исследование транзистора с помощью мультиметра
В современной электронике MOSFET-транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно.
Особенности работы MOSFET
Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор (метал-оксид-полупроводник) или МДП-транзистор (метал-диэлектрик-полупроводник). В английском варианте его название звучит как мосфет, образованное от MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
Различные учёные мира постоянно ведут исследования по улучшению работы электронного прибора, поэтому на сегодняшний день изобретено и внедрено в производство несколько видов полевых транзисторов. Каждый из них обладает своими преимуществами и недостатками, но общий принцип работы у них одинаков.
Виды и конструкция
Разделяют мосфеты на две группы. В зависимости от вида управляющего электрода они могут быть: с p-n переходом и изолированным затвором. В последнее время первого вида элементы начинают использовать всё реже. Транзисторы с управляющим p-n переходом конструктивно представляют собой полупроводниковое основание, основными носителями заряда которого могут быть как дырки (p-тип) так и электроны (n-тип).
На концах основания выполняются выводы, называемые сток и исток. К этим контактам подключается управляемая часть схемы. Управление же прибором происходит через третий вывод транзистора (затвор), образованный путём соединения с основанием проводника обратной проводимости. Таким образом, p-n транзистор имеет три вывода:
- Исток — вход, через который поступают основные носители энергии.
- Сток — выход устройства, через который уходят основные носители энергии.
- Затвор — вывод управляющий прохождением зарядов через прибор.
В зависимости от типа проводимости управляющего электрода такие мосфеты делятся на n и p типа.
Радиоэлемент с изолированным затвором устроен иначе. Его затвор отделён от основания слоем диэлектрика. При изготовлении прибора используется полупроводник, обладающий высоким удельным сопротивлением. Его называют подложкой или затвором. На нём создаются две зоны с обратным типом проводимости — сток и исток. Таким образом, получается три области. Расстояние между управляемыми электродами очень мало, а отделяемый от них затвор покрывается слоем диэлектрика порядка 0,1 микрометра. Обычно в качестве диэлектрика используется соединение SiO2.
В зависимости от способа изготовления устройства с изолированным контактом разделяют на два типа: обеднённые и обогащённые. Первые выпускаются только n-типа и могут иметь два затвора, а вторые бывают как n, так и p-типа.
Обогащённого типа устройства называются транзисторами с индуцированным каналом. В них управляемые контакты не связаны проводящим слоем. Поэтому ток на стоке появляется только при приложении определённой разности потенциалов к затвору относительно истока. Обеднённые транзисторы в своей конструкции содержат встроенный канал, из-за чего транзистор реагирует на напряжение как положительной, так и отрицательной полярности.
Характеристики радиоэлемента
На схемах и в литературе принято обозначать мосфет латинскими буквами VT, после которых идёт его порядковый номер в схеме. Графически полевой элемент изображается кругом, в середине которого рисуются прямые линии, обозначающие путь прохождения тока. На выводе затвора указывается в виде стрелки тип проводимости. Затвор, сток и исток подписываются соответственно буквами латинского алфавита — S, D, G.
Полевые устройства характеризуются множеством параметров. Но среди основных выделяют следующие характеристики:
- Напряжение между управляемыми электродами. Показывает величину напряжения, которое может выдержать транзистор без ухудшения своих параметров. То есть практически это максимальное напряжение источника питания, на работу с которым рассчитан транзистор.
- Сила тока стока. Обычно указывается максимальное значение для определённой величины постоянного напряжения, приложенного к затвору — истоку.
- Импеданс канала сток-исток в открытом состоянии. Чем это значение будет больше, тем хуже работает транзистор, так как на сопротивлении возникают потери энергии, и увеличивается нагрев мосфета.
- Мощность рассеивания. Зависит от температуры окружающей среды. Этот параметр изображается в виде характеристики, показывающей зависимость мощности от температуры.
- Уровень насыщения канала исток-затвор. Обозначает граничную величину разности потенциалов, при преодолении которой ток через канал не проходит.
- Порог включения. Это минимальное напряжение, которое необходимо приложить к транзистору для открытия его проводящего канала.
- Ёмкость затвора. Существенный недостаток полевых транзисторов связан именно с этим параметром. Так, из-за паразитной ёмкости ограничивается применение устройств в высокочастотных цепях, снижая скорость переключения режимов работы.
Важно также знать, что мосфеты чувствительны к статическому электричеству, особенно это касается приборов с изолированным затвором. Поэтому проводя проверку полевого транзистора мультиметром, следует надеть на обе руки антистатические браслеты, при этом также не стоит надевать на себя шерстяную одежду.
Принцип работы
Суть работы радиоэлемента с изолированным затвором заключается в управлении величиной тока, проходящего через него, с помощью изменения разности потенциалов. Когда к истоку и затвору прикладывается напряжение, то в приборе образуется электрическое поле поперечное приложенному. Это поле увеличивает число свободных носителей заряда в приповерхностном слое.
Из-за этого возле диэлектрика начинает скапливаться значительное количество носителей заряда, в результате чего формируется зона проводимости. Через эту область начинает протекать ток, то есть между управляемыми выводами. При снятии напряжения с открытого затвора проводимость исчезнет, и течение тока прекратится.
Немного другие процессы происходят в работе полевого транзистора с p-n переходом. Если на этот переход подаётся напряжение обратное основным носителям заряда, его область начинает расширяться. Увеличение перехода приводит к сужению толщины проводящего канала, а значит, увеличению сопротивления. В результате проходящий между стоком и истоком ток уменьшается. Таким образом, изменяя уровень напряжения, изменяется и сила тока, проходящая через транзистор.
Способы измерения
Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.
В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.
Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.
Транзистор с управляющим электродом
Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.
Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:
- Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
- Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
- Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.
Если все три пункта выполнились правильно, мосфет считается работоспособным. Проверка радиоэлемента другого типа осуществляется аналогично, только изменяется полярность подключению щупов.
Мосфет с изолированным затвором
Такой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.
Основная проверка транзистора заключается в имитации его работы в режиме ключа. В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:
- Мультиметр переключается на проверку диодов.
- Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
- Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
- Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.
По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.
AVR-STM-C++: Как мультиметром проверить MOSFET
Как проверить полевой транзистор мультиметром?Исходя из особенностей конструкции полевых транзисторов способ проверки отличается от способа проверки биполярных транзисторов. Тем не менее есть один надежный способ проверки.
Транзистор должен быть выпаян, на распаяном транзисторе в большинстве случаев этот способ не сработает за счет обвязки (окружающих деталей). Мультиметр ставим на режим прозвонки диодов.
Сам полевой транзистор может содержать в себе встроенный диод, он будет между Drain и Source. Поэтому для начала ищем даташит на наш полевик — чтобы точно знать с чем имеем дело.
Для примера возьмем MOSFET IRLZ44N. Из даташита на него мы узнаем где у него какие ноги. IRLZ44N цоколевка
Из этого же даташита мы видим, что есть диод, а это значит, что между Drain и Source мы увидим вместо бесконечного сопротивления — некое падение напряжения.
Итак, ставим черный щуп на Drain, красный на Gate. Прибор должен показать бесконечное сопротивление, тоесть показатели просто не поменяются. Меняем щупы местами — картина та же. Переставляем красный с Drain на Source, потом меняем местами (Красный на Gate, черный на Source) — показания меняться не должны. Gate, он же затвор, отделен от Drain и Source, если звониться в какую-либо сторону — затвор пробит, мосфет неисправен.
Теперь нам надо прозвонить Drain и Source, но для начала коротим все ноги щупом — дабы те напряжения, которые мы ему передали при прозвонке, уравнять. Ставим черный щуп на Drain, красный — на Source. Тут мы должны увидеть тот самый диод — тоесть падение напряжения. Меняем щупы местами — бесконечное сопротивление, как и в случае с Gate. Если видим что-то иное — коротим ноги щупом и повторяем замер. Если результат не бесконечное сопротивление — наш полевой транзистор вышел из строя.
Дальше ставим черный щуп на Source, красным касаемся Gate и ставим после этого на Drain. MOSFET должен открыться, тоесть показать низкое сопротивление. Так как напряжение, которым мы открыли полевой транзистор — низкое, то и сопротивление транзистора будет велико.
По сути Gate-Source — это конденсатор, который мы только что зарядили. Пока он заряжен — полевой транзистор открыт.
Если ваш мосфет ведет себя не так — скорей всего он вышел из строя.
Такой способ проверки полевых транзисторов поможет проверить фактически все широко распространенные MOSFET-транзисторы.
Как мультиметром проверить полевой транзистор (мосфет)
В современной электронике MOSFET-транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно.
Особенности работы MOSFET
Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор (метал-оксид-полупроводник) или МДП-транзистор (метал-диэлектрик-полупроводник). В английском варианте его название звучит как мосфет, образованное от MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
Полевые транзисторы являются активными элементами, то есть их работа невозможна без приложения к выводам напряжения. Впервые идея создания прибора, поток носителей заряда в котором управляется величиной приложенного напряжения, была предложена австро-венгерским учёным Юлием Лилиенфельдом. Однако отсутствие технологий создания такого устройства позволило выпустить прототип лишь в 1960 году. С 1977 году мосфеты начали применять при производстве электронно-вычислительных машин, тем самым увеличивая производительность последних.
Различные учёные мира постоянно ведут исследования по улучшению работы электронного прибора, поэтому на сегодняшний день изобретено и внедрено в производство несколько видов полевых транзисторов. Каждый из них обладает своими преимуществами и недостатками, но общий принцип работы у них одинаков.
Виды и конструкция
Разделяют мосфеты на две группы. В зависимости от вида управляющего электрода они могут быть: с p-n переходом и изолированным затвором. В последнее время первого вида элементы начинают использовать всё реже. Транзисторы с управляющим p-n переходом конструктивно представляют собой полупроводниковое основание, основными носителями заряда которого могут быть как дырки (p-тип) так и электроны (n-тип).
На концах основания выполняются выводы, называемые сток и исток. К этим контактам подключается управляемая часть схемы. Управление же прибором происходит через третий вывод транзистора (затвор), образованный путём соединения с основанием проводника обратной проводимости. Таким образом, p-n транзистор имеет три вывода:
- Исток — вход, через который поступают основные носители энергии.
- Сток — выход устройства, через который уходят основные носители энергии.
- Затвор — вывод управляющий прохождением зарядов через прибор.
В зависимости от типа проводимости управляющего электрода такие мосфеты делятся на n и p типа.
Радиоэлемент с изолированным затвором устроен иначе. Его затвор отделён от основания слоем диэлектрика. При изготовлении прибора используется полупроводник, обладающий высоким удельным сопротивлением. Его называют подложкой или затвором. На нём создаются две зоны с обратным типом проводимости — сток и исток. Таким образом, получается три области. Расстояние между управляемыми электродами очень мало, а отделяемый от них затвор покрывается слоем диэлектрика порядка 0,1 микрометра. Обычно в качестве диэлектрика используется соединение SiO2.
В зависимости от способа изготовления устройства с изолированным контактом разделяют на два типа: обеднённые и обогащённые. Первые выпускаются только n-типа и могут иметь два затвора, а вторые бывают как n, так и p-типа.
Обогащённого типа устройства называются транзисторами с индуцированным каналом. В них управляемые контакты не связаны проводящим слоем. Поэтому ток на стоке появляется только при приложении определённой разности потенциалов к затвору относительно истока. Обеднённые транзисторы в своей конструкции содержат встроенный канал, из-за чего транзистор реагирует на напряжение как положительной, так и отрицательной полярности.
Характеристики радиоэлемента
На схемах и в литературе принято обозначать мосфет латинскими буквами VT, после которых идёт его порядковый номер в схеме. Графически полевой элемент изображается кругом, в середине которого рисуются прямые линии, обозначающие путь прохождения тока. На выводе затвора указывается в виде стрелки тип проводимости. Затвор, сток и исток подписываются соответственно буквами латинского алфавита — S, D, G.
Полевые устройства характеризуются множеством параметров. Но среди основных выделяют следующие характеристики:
- Напряжение между управляемыми электродами. Показывает величину напряжения, которое может выдержать транзистор без ухудшения своих параметров. То есть практически это максимальное напряжение источника питания, на работу с которым рассчитан транзистор.
- Сила тока стока. Обычно указывается максимальное значение для определённой величины постоянного напряжения, приложенного к затвору — истоку.
- Импеданс канала сток-исток в открытом состоянии. Чем это значение будет больше, тем хуже работает транзистор, так как на сопротивлении возникают потери энергии, и увеличивается нагрев мосфета.
- Мощность рассеивания. Зависит от температуры окружающей среды. Этот параметр изображается в виде характеристики, показывающей зависимость мощности от температуры.
- Уровень насыщения канала исток-затвор. Обозначает граничную величину разности потенциалов, при преодолении которой ток через канал не проходит.
- Порог включения. Это минимальное напряжение, которое необходимо приложить к транзистору для открытия его проводящего канала.
- Ёмкость затвора. Существенный недостаток полевых транзисторов связан именно с этим параметром. Так, из-за паразитной ёмкости ограничивается применение устройств в высокочастотных цепях, снижая скорость переключения режимов работы.
Важно также знать, что мосфеты чувствительны к статическому электричеству, особенно это касается приборов с изолированным затвором. Поэтому проводя проверку полевого транзистора мультиметром, следует надеть на обе руки антистатические браслеты, при этом также не стоит надевать на себя шерстяную одежду.
Принцип работы
Суть работы радиоэлемента с изолированным затвором заключается в управлении величиной тока, проходящего через него, с помощью изменения разности потенциалов. Когда к истоку и затвору прикладывается напряжение, то в приборе образуется электрическое поле поперечное приложенному. Это поле увеличивает число свободных носителей заряда в приповерхностном слое.
Из-за этого возле диэлектрика начинает скапливаться значительное количество носителей заряда, в результате чего формируется зона проводимости. Через эту область начинает протекать ток, то есть между управляемыми выводами. При снятии напряжения с открытого затвора проводимость исчезнет, и течение тока прекратится.
Немного другие процессы происходят в работе полевого транзистора с p-n переходом. Если на этот переход подаётся напряжение обратное основным носителям заряда, его область начинает расширяться. Увеличение перехода приводит к сужению толщины проводящего канала, а значит, увеличению сопротивления. В результате проходящий между стоком и истоком ток уменьшается. Таким образом, изменяя уровень напряжения, изменяется и сила тока, проходящая через транзистор.
Способы измерения
Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.
В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.
Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.
Транзистор с управляющим электродом
Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.
Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:
- Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
- Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
- Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.
Если все три пункта выполнились правильно, мосфет считается работоспособным. Проверка радиоэлемента другого типа осуществляется аналогично, только изменяется полярность подключению щупов.
Мосфет с изолированным затвором
Такой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.
Основная проверка транзистора заключается в имитации его работы в режиме ключа. В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:
- Мультиметр переключается на проверку диодов.
- Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
- Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
- Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.
По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.
Источник информации:
https://220v.guru/elementy-elektriki/tranzistory/kak-multimetrom-proverit-polevoy-tranzistor-mosfet.html
Управление мощной нагрузкой постоянного тока. Часть 3.
Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.
МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.
Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.
Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.
Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.
МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.
Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).
У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.
Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:
- На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
- применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.
Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.
- Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.
Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:
Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.
При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.
Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.
При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).
А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.