Триггер на реле – Схема простого триггера на одном реле (схема включения и выключения одной кнопкой). Как работает эта схема, пояснение принципа её действия.

Содержание

Схема простого триггера на одном реле (схема включения и выключения одной кнопкой). Как работает эта схема, пояснение принципа её действия.

 

 

 

Тема: что из себя представляет электросхема триггер-реле, разъяснение ее работы.

 

Схема простого триггера на одном реле (схема включения и выключения одной кнопкой).

 

Вашему вниманию очень простая электрическая схема триггера на одном реле. Для тех, кто не знает, что это такое, поясню. Допустим имеется задача организовать схему, которая бы замыкала контакты, управляющие той или иной нагрузкой, с помощью всего одной кнопки (без фиксации). То есть, один раз нажали на кнопку – реле сработало и включилось, второй раз нажали на кнопку – реле выключилось, перейдя в исходное состояние. Ну, а примером применения такого электрического переключателя на реле может быть вариант проходного выключателя. Это когда включение и выключения освещения можно осуществлять из различных мест, где установлены кнопки схемы. Количество кнопок вкл/выкл может быть различным, и все они подключаются параллельно друг другу. Думаю смысл этого понятен.

 

Теперь давайте разберем как именно работает данная схема, состоящая всего из нескольких элементов. Сразу можно увидеть, что схему можно разделить на две части по вертикали. Неким мостом этих частей выступают электрические переключатели (нефиксируемая кнопка S1 и одна рабочая группа контактов самого реле K1). Итак, на схему подано напряжение питания (используется постоянный ток). В начальный момент с реле ничего не происходит, а вот поданное на схему питание идет на зарядку конденсатора C1. Причем, скорость процесса заряда ограничивается резистором R1.

 

 

 

 

Конденсатор заряжается достаточно быстро. После чего с этой схеме никаких токов не протекает, данный триггер на реле находится в состоянии покоя и ожидания. Далее когда мы нажмем на кнопку S1, то накопленный конденсатором электрический заряд через эту кнопку пойдет на катушку реле, что спровоцирует кратковременное срабатывание этого реле. При этом рабочая группа контактов K1 данного реле переключится. То есть, плюс питания уже присоединиться к резистору R3, что обеспечивает постоянное питание катушки реле от источника питания этой схемы. Реле перешло в режим самоподхвата (поддерживает внешним питанием само себя).

 

В результате мы одним нажатием на кнопку перевели реле из нерабочего состояния в рабочее. Другие группы контактов реле (которые не указаны на этой схеме, но имеются на самом реле) могут быть подключены к различным внешним устройствам, тем самым управляя ими. Если эта схема триггера на реле стоит в проходном выключателе, то начнет гореть свет в определенном помещении, коридоре и т.д.

 

Поскольку плюс питания переключен на катушку реле, то в это время процесс заряда конденсатора отсутствует, а тот, который был до этого был израсходован на старт включения катушки реле. А то остаточное количество электрического заряда, что могло остаться на конденсаторе быстро разрядится через параллельно стоящий резистор R2. Итак, как известно разряженный конденсатор имеет практически нулевое сопротивление. Как только мы второй раз нажмем на кнопку S1, то получится что этот конденсатор на короткое время закоротит катушку реле. Это равносильно, что мы на короткий промежуток времени поставим перемычку на эту обмотку реле.

 

Естественно, это приведет к тому, что реле кратковременно отключится и вернет свои рабочие контакты K1 в исходное состояние. В итоге плюс питания обратно начнет заряжать конденсатор, а катушка реле останется без запитки. Схема триггера на одном реле снова поменяет свое  состояние из рабочего в нерабочее. Наша схема проходного выключателя, что взята для примера, отключит освещение в помещении. И эта схема обратно готова к новому циклу включения-выключения.

 

А зачем нужны резисторы R1 и R3? Стоящие последовательно конденсатору и катушке реле. Ведь они только ограничивают силу тока. Дело в том, что если не будет резистора R1 на конденсаторе, то при подаче напряжения питания для его зарядки в начальный момент возникнет некоторая просадка напряжение в самой питающей цепи. Поскольку, как я ранее упомянул, в разряженном состоянии конденсатор имеет практически нулевое сопротивление. Именно это кратковременное падение напряжения в цепи питания схемы может отрицательно влиять на стабильность работы триггера, что приведет к нестабильным срабатывания данной схемы.

 

Если же будет отсутствовать резистор R3, стоящий последовательно катушке реле триггера (плюс будет сразу подаваться на катушку реле), то при попытке отключить питание от катушки реле, путем ее замыкания разряженным конденсатором, значительная сила тока питания не даст это сделать. Энергия питания окажется достаточной и для осуществления питания катушки и процесса заряда конденсатора. В итоге при нажатии на кнопку для отключения схемы ничего не произойдет, схема триггера на реле не отключится. Именно резистор R3 делает определенное ограничение по току питания и делает схему работоспособной.

 

Видео по данной теме:

 

 

ps smail

P.S. К сожалению данная схема триггера на одном реле имеет ряд значительных недостатков. У нее плохая стабильность к работе, к различным реле нужно будет подбирать свои номиналы резисторов и конденсатора, малая скорость перехода из одного состояния в другое и т.д. На этой простой схеме легко можно понять сам принцип работы подобный триггеров. Более же лучшый вариант, где уже отсутствуют эти недостатки, вы можите найти на следующей странице. Эти недостатки устранены путем дополнения в эту схему нескольких полупроводниковых компонентов, про которые вы также узнаете в следующей статье.

 

что это такое: RS, D, JK, T, на реле, схемы, фото и видео

Каждый, кто интересуется электроникой, должен знать о таком устройстве, как триггер, что это такое и для чего он нужен. Со времен первых ЭВМ и по сей день, вся вычислительная техника базируется на этих несложных электронных приборах. Благодаря использованию триггерных систем стало возможным реализовывать оперативные запоминающие устройства – быструю память для временного хранения данных, использующихся при вычислениях. Однако сфера их применения не ограничивается лишь этим. Триггерные схемы широко используются в разработке самой разнообразной цифровой электроники, в первую очередь там, где необходимы устройства памяти: счетчики, преобразователи кода, последовательные порты, цифровые фильтры и так далее.

Схема триггера

Изучению данной темы стоит уделить должное внимание, так как эти знания являются базовыми для работы с цифровой техникой. Выпускники вузов, которым не знаком принцип работы триггера, не имеют шансов найти себе достойную работу по специальности. Поэтому тем, кто интересуется электроникой всерьез, необходимо обязательно разобраться, что такое триггер, как он работает, какие бывают разновидности и где он применяется.

Общие сведения и базовые понятия

Итак, триггер – это относительно простой электронный элемент, главным свойством которого является устойчивое сохранение своего состояния в течение длительного времени.

Всего существует два возможных состояния: логический 0 (ноль) либо 1 (единица). Запись информации в триггер производится скачкообразным изменением его состояния под воздействием поступающих на входы специальных командных сигналов. Как правило, у любого триггера есть два выхода – прямой (отображающий текущее состояние элемента) и инверсный (принимающий противоположное прямому выходу значение).

Единица и ноль триггера

Переходы между состояниями триггера происходят практически моментально, поэтому переходными задержками по времени на практике пренебрегают. Объем памяти одного триггерного элемента сравнительно невелик и, как правило, составляет 1 или несколько бит, что позволяет ему хранить отдельные небольшие кодовые комбинации, сигналы и так далее. Эти устройства являются базовыми элементами, из которых формируется оперативная память. В основе работы триггера лежит система, базирующаяся на двух и более логических элементах: И-НЕ либо ИЛИ-НЕ, которые включены по схеме с положительной обратной связью.

Триггерная схема может сохранять данные в памяти ровно до тех пор, пока присутствует питание.

При отключении питающего напряжения состояние элемента сбрасывается. Если затем снова включить ток, значение на выходе триггера может принять случайную величину – либо 0, либо 1. По этой причине при разработке цифровой схемы необходимо предусматривать момент приведения триггерных элементов в начальное состояние.

Триггер собранный на реле

Простейшими схемами являются RS триггеры. Буквы S и R означают английские слова set и reset – «установка» и «сброс» соответственно. Этими буквами обозначаются два входа устройства, один из которых (S) при поступлении сигнала приводит к изменению состояния триггера, а второй (R) – сбрасывает элемент в стартовое состояние. Анимация ниже иллюстрирует принцип работы триггерной схемы, собранной из нескольких электромагнитных реле.

Принцип работы тригерной схемы
Принцип работы тригерной схемы

В начальном состоянии система находится в положении 0 (логический ноль или «FALSE»), о чем свидетельствует негорящая лампочка на прямом выходе Q. Инверсный выход, обозначаемый с черточкой наверху, соответственно, показывает уровень логической единицы (1), поэтому лампа на нем горит.

При замыкании ключа S, что символизирует подачу на вход единичного сигнала, на реле подается положительное напряжение и происходит переход триггера в логическое состояние 1 или «TRUE», соответственно, лампочка на прямом выходе загорается, а на инверсном гаснет. Затем происходит сброс системы путем замыкания ключа R, триггер переходит в стартовое состояние. Однако до того момента, как будет нажата кнопка сброса, он продолжает сохранять то состояние, в которое его привело замыкание ключа S.

Принцип работы RS триггера

Система, представленная выше, при помощи электромагнитных реле иллюстрирует работу триггера на элементах ИЛИ-НЕ. Однако в современных схемах электромеханические приборы давным-давно не используются, сейчас они собираются из электронных логических элементов на транзисторах, заключенных внутри интегральных микросхем. К тому же для их реализации можно использовать различные базисы. Пример схемы RS триггера на элементах И-НЕ, охваченных положительной обратной связью.

Допустим, что на оба входа R и S подаются единицы. Если верхний элемент И-НЕ выдаст на прямой выход Q логический 0, благодаря положительной обратной связи он поступит на свободный вход нижнего элемента, вследствие чего тот выдаст на инверсном выходе единицу (1). В свою очередь, эта 1 по обратной связи поступает на вход верхнего элемента, тем самым подтверждая 0 на выходе Q. Если же на прямом выходе изначально находится 1, то инверсный, соответственно, выдаст 0, который подтвердит 1 на выходе Q.

Транзисторная схема RS триггераТранзисторная схема RS триггера

При подаче на S-вход 0, согласно логической функции И-НЕ, на прямом выходе Q возникнет 1, а на инверсном – 0. Если при этом на вход S снова подать 1, состояние триггера не изменится, так как по таблице истинности И-НЕ при подаче на входы элемента комбинации 0 и 1 либо 0 и 0, на выходе всегда будет 1. Таким образом, триггерная схема сохраняет полученное значение неизменным. Сбросить значение Q обратно в 0 можно, только подав сигнал на сбрасывающий вход R. Практически работу RS триггера можно пронаблюдать, собрав такую схему на транзисторах.

Триггеры JK и D

Д триггер – неотъемлемая часть большинства микропроцессоров, так как входит в состав регистров сдвига и хранения. Они находятся в числе наиболее часто используемых схем. Название D триггеры происходит от основной характерной особенности – образования задержки (D – Delay). У него имеется два входа: D (информационный) и C (управляющий). Сигнал из D задает состояние схемы, но только если при этом на C есть разрешение на запись.

Если вход синхронизации C сообщает 0, это значит, что запоминание запрещено и выходной сигнал устройства никак не должен зависеть от информации, переданной на D. Запись данных начинается только тогда, когда на C подается 1. В этом случае состояние триггера полностью зависит от D, но если на управляющий вход снова подать 0, триггер запомнит последнее значение и перестанет реагировать на сигналы, пока синхронизация не разрешит запись.

JK триггерJK триггер

JK триггер самый универсальный и сложный из всех. Принцип работы подобен RS, однако у него нет неопределенного состояния, которое вызывается одновременной подачей на входы двух единиц. Он имеет следующие входы:

  • S – установочный;
  • R – сбрасывающий;
  • C – синхронизация;
  • J и K.

Заключение по теме

Триггерные устройства являются ключевой составляющей современных электронно-вычислительных систем. Их принцип действия рассмотрен выше, а также разобраны примеры их реализации на реле и транзисторах.

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Для выполнения логических операций применяют двоичную систему счисления. На ее основе функционируют автоматизированные блоки защиты сетей питания и суперкомпьютеры, выполняющие расчеты прогноза погоды. Триггер – это типовой компонент простых и сложных контрольных, управляющих, вычислительных систем. Устройства данной категории поддерживают определенное состояние (0 или 1), которое изменяется при соответствующей комбинации входных сигналов. С применением специального механизма сбрасывает «память» в исходное или неопределенное состояние.

Симметричный триггер, собранный по типовой схеме на биполярных транзисторах

Симметричный триггер, собранный по типовой схеме на биполярных транзисторах

В этой публикации, кроме разновидностей триггеров, рассмотрено аппаратное и программное обеспечение. Примеры типовых схемотехнических решений пригодятся для создания работоспособных конструкций собственными руками.

История

Функциональный триггер можно создать из обычного реле с электромеханическим приводом. Установив нужным образом контакты управляющей цепи, обеспечивают включение силовой группы после определенной комбинации входных сигналов. Отдельной клавишей выполняют сброс.

Схема RS триггера на одном реле

Схема RS триггера на одном реле

Электронные аналоги были собраны в начале прошлого века из ламповых приборов. Действующие схемы впервые опубликованы российскими и английскими учеными в 1918-20 гг. Позднее стали применять полупроводниковые транзисторы. В наши дни соответствующие устройства создают с применением микроэлектронных технологий.

Определения

С учетом чрезмерного разнообразия следует уточнить применяемую терминологию. В следующем перечне приведены корректные ответы на вопрос, что такое триггер (trigger):

  • устройство для записи (хранения) данных, поддерживающее два равновесных состояния;
  • базовая ячейка памяти;
  • переключающий элемент с несколькими положениями сохранения устойчивости;
  • логический компонент, способный переходить в состояние «1» или «0» с прямым и обратным (инверсным) выходом.

Классификация

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.

Триггер на логических элементах

Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».

 Триггер Шмидта на транзисторах с подключенной нагрузкой

Триггер Шмидта на транзисторах с подключенной нагрузкой

Триггер что это такое

Общие принципы запоминающих элементов представлены выше. Триггером называется устройство, способное поддерживать 2 или больше устойчивых состояния, которые меняются под воздействием входных сигналов. Фактически речь о способе хранения минимального количества информации – 1 бит.

Любой триггерный автомат состоит из двух основных блоков. Первый – предназначен для сравнения или другого вида обработки входных сигналов. Второй – обеспечивает хранение данных и отображение состояния соответствующими выходными сигналами:

  • «1» – высокий уровень, прямой, Q;
  • «0» – низкое напряжение, обратный (инверторный), /Q.

Как правило, между функциональными блоками организована обратная связь. Входные сигналы также делят на группы:

  • информационные – R, T, S;
  • управляющие – V, C.

К сведению. Рабочие циклы описывают в табличной форме, которая наглядно показывает состояние памяти при разных комбинациях входных сигналов.

Типы триггеров

В следующих разделах представлены принципы функционирования стандартных устройств. Они могут работать автономно либо в различных комбинациях. Сочетания триггеров в электронике применяют для построения сложных логических схем.

Что такое trigger RS типа

Эти элементы делят на группы по способам управления. Для удобства здесь и далее пояснения сделаны с помощью логических компонентов. При необходимости можно собрать аналогичный триггер на реле или транзисторах.

RS-триггер асинхронный

Работоспособную схему можно собрать из двух типовых элементов «И-НЕ».

Схемотехника, таблица состояний, графики сигналов

Схемотехника, таблица состояний, графики сигналов

RS-триггер синхронный

В этой схеме при подаче «1» на С устройство обеспечивает режим «прозрачности». Изменения на входах R и S с минимальной внутренней задержкой отображаются в промежуточных точках /R и /S. После установки управляющего сигнала «0» включается хранение данных.

Переключение состояний происходит только при наличии управляющего (тактового) сигнала

Переключение состояний происходит только при наличии управляющего (тактового) сигнала

D-триггеры

Устройства этой категории отличаются временной задержкой рабочего цикла.

D-триггер синхронный

На графиках работы видно, что изменение выходного сигнала происходит только при наличии «1» на входе С. Данные сохраняются в неизменном состоянии до поступления следующего импульса синхронизации. В этом цикле обеспечивается беспрепятственная проводимость данных.

Эти устройства имеют отдельный вход для информационных сигналов

Эти устройства имеют отдельный вход для информационных сигналов

D-триггер двухступенчатый

Как и в предыдущем примере, здесь используется один канал поступления данных – D. На схеме показано, как создано более сложное устройство из двух одноступенчатых блоков.

Двухступенчатая «защелка» с управлением синхроимпульсом

Двухступенчатая «защелка» с управлением синхроимпульсом

T-триггеры

Эти устройства выполняют функции элементарных счетчиков.

Т-триггер асинхронный

Реализация счетчика на элементах «И-НЕ»

Реализация счетчика на элементах «И-НЕ»

T-триггер синхронный

Такие устройства подходят для двукратного уменьшения частоты. На картинке показаны счетчики, собранные на базе триггеров RS и D типа.

Один выходной сигнал формируется на каждые два синхроимпульса

Один выходной сигнал формируется на каждые два синхроимпульса

JK-триггер

Рабочие циклы этого устройства аналогичны рассмотренному выше триггеру типа RS. Главное отличие – изменение выходного сигнала на противоположное значение (инверсия) выходного сигнала после подачи «1» на K и J одновременно. Следует подчеркнуть отсутствие запрещенных комбинаций в информационных каналах.

Схема, собранная на элементах «И-НЕ»

Схема, собранная на элементах «И-НЕ»

Синхронные и асинхронные триггеры

Эти группы созданы по принципу зависимости состояний выхода от синхроимпульсов.

Асинхронные триггеры

Изделия данного типа изменяют состояние хранящейся информации после поступления соответствующих данных на вход. Незначительная задержка объясняется временем прохождения сигнала по цепи переключающих элементов схемы.

Синхронные триггеры с динамическим тактированием

В этой группе представлены изделия, управляемые синхроимпульсами. Переключение состояния выполняется по переднему или заднему фронту. При отсутствии активности на C данные сохраняются в неизменном состоянии, вне зависимости от поступления новой информации.

Троичные триггеры

Троичный триггер на транзисторах

Троичный триггер на транзисторах

Четверичные триггеры

По аналогии с предыдущим примером выполняют расчет более сложных схем.

 Из двухтактных D-триггеров можно создать регистры сдвига с четырьмя и большим количеством разрядов

Из двухтактных D-триггеров можно создать регистры сдвига с четырьмя и большим количеством разрядов

Триггеры с любым числом устойчивых состояний

Для улучшения количественных показателей при обработке информации применяют не только механическое увеличение числа логических элементов. Также используют различные комбинации управляющих сигналов.

Физические реализации триггеров

Базовый элемент создают из полупроводниковых приборов, используя современные технологические процессы для миниатюризации функциональных изделий.

Логический элемент на МОП транзисторах

Логический элемент на МОП транзисторах

Триггеры с тиристорами

Для повышения мощности подключаемой нагрузки можно собрать триггер с применением тиристоров. К управляющему электроду присоединяют вход S, к затвору – R. Для поддержания постоянного напряжения на аноде подойдет транзистор, включенный в соответствующую цепь.

Триггеры на релейно-контакторной базе

Несмотря на общие тенденции миниатюризации, вполне допустимо создать функциональный триггер из реле. Подобные решения, в частности, применяют для защиты цепей питания при включении мощных электроприводов.

Преимущества применения триггерных схем логики

Выяснив, что значит триггер, несложно использовать полученные знания для решения практических задач. С помощью логических элементов:

  • автоматизируют работу систем освещения;
  • обеспечивают безопасное подключение станков и других мощных нагрузок;
  • предотвращают опасные режимы с использованием сигналов от внешних датчиков.

Для создания качественного устройства на основе триггеров рекомендуется в комплексе использовать представленную информацию. Следует учесть условия реальной эксплуатации, чтобы выбрать подходящие функциональные компоненты конструкции.

Видео

Схема триггер на реле

Отличительной чертой всех триггеров является их возможность находиться в двух состояниях. Эти устройства предназначаются для того, чтобы запоминать двоичную информацию, в том числе и схема триггера на реле. С помощью этих приборов обеспечивается работа оперативной памяти, которая используется для хранения информации на период проведения вычислений. Кроме того, триггеры используются и во многих других областях. Они устанавливаются в счетчиках, различных преобразователях, цифровых фильтрах и прочих устройствах, обладающих памятью.

Как работает простейший триггер

Для того, чтобы понять принцип работы этих приборов, необходимо хотя бы в общих чертах представлять их устройство. Как правило, в простейшей схеме, позволяющей работать с двоичной информацией, используются два логических инвертора. На каждый из них воздействует положительная обратная связь.

Любое устройство подобного типа, имеет схему, основанную на двух состояниях. Один из выходов обозначен логической единицей, а другой выход соответствует логическому нулю. Таким образом, при наличии логической единицы на выходе, инверсный выход прибора будет соответствовать логическому нулю.

Подтверждение логической единицы осуществляется после каждого инвертирования. Обратное состояние возникает, когда на выходе имеется ноль, а инверсный выход имеет значение единицы. Данная ситуация сохраняется при включенном питании прибора. Для того, чтобы в простейшем триггере зафиксировать нужную информацию, в его схему устанавливаются входы, записывающие единицу и нуль.

Использование триггеров совместно с реле

В настоящее время, электроника и микроэлектроника развивается очень быстрыми темпами. Тем не менее, до сих пор используется схема триггера на реле, позволяющая выполнять простейшие логические операции совместно с электромагнитными устройствами. Высокие результаты получаются, благодаря простоте использования, надежной защите от помех и хорошему уровню электрических развязок, охватывающих входы и выходы на схемах.

Высокий ток, потребляемый электромагнитными реле, делает их более надежными по сравнению с электроникой на лампах и полупроводниках. Данные схемы применяются в пусковых устройствах двигателей асинхронного типа с короткозамкнутым ротором. Они широко используются в схемах автоматического переключения, которые используются резервными источниками питания жилых и промышленных зданий.

Кроме того, триггеры являются важнейшей составной частью оперативной памяти всех компьютерных устройств. Они успешно используются во внутренних регистрах процессора, благодаря чему, происходит считывание, запоминание и хранение информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *