Транзистор как устроен – Что собой представляет, как устроен и работает биполярный транзистор

Транзистор — принцип работы.Основные параметры.

Как устроен транзистор.

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это — кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.


Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются — база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу — к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим — А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора и нагрузки примерно равны . Если подавать теперь на переход база — эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала — будет происходить

усиление сигнала.

Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор. В конце, концов ток перестает расти — транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется, ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве

электронного ключа. Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например — в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.

Полевой транзистор, как и биполярный имеет три электрода. Они носят названия — сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. — транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает — транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) — аналог ОЭ биполярного транзистора; с общим стоком (ОС) — аналог ОК биполярного транзистора; с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы — до 100 мВт ;
транзисторы средней мощности — от 0,1 до 1 Вт;
мощные транзисторы — больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) — от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. — у высокочастотных.

4.Напряжение насыщения эмиттер-коллектор — величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор — исток, т. е.

ΔId /ΔUGS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:

1. IDmax — максимальный ток стока.

2.UDSmax — максимальное напряжение сток-исток.

3.UGSmax — максимальное напряжение затвор-исток.

4.РDmax — максимальна мощность, которая может выделяться на приборе.

5.ton — типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.toff — типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.RDS(on)max — максимальное значение сопротивления исток — сток в включенном(открытом) состоянии.

На главную страницу

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Как это устроено: транзисторы

Про­цес­со­ры в ком­пью­те­рах, теле­фо­нах и любой элек­тро­ни­ке состо­ят из тран­зи­сто­ров. В про­цес­со­ре Apple A13 Bionic, кото­рый сто­ит внут­ри один­на­дца­то­го айфо­на, 8,5 мил­ли­ар­да тран­зи­сто­ров, а в Core i7 4790, кото­рый сто­ял внут­ри мно­гих настоль­ных ком­пью­те­ров в 2014 году, — в 6 раз мень­ше.

Имен­но тран­зи­сто­ры выпол­ня­ют всю ком­пью­тер­ную рабо­ту: счи­та­ют, запус­ка­ют про­грам­мы, управ­ля­ют дат­чи­ка­ми и отве­ча­ют за рабо­ту устрой­ства в целом.

При этом сам тран­зи­стор — про­стей­ший при­бор, кото­рый по сути похож на кран или элек­три­че­ские воро­та. Через тран­зи­стор идёт какой-то один ток, а дру­гим током этот поток мож­но либо про­пу­стить, либо забло­ки­ро­вать. И всё.

Вот при­мер­ная схе­ма. В жиз­ни нож­ки тран­зи­сто­ра могут быть рас­по­ло­же­ны не так, как на схе­ме, но для нагляд­но­сти нам надо имен­но так:

Ток пыта­ет­ся прой­ти сквозь тран­зи­стор, но тран­зи­стор «закрыт»: на его управ­ля­ю­щую ногу не подан дру­гой ток.

А теперь мы пода­ли на управ­ля­ю­щую ногу немно­го тока, и теперь тран­зи­стор «открыл­ся» и про­пус­ка­ет через себя основ­ной ток.

Из мил­ли­ар­дов таких про­стей­ших кра­нов и состо­ит любая совре­мен­ная вычис­ли­тель­ная маши­на: от чай­ни­ка с элек­трон­ным управ­ле­ни­ем до супер­ком­пью­те­ра в под­ва­лах Пен­та­го­на. И до чипа в вашем смарт­фоне.

В сере­дине XX века тран­зи­сто­ры были боль­ши­ми: сот­ней тран­зи­сто­ров мож­но было набить кар­ман, их про­да­ва­ли в радио­тех­ни­че­ских мага­зи­нах, у них были проч­ные кор­пу­са и метал­ли­че­ские нож­ки, кото­рые нуж­но было паять на пла­те. Такие тран­зи­сто­ры до сих пор про­да­ют­ся и про­из­во­дят­ся, но в мик­ро­элек­тро­ни­ке они не исполь­зу­ют­ся — слиш­ком боль­шие.


Это один из вари­ан­тов испол­не­ния тран­зи­сто­ра: пла­сти­ко­вый кор­пус и три ноги для соеди­не­ния с пла­той.

Совре­мен­ный тран­зи­стор умень­шен в мил­ли­о­ны раз, у него нет кор­пу­са, а про­цесс его мон­та­жа мож­но срав­нить ско­рее с про­цес­сом лазер­ной печа­ти. Тран­зи­сто­ры раз­ме­ром несколь­ко нано­мет­ров в бук­валь­ном смыс­ле печа­та­ют поверх пла­стин, из кото­рых потом полу­ча­ют­ся наши про­цес­со­ры и память. Такие пла­сти­ны назы­ва­ют ваф­ля­ми, и если смот­реть на них без мик­ро­ско­па, это будут про­сто такие радуж­ные поверх­но­сти. Радуж­ные они пото­му, что состо­ят из мил­ли­ар­дов малень­ких выемок — тран­зи­сто­ров, рези­сто­ров и про­чих мик­ро­ком­по­нен­тов:


Ваф­ля из мил­ли­ар­дов тран­зи­сто­ров. Если её раз­ре­зать в пра­виль­ных местах, полу­чат­ся наши мик­ро­про­цес­со­ры.

Что внутри транзистора

Если бы мы мог­ли раз­ре­зать один тран­зи­стор в мик­ро­про­цес­со­ре, мы бы уви­де­ли что-то вро­де это­го:

Сле­ва — про­вод­ник, по кото­ро­му бежит ток, спра­ва — про­сто про­вод­ник, пока без тока. Меж­ду ними нахо­дит­ся про­во­дя­щий канал — те самые «воро­та». Когда воро­та откры­ты, ток из лево­го про­вод­ни­ка посту­па­ет в пра­вый. Когда закры­ты — пра­вый оста­ёт­ся без тока. Что­бы воро­та откры­лись, на них нуж­но подать ток откуда-то ещё. Если тока нет, то воро­та закры­ты.

Теперь, если гра­мот­но посо­еди­нять тыся­чу тран­зи­сто­ров, мы полу­чим про­стей­шую вычис­ли­тель­ную маши­ну. А если посо­еди­нять мил­ли­ард тран­зи­сто­ров, полу­чим ваш про­цес­сор.

Почему все так полюбили транзисторы

До тран­зи­сто­ров у учё­ных уже было некое подо­бие вычис­ли­тель­ных машин. Напри­мер, счё­ты: там опе­ра­тор управ­лял пере­ме­ще­ни­ем бусин в реги­страх и скла­ды­вал таким обра­зом чис­ла. Но опе­ра­тор мед­лен­ный и может оши­бать­ся, поэто­му систе­ма была несо­вер­шен­ной.

Были меха­ни­че­ские счёт­ные маши­ны, кото­рые уме­ли скла­ды­вать и умно­жать чис­ла за счёт слож­ных шестер­ней, бочон­ков и пру­жин, — напри­мер, ариф­мо­метр. Они рабо­та­ли мед­лен­но и были слиш­ком доро­ги­ми для мас­шта­би­ро­ва­ния.

Были вычис­ли­тель­ные маши­ны на базе меха­ни­че­ских пере­клю­ча­те­лей — реле. Они были очень боль­ши­ми — те самые «залы, напол­нен­ные одним ком­пью­те­ром». Их мог­ли застать наши роди­те­ли, бабуш­ки и дедуш­ки.

Поз­же при­ду­ма­ли элек­трон­ные лам­пы: там управ­лять током уже мож­но было с помо­щью дру­го­го тока. Но лам­пы пере­гре­ва­лись, лома­лись, на них мог при­ле­теть моты­лёк.

И толь­ко в кон­це соро­ко­вых учё­ные изоб­ре­ли твер­до­тель­ные тран­зи­сто­ры: вся кух­ня с вклю­че­ни­ем и выклю­че­ни­ем тока про­хо­ди­ла внут­ри чего-то твёр­до­го, устой­чи­во­го и без­опас­но­го, не при­вле­ка­ю­ще­го вни­ма­ния мотыль­ков. За осно­ву взя­ли гер­ма­ний и крем­ний и ста­ли раз­ви­вать эту тех­но­ло­гию.

Кайф твер­до­тель­ных тран­зи­сто­ров в том, что вза­и­мо­дей­ствия там про­ис­хо­дят на ско­ро­стях, близ­ких к ско­ро­сти све­та. Чем мень­ше сам тран­зи­стор, тем быст­рее по нему про­бе­га­ют элек­тро­ны, тем мень­ше вре­ме­ни нуж­но на вычис­ле­ния. Ну и сло­мать твер­до­тель­ный тран­зи­стор в хоро­шем проч­ном кор­пу­се намно­го слож­нее, чем хруп­кую стек­лян­ную лам­пу или меха­ни­че­ское реле.

Как считают транзисторы

Тран­зи­сто­ры соеди­не­ны таким хит­рым обра­зом, что, когда на них пода­ёт­ся ток в нуж­ных местах, они выда­ют ток в дру­гих нуж­ных местах. И всё вме­сте про­из­во­дит впе­чат­ле­ние полез­ной для чело­ве­ка мате­ма­ти­че­ской опе­ра­ции.

Пока что не будем думать, как имен­но соеди­не­ны тран­зи­сто­ры. Про­сто посмот­рим на прин­цип.

Допу­стим, нам надо сло­жить чис­ла 4 и 7. Нам, людям, оче­вид­но, что резуль­тат будет 11. Зако­ди­ру­ем эти три чис­ла в дво­ич­ной систе­ме:

Деся­тич­ная Дво­ич­ная
40100
70111
111011

Теперь пред­ста­вим, что мы собра­ли некую маши­ну, кото­рая полу­чи­ла точ­но такой же резуль­тат: мы с одной сто­ро­ны пода­ли ей ток на вхо­ды, кото­рые соот­вет­ству­ют пер­во­му сла­га­е­мо­му; с дру­гой сто­ро­ны — пода­ли ток на вхо­ды вто­ро­го сла­га­е­мо­го; а на выхо­де под­све­ти­лись выхо­ды, кото­рые соот­вет­ство­ва­ли сум­ме.

Смот­ри­те, что тут про­ис­хо­дит: есть восемь вхо­дов и четы­ре выхо­да. На вхо­ды пода­ет­ся элек­три­че­ство. Это про­сто элек­три­че­ство, оно не зна­ет, что оно обо­зна­ча­ет чис­ла. Но мы, люди, зна­ем, что мы в этом элек­три­че­стве зашиф­ро­ва­ли чис­ла.

Так же на выхо­де: элек­три­че­ство при­шло на какие-то кон­так­ты. Мы как-то на них посмот­ре­ли и уви­де­ли, что эти кон­так­ты соот­вет­ству­ют какому-то чис­лу. Мы дела­ем вывод, что эта про­стей­шая маши­на сло­жи­ла два чис­ла. Хотя на самом деле она про­сто хит­рым обра­зом пере­ме­ша­ла элек­три­че­ство.

Вот про­стей­ший при­мер ком­пью­те­ра, собран­но­го на тран­зи­сто­рах. Он скла­ды­ва­ет два чис­ла от 0 до 15 и состо­ит толь­ко из тран­зи­сто­ров, рези­сто­ров (что­бы не спа­лить) и вся­ких вспо­мо­га­тель­ных дета­лей типа бата­рей­ки, выклю­ча­те­лей и лам­по­чек. Мож­но сра­зу посмот­реть кон­цов­ку, как он рабо­та­ет:

Вот ров­но это, толь­ко в мил­ли­ард раз слож­нее, и про­ис­хо­дит в наших ком­пью­те­рах.

Что мы зна­ем на этом эта­пе:

  1. Тран­зи­сто­ры — это про­сто «кра­ны» для элек­три­че­ства.
  2. Если их хит­рым обра­зом соеди­нить, то они будут сме­ши­вать элек­три­че­ство полез­ным для чело­ве­ка обра­зом.
  3. Все ком­пью­тер­ные вычис­ле­ния осно­ва­ны на том, что­бы пра­виль­но соеди­нить и очень плот­но упа­ко­вать тран­зи­сто­ры.

В сле­ду­ю­щей части раз­бе­рем, как имен­но соеди­не­ны эти тран­зи­сто­ры и что им поз­во­ля­ет так инте­рес­но всё счи­тать.

Что собой представляет, как устроен и работает биполярный транзистор

Принципы работы. Режимы: нормальный (в активной области), отсечки и
насыщения. За счёт чего усиливает транзистор?

Сначала хотел приписать в названии темы малоприятные: «для начинающих» или «для чайников», но, слегка поразмыслив, пришёл к выводу — «А ведь далеко не каждый электронщик, считающий себя продвинутыми, понимает: как технологически устроен транзистор, за счёт чего он обладает усилительными свойствами, что влияет на характеристики транзистора и откуда появился этот загадочный зверь — «дырка»«.

Начнём: Транзистор — это полупроводниковый электронный прибор, работающий по принципу взаимодействия двух, близко расположенных на кристалле p-n переходов. А коли прибор полупроводниковый, то это значит, что, как ни крути, а изготовлен транзистор из полупроводниковых материалов таких как: кремний, германий, индий и т.д. А что это такое — полупроводниковый материал или по-простому полупроводник?

Полупроводники по своим свойствам занимают промежуточное положение между проводниками и диэлектриками. При температурах, не сильно отличающихся от абсолютного нуля (-273,15°C), полупроводники обладают свойствами диэлектриков. Однако даже при незначительном повышении температуры, сопротивление полупроводника быстро уменьшается, и он начинает проводить электрический ток — т.е. становится проводящим. За счёт чего это происходит?

С ростом температуры кристалл полупроводника получает некоторую долю энергии в виде тепла, достаточную для того, чтобы часть отрицательно заряженных электронов покинуло свои атомы и перешло в межатомное пространство. Такие электроны называются свободными, а атомы кристаллической решётки, от которых отпочковались электроны, приобретают несбалансированный положительный заряд и получают условное название — «дырка».

Таким образом, при температурах выше -273,15°C в кристалле чистого полупроводника содержится некоторое количество зарядов обоих знаков — свободные электроны и дырки. Если кристалл не содержит примесей, то в любой момент времени количество свободных электронов равно числу имеющихся в кристалле дырок.
Другое дело, если к чистому полупроводнику подмешать некое вещество! В зависимости от свойств этой примеси мы можем получить: либо концентрацию дырок, намного превышающую концентрацию электронов (полупроводник p-типа), либо наоборот — превышение концентрации электронов над концентрацией дырок (полупроводник n-типа).

Итак, p-полупроводник (от англ. positive) — это полупроводник с положительным дырочным типом проводимости, а n-полупроводник (от англ. negative) — с отрицательным электронным типом проводимости.

Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.

pnp и npn транзисторы
Рис.1

Как следует из рисунка Рис.1, биполярные транзисторы — это приборы, изготовленные на основе трёхслойной полупроводниковой структуры. В зависимости от порядка чередования областей, различают изделия двух типов проводимости: прямой (p-n-p) и обратной (n-p-n).
Легко заметить, что подобная комбинация полупроводников в транзисторе напоминает встречно-последовательное соединение двух диодов с общим катодом (p-n-p) либо анодом (n-p-n). Эта аналогия справедлива лишь в одном случае — она позволяет легко тестировать транзистор на предмет его живучести при помощи обычного омметра или мультиметра.

Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.
режим отсечки транзистораактивный режим транзисторарежим насыщения транзистораpnp и npn транзисторы
Рис.2 а) Режим отсечки тр-ра pnp и npn транзисторыб) Активный режим тр-ра pnp и npn транзисторыв) Режим насыщения тр-ра

На Рис.2 приведено классическое включение транзистора n-p-n типа по схеме с общим эмиттером. Положительный вывод источника питания через нагрузку (в качестве которой в нашем случае выступает светодиод) подключается к коллектору транзистора, отрицательный — к эмиттеру полупроводника и для кучи — к земляной шине.

Подадим нулевое смещение на базу транзистора (Рис.2 а)), посредством чего введём его в режим отсечки, соответствующий условию Uэб . В этом случае и эмиттерный, и коллекторный p-n-переходы оказываются запертыми, и в коллекторной цепи будет протекать лишь незначительный обратный ток Iко ≈ току обратно смещённого диода. Основные носители заряда (электроны в коллекторной/эмиттерной областях и дырки в базовой) сидят в отведённых областях и никуда выбираться не собираются, ввиду отсутствия воздействия на них какого-либо электрического поля.

Другое дело если мы подадим между базой и эмиттером транзистора небольшое напряжение Uэб > 0,6—0,7 В (Рис.2 б)) и тем самым переведём его в активный (нормальный) режим. В данном режиме переход база-эмиттер оказывается включённым в прямом направлении (открыт), а переход база-коллектор — в обратном (закрыт):
Поскольку прослойка р-полупроводника базы технологически сделана очень тонкой, положительное напряжение, приложенное к базе, сможет «дотянуться» своим электрическим полем до значительно большей по размеру n-области эмиттера. Под действием этого поля электроны из эмиттера направляются к базе и проникают внутрь неё. Малая часть электронов встречается и рекомбинирует (нейтрализуется) с дырками, являющимися основными носителями базы, но в связи с её малыми размерами (а соответственно и малым количеством дырок) бОльшая часть электронов проходит сквозь базу и доходит-таки до коллекторного перехода.
Уменьшение числа дырок в базе, происходящее в результате рекомбинации, компенсируется источником питания Bat2 и обуславливает ток базы, который, как мы уже поняли — значительно меньше тока эмиттера, который находится в прямой зависимости к интенсивности потока электронов.
Далее под действием электрического поля, создаваемого положительным потенциалом источника Bat1, электроны проникают из базы через p-n-переход в коллектор транзистора, выходят наружу и через источник питания замыкаются обратно в область эмиттера.
Если дальше повышать напряжение на базе, то количество электронов, участвующих в процессе циркуляции по цепи также увеличится. Результатом будет являться незначительное (в абсолютном выражении) увеличение тока базы и значительное увеличение тока коллектора.
А поскольку ток в цепи прямопропорционален интенсивности потока носителей заряда, то, исходя из всего вышесказанного и в соответствии с первым законом Кирхгофа, в транзисторе всегда существует следующее соотношение между токами: Iк = Iэ — Iб.
Величина отношения токов коллектора и эмиттера характеризует такой параметр транзистора, как — коэффициент передачи тока α = Iк / Iэ. Из формул следует, что коэффициент передачи тока транзистора всегда меньше единицы и принимает значение ≈ 0,9-0,99.

Усиливающее свойство транзистора заключается в том, что посредством относительно малого тока базы можно управлять большим током коллектора. Причём, в активном режиме — изменение тока коллектора прямо пропорционально изменению тока базы: ΔIк = ΔIб x h21э , где h31э (или β) — статический коэффициент передачи тока транзистора. Этот параметр является справочным и для разных полупроводников составляет величину от 10—12 до 200—300.

И последний режим работы транзистора — режим насыщения (Рис 2 в)) или по-умному — режим двойной инжекции.
При дальнейшем повышении уровня напряжения на базе, ток в коллекторной цепи Iк также увеличивается, что приводит (согласно закону Ома) к пропорциональному увеличению падения напряжения на нагрузке и, как следствие — уменьшению напряжения Uк.
При определённом уровне этого напряжения Uк, коллекторный переход база-коллектор начнёт переходить в прямосмещённое (открытое) состояние, т.е. оба p-n перехода транзистора окажутся открытыми. Уровень напряжения на базе, при котором начинается этот процесс, называется Uбэ.нас, является справочной величиной и указывается при неком фиксированном токе коллектора.
Физически, это прямое смещение КП приводит к тому, что не только эмиттер будет засылать (инжектировать) электроны в базу, но и коллектор — тоже. Движение этих коллекторных электронов противоположно направлению диффузионного тока эмиттера и активно препятствует дальнейшему повышению тока транзистора.
В результате этого противостояния, ток коллектора практически перестаёт зависеть от дальнейшего увеличения уровня напряжения на базе и фиксируется на уровне, называемом Iк.нас. Ещё один паспортный параметр, характеризующий работу транзистора в режиме насыщения — Uкэ.нас показывает величину падения напряжения между коллектором и эмиттером при заданном токе коллектора.
В связи с тем, что величина тока Iк.нас может принимать значения, значительно превышающие токи транзистора, находящегося линейном режиме, следует внимательно относиться к выбору коллекторной нагрузки, чтобы не превысить максимально допустимых значений мощностей как самого транзистора, так и нагрузки. В случае, изображённом на Рис 2 в), этот выходной ток будет явно выше 20мА, допустимых для светодиода, что собственно говоря, и отображено на схеме.

pnp и npn транзисторы

Рис.3

Ну и под занавес приведу пример работы транзисторного каскада ОЭ в активном режиме (Рис.3).
Переменный резистор R1 принимает значения от 0 (в верхнем положении) до 680кОм (в нижнем).
В первом приближении — изменением значения напряжения Uбэ можно пренебречь и считать его равным Uбэ ≈ 0,6 В.
Тогда, согласно закону Ома, в верхнем положении потенциометра ток базы будет равен:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/51к = 0,16 мА,
а в нижнем:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/(51к +680к) = 0,011 мА,
А поскольку мы помним, что Iк = Iб x h21э, то в верхнем положении R1 — Iк = 16мА, т.е. яркость светодиода близка к максимальной.
В нижнем положении R1 — Iк = 1,1мА, т.е. светодиод не светится, либо светится очень слабо.
В промежуточных положениях ручки потенциометра — токи, а соответственно и яркость свечения, также принимают промежуточные значения.

На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.

pnp и npn транзисторы

 

Поймем вместе принципы работы транзистора :: SYL.ru

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже.

принципы работы транзистораМаломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

принцип работы транзистора

Как видим, он содержит три слоя: два с проводимостью n-типа и один – p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.

принцип работы транзистораОна использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (UBE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то UBE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение UBE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения IC), другой амперметр между базой (B) и потенциометром (для измерения IB), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, UBE равно 0 В, также как и токи IC и IB. Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: UBE = 0.6 В, IB = 0,8 мА и IC = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор — эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

принцип работы транзистора

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток IBE. Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs — Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

принцип действия транзистора

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу – либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» – аналогами эмиттера и коллектора или, точнее ,катода и анода вакуумного триода. Третий вывод – затвор (аналог сетки триода) – присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

полевой транзистор принцип работы

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *