У какого металла самая высокая электропроводность. Удельная электрическая проводимость
— 102.50 КбЭлектропроводность.
Электрическая проводимость (электропроводность, проводимость) — это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В системе СИ единицей измерения электрической проводимости является См. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению ρ . Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость
σ=1/ ρ
Удельная электрическая проводимость измеряется в сименсах на метр (См/м).
Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:
где γ — удельная проводимость,
J — вектор плотности тока,
E — вектор напряжённости электрического поля.
Электрическая проводимость G проводника может быть выражена следующими формулами:
G = 1/R = S/(ρl) = γS/l = I/U
где ρ — удельное
сопротивление,
S — площадь поперечного
сечения проводника,
l — длина проводника,
γ = 1/ρ — удельная проводимость,
U — напряжение на участке,
I — ток на участке.
Измеряется электрическая проводимость в сименсах: [G] = 1/1 Ом = 1 См.
В веществах имеется два типа носителей зарядов: электроны или ионы. Движение этих зарядов создает электрический ток.
Электропроводность различных веществ зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропроводность данного вещества. Все вещества в зависимости от электропроводности делят на три группы: проводники, диэлектрики и полупроводники.
Вода. Лед. Пар.
Вода (оксид водорода)- химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме), запаха и вкуса (при нормальных условиях). Химическая формула: Н2O. В твёрдом состоянии вода называется льдом или снегом, а в газообразном — водяным паром. Вода является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).
В
отдельно рассматриваемой молекуле
воды атомы водорода и кислорода,
точнее их ядра, расположены так, что образуют
равнобедренный треугольник. В вершине
его – сравнительно крупное кислородное
ядро, в углах, прилегающих к основанию,
– по одному ядру водорода.
Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — правильный тетраэдр.
Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи — спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.
То, что вода неоднородна по своему составу, было установлено давно. Лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.
Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4°C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40°C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно.
Кроме того, при температуре ниже 30°C с увеличением давления от атмосферного до 0,2 ГПа вязкость воды уменьшается, а коэффициент самодиффузии — параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт.
Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула мож
Удельная электропроводность — это… Что такое Удельная электропроводность?
- Удельная электропроводность
Уде́льная проводи́мость (Уде́льная электропрово́дность) — мера способности вещества проводить электрический ток. (Точнее следует говорить об электропроводности среды, т.к. не имеется в виду обязательно химически чистое вещество; эта величина различна для разных веществ или смесей, сплавов и т.п.). В линейном изотропном веществе плотность возникающего тока прямо пропорциональна электрическому полю (см. Закон Ома)
где
- σ — удельная проводимость,
- — вектор плотности тока,
- — вектор напряжённости электрического поля.
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, т.е. не совпадает в различных точках проводника.
В анизотропных средах формула остаётся той же, но σ является тензором 2 ранга, и векторы плотности тока и напряжённости поля, вообще говоря, не коллинеарны.
Величина, обратная удельной проводимости, называется удельным сопротивлением.
- Вообще говоря, линейное соотношение, написанное выше, верно в лучшем случае приближённо, причём приближение это хорошо только для сравнительно малых значений E. Впрочем, и при тех значениях E, когда отклонения от линейности есть, но не слишком велики, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения.
В системе СИ удельная электропроводность измеряется в единицах 1/(Ом·м) (1 на Ом·метр), См/м. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).
Wikimedia Foundation. 2010.
- Удельное вращение
- Удельные княжества
Смотреть что такое «Удельная электропроводность» в других словарях:
УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ — физ. величина s, равная электропроводности цилиндрич. проводника единичной длины и единичной площади сечения; У. э. связана с уд. сопротивлением r соотношением s=1/r. Её принято измерять в единицах: сименс (Ом 1) на метр или на сантиметр (См/м… … Физическая энциклопедия
удельная электропроводность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductivityelectrical conductivityspecific conductivity … Справочник технического переводчика
удельная электропроводность — savitasis laidis statusas T sritis automatika atitikmenys: angl. conductivity; electrical conductivity; specific conductivity vok. spezifischer Leitwert, m rus. удельная проводимость, f; удельная электропроводность, f pranc. conductibilité… … Automatikos terminų žodynas
удельная электропроводность
— savitasis elektrinis laidis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai. Matavimo vienetas – simensas metrui (S/m). atitikmenys: angl. electric conductivity vok. spezifischer… … Penkiakalbis aiškinamasis metrologijos terminų žodynasудельная электропроводность — savitasis elektrinis laidis statusas T sritis chemija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai (S/m). atitikmenys: angl. electric conductivity; electrical conductivity rus. удельная электропроводность … Chemijos terminų aiškinamasis žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis fizika atitikmenys: angl. electric conductivity; electrical conductivity vok. spezifische Leitfähigkeit, f; spezifischer Leitwert, m rus. удельная электропроводность, f pranc. conductivité électrique … Fizikos terminų žodynas
Удельная электропроводность — (σ) физическая величина, равная электропроводности (См. Электропроводность) цилиндрического проводника единичной длины и единичной площади поперечного сечения; У. э. связана с удельным сопротивлением (См. Удельное сопротивление)… … Большая советская энциклопедия
удельная электропроводность — Syn: удельная электропроводимость … Металлургический словарь терминов
удельная электропроводность воды — Электропроводность единицы объема воды. [ГОСТ 30813 2002] Тематики водоснабжение и канализация в целом EN electrical conductivity DE elektrische Leitfahigkeit FR conductivite electrique … Справочник технического переводчика
удельная электропроводность при накоплении — (напр. отложений) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN cumulated conductivity … Справочник технического переводчика
РД 52.24.495-2005 Водородный показатель и удельная электрическая проводимость вод. Методика выполнения измерений электрометрическим методом
РД 52.24.495-2005
РУКОВОДЯЩИЙ ДОКУМЕНТ
ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ И УДЕЛЬНАЯ
ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ ВОД.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ЭЛЕКТРОМЕТРИЧЕСКИМ МЕТОДОМ
Предисловие
1 РАЗРАБОТАН ГУ «Гидрохимический институт»
2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук, А.А. Назарова, канд. хим. наук
3 УТВЕРЖДЕН Заместителем руководителя Росгидромета 15.06.2005 г.
4 СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ МВИ Выдано метрологической службой ГУ «Гидрохимический институт 30.12.2004 г. № 150.24-2004.
5 ЗАРЕГИСТРИРОВАН ЦКБ ГМП за номером РД 52.24.495-2005 от 30.06.2005 г.
6 ВЗАМЕН РД 52.24.495-95 «Методические указания. Методика выполнения измерений рН и удельной электропроводности вод»
Произведение концентраций водородных и гидроксильных ионов в химически чистой воде является постоянной величиной, равной 10-14 при температуре 25 °С. Оно остается неизменным и в присутствии веществ, диссоциирующих с образованием водородных и гидроксильных ионов. В чистой воде концентрации водородных и гидроксильных ионов равны 10-7 моль/дм3, что соответствует нейтральному состоянию раствора. В кислых растворах [Н+] > 10-7 моль/дм3, а в щелочных [Н+] < 10-7 моль/дм3.
Для удобства выражения концентрации водородных ионов в воде используют величину, представляющую собой взятый с обратным знаком десятичный логарифм их концентрации. Эта величина называется водородным показателем и обозначается рН (рН = — lg[H+]¢).
Величина рН является одним из важнейших показателей качества вод и характеризует состояние кислотно-основного равновесия воды. От величины рН зависит развитие и жизнедеятельность водной биоты, формы миграции различных элементов, агрессивное действие воды на вмещающие породы, металлы, бетон.
На величину рН поверхностных вод влияет состояние карбонатного равновесия, интенсивность процессов фотосинтеза и распада органических веществ, содержание гумусовых веществ.
В большинстве водных объектов рН воды обычно колеблется в пределах от 6,3 до 8,5. В речных и озерных водах зимой отмечаются более низкие по сравнению с летним периодом значения рН.
Величина рН поверхностных вод, подверженных интенсивному загрязнению сточными водами или влиянию подземных вод, может изменяться в более широких пределах из-за наличия в их составе сильных кислот или оснований.
Удельная электрическая проводимость (удельная электропроводность) — количественная характеристика способности воды проводить электрический ток. В чисто физическом смысле это величина, обратная электрическому сопротивлению воды при температуре 25 °С, находящейся между двумя электродами с поверхностью 1 см2, расстояние между которыми равно 1 см. Единица удельной электрической проводимости — Сименс на 1 м (См/м). Для воды в качестве единицы измерения используют производные величины — миллиСимменс на 1 м (мСм/м) или микроСименс на 1 см (мкСм/см).
В большинстве случаев удельная электрическая проводимость поверхностных вод суши является приблизительной характеристикой концентрации в воде неорганических электролитов — катионов Na+, K+, Са2+, Mg2+ и анионов Сlˉ, SO42-, HCO3—. Присутствие других ионов, например Fe(II), Fe(III), Mn(II), NO3—, НРО42- обычно мало сказывается на величине удельной электрической проводимости, так как эти ионы редко встречаются в воде в значительных количествах. Водородные и гидроксильные ионы в диапазоне их обычных концентраций в поверхностных водах суши на удельную электрическую проводимость практически не влияют. Столь же мало и влияние растворенных газов.
Таким образом, удельная электрическая проводимость поверхностных вод суши зависит в основном от их минерализации и обычно колеблется в пределах от 50 до 10000 мкСм/см.
Измерение рН воды осуществляют потенциометриче
4.2.3. Удельная проводимость полупроводников
Рассеяние на ионизированных примесях с ростом температуры уменьшается, т.е. μи возрастает.
Рассеяние на тепловых колебаниях решетки играет доминирующую роль при повышенных температурах, подвижность умень-
шается пропорционально μт ≈Т−3/ 2 . Результирующая подвижность определяется из соотношения:
1 μ =1 μт +1 μи. | (4.10) |
Таким образом, температурная зависимость μ выражается кривой с отчетливо выраженным максимумом. С увеличением концентрации примеси максимальное значение μ уменьшается и смещается в сторону более высоких температур.
Подвижность носителей заряда в ионных кристаллах более низкая, так как рассеяние носителей заряда на тепловых колебаниях ионов гораздо интенсивнее, чем в решетке с нейтральными атомами.
Плотность тока, возникающего в полупроводнике,
j = en0μnE + ep0μpE , | (4.11) |
где е — заряд электрона.
Таким образом, в соответствии с законом Ома (1.1) удельная проводимость полупроводников определяется концентрацией носителей заряда и их подвижностью
γ = en0μn + ep0μp . | (4.12) |
В примесных полупроводниках обычно учитываются только основные носители заряда, тогда
• для полупроводников n-типа
γ = en0μn , | (4.13а) |
• для полупроводников p-типа |
|
γ = ep0μp . | (4.13б) |
Температурная зависимость удельной проводимости
Для невырожденного полупроводника в диапазоне температур, соответствующих области истощения примесей, концентрация основных носителей заряда остается практически постоянной, и характер изменения удельной проводимости определяется температурной зависимостью подвижности носителей заряда (рис. 34).
Рис. 34. Температурная зависимость удельной проводимости полупроводника при N1 < N2 < N3
Резкое возрастание удельной проводимости при повышенных температурах соответствует области собственной проводимости. Для этой области γ = e ni (μn + μp ). Угол наклона прямой на участке
собственной проводимости определяет ширину запрещенной зоны полупроводника.
Чем больше концентрация примеси, тем больше электронов поставляется в зону проводимости, тем выше удельная проводимость. С увеличением концентрации примеси повышается и температура перехода к собственной проводимости полупроводника Тi.
У вырожденного полупроводника N3 концентрация носителей заряда не зависит от температуры, и зависимость γ = f(T) в области примесной проводимости качественно подобна температурному изменению удельной проводимости металлов.
Удельное электрическое сопротивление — Википедия
Уде́льное электри́ческое сопротивле́ние, или просто удельное сопротивление вещества — физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока.
Удельное сопротивление обозначается греческой буквой ρ. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.
Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле R=ρ⋅lS{\displaystyle R={\frac {\rho \cdot l}{S}}} (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется ρ=R⋅Sl.{\displaystyle \rho ={\frac {R\cdot S}{l}}.}
Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.
Единицы измерения
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м[1]. Из соотношения ρ=R⋅Sl{\displaystyle \rho ={\frac {R\cdot S}{l}}} следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².
В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м[1]. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².
Обобщение понятия удельного сопротивления
Кусок резистивного материала с электрическими контактами на обоих концахУдельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается законом Ома в дифференциальной форме:
- E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}
Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением
- Ei(r→)=∑j=13ρij(r→)Jj(r→).{\displaystyle E_{i}({\vec {r}})=\sum _{j=1}^{3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}
В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.
Тензор ρij{\displaystyle \rho _{ij}} симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.
Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую
- Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}
Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.
Связь с удельной проводимостью
В изотропных материалах связь между удельным сопротивлением ρ{\displaystyle \rho } и удельной проводимостью σ{\displaystyle \sigma } выражается равенством
- ρ=1σ.{\displaystyle \rho ={\frac {1}{\sigma }}.}
В случае анизотропных материалов связь между компонентами тензора удельного сопротивления ρij{\displaystyle \rho _{ij}} и тензора удельной проводимости σij{\displaystyle \sigma _{ij}} имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:
- Ji(r→)=∑j=13σij(r→)Ej(r→).{\displaystyle J_{i}({\vec {r}})=\sum _{j=1}^{3}\sigma _{ij}({\vec {r}})E_{j}({\vec {r}}).}
Из этого равенства и приведённого ранее соотношения для Ei(r→){\displaystyle E_{i}({\vec {r}})} следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:
- ρ11=1det(σ)[σ22σ33−σ23σ32],{\displaystyle \rho _{11}={\frac {1}{\det(\sigma )}}[\sigma _{22}\sigma _{33}-\sigma _{23}\sigma _{32}],}
- ρ12=1det(σ)[σ33σ12−σ13σ32],{\displaystyle \rho _{12}={\frac {1}{\det(\sigma )}}[\sigma _{33}\sigma _{12}-\sigma _{13}\sigma _{32}],}
где det(σ){\displaystyle \det(\sigma )} — определитель матрицы, составленной из компонент тензора σij{\displaystyle \sigma _{ij}}. Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1, 2 и 3[3].
Удельное электрическое сопротивление некоторых веществ
Металлические монокристаллы
В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C[4].
Кристалл | ρ1=ρ2, 10−8 Ом·м | ρ3, 10−8 Ом·м |
---|---|---|
Олово | 9,9 | 14,3 |
Висмут | 109 | 138 |
Кадмий | 6,8 | 8,3 |
Цинк | 5,91 | 6,13 |
Теллур | 2,90·109 | 5,9·109 |
Металлы и сплавы, применяемые в электротехнике
Разброс значений обусловлен разной химической чистотой металлов, способов изготовления образцов, изученных разными учеными и непостоянством состава сплавов.
|
|
Значения даны при температуре t = 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.
Другие вещества
Тонкие плёнки
Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», RSq.{\displaystyle R_{\mathrm {Sq} }.} Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: RSq=RW/L,{\displaystyle R_{\mathrm {Sq} }=RW/L,} где R — измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в пленке неоднородное, используют метод ван дер Пау.
Примечания
- ↑ 1 2 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 93. — 240 с. — ISBN 5-7050-0118-5.
- ↑ 1 2 Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — 287 с.
- ↑ Давыдов А. С. Теория твёрдого тела. — М.: «Наука», 1976. — С. 191—192. — 646 с.
- ↑ Шувалов Л. А. и др. Физические свойства кристаллов // Современная кристаллография / Гл. ред. Б. К. Вайнштейн. — М.: «Наука», 1981. — Т. 4. — С. 317.
См. также
Удельная электропроводность — это… Что такое Удельная электропроводность?
- Удельная электропроводность
Уде́льная проводи́мость (Уде́льная электропрово́дность) — мера способности вещества проводить электрический ток. (Точнее следует говорить об электропроводности среды, т.к. не имеется в виду обязательно химически чистое вещество; эта величина различна для разных веществ или смесей, сплавов и т.п.). В линейном изотропном веществе плотность возникающего тока прямо пропорциональна электрическому полю (см. Закон Ома)
где
- σ — удельная проводимость,
- — вектор плотности тока,
- — вектор напряжённости электрического поля.
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, т.е. не совпадает в различных точках проводника.
В анизотропных средах формула остаётся той же, но σ является тензором 2 ранга, и векторы плотности тока и напряжённости поля, вообще говоря, не коллинеарны.
Величина, обратная удельной проводимости, называется удельным сопротивлением.
- Вообще говоря, линейное соотношение, написанное выше, верно в лучшем случае приближённо, причём приближение это хорошо только для сравнительно малых значений E. Впрочем, и при тех значениях E, когда отклонения от линейности есть, но не слишком велики, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения.
В системе СИ удельная электропроводность измеряется в единицах 1/(Ом·м) (1 на Ом·метр), См/м. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).
Wikimedia Foundation. 2010.
- Удельное вращение
- Удельные княжества
Смотреть что такое «Удельная электропроводность» в других словарях:
УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ — физ. величина s, равная электропроводности цилиндрич. проводника единичной длины и единичной площади сечения; У. э. связана с уд. сопротивлением r соотношением s=1/r. Её принято измерять в единицах: сименс (Ом 1) на метр или на сантиметр (См/м… … Физическая энциклопедия
удельная электропроводность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductivityelectrical conductivityspecific conductivity … Справочник технического переводчика
удельная электропроводность — savitasis laidis statusas T sritis automatika atitikmenys: angl. conductivity; electrical conductivity; specific conductivity vok. spezifischer Leitwert, m rus. удельная проводимость, f; удельная электропроводность, f pranc. conductibilité… … Automatikos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai. Matavimo vienetas – simensas metrui (S/m). atitikmenys: angl. electric conductivity vok. spezifischer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis chemija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai (S/m). atitikmenys: angl. electric conductivity; electrical conductivity rus. удельная электропроводность … Chemijos terminų aiškinamasis žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis fizika atitikmenys: angl. electric conductivity; electrical conductivity vok. spezifische Leitfähigkeit, f; spezifischer Leitwert, m rus. удельная электропроводность, f pranc. conductivité électrique … Fizikos terminų žodynas
Удельная электропроводность — (σ) физическая величина, равная электропроводности (См. Электропроводность) цилиндрического проводника единичной длины и единичной площади поперечного сечения; У. э. связана с удельным сопротивлением (См. Удельное сопротивление)… … Большая советская энциклопедия
удельная электропроводность — Syn: удельная электропроводимость … Металлургический словарь терминов
удельная электропроводность воды — Электропроводность единицы объема воды. [ГОСТ 30813 2002] Тематики водоснабжение и канализация в целом EN electrical conductivity DE elektrische Leitfahigkeit FR conductivite electrique … Справочник технического переводчика
удельная электропроводность при накоплении — (напр. отложений) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN cumulated conductivity … Справочник технического переводчика