Транзистор как работает: Как работает транзистор?

Содержание

Как работает транзистор?

Подробности
Категория: Начинающим
Опубликовано 29.11.2013 14:41
Автор: Admin
Просмотров: 35499

Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.

Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.

Транзисторы бывают двух типов:

  • полевые;
  • биполярные.

Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.

Структура транзистора

В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.

Конструкция транзистора

Как работает транзистор в цепи электрического тока? 

Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.

Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.

Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении. 

Схема подключение транзистора

Схема состоит из двух электрических цепей : 

  • цепь эмиттера;
  • цепь коллектора;

В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем «копию» тока эммитера но усиленного в несколько раз.

Интересное видео о принципе действия транзистора

  • < Назад
  • Вперёд >
Добавить комментарий

Как работает транзистор [ПРОСТО И КРАТКО]

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры. Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры.

Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Транзисторы

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Как работает транзистор — видео


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


что делает, где применяется, режимы работы биополярного транзистора

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Транзисторы

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью  – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Биполярный транзистор

Разделяют транзисторы прямой и обратной проводимости.  Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Транзисторы

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

 

Транзистор закрыт

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Транзистор открыт

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.

 

устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

Как работает транзистор npn, pnp (полевой n-канальный и p-канальный)

 Нашу сильную зависимость от электроники в современном мире не описать. Если сказать, что без электроники мы не проживем, это не сказать ничего. Она уже сродни самому неотъемлемому, самому нужному и востребованному.  То количество мест и гаджетов, где мы с ней встречаемся, мы даже перечислять не будем, на это хватит фантазии и у вас. Мы же хотели рассказать об одном обязательной составляющей каждого электронного девайса, о транзисторе.
 Именно на транзисторах строятся все аналоговые и цифровые схемы применяемые в современных устройствах. А значит, от его работы зависит то, как эти самые гаджеты будут работать и то, как впоследствии электроника будет работать на нас. Такая неоспоримая цепочка…

Какие бывают транзисторы

 Мы не будем вводить вас в далекий экскурс с чего все начиналось, что электронные лампы были дедушками и бабушками современных транзисторов. Не будем рассказывать об электронной эмиссии. О том, что процесс в этих самых лампах схож с транзисторами. Не будем описывать и различия между ними.  Мы сразу приступим к главному. Надеясь на то, что все мы пропустили хотя и останется темным пятном, но не станет обременяющим обстоятельством препятствующим пониманию того, как же все-таки работает транзистор.
 Итак, транзисторы бывают биполярные и полевые. Суть работы тех и других одинакова, разве что их кристаллы, вернее то как сращены разные типы кристаллов, различны.

В биполярных транзисторах это своеобразный гамбургер, если хотите пирог: p-n-p или n-p-n. То есть кристаллы с различной проводимостью напаяны последовательно друг за друга. Таким образуют они образуют своеобразный «бутерброд».

 В полевых транзисторах есть также n кристалл и p кристалл, но они между спаяны не последовательно, а параллельно. При этом ток не проходит через разные типы проводимости кристаллов, а идет все время по одному типу. А запирается в этом случае проводимый кристалл с помощью электрического поля управляющего затвора. Отсюда и название полевой.

 Еще транзисторы бывают низкочастотные, среднечастотные и высокочастотные.  А также могут работать  с различными токами, но это все нюансы…

Как работает транзистор (картинка с анимацией — видео)

Итак, теперь непосредственно о насущном. То есть о том, ради чего мы собственно и начали эту статью.

 Самое сложное, что нам придется вам объяснить, так это то, что как раз и скрыто от глаз человека. Ведь движение тока в проводнике, в различного рода проводимости кристаллах, не посмотришь и не увидишь. Именно поэтому необходимо иметь большую фантазию и очень наглядное пособие, чтобы довести до вас принцип работы транзистора.
 Есть и еще одно «но». Человек всегда привык строить какие-то эквивалентные системы, если непосредственно изучаемая система не дает ему полного представления, а самое главное наглядного примера  о том, как же все-таки все устроено. Так и в нашем случае, взгляните на картинку…

 

Работа транзистора представлена в виде канала с управляемой средой, даже здесь два канала. В качестве каналов выступают контакты транзистора, а управляемой средой является ток. Управляя запорным клапаном на базе или затворе (маленький канал) мы тем самым открываем и большой канал, между эмиттером и коллектором или стоком и истоком. Именно этот большой канал и является нашей целью управления. Открывая маленький канал, мы открываем и большой! Вот главное правило работы транзистора. По-другому не бывает, по крайней мере, в нормальных режимах работы транзистора без пробоев. Управляющий клапан на базе, то есть  малый канал открывается первым, тем самым провоцируя и открывание большого канала.
 Не знаем, нужны ли вам другие описания почему именно так? Если кратко, то потому что есть зоны запирания, есть сопротивления этих зон и изменения сопротивления в зависимости от потенциала, подаваемого на них. Конечно это не описывает особенностей работы транзистора полностью и подробно, но об этом мы вам и не обещали рассказать. Самое главное было рассказать о принципе срабатывания и показать это на наглядной картинке, что собственно мы и выполнили. Принцип работы в этом случае действителен для всех видов транзисторов о которых, мы упоминали в нашем предыдущем абзаце. А также, для того чтобы закрепить ваше визуально- ассоциативное мышление с реальной невидимой действительностью необходимо взглянуть и на нижний правый угол картинки.
 На нем видно как в зависимости от пропуска тока, через контакты транзистора будут происходить и коммутации вокруг его выводов.

Схема подключения транзисторов npn pnp (полевых транзистор)

Теперь о том же самом, но на примере подключения транзистора в схеме. На входе имеется сигнал достаточный для свечения лампы (светодиода) даже с учетом сопротивления транзистора. Но если подать на управляющий вывод (затвор) запирающий потенциал, то сопротивление увеличиться и лампа погаснет.

* — гиф анимация описывает работу полевого транзистора, когда есть поле, которое и управляет проводимостью в элементе.

На самом деле это лишь один из примеров подключения транзистора. Вариаций его подключений великое множество. Здесь главное донести суть работы радиоэлемента, а не саму схему подключения.

Последнее о чем хотелось сказать в статье о принципах работы транзистора, так это о том, что база должна всегда оставаться чуть «зажата», то есть ограничена сопротивлением. 

  Это позволяет разграничить управляющий малый ток и большой управляемый. Если же убрать сопротивление, то ток будет течь по пути с наименьшим сопротивлением, то есть весь или преимущественно через базу… В этом случае теряется весь смысл транзистора, так как он ничем ни будет управлять, а будет просто пропускать через себя ток. При этом «большой» ток пойдет через базу и может еще и вывести его из строя, что нам совсем не нужно!

Из особенностей надо отметить несколько разные сферы применяемости транзисторов. NPN, PNP транзисторы способны открываться как бы постепенно, и быстродействие у них ниже. То есть они более подходят для аналоговых схем, а вот полевые срабатывают быстрее.  При этом свойства статичного поля может быть использовано даже без подачи какого-либо напряжения на него, если это поле создать за счет подкладки, находящейся в зоне управления тоннелем по которому протекает ток. В итоге получается уже не транзистор, а ячейка памяти. Такие ячейки активно используются в современных SSD дисках.

Биполярный транзистор — принцип работы для чайников!

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье 🙂

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 

 Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов  и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Как работает транзистор

Рассмотрим мы устройство транзисторов на примере МОП-транзисторов, также именуемых «полевыми». 

Принцип их действия прост и элегантен: в кристалле кремния создаются близлежащие зоны с разной проводимостью (если основной кристалл имеет электронную проводимость (n), то у зон создаётся «дырочная» проводимость (p), и наоборот). Одна область принимается за входную и называется истоком, другая служит выходом (сток). 

Между ними наращивается изолирующая подложка из диоксида кремния (или другого подходящего диэлектрика) толщиной около 200 нм. На подложку наносится слой металла, который и будет управляющим электродом (затвором). Вот этот «бутерброд» со структурой «металл-оксид-полупроводник» и есть полевой транзистор.

И как всё это работает? Наша задача — контролировать протекание тока между истоком и стоком через затвор. Относительно последнего и будем рассматривать функционал транзистора.

Если затвор электрически нейтрален, то электроны не могут преодолеть перемычку между истоком и стоком, даже если приложить к ним достаточно высокое напряжение. Говоря иначе, транзистор будет закрыт, и ток через него не пойдёт. Как его открыть? Очень просто — подать на затвор «плюсовое» напряжение и зарядить электрод, который создаст сильное электрическое поле. Оно притянет электроны к затвору, и под изолирующей подложкой появится зона высокой концентрации носителей заряда — канал, по которому они смогут пройти разделительную область обратной проводимости.

Такой режим работы полевого транзистора называется обогащением. А что же происходит при обеднении? Очевидно, что отрицательный потенциал будет расталкивать электроны в разные стороны, и никакой ток через разделительную зону не пройдёт. Отсюда уже совсем недалеко до ячейки памяти, ведь полевой транзистор пропускает или не пропускает ток в зависимости от того, есть ли потенциал на затворе. А он, как мы выяснили, представляет собой проводник, изолированный со стороны стока-истока. Если же изолировать затвор и со стороны внешней электрической цепи, то проводник сможет сохранять заряд достаточно долго. То есть полевой транзистор может выступать в роли ячейки памяти, состояние которой сохраняется и при отключении внешнего питания.

На практике затвор представляет собой изолированную пластину конденсатора. Такой тип полевых транзисторов получил название FLOTOX (Floating Gate Tunnel-OXide — плавающий затвор с туннелированием в окисле). Настоящая мистика начинается, когда требуется изменить состояние затвора. Он электрически изолирован, то есть отделён слоем диэлектрика толщиной всего в десяток атомарных слоёв. Если подать повышенное в 2–3 раза напряжение на сток и затвор (на сток «минус», на затвор и исток «плюс»), возникнет канал проводимости. Температура (то есть кинетическая энергия) некоторых электронов превысит среднюю, и часть из них сможет преодолеть слой диэлектрика. Это явление называется инжекцией «горячих» электронов (CHEI — Channel Hot Electrons Injection). В итоге заряд затвора изменится на отрицательный за счёт избытка электронов, и транзистор сможет реагировать на внешний сигнал, то есть сохранять информацию.

Снятие заряда затвора основано на методе квантово-механического туннелирования, впервые описанного физиками Ральфом Фаулером и Лотаром Нордхеймом (FNTFowler-Nordheim tunneling). Если подать повышенное напряжение на исток и затвор (на исток «плюс», на затвор «минус), то электрическое поле вытолкнет электроны в направлении изолирующей подложки, придав им дополнительную энергию. А дальше они исчезнут, чтобы возникнуть уже с другой стороны диэлектрика! Классическая механика объяснить такой эффект не может, но если учесть волновые свойства элементарных частиц и вероятностный характер их поведения… Вот такие физические сюрпризы спрятаны в самых обычных флешках.

Как работают транзисторы? — Utmel

Транзистор — это разновидность полупроводникового устройства, регулирующего ток. Его функция состоит в том, чтобы преобразовать слабый сигнал в электрический сигнал с большим значением амплитуды, и он также используется в качестве бесконтактного переключателя. Транзистор является одним из основных полупроводниковых компонентов, который выполняет функцию усиления тока и является основным компонентом электронной схемы. Транзистор состоит из двух PN-переходов, очень близко расположенных друг к другу на полупроводниковой подложке.Два PN-перехода делят весь полупроводник на три части. Средняя часть — это базовая область, а две стороны — области эмиттера и коллектора. PNP и NPN — это два типа договоренностей.

Каталог

Ⅰ Структура ядра транзисторов

транзистор

Ядром транзистора является переход « PN », который представляет собой два встречных PN перехода. PN-переход может быть комбинацией NPN или комбинацией PNP.Поскольку кремниевый тип NPN является основным потоком транзисторов, в следующем материале в качестве примера в основном используется кремниевый транзистор типа NPN.

Принципиальная схема структуры транзистора NPN

Процесс изготовления кремниевого транзистора NPN:

Вид структуры кристалла в разрезе:

Ⅱ Рабочее состояние транзисторов

1 Состояние отсечки

Когда напряжение, приложенное к эмиттерному переходу транзистора, меньше, чем напряжение проводимости PN перехода, ток базы, ток коллектора и ток эмиттера равны нулю.Транзистор теряет эффект усиления тока, а коллектор и эмиттер равны в выключенном состоянии переключателя, мы называем транзистор в состоянии отсечки.

2 Активное состояние

Транзистор работает в активной области, когда эмиттерный переход транзистора смещен в прямом направлении, а коллекторный переход — в обратном направлении. В активной области напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение включения PN перехода.И базовый ток управляет током коллектора, так что транзистор действует как усилитель, а его коэффициент усиления тока β = ΔIc / ΔIb. Мы называем транзистор в активном состоянии.

3 Состояние насыщения

Когда напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение проводимости PN перехода, и когда ток базы увеличивается до определенной степени, ток коллектора больше не увеличивается с увеличение базового тока.В это время транзистор теряет эффект усиления тока. Напряжение между коллектором и эмиттером очень мало, а коллектор и эмиттер эквивалентны включенному состоянию переключателя. Это состояние транзистора называется состоянием насыщенной проводимости.

По уровню напряжения каждого электрода, когда транзистор работает, можно судить о рабочем состоянии транзистора. Персонал по обслуживанию электроники часто использует мультиметр для измерения напряжения на каждом выводе транзистора в процессе обслуживания, чтобы определить рабочее состояние и рабочее состояние транзистора.

Ⅲ Теоретический принцип работы транзисторов

Существует два типа транзисторов по материалам: германиевые трубки и кремниевые трубки. Каждый из них имеет две структурные формы, NPN и PNP, но чаще всего используются кремниевые NPN и германиевые PNP транзисторы. Полупроводники N-типа добавляют фосфор в кремний высокой чистоты, чтобы заменить некоторые атомы кремния, чтобы создать стимуляцию свободной электронной проводимости под напряжением. P означает положительный. В полупроводниках P-типа вместо кремния добавляется бор, который создает большое количество дырок для облегчения проводимости.За исключением разницы в полярности источника питания, два принципа работы одинаковы. Следующее только знакомит с принципом усиления тока кремниевых трубок NPN.

Транзистор NPN и транзистор PNP

Транзистор NPN, он состоит из двух полупроводников N-типа и полупроводника P-типа посередине. PN-переход, образованный между эмиттерной областью и базовой областью, называется эмиттерным переходом, а PN-переход, образованный коллекторной областью и базовой областью, называется коллекторным переходом.Эти три вывода называются эмиттер e, база b и коллектор c.

Когда потенциал в точке b выше потенциала в точке e на несколько вольт, эмиттерный переход находится в прямом смещенном состоянии. Когда потенциал в точке C на несколько вольт выше, чем потенциал в точке b, коллекторный переход находится в состоянии обратного смещения, и коллекторная мощность Ec выше, чем базовая мощность Eb.

При изготовлении транзистора основная концентрация носителей в области эмиттера сознательно делается больше, чем в базовой области.При этом базовая область делается очень тонкой, а содержание примесей необходимо строго контролировать. Таким образом, после включения питания эмиттерный переход смещается положительно. Основные носители (электроны) в эмиттерной области и основные носители (дырки) в базовой области легко диффундируют друг к другу через эмиттерный переход. Концентрационная база первого больше, чем второго, поэтому ток через эмиттерный переход в основном представляет собой поток электронов, который называется потоком электронов эмиттера.

Из-за тонкой области базы и обратного смещения коллекторного перехода большая часть электронов, инжектированных в область базы, пересекает коллекторный переход и попадает в область коллектора, образуя ток коллектора Ic, оставляя только несколько (1-10 %) электроны. Эти электроны рекомбинируются в отверстиях базовой области, и рекомбинированные дырки в базовой области перезаряжаются базовым источником питания Eb, таким образом формируя базовый ток Ibo. По принципу непрерывности тока:

Ie = Ib + Ic

Это означает, что добавлением небольшого Ib к базе можно получить больший Ic на коллекторе.Это так называемое усиление тока. Ic и Ib поддерживают определенное пропорциональное соотношение, а именно:

β1 = Ic / Ib

В формуле: β1 — коэффициент усиления постоянного тока,

Отношение изменения тока коллектора △ Ic к изменению тока базы △ Ib:

β = △ Ic / △ Ib

В формуле β называется коэффициентом усиления переменного тока. Поскольку значения β1 и β не сильно различаются на низких частотах, иногда для удобства их не различают строго, и значение β составляет от десятков до более чем сотни.

α1 = Ic / Ie (Ic и Ie — токи в цепи постоянного тока)

Формула: α1 также называется коэффициентом усиления постоянного тока, который обычно используется в схеме усилителя общей базовой конфигурации для описания взаимосвязи. между током эмиттера и током коллектора.

α = △ Ic / △ Ie

α в выражении — это увеличение переменного тока общей базы. Точно так же нет большой разницы между α и α1, когда на вход подается слабый сигнал.

Для двух увеличений, описывающих соотношение токов, соотношение следующее:

Эффект усиления тока транзистора заключается в использовании небольшого изменения тока базы для управления огромным изменением тока коллектора. Транзистор является своего рода устройством усилителя тока, но на практике эффект усилителя тока транзистора часто преобразуется в эффект усилителя напряжения через резистор.

Ⅳ Принцип усиления транзисторов

1 Эмиттер излучает электроны на базу

Источник питания Ub добавлен к эмиссионному переходу через резистор Rb.Эмиссионный переход смещен в прямом направлении, и большинство носителей (свободных электронов) в эмиссионной области непрерывно пересекают эмиссионный переход и входят в базовую зону, образуя эмиттерный ток Ie. В то же время основные носители в базовой области диффундируют в область излучения, но поскольку концентрация основных носителей намного ниже, чем концентрация носителей в области излучения, этим током можно пренебречь, поэтому можно считать, что излучение переход представляет собой в основном поток электронов.

2 Диффузия и рекомбинация электронов в базе

После того, как электроны попадают в область базы, они сначала концентрируются около эмиттерного перехода, постепенно образуя разницу концентраций электронов. Из-за разницы концентраций поток электронов распространяется в основании к коллекторному переходу и втягивается в коллектор электрическим полем коллекторного перехода. Он называется коллекторным током Ic. Также существует небольшая часть электронов (поскольку базовая область очень тонкая) рекомбинирована с дырками в базовой области, и отношение диффузного электронного потока к составному электронному потоку определяет усилительную способность транзистора.

3 Сбор электронов в коллекторе

Поскольку обратное напряжение, приложенное к коллекторному переходу, очень велико, сила электрического поля, создаваемая этим обратным напряжением, будет препятствовать диффузии электронов в области коллектора в базовую область. В то же время электроны, диффундирующие около коллекторного перехода, будут втягиваться в коллекторную область, чтобы сформировать основной ток коллектора Icn. Кроме того, неосновные носители (дырки) в области коллектора также будут дрейфовать и течь в базовую область, образуя обратный ток насыщения, который представлен Icbo.Его величина очень мала, но он чрезвычайно чувствителен к температуре.

Ⅴ Схема усилителя на транзисторах

1 Базовая структура

Базовая схема усилителя — это базовый блок, который составляет сложную схему усилителя. Он использует характеристики входного тока биполярного полупроводникового транзистора для управления выходным током или характеристики входного напряжения полевого полупроводникового транзистора для управления выходным током для реализации усиления сигнала.

Базовая схема усилителя

Базовая схема усилителя обычно относится к схеме усилителя, состоящей из транзистора или полевой лампы. С точки зрения схемы, базовая схема усилителя может рассматриваться как двухпортовая сеть. Роль усиления отражается в следующих аспектах:

1) Схема усилителя в основном использует функцию управления транзистора или полевой трубки для усиления слабого сигнала. Выходной сигнал усиливается по амплитуде напряжения или тока, а энергия выходного сигнала усиливается.

2) Энергия выходного сигнала фактически обеспечивается источником питания постоянного тока, но она преобразуется в энергию сигнала посредством управления транзистором и подается на нагрузку.

2 Состав схемы

Существует три различных конфигурации схемы транзисторов: общий эмиттер, общая база и общий коллектор. Эти три схемы конфигурации имеют разные характеристики. Возможны различные конфигурации одиночного транзисторного усилителя.

Цепь с общим эмиттером, входной цикл и выходной цикл прошли эмиттер транзистора

Цепь с общей базой, входной цикл и выходной цикл прошли базу транзистора

Цепь общего коллектора, входная цепь и выходная цепь прошли коллектор транзистора.

Схема усилителя с общим эмиттером эмиттер, а разделительные конденсаторы C1 и Ce считаются закорачивающими сигнал переменного тока.Выходной сигнал выводится с коллектора на землю, постоянный ток отделяется разделительным конденсатором C2, и только сигнал переменного тока добавляется к сопротивлению нагрузки RL. Общая конфигурация излучения схемы усилителя фактически относится к общей конфигурации излучения транзистора в схеме усилителя.

Схема усилителя конфигурации с общим эмиттером

Когда входной сигнал равен нулю, источник постоянного тока обеспечивает постоянный ток базы и постоянный ток коллектора для транзистора через каждый резистор смещения и формирует определенное постоянное напряжение между тремя полюсами транзистор.Из-за блокирующего действия конденсатора связи постоянного тока напряжение постоянного тока не может достигать входных и выходных клемм схемы усилителя.

Когда входной сигнал переменного тока добавляется к переходу передатчика транзистора через разделительные конденсаторы C1 и Ce, напряжение на переходе передатчика становится суперпозицией переменного и постоянного тока. Ситуация с сигналом в схеме усилителя более сложная. Обозначения каждого сигнала обозначены следующим образом: из-за эффекта усиления тока транзистора ic в десятки раз больше, чем ib.Вообще говоря, если параметры схемы установлены правильно, выходное напряжение может быть намного выше входного. Часть входного переменного тока достигает сопротивления нагрузки через конденсатор связи и формирует выходное напряжение.

Можно видеть, что сигнал постоянного тока коллектора транзистора в схеме усилителя не изменяется с входным сигналом, а сигнал переменного тока изменяется с входным сигналом. В процессе усиления сигнал переменного тока коллектора накладывается на сигнал постоянного тока, и только сигнал переменного тока извлекается с выходного контакта через разделительный конденсатор.Следовательно, при анализе схемы усилителя можно использовать метод разделения сигналов переменного и постоянного тока, которые можно разделить на путь постоянного тока и путь переменного тока для анализа.

Статьи по теме:

Структура и принцип работы полевых транзисторов

Характеристики и принцип работы IGBT

Как работает транзистор?


Спросил: Тони Уилан

Ответ

Конструкция транзистора позволяет ему работать как усилитель или переключатель.Это достигается за счет использования небольшого количества электричества для управления воротами на гораздо большем подача электричества, очень похожая на поворот клапана для управления подачей воды. Транзисторы

состоят из трех частей: базы, коллектора и эмиттера. База это устройство управления затвором для большего источника электроэнергии. Коллекционер — это большее электрическое питание, и эмиттер является выходом для этого источника. Отправив различные уровни тока от базы, количество тока, протекающего через затвор от коллектора может регулироваться.Таким образом, очень небольшое количество тока может быть используется для управления большим током, как в усилителе. Тот же процесс используется для создать двоичный код для цифровых процессоров, но в этом случае порог напряжения для открытия коллекторного затвора необходимо пять вольт. Таким образом, транзистор используется в качестве переключателя с двоичной функцией: пять вольт — включено, менее пяти вольт — выключено.

Полупроводящие материалы — вот что делает возможным создание транзисторов.Большинство людей знакомы с электропроводящими и непроводящими материалами. Металлы обычно считаются как проводящие. Такие материалы, как дерево, пластик, стекло и керамика непроводящие или изоляторы. В конце 1940-х годов группа ученых, работающая в Bell Лаборатории в Нью-Джерси обнаружили, как брать определенные типы кристаллов и использовать их в качестве электронные устройства управления за счет использования их полупроводниковых свойств. неметаллические кристаллические структуры обычно считаются изоляторами.Но по заставляя кристаллы германия или кремния расти с примесями, такими как бор или фосфора кристаллы приобретают совершенно другие электропроводящие свойства. К помещая этот материал между двумя проводящими пластинами (эмиттером и коллектором), транзистор сделан. Подавая ток на полупроводниковый материал (основание), электроны собираться до тех пор, пока не будет сформирован эффективный канал, по которому проходит электричество Учеными, ответственными за изобретение транзистора, были Джон Бардин, Уолтер Браттейн и Уильям Шокли.Их патент назывался: «Три Элемент электродной цепи из полупроводниковых материалов ».

Артикул:


Ответил: Стивен Портц, учитель технологий, средняя школа космического побережья, Флорида

Существует два основных типа транзисторов-переходных транзисторов и полевых транзисторов. Каждый работает по-своему. Но полезность любого транзистора заключается в его возможность управления сильным током при слабом напряжении. Например, транзисторы в система громкой связи усиливает (усиливает) слабое напряжение, возникающее, когда человек говорит в микрофон.Электричество, идущее от транзисторов, достаточно сильное, чтобы использовать громкоговоритель, который издает звуки намного громче, чем голос человека.

ПЕРЕХОДНЫЕ ТРАНЗИСТОРЫ

Соединительный транзистор состоит из тонкого кусочка одного типа полупроводниковый материал между двумя более толстыми слоями противоположного типа. Например, если средний слой p-типа, внешние слои должны быть n-типа. Такой транзистор — это Транзистор NPN. Один из внешних слоев называется эмиттером, а другой известен. как коллекционер.Средний слой — это основа. Места присоединения эмиттера к база и база, соединяющая коллектор, называются узлами.

Слои NPN-транзистора должны иметь правильное напряжение, подключенное к ним. В Напряжение базы должно быть положительнее, чем у эмиттера. Напряжение коллектор, в свою очередь, должен быть более положительным, чем у цоколя. Напряжения питается от батареи или другого источника постоянного тока. Эмиттер подает электроны.База оттягивает эти электроны от эмиттера, потому что он имеет более положительное напряжение, чем эмиттер. Это движение электронов создает поток электричества через транзистор.

Ток проходит от эмиттера к коллектору через базу. Изменения в напряжение, подключенное к базе, изменяет поток тока, изменяя количество электроны в базе. Таким образом, небольшие изменения в базовом напряжении могут вызвать большие изменения тока, вытекающего из коллектора.

Производители также производят соединительные транзисторы PNP. В этих устройствах эмиттер и коллектор — это полупроводниковый материал p-типа и база n-типа. Соединение PNP Транзистор работает по тому же принципу, что и транзистор NPN. Но он отличается в одном уважать. Основной поток тока в транзисторе PNP регулируется путем изменения количество дырок, а не количество электронов в основании. Также этот тип Транзистор работает правильно только в том случае, если отрицательные и положительные соединения к нему являются обратная сторона транзистора NPN.

ТРАНЗИСТОРЫ ПОЛЕВОГО ЭФФЕКТА

Полевой транзистор имеет только два слоя полупроводника. материал, один поверх другого. Электричество проходит через один из слоев, называемый канал. Напряжение, подключенное к другому слою, называемому затвором, мешает ток, протекающий в канале. Таким образом, напряжение, подключенное к затвору, управляет сила тока в канале. Существует две основных разновидности полевого эффекта. транзисторы — полевой транзистор (JFET) и металлооксидный полупроводник полевой транзистор (MOSFET).Большинство транзисторов, содержащихся в сегодняшних интегральные схемы — это МОП-транзисторы.
Ответил: Джастин Шорс, ученик старшей школы

Что такое транзистор? Типы, использование, принцип работы

Транзистор определяется как полупроводниковое устройство, которое в основном состоит из трех выводов для усиления или переключения электронных сигналов и электрических целей.Эти устройства, обычно классифицируемые на биполярные переходные транзисторы (BJT) и полевые транзисторы (FET), позволяют использовать радиоприемники, компьютеры, калькуляторы и т. Д., Которые вы используете сегодня.

Что ж, учитывая, что современные транзисторы, такие как BC547, 2n2222, 2n3904 и т. Д., Используются в микроконтроллерах (например, Arduino) или в приложениях для построения электрических схем, важно, чтобы мы более подробно рассмотрели транзисторы в сегодняшнем блоге.

Типы транзисторов и условные обозначения их схем

Ранее мы упоминали, что существует два типа транзисторов; Биполярные и полевые транзисторы.В этом разделе мы более подробно рассмотрим каждый тип транзистора и объясним, как он работает.

Что такое BJT (NPN и PNP) и как это работает? Типичный БЮТ

Во-первых, для BJT он поставляется в двух итерациях или версиях; NPN и PNP BJT с обозначениями схем, показанными ниже:

BJT: символы цепей NPN и PNP

Как видите, и в итерациях NPN и PNP контакты помечены; Коллектор (C), база (B) и эмиттер (E). Разницу между ними можно заметить по направлению стрелки; где для NPN стрелка выходит из базы, а для PNP стрелка входит в базу.

Как работает BJT?

Теперь, когда мы определили, что такое BJT, мы посмотрим, как BJT работают, на простой иллюстрации ниже:

Ref

Для NPN-транзистора он состоит из слоя полупроводника, легированного P, между двумя слоями материала, легированного азотом, где электроны проходят от эмиттера к коллектору. Затем эмиттер «испускает» электроны в базу, при этом база управляет номером. электронов испускает эмиттер. Выброшенные электроны, наконец, собираются коллектором и отправляются в следующую часть цепи.

В то время как для транзистора PNP он состоит из слоя полупроводника с примесью азота между двумя слоями материала с примесью фосфора, где ток базы, поступающий в коллектор, усиливается. По сути, ток по-прежнему контролируется базой, но течет в противоположном направлении. Кроме того, вместо испускания электронов эмиттер в PNP испускает «дырки» (концептуальное отсутствие электронов), которые затем собираются коллектором.

Что такое полевой транзистор и как он работает?

Полевой транзистор, другой тип транзистора, чаще всего классифицируется как MOSFET (полевой транзистор металл-оксид-полупроводник) и состоит из контактов; Ворота, исток, сток.Благодаря другой конструкции выводов он работает несколько иначе, чем BJT.

Как работает полевой транзистор

Чтобы понять, как работает полевой транзистор, мы рассмотрим типичную принципиальную схему:

Схема MOSFET
  • Блок, также известный как подложка из полупроводника p-типа, действует как основа для MOSFET
  • Две стороны этой подложки p-типа сделаны с высокой степенью легирования примесью n-типа (обозначена как n +)
    • Выводы стока (исток и сток) затем выводятся из этих двух концевых областей
  • Вся поверхность подложки покрыта слоем диоксида кремния
    • Диоксид кремния действует как изоляция
  • Тонкая Затем поверх диоксида кремния помещается изолированная металлическая пластина, действующая как пластина конденсатора.
    • Вывод затвора затем выводится из тонкой металлической пластины
  • Затем формируется цепь постоянного тока путем подключения источника напряжения между этими двумя Области n-типа (отмечены красным)

Когда на затвор подается напряжение, оно генерирует электрическое поле, которое изменяет ширину области канала, где e лектроны текут.Чем шире область канала, тем лучше будет проводимость устройства.

BJT против МОП-транзистора

Теперь, когда мы рассмотрели оба типа транзисторов; BJT и FET (широко известные MOSFET), давайте посмотрим на их различия, показанные в таблице ниже:

Конструкция затвора , сток с более сложной структурой
MOSFET BJT
Определение Металлооксидный полупроводниковый полевой транзистор Биполярный аппаратный переходной транзистор 8
3 клеммы:
Эмиттер, база и коллектор
Принцип работы Для работы MOSFET требуется напряжение на электроде затвора с оксидной изоляцией Для работы BJT , он зависит от тока на базовом выводе
Пригодность для использования Высокомощные приложения для регулирования тока
Аналоговые и цифровые схемы
Слаботочные приложения

Какой транзистор выбрать?

Хотя MOSFET имеет преимущества перед BJT, такие как контроль напряжения, выбор любого из них зависит от целей вашего приложения.Вот для чего подходит каждый транзистор:

  • Если вы хотите регулировать поток сильного тока узкими импульсами или для любых приложений с большой мощностью, MOSFET — это то, что вам нужно. достаточно для выполнения работы

Применения транзистора

Транзистор чаще всего используется в качестве электронных переключателей в цифровых схемах или в качестве усилителя.Давайте объясним, как работает каждое приложение.

Транзисторы как переключатели

Переключатели включаются и выключаются, тогда как для транзисторов он действует как таковой, создавая двоичный эффект включения / выключения переключателя, поэтому для его переключения не требуется привод, а вместо этого требуется напряжение. Такое приложение используется для управления потоком энергии к другой части цепи. Другими словами, небольшой ток, протекающий через одну часть транзистора, позволяет протекать гораздо большему току через другую часть транзистора.

Транзисторы как переключатели можно увидеть в микросхемах памяти, где присутствуют миллионы транзисторов, которые включаются и выключаются.

Транзисторы в качестве усилителя

Транзисторы работают не только как переключатели, но и как усилители, принимая крошечные электрические токи и производя гораздо более высокий выходной ток на другом конце. Такие транзисторы обычно используются в слуховых аппаратах, радио и т.

Рекомендуемые транзисторы для использования

Ранее мы установили, что MOSFET является частью семейства полевых транзисторов, что делает его отличным вариантом для управления большим током.Но знаете ли вы, что это первый компактный транзистор, который можно миниатюризировать для широкого спектра применений?

Да! с революцией в электронных технологиях, он постепенно превратился в миниатюрные модули для использования в микроконтроллерах (например, Arduino)

Ниже мы даем рекомендации по MOSFET-транзисторам, идеально подходящим для такого использования!

Grove — МОП-транзистор Grove — MOSFET

Как следует из названия, Grove — MOSFET — это миниатюрный МОП-транзистор, который помогает вам легко управлять проектом высокого напряжения с помощью вашей платы Arduino!

Особенности:

  • Две винтовые клеммы на плате; один для внешнего источника питания, а другой для устройства, которым вы хотите управлять с помощью
  • 5V — 15V управления напряжением

Благодаря нашей системе Grove вы также сможете испытать plug and play через наши кабели Grove, легко добавить или удалить этот транзистор в свой электронный проект!

Хотите узнать больше о Grove — MOSFET? Вы можете посетить страницу продукта здесь, чтобы увидеть его техническое описание, схему и многое другое!

Сводка

Это все на сегодняшний день руководства по транзисторам.Я надеюсь, что благодаря этому вы получите общее представление о том, что такое транзистор, типы транзисторов (BJT, FET), как они работают и их применение!

Если вы ищете простое взаимодействие Arduino с MOSFET, обратите внимание на Grove — MOSFET!

Следите за нами и ставьте лайки:

Теги: bc547, bjt, bjt транзистор, fet, как работает транзистор, mosfet, mosfet транзистор, npn, pnp, транзистор, схема транзистора, функция транзистора, символ транзистора, символы транзистора, типы транзисторов, что такое транзистор

Продолжить чтение

Что такое транзистор? — Определение от WhatIs.com

К

Транзистор — это устройство, которое регулирует ток или напряжение и действует как переключатель или затвор для электронных сигналов. Транзисторы состоят из трех слоев полупроводникового материала, каждый из которых может пропускать ток.

Транзистор был изобретен тремя учеными из Bell Laboratories в 1947 году, и он быстро заменил вакуумную лампу в качестве электронного регулятора сигнала. Транзистор регулирует ток или напряжение и действует как переключатель или затвор для электронных сигналов.Транзистор состоит из трех слоев полупроводникового материала, каждый из которых может проводить ток. Полупроводник — это такой материал, как германий и кремний, который проводит электричество «полуинтузиазмом». Это что-то среднее между настоящим проводником, таким как медь, и изолятором (например, пластиком, обернутым вокруг проводов).

Полупроводниковому материалу придаются особые свойства с помощью химического процесса, называемого легированием . Легирование приводит к получению материала, который либо добавляет дополнительные электроны к материалу (который затем называется N-типа для дополнительных отрицательных носителей заряда), либо создает «дыры» в кристаллической структуре материала (которая затем называется P-типа. , потому что это приводит к большему количеству носителей положительного заряда).Трехслойная структура транзистора содержит полупроводниковый слой N-типа, зажатый между слоями P-типа (конфигурация PNP) или слой P-типа между слоями N-типа (конфигурация NPN).

Небольшое изменение тока или напряжения на внутреннем полупроводниковом слое (который действует как управляющий электрод) вызывает большое и быстрое изменение тока, проходящего через весь компонент. Таким образом, компонент может действовать как переключатель, открывая и закрывая электронные ворота много раз в секунду.В современных компьютерах используются схемы, изготовленные с использованием технологии комплементарных металлооксидных полупроводников (CMOS). CMOS использует два дополнительных транзистора на затвор (один из материала N-типа, другой из материала P-типа). Когда один транзистор поддерживает логическое состояние, он почти не требует энергии.

Транзисторы — это базовые элементы в интегральных схемах (ИС), которые состоят из очень большого количества транзисторов, связанных между собой схемами и запеченных в единую кремниевую микросхему.

Последнее обновление: октябрь 2015 г.

Продолжить чтение о транзисторе

Что такое транзистор?

Транзисторы — это устройства, управляющие движением электронов и, следовательно, электричества.Они работают как водопроводный кран — они не только запускают и останавливают течение тока, но также контролируют его величину. С помощью электричества транзисторы могут переключать или усиливать электронные сигналы, позволяя с точностью управлять током, протекающим через печатную плату.

Транзисторы, изготовленные в Bell Labs, изначально были изготовлены из германия. Ученые знали, что чистый германий — хороший изолятор. Но добавление примесей (процесс, называемый легированием ) превратило германий в слабый проводник или полупроводник .Полупроводники — это материалы, которые обладают промежуточными свойствами между изоляторами и проводниками, обеспечивая электрическую проводимость в различной степени.

Момент изобретения транзисторов был выбран не случайно. Для правильной работы транзисторам требуются чистые полупроводниковые материалы. Так уж получилось, что сразу после Второй мировой войны улучшения в очистке германия, а также достижения в области легирования сделали германий пригодным для применения в полупроводниках.

В зависимости от элемента, используемого для легирования, полученный слой германия был либо отрицательного типа (N-тип), либо положительного типа (P-тип).В слое типа N легирующий элемент добавлял электроны к германию, облегчая выброс электронов. Напротив, в слое P-типа определенные легирующие элементы заставляли германий терять электроны, таким образом, электроны из соседних материалов текли к нему.

Поместите N-тип и P-тип рядом друг с другом, и вы получите P-N диод . Этот диод пропускает электрический ток, но только в одном направлении, что является полезным свойством при построении электронных схем.

Следующим шагом были полноценные транзисторы. Для создания транзисторов инженеры наложили легированный германий слоями, чтобы сделать два слоя вплотную друг к другу, в конфигурации P-N-P или N-P-N. Точка контакта была названа переходом, отсюда и название переходного транзистора .

При подаче электрического тока на центральный слой (называемый базой) электроны будут перемещаться со стороны N-типа на сторону P-типа. Первоначальная небольшая струйка действует как переключатель, позволяющий протекать гораздо большему току.В электрической цепи это означает, что транзисторы действуют как переключатель и как усилитель.

В наши дни вместо германия в коммерческой электронике используются полупроводники на основе кремния, которые более надежны и доступны по цене, чем транзисторы на основе германия. Но как только технология стала популярной, германиевые транзисторы широко использовались более 20 лет.

Как использовать транзистор NPN? Функциональный анализ

Введение

Транзистор является одним из основных полупроводниковых компонентов, который выполняет функцию усиления тока в электронной схеме.Он состоит из двух очень близких друг к другу PN-переходов на полупроводниковой подложке . Два перехода PN делят весь полупроводник на три части: средняя часть — это базовая область, а две стороны — эмиттер и коллектор.

Что такое транзистор NPN? Для начинающих

Каталог


Ⅰ Устройство и символ NPN-транзистора

Прежде чем объяснять принцип, давайте сначала разберемся с базовой структурой и символами NPN-транзистора.Чтобы идентифицировать контакты транзистора NPN, это будут коллектор (c), база (b) и эмиттер (e).

Рис. 1. Структура и обозначение NPN-транзистора

Транзистор

NPN состоит из двух полупроводников N-типа и одного полупроводника P-типа. Как правило, транзистор NPN имеет кусок кремния P-типа (основание), зажатый между двумя частями N-типа (коллектор и эмиттер). Расположение показано на рисунке 1.

Ⅱ Как работают транзисторы NPN?

Вот основное описание, иллюстрирующее основной принцип и функцию NPN-транзисторов.
1) Усиление тока
Следующий анализ предназначен только для кремниевых транзисторов NPN. Как показано на рисунке выше, мы называем ток, протекающий от базы B к эмиттеру E, базовым током Ib; ток, протекающий от коллектора C к эмиттеру E, называется током коллектора Ic. Направления этих двух токов выходят из эмиттера, поэтому на эмиттере E используется стрелка, указывающая направление тока.
Функция усиления транзистора такова: ток коллектора контролируется током базы (при условии, что источник питания может обеспечить достаточно большой ток для коллектора), и небольшое изменение тока базы вызовет большое изменение тока базы. ток коллектора: изменение тока коллектора в β раз больше, чем изменение тока базы, то есть изменение тока усиливается в β раз, поэтому мы называем β увеличением транзистора (β обычно намного больше 1).Если мы добавим изменяющийся слабый сигнал между базой и эмиттером, это вызовет изменение тока базы Ib. После того, как изменение Ib усиливается, оно приводит к большому изменению Ic. Если ток коллектора Ic протекает через резистор R, его можно рассчитать по формуле закона Ома U = R * I, и напряжение на этом резисторе сильно изменится. Согласно напряжению на этом резисторе, мы можем получить усиленный сигнал напряжения. Короче говоря, изменение удовлетворяет определенной пропорциональной зависимости.
2) Схема смещения
Когда транзистор используется в реальной схеме усилителя, также необходимо добавить подходящую схему смещения. На это есть несколько причин. Прежде всего, из-за нелинейности BE-перехода транзистора (эквивалентного диоду), базовый ток должен генерироваться после того, как входное напряжение достигнет определенного уровня (для кремниевых трубок часто используется 0,7 В). Когда напряжение между базой и эмиттером меньше 0,7 В, ток базы можно считать нулевым.Однако на практике усиливаемый сигнал часто намного меньше 0,7 В. Если смещение не применяется, такого слабого сигнала недостаточно, чтобы вызвать изменение базового тока (потому что, когда он меньше 0,7 В, базовый ток равен нулю).
Добавьте подходящий ток к базе транзистора (называемый током смещения, а резистор на рисунке, используемый для обеспечения этого тока, называется резистором смещения базы). Когда небольшой сигнал следует за этим током смещения, они накладываются друг на друга, небольшой сигнал вызывает изменение базового тока, и изменение базового тока будет усиливаться и выводиться на коллектор.Другая причина — соответствие требованиям диапазона выходного сигнала. Если смещения нет, то будут усилены только эти увеличенные сигналы, но уменьшенные сигналы будут недействительными (поскольку ток коллектора равен 0, когда смещения нет, и его нельзя уменьшить). При смещении пусть на коллекторе заранее есть определенный ток. Когда входной базовый ток становится меньше, ток коллектора может быть уменьшен; когда ток входной базы увеличивается, ток коллектора увеличивается. Можно усилить как ослабленный сигнал, так и усиленный сигнал.
3) Переключатель транзисторов NPN
Поговорим о режиме насыщения транзистора. Как показано на рисунке выше, из-за ограничения сопротивления Rc (Rc — фиксированное значение, тогда максимальный ток равен U / Rc, где U — напряжение источника питания) ток коллектора не может увеличиваться бесконечно. Когда ток базы увеличивается и ток коллектора не может продолжать увеличиваться, транзистор переходит в состояние насыщения. Общий критерий оценки насыщения транзистора: Ib * β> Ic .
В состоянии насыщения напряжение между коллектором и эмиттером транзистора будет очень маленьким, что можно понимать как переключатель. Таким образом, когда ток базы равен 0, ток коллектора равен 0 (это называется отсечкой триода), что эквивалентно отключению; когда базовый ток большой, это эквивалентно включению. В состоянии отключения и насыщения транзистор приравнивается к переключателю.
4) Рабочее состояние
Если мы заменим резистор Rc лампочкой на рисунке выше, тогда, когда ток базы равен 0, ток коллектора равен 0, поэтому лампочка выключена.Если базовый ток относительно велик (больше, чем ток, протекающий через лампочку, деленный на коэффициент увеличения β), транзистор насыщается, и лампочка загорается. Поскольку управляющий ток должен быть лишь немного больше, чем β тока лампы, небольшой ток можно использовать для управления включением и выключением большого тока. Если ток базы увеличивается медленно, яркость лампы также увеличивается (что является процессом насыщения).
На рисунке ниже показана базовая схема транзисторного переключателя.База должна подключать базовый резистор (R2), а коллектор — нагрузочный резистор (R1).

Рабочий режим

НПН

Отсечка

Уне <Уон

Uc> Уб

Активный

Убе> Уон

Uc> Уб

Насыщенность

Убе> Уон

Uc


Транзистор NPN использует ток B-E (IB) для управления током C-E (IC).Полюс E имеет самый низкий потенциал, и обычно полюс C имеет самый высокий потенциал при нормальном усилении, то есть VC> VB> VE .
NPN база чрезвычайно высокое напряжение, коллектор и эмиттер имеют короткое замыкание и низкое напряжение, а коллектор и эмиттер разомкнуты.
NPN подходит для двух ситуаций:
Если на входе высокий уровень, а на выходе нужен низкий уровень, лучше использовать NPN.
Если на входе низкий уровень, а на выходе требуется высокий уровень, лучше использовать NPN.

2N2222 Назначение выводов транзистора NPN

Ⅲ Транзистор NPN использует: управляемый клапан

NPN — это компонент, который использует b (базовый) ток Ib для управления током Ic, протекающим через CE, и его принцип работы очень похож на управляемый клапан .

Рисунок 2. Управляемый клапан

Голубой поток воды в тонкой трубке слева воздействует на рычаг, открывая клапан большой водопроводной трубы, позволяя большему потоку красной воды проходить через клапан.Чем больше поток голубой воды, тем больше поток красной воды в большой трубе. Если увеличение составляет 100, тогда, когда поток голубой воды составляет 1 кг / час, тогда 100 кг / час воды может течь через большую трубу. Принцип работы транзистора такой же. Когда Ib (базовый ток) равен 1 мА, ток 100 мА может проходить через лед.

Рисунок 3. Схема транзистора NPN

Разберем эту схему. Если его увеличение составляет 100, и игнорировать базовое напряжение.Базовый ток составляет 10 В ÷ 10 К = 1 мА , поэтому ток коллектора должен быть 100 мА. По закону Ома напряжение на Rc равно 0,1 А × 50 Ом = 5 В . Затем оставшиеся 5 В находятся на полюсах C и E транзистора. Теперь, если мы допустим Rb равным 1K, тогда базовый ток будет 10V ÷ 1K = 10mA , в соответствии с увеличением 100, Ic 1000mA? Если это действительно 1 А, то напряжение на Rc равно 1 А × 50 Ом = 50 В . Превышено напряжение блока питания, и транзисторы стали генераторами? Это не тот случай.См. Ниже:

Рисунок 4. NPN-транзистор в сравнении с клапаном

Продолжите метафору. Когда управляющий ток составляет 10 мА, клапан на основной водопроводной трубе открывается, чтобы пропустить ток 1 А, но можно ли реализовать 1 А? Нет, потому что на нем есть резистор, он эквивалентен фиксированному вентилю. Его нанизывают поверх основной водопроводной трубы. Когда открытие нижнего регулируемого клапана больше открытия верхнего фиксированного резистора, поток воды больше не будет увеличиваться, но будет равен потоку воды, проходящему через отверстие фиксированного клапана выше.Поэтому открывать нижний транзистор до большого отверстия бесполезно. Следовательно, мы можем рассчитать максимальный ток постоянного резистора 10 В ÷ 50 Ом = 0,2 А , что составляет 200 мА. То есть в схеме увеличивается ток базы и ток коллектора также увеличивается. Когда базовый ток Ib увеличивается до 2 мА, ток коллектора увеличивается до 200 мА. Когда базовый ток снова увеличится, ток коллектора больше не будет увеличиваться, и он не будет двигаться при 200 мА.В это время верхний резистор также действует как ограничитель тока.

Давайте разберемся с состоянием ввода-вывода в микроконтроллере.

Рисунок 5. AT89S51 / 52

Схемы с 24 портами ввода-вывода P1-P3 в однокристальном микрокомпьютере показаны на рисунке выше. Обычно цель использования электронных схем состоит в том, чтобы позволить устройствам получать определенный ток для их работы. Например, чтобы светодиоды стали яркими, обычно требуется ток более 1 мА.Однако однокристальный микрокомпьютер — это умный чип. Он может выполнять логический анализ и заключения, определяя значение напряжения каждого порта ввода-вывода и выводя высокое или низкое напряжение в качестве результирующего сигнала. Следовательно, можно видеть, что порты ввода-вывода однокристального микрокомпьютера фокусируются на напряжении, а не на токе, протекающем через R и транзистор. Вот какова взаимосвязь между напряжением и током порта ввода-вывода однокристального микрокомпьютера?

Продолжить пример водопровода.

Предположим, мы позволили клапану R открыться больше, а регулирующий клапан внизу полностью закрылся. В это время, как показано на рис. 6 , можно увидеть, что давление в точке P такое же, как в резервуаре для воды. Когда мы полностью откроем следующий регулирующий клапан, как показано на , рис. 7, , вода потечет по трубопроводу с большим потоком, а давление в точке P в это время равно 0. Этот принцип очень похож на электронные схемы. Логическая величина, измеряемая в выходной точке P, равна 1 (напряжение источника питания) или 0 (потенциал 0) при выключении или включении транзистора.Однако есть проблема с этим процессом, то есть, когда требуется, чтобы выходной сигнал точки P был равен 0, транзистор будет включен очень сильно, и ток, протекающий через него, будет очень большим. Однокристальный микрокомпьютер имеет 32 порта ввода-вывода, которые потребляют много энергии.

Посмотрите на Рисунок 8 . Если мы закроем очень маленький верхний клапан R и полностью закроем нижний регулирующий клапан, тогда давление в точке P останется таким же, как в резервуаре для воды, что такое же, как в , рис. 6, выше.Когда мы сильно открываем регулирующий клапан, как показано на Рис. 9 , хотя давление в точке P также равно 0, поток воды, проходящей через это время, значительно уменьшается. Таким образом, мы можем вывести либо 1, либо 0. Таким образом, потребляется очень мало воды. Схема в однокристальном микрокомпьютере делает именно это. Сопротивление R на нем около 50К, а максимальный ток 5В ÷ 50К = 0,1мА . Другими словами, когда P выводит 1, ток не потребляется, а когда P выводит 0, потребляемый ток равен 0.1 мА. Из-за его большого сопротивления подтягиванию R новичкам необходимо иметь определенные методы для непосредственного управления светодиодами или другими нагрузками. Здесь мы расскажем о различных ситуациях, когда порт ввода-вывода подключен к нагрузке.

Рисунок 10. AT89S51 / 52 и 74HC373

Давайте сначала рассмотрим ситуацию с подключением TTL устройств . Когда P1.0 подключен к входному выводу 74HC373, а входное сопротивление TTL очень высокое, от нескольких сотен кОм до уровня МОм.Мы предполагаем, что резистор 500 кОм соединен с P1.0 на землю. Таким образом, когда транзистор включен, точка P1.0 находится на низком уровне, и ток 0,1 мА протекает через Rc, а затем через транзистор на землю, и ток через Ri не течет. Когда транзистор отключен, ток течет через Rc, а затем течет на землю через Ri. Из-за эффекта резисторного делителя напряжения на Rc и Ri возникают частичные напряжения, а напряжение в точке P1.0 является делением напряжения на Rc и Ri. Общий ток 5V ÷ (50K + 500K) = 0.009mA , тогда напряжение в точке P1.0 составляет 0,009 мА × 500K = 4,5 В . TTL предполагает, что выход 2,4 ~ 5 В является высоким уровнем. Итак, это соединение правильное. Теперь давайте посмотрим на ситуацию с использованием S51 для управления светодиодом.

AT89S51 Правильное подключение

Давайте посмотрим на ситуацию в Рисунок 11 . Очевидно, что только P1.0 имеет высокий потенциал для освещения светящейся трубки, поэтому транзистор должен быть отключен. В этом случае ток течет через Rc в люминесцентную трубку, а затем на землю.Для включения световой трубки на обоих концах световой трубки должно быть пороговое напряжение, превышающее 2,1 В. Следовательно, ток, протекающий через люминесцентную трубку, составляет (5В-2,1В) ÷ 50К = 0,058 мА , что слишком мало для проведения.
Посмотрите на Рисунок 12 . Из рисунка видно, что P1.0 должен иметь низкий потенциал, если люминесцентная трубка включена. Транзистор порта P1.0 должен быть включен. В это время ток проходит через Rc к транзистору, а затем к земле.Другой способ потребляет 2,1 В. на люминесцентной трубке. Тогда ток протекает почти без сопротивления, но максимальный ток триода порта ввода-вывода не может превышать 15 мА. Если оно превысит, то триод сгорит, поэтому такой способ подключения некорректен. Так как же эти два соединения могут управлять светоизлучающей трубкой? См. Ниже:

AT89S51 Неправильное подключение

Если посмотреть на Рисунок 13 , резистор Ri подключен между P1.0 и Vcc. Когда транзистор включен, через его полюс c, e будут протекать два тока, один — ток 0,1 мА на внутреннем R, а другой — ток на Ri. Чтобы предотвратить перегрузку по току и перегорание транзистора, мы должны убедиться в значении сопротивления, Ri = 5V ÷ 15mA = 0,333K , что составляет около 330 Ом. В это время ток, протекающий через транзистор, составляет около 15 мА, и светоизлучающая трубка в это время не горит. Когда транзистор выключен, оба тока будут течь через люминесцентную трубку.Ток, протекающий через внутреннее сопротивление S51, составляет (5В-2,1В) ÷ 50К = 0,06мА , что настолько мало, что мы можем его игнорировать. Ток, протекающий через Ri, составляет (5-2,1 В) ÷ 330 Ом = 0,0087 А , что составляет 8,7 мА. Однако ток, потребляемый при выключенной люминесцентной трубке, больше, чем ток, потребляемый при включенной люминесцентной трубке. Если для включения множества светодиодов используется много портов ввода-вывода, такая схема неэкономична.
Посмотрите на Рисунок 14 , после подключения резистора последовательно со световой трубкой между Vcc и P1.0. Когда транзистор включен, два тока будут течь через c, e после слияния. Ток на внутреннем сопротивлении по-прежнему составляет 0,1 мА. Сила тока в сети должна быть менее 15 мА. Если превышает 15 мА, сопротивление определяется как (5-2,1 В) ÷ 15 мА = 0,193 кОм , что составляет около 200 Ом. Таким образом, ток, протекающий через люминесцентную трубку, составляет около 15 мА, и люминесцентная трубка включена. Когда транзистор отключен, он блокирует пути этих двух токов, поэтому ток не потребляется.Низкий уровень P1.0 напрямую управляет светоизлучающей трубкой. Видно, что эта схема потребляет 15 мА тока, когда светоизлучающая трубка включена, и не потребляет ток, когда она выключена, поэтому эта схема эффективна. Цифровая лампа S51 с прямым приводом обычно также использует этот принцип.

Часто задаваемые вопросы о NPN транзисторе

1. Что подразумевается под NPN-транзистором?
Транзистор NPN является наиболее часто используемым транзистором с биполярным переходом и создается путем размещения полупроводника P-типа между двумя полупроводниками N-типа.Транзистор NPN имеет три вывода — коллектор, эмиттер и базу. Транзистор NPN ведет себя как два диода с PN-переходом, соединенных спина к спине.

2. Как работают транзисторы NPN?
Транзистор NPN предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру). Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. … Транзистор похож на электронный вентиль.

3. Для чего нужен NPN-транзистор? Транзисторы
NPN в основном используются в коммутационных устройствах. Используется в схемах усиления. Используется в парных схемах Дарлингтона для усиления слабых сигналов. Транзисторы NPN используются в приложениях, где требуется отводить ток.

4. Какой транзистор лучше PNP или NPN?
Транзистор NPN имеет электроны в качестве основных носителей заряда, тогда как транзистор PNP имеет дырки в качестве основных носителей заряда…. подвижность электронов больше, чем у дырок, поэтому транзисторы npn быстрее, чем pnp, поэтому они предпочтительнее.

5. Что означает NPN?
NPN расшифровывается как «отрицательный», «положительный», «отрицательный». Также известен как тонущий.

Альтернативные модели

Часть Сравнить Производителей Категория Описание
ПроизводительНомер детали: 34.3123 Сравнить: Текущая часть Производитель: Schurter Категория: Предохранители Описание: Патронные предохранители FST 5×20, 4A, 250 В переменного тока, с выдержкой времени T, невосстанавливаемый предохранитель
ПроизводительНомер детали: 0034.3123 Сравнить: 34.3123 VS 0034.3123 Производитель: Schurter Категория: Термовыключатели / переключатели / предохранители Описание: SCHURTER 0034.Предохранитель 3123, картридж, серия FST, 4 А, 250 В, 5 мм x 20 мм, 0,2 дюйма x 0,79 дюйма, 40 А
Производитель № детали: 0034.3123.G Сравнить: 34.3123 VS 0034.3123.G Производитель: Schurter Категория: Предохранители Описание: Миниатюрный предохранитель 4A 250V Медленный 2-контактный держатель картриджа
ПроизводительНомер детали: 312-3 Сравнить: 34.3123 VS 312-3 Производитель: Schurter Категория: Описание: Электрический предохранитель,

Заказ и качество

Изображение ПроизводительЧасть # Компания Описание Пакет PDF Кол-во Стоимость (долл. США)
ADG1414BCPZ-REEL7 Компания: Analog Devices Inc. Упаковка: 24-WFQFN Exposed Pad, CSP
Лист данных
На складе: Под заказ
Запрос
Цена: Запрос
ADM3072EARZ-REEL7 Компания: Analog Devices Inc. Упаковка: 8-SOIC (0,154 дюйма, ширина 3,90 мм)
Лист данных
На складе: 1000
Запрос
Цена: Запрос
ADP2164ACPZ-R7 Компания: Analog Devices Inc. Упаковка: 16-WQFN Exposed Pad, CSP
Лист данных
На складе: Под заказ
Запрос
Цена: Запрос
ADUC848BSZ62-5 Компания: Analog Devices Inc. Упаковка: 52-QFP
Лист данных
На складе: Под заказ
Запрос
Цена:
1+: 17 долларов.
10+: $ 16.46300
25+: 15 долларов США.78040
100+: $ 13,90 390
250+: $ 13.22152
Запрос
5962-8982402PA Компания: Analog Devices Inc. Корпус: 8-CDIP (0,300 дюйма, 7,62 мм)
N / A
На складе: Под заказ
Запрос
Цена:
1+: 51 руб.08000
10+: $ 47.98800
25+: $ 46.44000
100+: $ 41.79600
250+: 41 руб.17680
Запрос
АД8220ТРМЗ-ЭП Компания: Analog Devices Inc. Упаковка: 8-TSSOP, 8-MSOP (0,118 дюйма, ширина 3,00 мм)
Лист данных
На складе: Под заказ
Запрос
Цена:
1+: 10 долларов США.82000
10+: $ 9.94 000
25+: $ 9.52760
100+: $ 7.98250
250+: $ 7.46752
500+: $ 6.95250
1000+: 6 долларов США.84950
Запрос
АД8221ТРМЗ-ЭП Компания: Analog Devices Inc. Упаковка: 8-TSSOP, 8-MSOP (0,118 дюйма, ширина 3,00 мм)
Лист данных
На складе: Под заказ
Запрос
Цена:
1+: $ 9.07000
10+: 8,19 200
25+: $ 7.81040
100+: $ 6.47700
250+: 5 долларов США.
500+: $ 5.5 2450
1000+: 5 долларов США.06730
Запрос
АД9833БРМЗ Компания: Analog Devices Inc. Упаковка: 10-TFSOP, 10-MSOP (0,118 дюйма, ширина 3,00 мм)
Лист данных
На складе: Под заказ
Запрос
Цена:
1+: 10 долларов США.04000
10+: $ 9.07300
25+: $ 8.65120
100+: $ 7,5 1160
250+: $ 7.17400
500+: 6.54100
1000+: 5 долларов США.69700
2500+: $ 5.6 1260
Запрос

как работает транзистор, альтернативная точка зрения

Потоки заряда, управляемые напряжением

Прежде всего, вы должны отказаться от идеи, что ток проходит в транзисторы или потоки внутри проводов.Да, вы поняли меня правильно. Ток не течет. Электрический ток никогда не течет , поскольку электрический ток — это не материал. Электрический ток — это поток чего-то другого. (Спросите себя: что за вещество течет в реке, называется ли оно «течением»? Либо это называется «вода?»)

Поскольку ток — это поток заряда, следует избегать распространенного выражения «поток тока», поскольку буквально оно означает « расход расхода заряда». — СОВРЕМЕННАЯ ФИЗИКА КОЛЛЕДЖА, Richards, Sears, Wehr, Zemansky (найти похожие в книге Сервея COLLEGE ФИЗИКА)
Так что же на самом деле течет внутри проводов?

То, что движется внутри проводов, НЕ называется электрическим током.Вместо он называется Electric Charge . Это заряд, который течет, а не ток. Движение зарядов может исчезнуть, а движение появиться. Но Само движение не течет, текут заряды. И в реки (или в водопроводе) течет вода, а не «течение». Аналогия: мы не сможем понять сантехнику, пока не перестанем предполагать, что трубы пусты … при этом веря в волшебство, называемое «Текущий.»

Мы должны узнать, что трубы уже заполнены; эта «вода» течет внутри них.То же самое и со схемами. Провода не залиты «потоком Текущий «, вместо этого они предварительно заполнены. Платежи, которые могут двигаться. Электрический заряд — это настоящая штука; его переносят физические частицы, и он может двигаться с реальной скоростью и в реальном направлении. Плата ведет себя как «вещество», как газ или жидкость. Но электрический ток отличается от заряда: заряд — это как материал, но ток — это не вещи. (Если ток подобен ветру, то заряд подобен азоту!) Если мы экспериментируйте с концепциями; если мы решим игнорировать «текущий», и вместо этого мы пойдите и внимательно изучите поведение движущихся зарядов в большом детали, мы можем сжечь облака тумана, которые блокируют наше понимание электроника.

Секунда: заряды внутри проводников не проталкиваются сами собой вместе, но вместо этого их подталкивает «разность потенциалов»; они проталкивается полями напряжения в проводящем материале. Сборы не выскакивал из блока питания, как будто блок питания какой-то резервуара для воды. Если представить, что заряды уходят через минус клемма источника питания; и если вы думаете, что обвинения то распределить по полым трубам контура, то вы сделали фундаментальная ошибка.Если вы считаете, что сборы предусмотрены источник питания, значит, вы совершили фундаментальную ошибку. Провода не действуют вроде «пустых электронных трубок». Блок питания не дает никаких электроны. Блоки питания обязательно создают токов, либо они вызывает токов, но помните, мы убираем слово «ток». Чтобы создать поток зарядов, блок питания не вводит никаких заряжает провода. Источник питания — только помпа. Насос может подавать давление накачки.Насосы никогда не подают перекачиваемую воду.

Третий: открыли ли вы большой «секрет» визуализации электрических схемы?

ВСЕ ПРОВОДНИКИ УЖЕ ЗАРЯДЫ
Провода и силикон … оба ведут себя как предварительно заполненные водопроводные трубы или резервуары для воды. В «вода» — это огромное количество подвижных заряженных частиц дирижер. Электрические схемы построены по «полнотрубной аналогии». Этот простая идея обычно скрывается фразами «поток тока» или «Источники питания посылают ток.»Мы думаем, что провода похожи на полые трубы. В итоге мы визуализируем загадочную субстанцию ​​под названием Current. которая протекает через них. Неа. (Как только мы избавимся от слова «текущий», мы можем открыть для себя довольно ошеломляющую информацию о простых схемах, а?)
Если контуры подобны водопроводу, , то ни одна из «труб» контура всегда пусты. Эта идея чрезвычайно важна, и без нее мы не может понять полупроводники … или даже проводники! Металлы содержат огромное количество подвижных электронов, образующих своего рода «электрическую жидкость» внутри металла.Простой кусок меди похож на резервуар для воды! Физики называют эту жидкость «электронным морем металлов» или океан заряда ». Полупроводники всегда полны этой подвижной «зарядка». Подвижный заряд присутствует, даже когда транзистор сидит на полке и отключен от всего. Когда напряжение нанесенный на кусок кремния, эти заряды уже находятся в материал приводится в движение. Также обратите внимание, что заряд внутри проводов … незаряжен. Рядом с каждым подвижным электроном находится положительный протон, поэтому хотя металл содержит огромное море заряда, нет никакой сети заряд в среднем.Провода содержат «незаряженный» заряд. Лучше назови это «отмена платежа». Но даже несмотря на то, что электроны нейтрализуются рядом с протонами электроны все еще могут течь между протонами. Отменено заряд все еще может перемещаться, поэтому возможны потоки заряда в незаряженный металл.

Хорошо, так как «трубы» уже заполнены «жидкостью», то для того, чтобы понимать схему, мы НЕ должны отслеживать путь, начиная с клеммы источника питания. Вместо этого мы можем начать с любого компонента на схема.Если напряжение приложено к этому компоненту, то заряды внутри этого компонента начнут течь. Доработаем старую «объяснение с помощью фонарика», которому всех нас учили в начальной школе. Вот исправленная версия:

ТОЧНОЕ ОБЪЯСНЕНИЕ ФОНАРИКА:
Провода полны огромных количества подвижного электрического заряда (все проводники есть!) Если подключить несколько проводов в сплошное кольцо, вы формируете «электрическую цепь», которая содержит подвижную конвейерную ленту из зарядов внутри металлического круга.Далее мы разрезаем это кольцо в паре мест и вставляем батарею и лампочку в разрезы. Аккумулятор действует как зарядный насос, в то время как лампочка предлагает трение. Аккумулятор проталкивает длинный ряд проводов заряжается вперед, потом все заряды текут, затем загорается лампочка. Давайте следовать за ними.

Заряды начинаются внутри нити накаливания лампочки. (Нет, не внутри аккумулятор. Начнем с лампочки .) Заряды вынуждены течь вдоль нити.Потом они вытекают в первую проволоку и двигайтесь к первому выводу аккумулятора. (В то же время более заряды попадают в нить через другой ее конец.) Аккумулятор нагнетает заряжается через себя и снова отступает. Обвинения уходят вторые клемма АКБ, потом по второму проводу стекают к лампочке. Они намотать обратно внутрь нити накаливания лампочки. В то же время заряды в других частях цепи делают то же самое. Это как пояс сплошной сделанный из зарядов.Батарея действует как привод колесо, которое перемещает ремень. Провода ведут себя так, как будто они скрывают конвейерная лента внутри. Лампочка действует как «трение»; становится жарко когда его собственные естественные заряды вынуждены течь. Скорость батареи вверх по всему ремню, а трение лампочки замедляет его опять таки. А так ремень работает постоянно, а лампочка нагревается.



Правда освободит вас … но сначала это вас разозлит! -анон

Краткий обзор:

1.МАТЕРИАЛ, ПРОТЕКАЮЩИЙ ЧЕРЕЗ ПРОВОДНИКИ НАЗЫВАЕТСЯ ОПЛАТА. («ТОК» НЕ ПРОХОДИТ.)

2. ЗАРЯД ВНУТРИ ПРОВОДНИКИ УМЫВАЮТСЯ ПОЛЯ НАПРЯЖЕНИЯ.

3. ВСЕ ПРОВОДА «ПРЕДВАРИТЕЛЬНО ЗАПОЛНЕННЫЙ» ОБЪЕМ ПОДВИЖНОГО ЗАРЯДА

4. АККУМУЛЯТОРЫ И ИСТОЧНИКИ ПИТАНИЯ ЯВЛЯЮТСЯ ЗАРЯДНЫМИ НАСОСАМИ.

5. ЛАМПОЧКИ И РЕЗИСТОРЫ ОБА АКТ «ФРИКЦИОННО».

И последнее: разница между проводником и изолятором в том, что просто: проводники похожи на предварительно залитые водопроводные трубы, а изоляторы — на как трубы, задушенные льдом.Оба содержат «электрический материал»; проводники и изоляторы заполнены электрически заряженными частицами. Но «вещество» внутри изолятора не может двигаться. Когда мы применяем перепад давления по водопроводу, течет вода. Но с труба пустая, там ничего нет, поэтому течения не происходит. И с трубка в замороженном состоянии, материал застрял в ловушке и не сдвинется с места. (Другими словами, напряжение вызывает поток заряда в проводниках, но не может вызвать поток заряда в изоляторах, потому что заряды либо отсутствуют, либо неподвижны.) Многие вводные учебники ошибаются в своих определениях. Они определяют проводника как нечто, через которое могут течь заряды, а изоляторы якобы блочные сборы. Неа. Воздух и вакуум не блокируют заряды, но воздух и вакуум — хорошие изоляторы! На самом деле дирижер — это то, что содержит подвижные заряды, а в изоляторе их нет. (Если в книге неверна эта основополагающая идея, то большая часть ее последующих объяснения подобны зданиям, построенным на куче мусора, и они имеют тенденцию свернуть.)

Еще одно напоминание перед тем, как погрузиться в транзисторы. Кремний очень отличается от металла. Металлы полны подвижных зарядов … но также легированный кремний. Насколько они разные? Конечно, дело в «запрещенная зона» и разница между электронами и дырками, но это не главное. Важное отличие довольно простое: металлы имеют огромное количество подвижного заряда, но кремний его гораздо меньше. Для Например, в меди каждый атом меди отдает один подвижный электрон в «море заряда».«Электрический флюид» меди очень плотный, это такой же плотный, как и медь. Но в легированном кремнии только по одному на каждый миллиард атомов отдает подвижный заряд. Кремний похож на большое пустое пространство со случайным блуждающим зарядом. В кремнии можно подмести все заряжается из материала, используя потенциал в несколько вольт, в то время как металл потребуются миллиарды вольт, чтобы сделать то же самое. Или в другие слова:

6. ЗАРЯД ВНУТРИ ПОЛУПРОВОДНИКОВ КАК СЖИМАЯ Несжимаемая жидкость.
Сметание зарядов в материале — то же самое, что преобразование этого материала. материал от проводника до изолятора. Если силикон похож на резину шланг, значит, это шланг, содержащий сжимаемый газ. Мы можем легко закройте его и остановите поток. Но если медь тоже похожа на резину шланг, то вместо этого он похож на шланг, полный железных слизней. Вы можете сжать и давить, но не разбить их с дороги. Но с воздушными шлангами а с кремниевыми проводниками даже небольшое боковое давление может защемить путь закройте и остановите поток.

Хорошо, давайте посмотрим, как обычно объясняют транзисторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.