной пленки.

  1. Нихромы — это сплавы системы Fe—Ni—Cr, со­держащие Ni 55—78%, Cr 15—25%, Mn 1,5 и остальное Fe; удельное сопротивление равно 1,0—1,2 мкОм-м. При повышенном содержа­нии железа эти сплавы называют ферронихромами. Нихромы облада­ют высокой технологичностью, легко протягиваются в тонкую про­волоку и легко прокатываются в тонкую ленту. Это жаростойкие сплавы. Вы­сокая нагревостойкость нихромов объясняется близкими значения­ми ТКЛР сплавов и их оксидных пленок.

  2. Фехрали и хромали — это жаростойкие сплавы системы Fe—Cr—A1, содержащие с своем составе хрома Сг 12—15%, алюминия А1 3,5—5,5%, марганца Мп 0,7%, никеля Ni 0,6% и ос­тальное железо Fe; удельное сопротивление равно 1,2—1,4 мкОм•м. Эти сплавы менее технологичны, более твердые и хрупкие, чем ни­хромы. Поэтому из них получают проволоку и ленты с поперечным сечением большим, чем из нихромов. Отличаются высокой стойкостью к химиче­скому разрушению под действием различных газообразных сред при высоких температурах.

22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).

Влияние примеси на удельное сопротивление

Чистые отожженные металлы имеют менее деформированнуюкристаллическую решетку, поэтому для них характерны большие значения λ, и, следовательно, у (малая величина ρ). Примеси, раство­ренные в металлах, деформируют кристаллическую решетку и вызы­вают большие изменения удельного сопротивления. Отсюда ρ метал­лов, содержащих растворенную примесь, всегда выше, чем ρ чистых металлов. У металлических сплавов удельное сопротивление зависит не только от концентрации компонентов, образующих данный сплав, но и от типа образовавшегося сплава. Гетерогенные структуры (механические смеси), твердые растворы с неограниченной или ограниченной растворимостью компонентов друг в друге в твердом состоянии, химические (интерметаллические) соединения. Максимальное значение р проявляется у сплавов, кристаллическая решетка которых макси­мально деформирована.

Влияние размеров проводника на удельное сопротивления

Вметаллических проводниках в виде тонких пленок, фольги или проволоки образуется мелкозернистая структура. Чем мельче зерно, тем больше суммарная удельная поверхность зерен. Наиболее де­фектной частью зерна является его поверхность. Увеличе­ние удельного сопротивления объясняется тем, что при кристаллиза­ции металла на подложке в образовавшейся мелкозернистой пленке появляются многочисленные дефекты в виде вакансий, дислокаций, межблочных и межзеренных границ, пор и др. В результате умень­шается средняя длина свободного пробега электрона λ, и р возраста­ет. Для сравнительной оценки удельного сопротивления тонких ме­таллических пленок принято сопротивление квадрата RD, через про­тивоположные грани которого ток протекает параллельно поверх­ности RD = ρδ /δ.

Термо­резисторы изготавливают из полупроводниковых материалов, диапазон изменения их ТКС — (-6,5…+70)%. Материал для создания терморезисторов должен удовле­творять следующим требованиям:

1.электронная проводимость материала и возможность регулирования ее,

2.стабильность харак­теристик материала в диапазоне рабочих температур,

3.простота технологии изготовления изделий,

4.материалы должны быть не­чувствительными к загрязнениям в процессе технологического изготовления изделий.

Терморезисторы с отрицательным ТКС изготавливаются из оксидов металлов с незаполненными электронным. Если температура увеличивается, то электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носите­лей заряда.

и уровнями. Современные терморезисторы с отрицательным ТКС обычно изготавливают из следующих оксидных систем: ни­кель-марганец-медь, никель-марганец-кобальт-медь, кобальт-марганец-медь, железо-титан, никель-литий, кобальт-литий, медь-марганец.

Тенденции развития современных материалов с отрица­тельным ТКС

1.получение более стабильных терморезисторов

2.расширение верхней границы ра­бочих температур.

3.создание переключающих термо­резисторов с отрицательным ТКС.

Терморезисторы с положительным ТКС можно разделить на 2 группы

1.Терморезисторы из полупроводникового материала, легированные кристаллы Si (кремния) как n-, так и р-типа имеют положительный ТКС при температуре от криогенных до150°С и выше

2.Терморезисторы с большим ТКС (до 70% на 1oС), но в более ограниченном диапазоне температур. Материалом в данном случае является поликристаллический полупроводнико­вый титанат бария с большим изменением ТКС при температу­ре 120°С.

Терморезистивные элементы с положительным ТКС выпускают на основе титанато-бариевой керамики.

Основные электрические параметры

  1. Габаритные размеры.

  2. Величина сопротивления образцов

  3. Величина ТКС а в процентах на 1°С

  4. Постоянная времени τ (в секундах), характеризующая те­пловую инерционность терморезистора.

  5. Максимально допустимая температура tmax

  6. Максимально допустимая мощность рассеивания

  7. Коэффициент рассеяния Н в Вт на 1°С. Численно равен мощности, рассеиваемой на терморезисторе при разности темпе­ратур образца и окружающей среды в 1°С

  8. Коэффициент температурной чувствительности

В =[ (T1*T2)/(T2-T1) *Ln(R1/R2)

  1. Коэффициент энергетической чувствительности G в Вт/%R, численно равен мощности, которую нужно рассеять на терморезисторе для уменьшения его сопротивления на 1 %

  2. Теплоемкость С в Дж на 1°С.

Основные характеристики терморезисторов

1.ВАХ

график (А)соответствует терморезистору с отрицательным ТКС,

(Б) — с положительным.

2.Температурная характеристика

3.Подогревная характеристика — характеристика, свойст­венная терморезисторам косвенного подогрева — зависимость сопротивления резистора от подводимой мощности.

Собственный нагрев термисторов

1.Схемы с термисторами, сопротивление которых определяется только температурой окружающей среды. Ток, проходящий при этом через термистор, настолько мал, что не вызывает дополнительного разо­грева термистора.

2. Во вторую группу входят схемы с термисторами, сопротивление которых меняется за счет собственного нагре­ва.

Удельное электрическое сопротивление Википедия

Уде́льное электри́ческое сопротивле́ние (удельное сопротивление) — физическая величина, характеризующая способность материала препятствовать прохождению электрического тока, выражается в Ом·метр. Удельное электрическое сопротивление принято обозначать греческой буквой ρ. Значение удельного сопротивления зависит от температуры в различных материалах по-разному: в проводниках, удельное электрическое сопротивление с повышением температуры возрастает, а в полупроводниках и диэлектриках — наоборот, уменьшается. Величина, учитывающая изменение электрического сопротивления от температуры называется температурный коэффициент удельного сопротивления. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле R=ρ⋅lS{\displaystyle R={\frac {\rho \cdot l}{S}}} (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется ρ=R⋅Sl.{\displaystyle \rho ={\frac {R\cdot S}{l}}.}

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единицы измерения[ | ]

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м[1]. Из соотношения ρ=R⋅Sl{\displaystyle \rho ={\frac {R\cdot S}{l}}} следует, что единица измерения удельного сопротивления в с

Электрическое сопротивление проводников. Единицы сопротивления

1035. Выразите в омах значения следующих сопротивлений: 500 мОм; 0,2 кОм; 80 МОм.

Электрическое сопротивление проводников. Единицы сопротивления

1036. Два провода изготовлены из одного материала и площади их сечений одинаковы. Во сколько раз сопротивление одного провода (длиной 10 м) больше сопротивления другого провода (длиной 1,5 м)?

Электрическое сопротивление проводников. Единицы сопротивления

1037. Каково сопротивление медной струны сечением 0,1 мм² и длиной 10 м.

Электрическое сопротивление проводников. Единицы сопротивления

1038. Железная и медная проволоки равной длины имеют одинаковые сечения. Одинаково ли сопротивление проволок? Если нет, то какая из них будет иметь большее сопротивление и во сколько раз?

Электрическое сопротивление проводников. Единицы сопротивления

1039. Медный тросик имеет длину 100 м и поперечное сечение 2 мм²? Чему равно его сопротивление?

Электрическое сопротивление проводников. Единицы сопротивления


1040. В электрической цепи общая длина подводящих железных проводов сечением 1 мм² равна 5 м. Определите сопротивление подводящих проводов.

Электрическое сопротивление проводников. Единицы сопротивления

 

1041. На рисунке 101 изображены медный, алюминиевый и железный проводники. Вычислите сопротивление каждого проводника.

Электрическое сопротивление проводников. Единицы сопротивления

1042. Медный трамвайный провод имеет длину 3 км и площадь поперечного сечения 30 мм2. Чему равно сопротивление провода?
Электрическое сопротивление проводников. Единицы сопротивления
1043. Имеются две проволоки одинакового сечения и материала. Длина первой 20 см, а второй 1,5 м. Сопротивление какой проволоки больше и во сколько раз? Почему?

Электрическое сопротивление проводников. Единицы сопротивления

1044. Имеются две проволоки одинаковой длины и материала. Сечение одной проволоки 0,2 см2, а другой 4 мм2. Сопротивление какой проволоки больше и во сколько раз? Почему?

Электрическое сопротивление проводников. Единицы сопротивления

1045. Имеются две проволоки одного и того же материала. Длина первой проволоки 5 м, а второй 0,5 м; сечение первой 0,15 см2, а второй 3 мм2. Сопротивление какой проволоки больше и во сколько раз?

Электрическое сопротивление проводников. Единицы сопротивления

1046. Имеются два алюминиевых провода одинаковой длины, но разного сечения. Сечение первого 0,1 см², а второго 2 мм². Сопротивление первого 2 Ом. Определите сопротивление второго. (Задачу следует решать, не прибегая к формуле.)

Электрическое сопротивление проводников. Единицы сопротивления


1047. Удельное сопротивление никелина 0,45 мкОм • м. Объясните, что это значит.

Сопротивление одного метра никелинового проводника сечением 1 м² равно 0,45 мкОм.

1048. Подсчитайте в уме (конечно, не прибегая к формуле), какое сопротивление имеет алюминиевый провод длиной 20 м и сечением 1 мм².
В 20 раз больше удельного сопротивления алюминия Ral = 0,56 Ом.

1049. Подсчитайте в уме сопротивление никелиновой проволоки длиной 1 м и сечением 0,1 мм2.

Электрическое сопротивление проводников. Единицы сопротивления

1050. Какого сечения нужно взять алюминиевую проволоку, чтобы ее сопротивление было такое же, как у медной проволоки сечением 2 мм², если длины обеих проволок одинаковы?

Электрическое сопротивление проводников. Единицы сопротивления


1051. Рассчитайте по формуле сопротивление километра медного трамвайного провода, если его сечение 0,65 см².

Электрическое сопротивление проводников. Единицы сопротивления

1052. Длина медных проводов, соединяющих энергоподстанцию с потребителем электроэнергии, равна 2 км. Определите сопротивление проводов, если сечение их равно 50 мм².

Электрическое сопротивление проводников. Единицы сопротивления

1053. В автомобильном аккумуляторе площадь поверхности пластинок S = 300 см2, расстояние между ними 2 см. Пластинки погружены в 20%-ный раствор серной кислоты с удельным сопротивлением ρ = 0,015 Ом • м. Определите сопротивление слоя кислоты между пластинками.

Электрическое сопротивление проводников. Единицы сопротивления

1054. Телеграфный провод между Москвой и Санкт-Петербургом сделан из железной проволоки диаметром 4 мм. Определите сопротивление провода, если расстояние между городами около 650 км.

Электрическое сопротивление проводников. Единицы сопротивления

1055. Каково сопротивление платиновой нити, радиус сечения которой 0,2 мм, а длина равна 6 см?

Электрическое сопротивление проводников. Единицы сопротивления

1056. Какова длина медной проволоки сечением 0,8 мм2 и сопротивлением 2 Ом?

Электрическое сопротивление проводников. Единицы сопротивления

1057. Четыре провода — медный, алюминиевый, железный и никелиновый — с одинаковым сечением 1 мм² имеют одинаковое сопротивление 10 Ом. Какова длина каждого провода?

Электрическое сопротивление проводников. Единицы сопротивления

1058. Медная и алюминиевая проволоки имеют одинаковую длину. Какое сечение должно быть у алюминиевой проволоки, чтобы ее сопротивление было таким же, как у медной проволоки с площадью поперечного сечения 2 мм²?

Электрическое сопротивление проводников. Единицы сопротивления

1059. Для реостата, рассчитанного на 20 Ом, используют никелиновую проволоку длиной 100 м. Найдите сечение проволоки.

Электрическое сопротивление проводников. Единицы сопротивления

1060. Железная проволока сопротивлением 2 Ом имеет длину 8 м. Каково ее сечение?

Электрическое сопротивление проводников. Единицы сопротивления

1061. Длина металлической нити электролампочки равна 25 см, удельное электрическое сопротивление материала нити ρ = 0,2 Ом • м. Каково сечение нити, если ее сопротивление в нагретом состоянии равно 200 Ом?

Электрическое сопротивление проводников. Единицы сопротивления

1062. Для реостата, рассчитанного на 20 Ом, нужно взять никелиновую проволоку длиной 5 м. Какого сечения должна быть проволока?

Электрическое сопротивление проводников. Единицы сопротивления

1063. Если вместо никелиновой проволоки в предыдущей задаче взять для реостата железную проволоку такого же размера, то каково будет сопротивление реостата?

Электрическое сопротивление проводников. Единицы сопротивления


1064. Может ли медный провод длиной 100 м с поперечным сечением 4 мм² иметь сопротивление 5 Ом?

Электрическое сопротивление проводников. Единицы сопротивления


1065. Медная спираль, состоящая из 200 витков проволоки сечением 1 мм², имеет диаметр 5 см. Определите сопротивление спирали.

Электрическое сопротивление проводников. Единицы сопротивления


1066. По никелиновому проводнику длиной 10 м, сечением 0,5 мм2 проходит ток силой 1 А….

Электрическое сопротивление проводников. Единицы сопротивления

1067. Вычислить удельное сопротивление круглого провода, диаметр сечения которого 1 см, если кусок этого провода длиной 2,5 м имеет сопротивление 0,00055 Ом.

Электрическое сопротивление проводников. Единицы сопротивления

1068. Чему равно удельное сопротивление ртути при 0 °С?

Электрическое сопротивление проводников. Единицы сопротивления

1069. Два куска железной проволоки имеют одинаковый вес, а длина одного из этих кусков в 10 раз больше длины другого….

Электрическое сопротивление проводников. Единицы сопротивления

1070. Какой длины потребуется взять константановую проволоку сечением 1 мм2 для изготовления эталона в 2 Ом?

Электрическое сопротивление проводников. Единицы сопротивления

1071. Из манганиновой проволоки изготовлен эталон, который имеет сопротивление 100 Ом при 15 °С. Каково будет сопротивление этого эталона при 5 °С?

Электрическое сопротивление проводников. Единицы сопротивления

1072. Сколько требуется меди на провод длиной 10 км, сопротивление которого должно быть 10 Ом? Плотность меди ρ = 8,5 г/см3.

Электрическое сопротивление проводников. Единицы сопротивления


1073. Для изготовления реостата сопротивлением 2 Ом взяли железную проволоку сечением 3 мм². Определите массу проволоки.

Электрическое сопротивление проводников. Единицы сопротивления

1074. Никелиновая спираль электроплитки имеет длину 5 м и площадь поперечного сечения 0,1 мм². Плитку включают в сеть с напряжением 220 В. Какой силы ток будет в спирали в момент включения электроплитки?

Электрическое сопротивление проводников. Единицы сопротивления

1075. Через реостат течет ток силой 2,4 А. Каково напряжение на реостате, если он изготовлен из константа- новой проволоки длиной 20 м и сечением 0,5 мм²?

Электрическое сопротивление проводников. Единицы сопротивления

1076. Каково напряжение на концах железной проволоки длиной 12 см и площадью поперечного сечения 0,04 мм², если сила тока, текущего через эту проволоку, равна 240 мА?

Электрическое сопротивление проводников. Единицы сопротивления


1077. Для изготовления нагревательного прибора, рассчитанного на напряжение 220 В и силу тока 2 А, необходима никелиновая проволока диаметром 0,5 мм. Какой длины надо взять проволоку?

Электрическое сопротивление проводников. Единицы сопротивления

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *