Триггер Шмитта на операционном усилителе (ОУ)
Триггера Шмитта является очень полезным элементом при проектировании проектировать схем различных устройств.
Применение триггера Шмитта
Триггера Шмитта используется во многих областях электроники и связи. Довольно часто используется в цифровых схемах для сопряжения аналогового сигнала. Триггер срабатывает при определенном напряжении на его входе, выдавая сигнал логического уровня в зависимости от уровня напряжения на входе.
Например, для восстановления цифрового сигнала в зашумленных линиях связи, в системах цифро-аналогового преобразования и так далее.
Триггер Шмитта на операционном усилителе
Для построения триггера Шмитта используют компаратор на обычном операционном усилителе (ОУ) или же применяют специальную микросхему компаратора, и это встречается чаще.
Необходимо обратить внимание, что при использовании ОУ в триггере Шмитта, если входной сигнал является медленно нарастающим или имеет шумы, то существует вероятность того, что выход будет многократно переключаться, вследствие неполного закрытия-открытия выходного транзистора ОУ. Это связано с таким параметром ОУ как входное напряжение смещения.
Обычный компаратор может быть легко преобразован в триггер Шмитта путем добавления положительно-обратной связи (ПОС) операционного усилителя или компаратора. Это обеспечивается добавлением резистора R3 в приведенной ниже схеме.
Эффект от данного резистора (R3) проявляется в том, что он смещает порог переключения зависящий от выходного состояния компаратора или операционного усилителя.
Когда выходной сигнал компаратора является высоким, то это напряжение подается обратно на неинвертирующий вход операционного усилителя. В результате порог переключения становится выше. Когда же на выходе напряжение падает, то порог переключения также снижается. Это придает схеме так называемый гистерезис.
Применение положительно-обратной связи создает более высокий коэффициент усиления и, следовательно, переключение происходит быстрее. Это особенно полезно, когда входной сигнал медленно изменяющийся. Так же для увеличения скорости переключения триггера Шмита, параллельно резистору ПОС подключают так называемый скоростной конденсатор емкостью 10…100 пФ.
Довольно легко подобрать резисторы, необходимые для работы триггера Шмитта. Уровень напряжения, при котором необходимо, чтобы триггер переходил в свое противоположное состояние, задается делителем напряжения из резисторов R1 и R2. Это первое что необходимо сделать. Затем уже подбирается резистор обратной связи R3.
Особенности построения Триггера Шмитта на ОУ
При использовании ОУ в качестве компаратора, необходимо соблюдать осторожность. Операционный усилитель спроектирован для функционирования в схемах с отрицательной обратной связью. В результате, производители ОУ не гарантируют, что ОУ будут также надежно работать в цепях без обратной связи, либо с положительной обратной связью, как и в случае с триггером Шмитта.
Триггер Шмитта — это… Что такое Триггер Шмитта?

Фазовая траектория (статическая характеристика) триггера Шмитта представляет собой характеристику переключателя, но с прямоугольной петлёй гистерезиса. Неоднозначность статической характеристики позволяет утверждать, что триггер Шмитта, как и другие триггеры обладает свойством памяти — его состояние в зоне неоднозначности определяется предысторией — ранее действовавшим входным сигналом.
В триггере Шмитта весь входной диапазон возможных напряжений делится входным троичным компаратором на три нечётких поддиапазона в нечёткой (fuzzy) троичной логике, которым присваиваются три чётких значения (трит) в чёткой троичной логике, в верхнем из которых (трит = +1) триггер устанавливается в «1», в среднем из которых (трит = 0) действия не производятся, а в нижнем из которых (трит = -1) триггер устанавливается в «0». Логическая часть триггера Шмитта выполняет сложную унарную троичную логическую функцию с памятью — «повторитель (F107
Описание
Триггер Шмитта представляет собой RS-триггер, управляемый одним входным аналоговым сигналом, с двумя разными напряжениями переключения в «1» и в «0», причём, напряжение переключения в «1» выше напряжения переключения в «0».
Простые реализации (быстродействующие, без обратной связи) состоят из RS-триггера и троичного компаратора на входе RS-триггера, в котором два напряжения сравнения, для переключения в «0» и для переключения в «1», устанавливаются раздельно[1][2][3][4]

В более сложных реализациях (с обратной связью, которая снижает быстродействие) цифровой выходной сигнал используется для переключения напряжения сравнения в обычном двоичном компараторе, превращая его и в троичный компаратор и в триггер на одних и тех же элементах. При «1» на выходе обратная связь уменьшает напряжение переключения, при «0» на выходе обратная связь увеличивает напряжение переключения. В таких реализациях затруднена раздельная установка напряжений переключения в «1» и в «0»[5].
Реализации
Простой (без обратной связи)
Аппаратный
Программный
В «программном прецизионном триггере Шмитта с RS-триггером» двумя компараторами троичного компаратора являются два оператора IF-THEN, а RS-триггером является нулевой разряд (бит) целой переменной RStrigger%, с двумя значениями («0» и «1»)[7].
При логических элементах с одинаковым временем задержки аппаратный триггер Шмитта имеет значительно большее быстродействие (t
Более сложный (с обратной связью)
На аналоговых элементах
В аналоговой схемотехнике триггер Шмитта обычно реализуется на базе компаратора (операционного усилителя, охваченного резистивной положительной обратной связью) цифровой выходной сигнал которого, по этой же обратной связи, через время задержки, определяемое сопротивлением резистора обратной связи и распределённой ёмкостью, изменяет напряжение сравнения компаратора. В результате, компаратор становится троичным с двумя разными напряжениями переключения в «1» и в «0». Из-за этого в статической характеристике устройства появляется гистерезис, т.е. устройство приобретает свойства триггера.
Использование аналоговых элементов, как цифрового триггера, создаёт триггер, но низкого качества, и ухудшает компараторные свойства устройства.
На цифровых логических элементах
Простейшая реализация триггера Шмитта на цифровых логических элементах — это два последовательно включенных инвертора, охваченные резистивной обратной связью, цифровой выходной сигнал которых через обратную связь изменяет напряжение переключения на входе. Скорость нарастания выходного сигнала не зависит от скорости нарастания входного сигнала, для данной технической реализации является величиной постоянной (зависит от быстродействия логических вентилей).
Использование цифрового логического элемента, как аналогового компаратора, ухудшает компараторные свойства устройства, а резистивная обратная связь ухудшает триггерные свойства устройства.
См. также
Примечания
Литература
- Калабеков Б. А. Цифровые устройства и микропроцессорные системы —М.: Телеком, 2000 г.
- Потёмкин И. С. Функциональные узлы цифровой автоматики —М.: Энергоатомиздат, 1988 г., c. 166…. 206.
Ссылки
Симметричные триггеры | HomeElectronics
Всем доброго времени суток. В прошлой статье я рассказал об ограничителях сигнала, которые предназначены в первую очередь для ограничения импульса на определённом уровне напряжения. Сегодняшний мой пост о триггерах, которые также могут использоваться для формирования прямоугольных импульсов, но основное их назначение более сложное.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
В одной из предыдущих статей я рассматривал различные типы триггеров в интегральном исполнении, не вдаваясь во внутреннее устройство. Хочу напомнить, что же такое триггер. Триггер – это устройство, которое обладает двумя устойчивыми состояниями и способные под воздействием внешнего управляющего сигнала скачком переходить из одного устойчивого состояния в другое. Триггеры изготовляются в виде интегральных микросхем, но также могут быть выполнены на дискретных (отдельных) элементах. Триггеры на дискретных элементах применяются в нестандартной аппаратуре управления и контроля, и отраслях науки и техники, где используются повышенные уровни напряжения и тока.
Устройство и принцип работы симметричного триггера
Симметричный триггер представляет собой двухкаскадный усилитель постоянного тока с положительной обратной связью, которая осуществляется через RC–цепи с коллектора одного транзистора на базу другого.


Схема симметричного триггера с независимым смещением.
Данная схема триггера имеет название симметричного триггера с независимым смещением. В данной схеме параметры левой и правой части идентичны, то есть Rb1 = Rb2, Rk1 = Rk2, R1 = R2, C1 = C2, транзисторы VT1 и VT2 имеют одинаковые параметры.
Хотя триггер и называется симметричным, в реальных схемах никогда не удаётся допиться идентичности параметров транзистора, поэтому при подключении триггера к источнику питания один из его транзисторов окажется открытым (состояние насыщения), а другой транзистор будет в закрытом состоянии (состояние отсечки). В данном состоянии триггер может находиться сколько угодно долго (пока присутствует напряжение питания).
Допустим, что после подключения триггера к источнику питания транзистор VT1 оказался в открытом состоянии, а транзистор VT2 – в закрытом состоянии. В этом случае коллекторное напряжение транзистора VT1 окажется примерно равным 0, а коллекторное напряжение VT2 – напряжению источника питания + Е. Казалось бы, за счёт резистора R1 транзистор VT2 должен был бы открыться, но так как на базу VT2 поступает дополнительное напряжение смещения Eb, поэтому на базе VT2 поддерживается напряжение меньшее, чем необходимо для открытия данного транзистора. Таким образом за счёт дополнительного источника смещения Eb схема триггера находится в устойчивом состоянии, а на выходах триггера поддерживаются парафазные напряжения.
Для того чтобы на выходах симметричного триггера изменились напряжения необходимо подать на триггер внешний управляющий (запускающий) импульс напряжения или тока. В этом случае триггер переходит из одного устойчивого состояния в другое, транзисторы в схеме изменяют своё состояние: открытый транзистор – закрывается, а закрытый – открывается. В это же время на выходах триггера формируется перепад напряжения.
Схемы запуска триггера
Как говорилось выше для переключения триггера из одного устойчивого состояния в другое необходимо подать на его входы управляющий (запускающий) импульс. В зависимости от того как подавать управляющий импульс существует несколько видов схем запуска триггера:
- 1.В зависимости от способа управления:
- — раздельный способ;
- — счётный (общий) способ.
- 2.В зависимости от места поступления импульса запуска:
- — базовый;
- — коллекторный.
Для запуска триггеров используют короткие импульсы, которые формируются дифференциальными RC- или RL- цепочками. Так как при прохождении импульса через дифференциальную цепочку формируется два разно полярных импульса, то для предотвращения двойного срабатывания триггера между дифференциальной цепочкой и точкой входа запускающего импульса ставят диод, который отсекает второй импульс. В общем случае схема запуска имеет следующий вид:


Схема запуска триггера.
Рассмотрим схему раздельного запуска триггера с подачей управляющих импульсов в базовые цепи транзисторов.


Симметричный триггер с независимым смещением и раздельным запуском.
В данной схеме импульс, поданный на один из входов триггера, переключает его из одного устойчивого состояния в другое. Если импульс подать на другой вход, то состояние триггера изменится на противоположное. Схема запуска состоит из резисторов Rз1 и Rз2, конденсаторов Сз1 и Сз2, диодов VD1 и VD2. Остальные элементы являются цепями питания и смещения транзисторов VT1 и VT2.
Симметричный триггер с раздельным запуском называется RS-триггером, он имеет два входа и два выхода. Входы, на которые подают управляющие импульсы, называются установочными и обозначают R и S, выходы триггера обозначают Q и –Q.
Рассмотрим схему со счётным (общим) запуском триггера и подачей управляющих импульсов в базовые цепи транзисторов.


Симметричный триггер с независимым смещением и счётным запуском.
В данном случае импульсы подаются на общий вход триггера, и каждый импульс приводит к изменению устойчивого состояния триггера. При рассмотрении работы данного типа триггера может возникнуть ощущение, что произойдёт двойное срабатывание, однако за счёт того что у открытого транзистора потенциал базы выше, чем у открытого, то один из диодов сработает раньше другого, а у открытого транзистора диод будет заперт высоким напряжением базы.
Симметричный триггер с общим запуском называется T-триггером и частота переключения данного типа триггера вдвое меньше, чем частота поступающих импульсов запуска.
На процесс перехода триггера из одного состояния в другое существенное значение оказывает время длительности управляющего импульса, например, если импульс имеет недостаточную длительность, то один из транзисторов триггера может не открыться и триггер не сработает.
Симметричный триггер с автоматическим смещением.
Кроме схем триггеров с внешним смешением существует ряд схем с автоматическим смещением, которое создается за счёт падения напряжения на сопротивлении Re в цепях эмиттеров транзисторов VT1 и VT2.


Симметричный триггер с автоматическим смещением.
Кроме резистора Re в цепи эмиттеров включается конденсатор Се, который выбирается достаточно большой ёмкости, чтобы за время переключения триггера из одного состояния в другое напряжение смещения практически не менялось. За счёт элементов Re и Се отпадает необходимость в отдельном источнике напряжения смещения, но это же приводит к тому что уменьшается уровень напряжения, которое может быть снято с выходов триггера. Кроме того на сопротивлении Re рассеивается достаточно большая мощность. В остальном же параметры схемы практически идентичны и схема с автоматическим смещением так же как схема с внешним смещением может использоваться как с раздельным запуском, так и с общим запуском.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Практическое применение операционных усилителей.Часть третья.
РадиоКот >Статьи >Практическое применение операционных усилителей.Часть третья.
Продолжаем наш обзор возможных узлов радиоэлектронной аппаратуры, которые можно сотворить из операционных усилителей.
Мультивибратор.
Вот такая штуковина, будет генерировать прямоугольные импульсы с частотой, который можно посчитать по формуле (вернее, посчитаем период, а частота, как известно обратна периоду):
Бистабильный мультивибратор.
Бистабильный мультивибратор имеет два стабильных состояния, которые характеризуются разным напряжением на его выходе. Переключаются эти самые состояния входными импульсами разной полярности.
Импульс отрицательной полярности приводит к появлению на выходе мультивибратора напряжения питания, импульс положительной полярности — к появлению нулевого напряжения на выходе.
Вот примерно, как показано на рисунке.
Величина импульса, необходимая для переключения мультивибратора может быть оценена по формуле:
Где V0 — напряжение питания.
Компаратор.
Очень, очень полезная вещь в хозяйстве.
Компаратор сравнивает два напряжения, приложенных к его входам. Одно из напряжений называется опорным (reference voltage) — с ним сравнивается второе напряжение. Если измеряемое напряжение ниже опорного, на выходе компаратора мирно проживает напряжение питания, если же измеряемое напряжение превышает опорное, то выход компаратора сбрасывается в ноль.
В данном случае, мы формируем опорное напряжение при помощи резистивного делителя R1-R2 и подаем его на неинвертирующий вход. На инвертирующий вход подается измеряемое напряжение.
Триггер Шмидта.
Несмотря на свою полезность, приведенная выше схема компаратора имеет существенный недостаток — любая помеха, наведенная на входную цепь может вызвать переключение компаратора. Чтобы избежать такой неприятности, можно применить компаратор на триггере Шмидта.
Сей девайс был изобретен американским ученым Отто Шмиттом. Поэтому, кстати, написание «триггер Шмитта», а не «триггер Шмидта» не будет неправильным — можно писать и так и эдак.
Вернемся, однако, к схеме.
Как видно, она представляет собой практически полный аналог обычного компаратора за исключением одного — положительной обратной связи через резистор R3. Это штука формирует так называемый гистерезис — то есть задержку включения и выключения компаратора. Вернее так — немного повышает порог включения и немного уменьшает порог выключения. Таким образом, мы можем обеспечить более высокую помехоустойчивость схемы.
Ну пока все.
Вопросы, как обычно, складываем тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
Работа триггера, логические элементы.
Логические вентили(логические элементы).
Процессы, необходимые для функционирования любых технологических устройств ( в т. ч. и ПК) можно реализовать с помощью ограниченного набора логических элементов.
Буфер.
Буфер, представляет из себя усилитель тока, служащий для согласования различных логических вентилей, в особенности имеющих в своей основе разную элементную базу (ттл или КМОП).
Инвертор.
Элемент, служащий для инвертирования поступающих сигналов — логическая еденица превращается в ноль, и наоборот.
Логическая схема И.
И — элемент логического умножения. Еденица (высокий уровень напряжения) на выходе, появляется только в случае присутствия едениц, на обоих входах, одновременно.
Пример применения элемента И в реальном техническом устройстве:
По тех. заданию, механический пресс должен срабатывать, только при одновременном нажатии
двух кнопок, разнесенных на некоторое расстояние. Смысл тех. задания заключается в том, что бы обе
руки оператора были заняты на момент хода пресса, что исключило бы возможность случайного
травмирования конечности.
Это может быть реализовано как раз, с помощью логического элемента И.
Логическая схема И — НЕ.
И-НЕ — наиболее часто используемый элемент. Он состоит из логических вентилей И и НЕ, подключенных последовательно.
Пример применения элемента И-НЕ в реальном техническом устройстве:
По тех. заданию, ход стационарной транспортной платформы, управляемой электродвигателем,
должен ограничиваться, нажатием путевых конечных выключателей — правого или левого.
Как видите, применение электронных элементов логики для выполнения простейших схематических решений нецелесообразно. Более сложные, многоходовые операции — циклы, другое дело. Применение аппаратных(непрограммируемых) контроллеров на основе электронных логических элементов, в оборудовании довольно частое явление.
Логическая схема ИЛИ.
ИЛИ — схема логического сложения. Логическая еденица на выходе, появляется в случае присутствия высокого уровня(еденицы) на любом из входов.
Логическая схема ИЛИ — НЕ.
ИЛИ — НЕ состоит из логических элементов ИЛИ и НЕ, подключеных последовательно. Соответственно, НЕ инвертирует значения на выходе ИЛИ.
Логическая схема исключающее ИЛИ.
Этот вентиль выдает на выходе логическую еденицу, если на одном из входов — еденица, а на другом, ноль. Если на входах присутствуют одинаковые значения — на выходе ноль.
Триггер Шмитта(Шмидта).
Триггер Шмитта выдает импульс правильной формы, при сигнале произвольной формы на входе. Применяется для преобразования медленно меняющихся сигналов в импульсы, с четко очерчеными краями.
На главную страницу