У меди какая электрическая проводимость: Электропроводность — Википедия – Электрическая проводимость меди

Электрическая проводимость меди

Электрическая проводимость меди напрямую зависит от наличия в этом металле разнообразных примесей. Даже в случае добавления к нему небольшого количества мышьяка, сурьмы происходит резное падение величины электрической проводимости. Но не оказывает существенного влияния на эту физическую величину свинец, теллур, селен, мышьяк.

электрическая проводимость меди

Особенности понятия

Электрическая проводимость меди ненамного меньше, чем у серебра, что делает этот металл востребованным в современной электротехнике.

Данная физическая величина является характеристикой способности вещества проводить электрический ток. Она связана с удельным электрическим сопротивлением металла прямо пропорциональной зависимостью.

Электрическое сопротивление меди в Ом⋅мм2/м составляет при температуре 20 градусов 0,017. По числовому значению это лишь незначительно меньше, чем у серебра.

Электрическая проводимость меди является величиной, обратной сопротивляемости, применяется для характеристики электротехнических свойств данного металла. Для ее измерения используют сименсы, соответствующие 1/Ом.

сопротивление меди

Получение меди

Поскольку медь проводит электричество, существует несколько способов изготовления данного металла. Полупроводниковую медь в настоящее время получают при гальванической очистке слитков в специальных электролитических ваннах. Большая часть медных изделий, применяемых в электротехнической промышленности, производится путем проката, волочения, прессовки.

При волочении создают провода, имеющие диаметр не больше 0,005 мм, тонкую фольгу, ленту до 0,1 мм.

Медная проводка востребована не только при возведении многоквартирных домов и офисных помещений, но и в частном строительстве.

коэффициент сопротивления меди

Интересные сведения

Данный металл часто встречается в природе в виде крупных самородков. Еще в древние времена люди изготавливали из него украшения, посуду, оружие. Востребованность меди объясняется легкостью ее обработки, а также распространенностью в природе.

Первоначально процесс выделения металла из его соединений был достаточно примитивным, заключался в нагревании медной руды над костром, последующем резком охлаждении. Такая обработка приводила к растрескиванию кусков руды, что позволяло людям извлекать сам металл.

По мере совершенствования технологических процессов обработки металлических руд в костры стали подавать воздух, чтобы повышать температуру нагревания природного соединения. Постепенно процесс начали осуществлять в специальных конструкциях, которые стали прототипами современных шахтных печей.

Результаты археологических раскопок свидетельствую о том, что изделия из меди использовались уже в 10 тысячелетии до нашей эры.

Природные соединения

Медные провода для проводки в настоящее время изготавливают из нескольких видов руд, распространенных в природе. Например, в составе борнита — около 65 процентов металла, в халькозине – до 80 %, а в медном колчедане (халькопирите) количество меди не превышает 30 процентов.

сопротивление меди в омах

Физические свойства

Высокая электрическая проводимость меди является одним из важнейших свойств данного металла. Его окраска меняется от бледно-розового оттенка до насыщенного красного цвета. Медь является переходным материалом, обладающим высокой тепло- и электропроводностью.

Линейное термическое расширение этого металла составляет 0,00000017 единицы. Медные изделия имеют при растяжении предел прочности 22 кг⋅с/мм2. Удельный вес металла — 8,94 г/см3, твердость по шкале Бринелля — 35 кгс/мм2. Среди важных физических характеристик данного металла следует отметить модуль упругости, составляющий 132 000 мН/м2.

Уникальными являются и магнитные свойства этого металла, являющегося полностью диамагнитным веществом.

Температурный коэффициент сопротивления меди при комнатной температуре равен 4,3 α (10-3/K).

Удельная проводимость, ковкость сделали данный металл востребованным в изготовлении различных элементов для электротехники. Схожими физическими характеристиками обладает алюминий, поэтому он является сырьем для создания кабелей, проводов в современном электротехническом производстве.

медь проводит электричество

Химические свойства

Сопротивление меди, способность данного металла проводить электрический ток объясняются особенностями строения атома этого химического элемента. Медь располагается в побочной подгруппе первой группы таблицы Менделеева, является d-элементом.

Сопротивление меди связано с электронами, располагающимися на внешнем энергетическом уровне. Особенности строения объясняют и специфику химических свойств данного металла. При незначительной влажности медь является достаточно инертным веществом, не проявляет высокой химической активности.

При эксплуатации медных изделий в условиях высокой влажности и присутствия углекислого газа происходит окисление металла.

На поверхности изделия появляется зеленоватая пленка карбоната и гидроксида меди (2), а также разнообразные сернистые соединения. Данную пленку называют патиной, она помогает защищать изделие от последующего химического разрушения.

При повышении температурного значения происходит образование медной окалины (оксида), что негативно отражается на электрической проводимости.

Медь легко вступает во взаимодействие с элементами, относящимися к подгруппе галогенов.

Если внести в металл пары серы, наблюдается воспламенение. Медь инертна к азоту, водороду, углероду даже при повышенных температурных значениях.

Интерес с технической точки зрения представляет взаимодействие этого металла с солями железа, приводящими к его восстановлению. Это химическое свойство позволяет снимать с изделий медное напыление.

Медь образует разнообразные комплексные соединения, которые отличаются высокой стойкостью.

медная проводка

Области использования

Применение данного металла связано с его высокой электрической проводимостью. Например, из него выпускают кабель. Медь имеет небольшое сопротивление, уникальные магнитные свойства, легкую механическую обрабатываемость, поэтому востребована в инженерных коммуникациях и административных зданиях. Способность проводить тепло позволяет применять этот материал для создания тепловых трубок, систем охлаждения и отопления воздуха.

Именно медь – материал, который незаменим при производстве кулеров, используемых для понижения температуры персональных компьютеров. Металлические конструкции, которые содержат медные элементы, имеют незначительный вес, отличные декоративные свойства, поэтому подходят и для применения в архитектуре, и для изготовления разнообразных декоративных элементов в интерьере, и для создания электрических проводов.

Особенности проводников

Для того чтобы понять суть электрической проводимости, остановимся на характеристике проводников. К ним относятся материалы, способные проводить электрический ток. Медь относится к проводникам первого рода, поскольку при повышении температуры наблюдается снижение электрической проводимости. На качество проводникового материала влияют механические, тепловые, электрические свойства. Для такого металла, как медь, все эти показатели имеют неплохие значения, что делает металл востребованным в различных сферах электротехники.

Пластичность меди, легкость ее обработки, хорошая вязкость, химическая стойкость позволяют создавать из данного металла разные виды изделий для технических нужд.

Разновидности

Для изготовления черновой меди применяют электролитическое восстановление металла из раствора медного купороса. Чистый металл необходим для радио- и электротехники. В зависимости от процентного содержания примесей, выделяют марки: М0 и М1. В первом случае количественное содержание чистого металла составляет 99,95 процента, для второго варианта – 99,9 процента.

Среди основных физических свойств, которыми характеризуются данные марки меди, отметим:

  • плотность 8900 кг/м3;
  • температура плавления 1083 °С;
  • высокая механическая прочность;
  • отличная обрабатываемость;
  • высокое удельное сопротивление 1,7241⋅10-8 Ом⋅м.

При введении примесей в состав чистого металла существенно увеличивается величина удельного сопротивления, при этом снижается электрическая проводимость.

Например, в случае введения 0,5 % алюминия и никеля удельное сопротивление возрастает на 40 процентов.

медные провода для проводки

Заключение

Медь отличается от других проводников тока высокой электрической проводимостью, низким показателем сопротивления, что делает ее востребованной в современном электротехническом производстве.

Токопроводящие проводниковые жилы, кабели, фольгированный гетинакс для печатных устройств, листы, полосы, проволока — это далеко не полный перечень тех изделий, которые создают из меди.

Помимо широкого использования самого металла применение находят и ее основные сплавы. К примеру, кадмиевая бронза используется для создания коллекторных пластин и электрических контактов.

Фосфористая бронза нужна для производства пружин в аппаратах и электронных приборах. Смесь меди с бериллием позволяет создавать зажимы, скользящие контакты, токоведущие пружины.

Оловянистую бронзу называют телефонной, поскольку именно из нее создают проволоку, используемую для телефонного кабеля.

Из медно-цинковых сплавов производят полосы и листы. Данный материал имеет большее удельное электрическое сопротивление, поэтому сплав обладает большой прочностью.

Среди многочисленных сфер применения меди особое значение представляет электротехническая промышленность. Из этого металла создают электрические провода разного диаметра, размера, подходящие для изготовления современных электрических и радиоприборов высочайшей точности. Для повышения электрической проводимости инженеры следят за чистотой металла, не допускают проникновения дополнительных примесей.

Медь в электротехнике — от добычи до кабеля

Медь относится к материалам высокой проводимости. Это материалы у которых величина удельного сопротивления меньше одной десятой микроома на метр. Для меди эта величина составляет 0,017-0,018мкОм*м. Также медь это проводник по электрическим свойствам и диамагнетик по магнитным свойствам.

Как получают медь?

Медь, используемая в проводах и кабелях достаточно высокой чистоты. Для её получения используют медные руды (сульфидные, оксидные и смешанные). Напомню, что такое сульфидные руды — это ископаемое сырье, которое добывается в природе и состоит из тяжелого металла (руда), серы(сульфид) и разных примесей.

На долю сульфидных руд приходится почти вся добыча и запасы меди (среди рудной добычи). Самыми распространенными минералами по залежам и целесообразности добычи среди сульфидных руд являются — халькопирит (CuFeS2), халькозин (Cu2S), борнит (Cu5FeS4).

название минерала хим.формула
% меди
цвет
халькопирит CuFeS2 34,5 золотой, желтый
халькозин Cu2S 79,8 черный, серый, синий
борнит Cu5FeS4 63,3 красный, медный

В общем, на первом этапе добывают медьсодержащие руды.

Затем добытые руды необходимо очистить от всех примесей и посторонних металлов, чтобы на выходе получилась медь. Для этих целей используют следующие методы: пирометаллургический, гидрометаллургический и электролиз. Например, после пирометаллургического метода мы получим слитки меди, в которых самой меди будет 90 процентов. Неплохо, однако можно и лучше.

Затем эту черновую медь доводят до 99,99% чистоты методом электролитической очистки и мы получаем то, что и используется в энергетике.

Влияние примесей на свойства меди

Вопрос чистоты меди достаточно важен:

  • при наличии 0,02% примеси алюминия электропроводность снижается примерно на 10%. А ведь алюминий достаточно хороший проводник
  • при наличии 0,1% фосфора сопротивление увеличивается на 55%, следовательно проводимость уменьшается, как величина обратная сопротивлению
  • если в меди будет висмут или свинец в количестве более 0,001%, то это вызывает красноломкость (растрескивание при горячей обработке давлением)
  • кислород в меди затрудняет пайку и увеличивает удельное сопротивление. Чтобы этого избежать вводят присадку фосфора
  • водород — образует микротрещины и повышает ломкость

Если присутствует несколько примесей, то бывают ситуации, что они взаимодействуют и их влияние увеличивается в разы.

Для использования меди для передачи электричества наличие примесей оказывает только негативный эффект.

Марки меди для электротехники и вообще

Марки меди состоят из буквы “М”, что значит медь. Далее следует цифра от 0 до 4. Иногда затем встречается одна из букв, которые характеризуют способ получения металла: к — катодный, р — раскисленная с низким остаточным фосфором, ф — раскисленная с высоким остаточным фосфором, б — бескислородная. Бескислородная это М0, а раскисленная — М1. Существуют множество марок меди, рассмотрим некоторые:

Специальная марка меди — М1Е. Это электротехническая медь, которая выпускается в виде шин, прутков различного диаметра и сечения. Она бывает особо твердой, твердой, полутвердой и мягкой. Проводимость у мягкой меди на пару процентов выше.

Выпускается в форме шин, прутков, круга. Прутья в свою очередь имеют диаметр от 5 до 40мм и форму сечения — круг, квадрат, шестигранник. У данного типа меди ограниченный срок хранения — до года у мягкой и полгода — у твердой.

Медные сплавы в электротехнике

Существуют различные сплавы меди, среди них бронза, латунь и прочие. У некоторых из них нашлось применение и в энергетике. Рассмотрим эти сплавы.

Бронзы — сплавы меди с оловом, алюминием, кремнием, свинцом. Среди прочих примесей самыми высокими электропроводностями отличаются (в порядке уменьшения электропроводности): кадмиевая, хромистая и бериллиевая бронзы. Самая же распространенная оловянная бронза имеет низкий показатель электропроводности. Бронзы используются для изготовления контактов, пружинных контактов, пластин в деталях электрических машин, проводов повышенной прочности.

Латуни — сплав меди с цинком (эти два вещества составляют большую часть сплава) и других примесей. Процентная доля цинка доходит до 43%. Используют для пружинящих контактов, штепсельных разъемов.

Манганин — сплав меди с добавкой марганца и никеля. Применяется для изготовления добавочных резисторов и шунтов в измерительной технике. Если вместо меди использовать серебро, то электрические свойства улучшаются.

В данной статье приведены элементарные понятия о применении меди в энергетике, более глубокое изучение возможно при освоении специальной технической литературы по данной теме.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Электрическая проводимость — медь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Электрическая проводимость — медь

Cтраница 1

Электрическая проводимость меди зависит от содержания примесей. При наличии даже небольшого количества примесей электрическая проводимость резко падает.  [1]

Электрическая проводимость меди заметно не изменяется под влиянием висмута, свинца, серы, селена и теллура, сильно снижается под влиянием незначительных количеств мышьяка, а также сурьмы.  [2]

В табл. 4 для сравнения приведена электрическая проводимость меди при комнатной температуре. Оказывается, что проводимость плазмы много меньше проводимости меди. Поэтому стенки канала и приходится набирать из изолированных друг от друга медных шайб.  [3]

Ом 1 — cvr1), составляющая 57 % электрической проводимости меди.  [4]

В зависимости от чистоты электрическая проводимость технического алюминия составляет 62 — 65 % от электрической проводимости меди, но алюминий легче меди в 3 3 раза и поэтому для изготовления проводников одинаковой электрической проводимости потребуется алюминия в 2 16 раза меньше, чем меди.  [5]

Проводниковую медь получают из слитков путем гальванической очистки в электролитических ваннах. Даже ничтожное количество примесей резко снижает электрическую проводимость меди. Почти все изделия из меди для электротехнической промышленности изготовляются путем проката, прессовки и волочения. Волочением получаются провода диаметром до 0 005 мм, ленты толщиной до 0 1 мм и фольга толщиной до 0 008 мм. При механических деформациях медь подвергается наклепу, который устраняется при термообработке.  [6]

Удельный вес никеля, наносимого гальваническим путем, равен 8 9; точка плавления 1455 С. Электрическая проводимость никеля составляет лишь 15 % электрической проводимости меди. При высокой температуре на никеле появляются цвета побежалости, однако в окисляющей атмосфере при температуре до 800 С никель не изменяет своих свойств. В щелочах и органических кислотах никель не растворяется, в серной и соляной кислотах он растворяется медленно, в азотной кислоте хорошо.  [7]

Он очень пластичен, легко прокатывается в фольгу и протягивается в проволоку. Прекрасный проводник электрического тока — его электрическая проводимость сравнима с электрической проводимостью меди.  [8]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия меньше, чем у меди ( около 60 % электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости масса алюминиевого провода вдвое меньше медного.  [9]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия меньше, чем у меди ( около 60 % электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости алюминиевый провод весит вдвое меньше медного.  [10]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия меньше, чем у меди ( около 60 %

электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости алюминиевый провод весит вдвое меньше медного.  [11]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия — меньше, чем у меди ( около 60 % электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости алюминиевый провод весит вдвое меньше медного.  [12]

В нагревостойких проводах с асбестовой изоляцией широко используется биметаллическая проволока, где сердечником служит медь, а покрытием — никель. В качестве примера такого использования можно привести провода типа Heat ( фирма Continental Wire and Cable Co, США), рассчитанные на рабочую температуру 538 С. Их электрическая проводимость составляет 70 % электрической проводимости меди. Недостатком такого типа токо-проводящих жил является то, что при температуре, близкой к 500 С, начинается интенсивная взаимная диффузия металлов сердечника и оболочки ( меди и никеля), что приводит к значительному росту электрического сопротивления. Это явление сопровождается ростом зерен меди и окислением никелевой оболочки. В результате этого заметно ухудшаются механические параметры проволоки. Свойства биметаллической проволоки Си-Ni описаны и лоэтому в данной работе не приводятся.  [13]

Он очень пластичен, легко прокатывается в фольгу к протягивается в проволоку. Прекрасный проводник электрического тока — его электрическая проводимость сравнима с электрической проводимостью меди.  [14]

Кадмий сильно поглощает медленные нейтроны. Поэтому его используют в виде стержней в ядерных реакторах для регулирования скорости цепной реакции. Сплавы меди, содержащие — 1 % Cd, служат для изготовления проводов, подвергающихся трению от скольжения контактов; не снижая электрической проводимости меди, кадмий улучшает ее механические свойства. Кадмирование стальных изделий лучше, чем цинковое покрытие, предохраняет железо и сталь от ржавления. Из солей кадмия наибольшее применение имеет сульфид. Сульфид кадмия применяется для изготовления краски и цветных стекол.  [15]

Страницы:      1    2

Подскажите электрическую проводимость относительно серебра у железа, меди и хрома? не могу нигде найти…

Электри&#769;ческая проводи&#769;мость (электропроводность, проводимость) — это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В СИ единицей измерения электрической проводимости является сименс (См) Удельной проводимостью называют меру способности вещества проводить электрический ток. Удельная проводимость некоторых веществ веществоСм/м серебро62 500 000 медь58 100 000 железо чистое10 000 000 нихром893 000 <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Электрическая_проводимость» target=»_blank» >Подробнее здесь</a> Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко пере­двигаться свободным электронам, затем следует золото, хром, алю­миний, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь. Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наобо­рот, в тех случаях, когда необходим материал с высоким сопротив­лением (для различных нагревательных приборов, реостатов и пр.) , применяют специальные сплавы: константан, манганин, нихром, фех­раль.

<img src=»//otvet.imgsmail.ru/download/68974305_fd7694ddbe270d57ad9887fea4ba3eb7_800.png» alt=»» data-lsrc=»//otvet.imgsmail.ru/download/68974305_fd7694ddbe270d57ad9887fea4ba3eb7_120x120.png» data-big=»1″>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *