Транзистор чем npn отличается от pnp: чем отличаются, принцип работы и схемы – Разница npn и pnp только в направлении тока(э-к и наоборот)? — Хабр Q&A

Pnp npn датчики разница — Вэб-шпаргалка для интернет предпринимателей!

В статье рассмотрен такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании встречаются повсеместно. Кроме того, описаны реальные датчики приближения — неотъемлемая часть работы инженера-электронщика, их плюсы, минусы и примеры применения. Часть первая опубликована в предыдущем номере (№5-6, 2017) журнала.

Индуктивные датчики

В первой части статьи были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным не все так просто. Нужно учитывать много нюансов: полярность, логика работы, напряжение.

Для примера показаны упрощенные схемы подключения датчиков с транзисторным выходом (рис. 1). Нагрузка, как правило, это вход контроллера.

Рис. 1, а — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания. Нагрузка (Load) постоянно подключена к «плюсу» (+V). Здесь активный уровень (дискретный «1») на выходе датчика — низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Рис. 1, б — случай с транзистором PNP на выходе. Нагрузка (Load) постоянно подключена к «минусу» (0V), подача дискретной «1» (+V) коммутируется транзистором. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим (нулевым), а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Напряжение на транзисторном выходе, как правило, определяется напряжением питания, обычно ограниченным узкими пределами. Например, от 18 до 30 В. На это можно посмотреть с другой стороны — сейчас большинство устройств стандартизовано по напряжениям.

Далее от теории перейдем к практическим вопросам.

Взаимозаменяемость датчиков

Как я уже писал в предыдущей части статьи, есть четыре вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения: PNP NO; PNP NC; NPN NO; NPN NC.

Бывает, что нужного типа датчика нет под рукой, а оборудование должно работать без простоя! Хорошая новость — перечисленные типы датчиков можно заменить друг на друга.

Это реализуется следующими способами:

  • Переделка устройства инициации — механически меняется конструкция. Например, если NO датчик реагировал на наличие металла, то NC будет реагировать на его отсутствие. Если выход той же полярности, то не изменится ни программа, ни алгоритм работы.
  • Изменение имеющейся схемы включения датчика (рассмотрим подробнее ниже).
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы контроллера (изменение активного уровня входа, изменение алгоритма программы).

Естественно, производители умалчивают о таких возможностях, чтобы продавать большое количество и номенклатуру изделий. Ниже приведен пример, как можно заменить датчик PNP на NPN, изменив схему подключения

(рис. 2).

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле.

На рис. 2, а показана схема датчика с нормально открытым выходом типа PNP. Когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. И наоборот, если контакты замкнуты, то протекающий ток создает падение напряжения на нагрузке.

При активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Смотрим на изменения в схеме на рис. 2, б. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 4,7–10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется.

Когда датчик активен, на входе контроллера дискретный «0», поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Как отремонтировать и проверить индуктивный датчик?

Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.

Чтобы проверить датчик электрически, нужно подать на него питание, то есть подключить его в схему, а затем активировать (инициировать). При активации должен загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку и измерить напряжение на ней, чтобы быть уверенным на 100%.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают квадратом с двумя линиями в нем, повернутым на 45°. Пример на

рис. 3.

На верхней схеме нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема — нормально закрытый, и третья схема — оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются ее.

  • Синий (Blue) — минус питания.
  • Коричневый (Brown) — плюс питания.
  • Черный (Black) — выход.
  • Белый (White) — второй выход, или вход управления.

Однако непосредственно перед монтажом нелишним будет убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Конкретный производители

Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.

«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» —

рис. 4.

Рис. 4 — Пример применения индуктивного датчика «TEKO»

В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.

AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.

На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.

Рис. 5 — Пример модернизации спаивающей головки упаковочной линии

В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.

OMRON

. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.

На рис. 6 — датчики показывают положение механизма редуктора.

Рис. 6 — Датчик показывает положение механического редуктора.

В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.

ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать

(рис. 7).

Рис. 7 — Дитчик Allen Bradley

Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!

Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.

Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Рекомендую тем, кто интересуется, также мою статью про параллельное подключение транзисторных выходов.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.

Система обозначений датчиков Autonics

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан:986 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан:1296 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан:1374 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан:2250 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие оптические датчики я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Вариант №1: воспользоваться специальным преобразователем, например устройством согласования сигналов УСМ, которое представлено у нас в ассортименте, или аналогичным.

Вариант №2: если вы хотя бы минимально дружите с паяльником, сделать преобразователь самому.

Если в наличии есть датчик с PNP выходом, а нужен NPN — собираем вот такую схему:

Транзистор Q1 — любой подходящий NPN, например 2SC495, BC445, BD237.

Если же в наличии имеется датчик с NPN выходом, а нужен PNP — такую схему:

Транзистор Q1 — любой подходящий PNP, например 2N5401, КТ502Д.

Рекомендуем к прочтению

NPN и PNP 2020

NPN против PNP

Биполярные соединительные транзисторы, или более простые BJT, представляют собой 3-концевые электронные полупроводниковые приборы. Они в основном изготовлены из легированных материалов и часто используются при переключении или усилении приложений.

По существу, в каждом биполярном транзисторе есть пара диодов PN-перехода. Пара соединена, которая образует сэндвич, который помещает своего рода полупроводник между теми же двумя типами. Поэтому могут быть только два типа биполярного сэндвича, и это PNP и NPN.

BJT являются действующими регуляторами. В принципе, количество проходящего основного тока регулируется путем его разрешения или ограничения, которое обрабатывается и в соответствии с меньшим током от основания. Меньший ток называется «управляющим током», который является «базой». Управляемый ток (основной) находится либо от «коллектора» до «эмиттера», либо наоборот. Это практически зависит от типа BJT, который является PNP или NPN.

В настоящее время биполярные транзисторы NPN наиболее часто используются для двух типов. Основной причиной этого является характерная более высокая подвижность электронов по сравнению с подвижностью дырок в полупроводниках. Поэтому он позволяет увеличить ток и работает быстрее. Кроме того, NPN легче строить из кремния.

Если транзистор NPN, если эмиттер имеет более низкое напряжение, чем тот, который находится в основании, ток будет поступать из коллектора в эмиттер. Существует небольшое количество тока, которое также будет поступать от базы к эмиттеру. Токовый поток через транзистор (от коллектора до эмиттера) контролируется напряжением в основании.

«Основание», или средний слой транзистора NPN, представляет собой полупроводник P, который легко легируется. Он зажат между двумя N слоями, в которых коллектор типа N в транзисторе сильно легирован. При использовании PNP транзистор находится в положении «включено», когда основание вытягивается на низком уровне относительно излучателя или, другими словами, малый ток, выходящий из базы в режиме общего эмиттера, усиливается в выходе коллектора.

Резюме:

1. NPN имеет более высокую подвижность электронов, чем PNP. Поэтому биполярные транзисторы NPN часто более предпочтительны, чем PNP-транзисторы.

2. NPN легче создавать из кремния, чем PNP.

3. Основным отличием NPN и PNP является база. Одно прямо противоположно другому.

4. С NPN полупроводник P-dope является базой, а с PNP «базой» является полупроводник N-dope.

Что такое p-n-p и n-p-n переходы? Чем они отличаются?

Это типы транзистора (биполярного). Принцип работы транзистора в том, чтобы насытить базу (среднюю зону) неосновными для неё носителями, то есть для npn транзистора базу насыщают электронами, для pnp-дырками. Разница в том, какое напряжение надо для этого приложить к базе, так как дырки и электроны имеют разный по знаку заряд, например для открытия npn-транзистора к базе прикладывают положительный потенциал, к эмиттеру-отрицательный, для pnp-структуры — наоборот. В общем-то и вся разница… для некоторых материалов подвижность дырок отличается от подвижности электронов, поэтому кремниевые npn-транзисторы работают на более высоких частотах, чем pnp к примеру, потому что электроны в n-областях двигаются быстрее, чем дырки в p-областях, так что чем больше в транзисторе n-областей, тем он быстрее. Для большинства простых схем на pnp-транзисторах можно их легко заменить на npn (и наоборот), поменяв полярность источника питания, хотя каждый случай нужно рассматривать отдельно.

транзисторы с указанной тобой структурой отличаются -проводимостью. о переходах-cxem.net/beginner/beginner101.php

Ничем. Бывает только p-n переход. Остальное — их соединения.

Донорными или акцепторными примесями…

тут тебе никто быстро и понятно не объяснит.. Найди книгу * Транзисторы? Это очень просто* и читай..

Проще прочитать, тут толком не объяснишь.

Это две базовых проводимости биполярного транзистора.. В одном случае он открывается плюсом на базе (обратный-npn) , в другом минусом (прямой-pnp)..

Можно еще транзистор представить как два соединенных диода. Так будет легче понять проводимость. Упрощенная эквивалентная схема транзистора на рисунке, содержит диод и управляемый источник тока, что не в полной мере отражают свойства транзистора. Большая часть читателей проверяет транзисторы, с помощью омметра зная, что база-эмиттер и база-коллектор вызваниваются как диоды. Действительно, при определенных условиях, транзистор можно рассматривать как комбинацию двух диодов в соответствии с рисунком. Но, к сожалению, транзистор не может быть использован как два отдельных диода, например, что бы с помощью одного или двух транзисторов, сделать диодный мост ). Транзистор это больше чем два диода. Запомните это, и даже не пытайтесь проделать подобные трюки. <img src=»//otvet.imgsmail.ru/download/875a8375f91de049494d6073098e8a2f_2ec7b95a2f79ee5d3a14481776f9dd40.jpg» data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/79767540_188938a785c9f035619d3f26226768da_120x120.jpg»>

<a rel=»nofollow» href=»https://mixdrop.ru/?ref=114611″ target=»_blank»>https://mixdrop.ru/?ref=114611</a> вот тут все подробно сказано

Что такое pnp-транзистор?

Транзисторы — это полупроводниковые приборы, у которых не меньше чем три вывода. В определенных ситуациях они способны усиливать мощность, генерировать колебания или преобразовывать сигнал. Существует очень много самых разных конструкций этих приборов, и среди них – pnp-транзистор.

pnp транзистор

Классифицируют транзисторы по полупроводниковому материалу. Они бывают из кремния, германия и др.

Если у транзистора из трех областей две имеют дырочную проводимость, он называется «транзистор с прямой проводимостью», или «транзистор с переходом pnp». Устройство, у которого две области имеют электронную проводимость, называют транзистором с обратной проводимостью, или с переходом npn. Работают оба транзистора одинаково, а разница заключается исключительно в полярности.

Где применяется pnp-транзистор?

В зависимости от того, какие характеристики у транзитора, он может использоваться для самых разных целей. Как уже было сказано, транзистор применяют для генерирования, преобразования и усиления электрических сигналов. За счет того, что входное напряжение или ток изменяются, осуществляется управление током входной цепи. Небольшие изменения параметров на входе приводят к еще большему изменению тока и напряжения на выходе. Такое свойство усиления применяется в аналоговой технике (радио, аналоговое ТВ, связь и т. д.).

характеристики транзисторов

В наше время для аналоговой техники применяется биполярный pnp-транзистор. А вот другая, очень важная отрасль – цифровая техника – почти отказалась от него и использует только полевой. Биполярный pnp-транзистор появился намного раньше полевого, потому его в обиходе называют просто транзистором.

Исполнение и параметры транзисторов

Транзисторы конструктивно изготавливаются в пластмассовых и металлических корпусах. Учитывая различное назначение транзисторов, подбираются эти устройства по определенным параметрам. Например, если нужен транзистор для усиления высоких частот, он должен обладать высокой частотой усиления сигнала. А если же транзистор pnp используется в стабилизаторе тока, у него должен быть высокий рабочий ток коллектора.

Справочная литература содержит основные характеристики транзисторов:

  • Ik — рабочий (максимально допустимый) коллекторный ток;
  • h31э — коэффициент усиления;
  • Fgr — максимальная частота усиления;
  • Pk — рассеиваемая мощность коллектора.

Фототранзисторы

транзистор pnp

Фототранзистор – это устройство, чувствительное к световому потоку, который его облучает. В герметичном корпусе такого транзистора проделано окно, к примеру, из прозрачной пластмассы или стекла. Излучение через него попадает в зону базы фототранзистора. Если база облучается, то носители заряда генерируются. Фототранзистор откроется, когда носители заряда перейдут в коллекторный переход, и чем больше будет освещена база, тем ток коллектора станет существеннее.

Без транзисторов нельзя представить современную электронику. Практически ни один серьезный прибор не обходится без них. За годы применения и совершенствования транзисторы существенно изменились, но принцип их работы остается тем же.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *