Трансформатор определение – Определение трансформатор общее значение и понятие. Что это такое трансформатор

Содержание

Трансформатор | Электроцех — гильдия электриков

Понижающий трансформатор

Что такое трансформатор определение, устройство и область применения.

Определение трансформатора

Трансформатор это электротехническое устройство, которое служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения.

Обратите внимание что трансформатор преобразует только переменный ток, постоянный ток трансформатор не преобразует.

Устройство трансформатора

Трансформатор устроен очень просто. У всех трансформаторов есть две обмотки и сердечник из электротехнической стали.

Обмотка трансформатора на которую подается напряжение называется первичной, обмотка с которой снимается напряжение называется вторичной.

У мощных трансформаторов есть еще и система охлаждения чаще всего масляная, как на картинке.

Отношение напряжения первичной обмотки трансформатора к вторичной обмотке называется коэффициентом трансформации.  И зависит от количества витков в обмотках.

Область применения трансформаторов

Трансформатор с минимальными потерями может повышать или понижать напряжение переменного тока. Низкое переменное напряжение можно повысить трансформатором и передать на большое расстояние. На месте напряжение можно понизить трансформатором и низкое напряжение подать потребителю. Так значительно сокращаются потери при передаче электрического тока.

Повышать и понижать постоянный ток намного сложнее и больше потери.

Именно благодаря трансформатору было предопределено повсеместное применение переменного тока.

1.Назначение, области применения, принцип действия трансформатора

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Трансформаторы широко используют для следующих целей.

  1. Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6—24 кВ. 

  2. Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений

  3. Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.

Принцип действия трансформатора

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 2.1), разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока — электрической сети с напряжением u1. Ко вторичной обмотке 2 присоединяют сопротивление нагрузки ZH.

Обмотку более высокого напряжения называют обмоткой высшего напряжения

 (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН — буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток i1 , который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС — е1 и е2, пропорциональные, согласно закону Максвелла, числам витков w1 и w2 соответствующей обмотки и скорости изменения потока 

dФ/dt.

Рис. 2.1. Электромагнитная система   однофазного   трансфор­матора : 1,2 — первичная и вторичная обмот­ки; 3 — магнитопровод

Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

е1 = — w1 dФ/dt;      е2= -w2dФ/dt.

Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением

E1/E2e1/e2w1/w2.

                                             (2.1)

Если пренебречь падениями напряжения в обмотках тран­сформатора, которые обычно не превышают 3 — 5% от номи­нальных значений напряжений U1 и U2, и считать E1

≈U l и Е2U2, то получим

U1/U2w1/w2.

                                             (2.2)

Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U1 можно получить желаемое напряжение U2. Если необходимо повысить вторичное напряжение, то число витков w

2 берут больше числа w1; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U2, то число витков w2 берут мень­шим w1; такой трансформатор называют понижающим,

Отношение ЭДС ЕВН обмотки высшего напряжения к ЭДС ЕНН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

kЕ

ВН/ЕНН = wВН/wНН

                                             (2.3)

Коэффициент k всегда больше единицы.

В системах передачи и распределения энергии в ряде слу­чаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики — многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U

2, U3, U4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,

I1/I2≈ U2/U1≈ w2/w1.

                                             (2.4)

При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i2 во вторичной обмотке соответственно уменьшается в k раз.

Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС 

E1 первич­ной обмотке ток I1 =U1R1 весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника

R’ P1/I12≈ P2/I12≈ I22R/I12≈ k2R

                                        (2.5)

где Р1— мощность, потребляемая трансформатором от источ­ника переменного тока, Вт; Р2 = I22R≈ P1 — мощность, по­требляемая сопротивлением R от трансформатора.

Таким образом, трансформатор изменяет значение сопро­тивления R в k2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

Трансформатор напряжения — Википедия

Антирезонансный трансформатор напряжения

Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

  • Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
  • Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
  • Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
  • Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
  • Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
  • Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).

Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Особенности работы ТН в сетях с изолированной и заземлённой нейтралями[править | править код]

В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.

В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.

Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.

Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

Параметры трансформатора напряжения[править | править код]

На шильдике трансформатора напряжения указываются следующие параметры:

  • Напряжение первичной обмотки.
  • Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
  • Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
  • Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
  • Максимальная мощность трансформатора, в ВА.
  • Напряжение короткого замыкания, в процентах.

Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.
  • В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977
  • ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
  • Правила устройства электроустановок. Издание седьмое.

Трансформатор

Разделительный трансформатор — Википедия

Материал из Википедии — свободной энциклопедии

Разделительный трансформатор — трансформатор, первичная обмотка которого отделена от вторичных обмоток при помощи защитного электрического разделения цепей: двойной или усиленной изоляции, или основной изоляции и защитного экрана. (пп. 1.7.44 и 1.7.49 ПУЭ).

Безопасный разделительный трансформатор — разделительный трансформатор, предназначенный для питания цепей с наибольшим рабочим напряжением не более 50 В переменного и 120 В постоянного тока (п. 1.7.85. ПУЭ).

Трансформатор будет являться разделительным, если его вторичная обмотка не заземлена. Обычно используются трансформаторы с коэффициентом трансформации 1.

Разделительные трансформаторы применяются там, где необходима гальваническая развязка первичной и вторичной (нагрузка) цепей, а также изоляция подключаемого оборудования от контура заземления. Для повышения электробезопасности электрооборудование рекомендуется подключать в сеть через разделительный трансформатор.

Например, согласно «Правилам устройства электроустановок», ванные комнаты входят в категорию особо опасных помещений из-за наличия повышенной влажности, текущей воды и обилия изделий из металла, имеющих неустойчивое заземление. Установка розеток на 220 В допускается только в определенной зоне таких помещений, причём должны быть выполнены особые меры защиты от поражения электрическим током, в частности допускается включение розеток через разделительный трансформатор.

Применение такого подключения электроприемника существенно снижает вероятность поражения электрическим током, так как токи, возникающие в случае пробоя изоляции, имеют небольшое значение, что обусловлено гальванической изоляцией вторичных цепей трансформатора от цепей заземления.

Для обеспечения электропитания в помещениях с требованием повышенной электробезопасности (мед.учреждения, влажные помещения) используются разделительные трансформаторы с контролем изоляции и выносным постом дистанционного контроля ПДК.

Кроме того, малогабаритные (обычно высокочастотные) разделительные трансформаторы применяются во входных сигнальных цепях различных устройств и интерфейсов (например, Ethernet).

Ответы@Mail.Ru: Что такое трансформатор?

Трансформатор ( от латинского transformo — преобразую ) — устройство для преобразования переменного тока с одним напряжением в переменный ток другого напряжения, которое зависит от величины коэффициента трансформации, который, в свою очередь, зависит от соотношения количества витков одной обмотки к другой.

преобразователь из одного в другое

устройство для преобразования каких-либо существующих свойств энергии или объектов

Насколько я знаю, это такое приспособление, которое преобразует ток с одним напряжением, в ток с другим напряжением…

Трансформатор — устройство преобразующее переменный ток таким образом, что напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.

Эта такая электрическая гуделка в ящичке.

Трансформа&#769;тор — не имеющее подвижных частей устройство по преобразованию переменного тока и напряжения по величине без существенных потерь мощности. Трансформатор состоит из нескольких проволочных обмоток, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала. Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока. Когда вторичные обмотки ни к чему не подключены (режим холостого хода) , ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1: U2=U1w2/w1. При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причем он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток I1=I2w2/w1, отношение напряжений в первом приближении также остаётся прежним. В результате, мощность, потребляемая от источника в цепи первичной обмотки практически полностью передаётся во вторичную. На схемах трансформатор обозначается следующим образом: <img src=»//otvet.imgsmail.ru/download/bcab47d66f5a925e237cc9a6bb26d710_i-26.jpg» > Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева) , 2,3 — вторичные обмотки. Число полуокружностей в каком-то грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности) Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов. Применение в электросетях Поскольку потери на нагревание провода пропорциональны квадрату тока через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сперва для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня. Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трех однофазных трансформаторов соединенные в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трех фаз общий. Несмотря на сравнительно высокий КПД трансформатора (свыше 90 %), в очень мощных трансформаторах электросетей выделяется очень большая мощность (на небольшой электростанции 1МВт, на трансформаторе выделяется мощность 100 киловатт)

ааааааааааааааааааа

трансформатор прибор катоорый делает ууууууууууу

<a rel=»nofollow» href=»http://transformator-tmg.ru/» target=»_blank»>http://transformator-tmg.ru/</a>

«Что такое разделительный трансформатор ?» – Яндекс.Знатоки

Разделительный трансформатор («РТ») представляет собой прибор, предназначенный для преобразования переменного тока и напряжения. Он использyет на входе и выходе одинаковое напряжение. Применение подобных агрегатов повышает безопасность, так как во вторичных цепях отсyтствyют электрические связи с источником напряжения или землей.

Если человек случайно прикоснется к такому прибору, удара током не последует. Разделительный понижающий трансформатор не имеет сообщение с землей. Безопасность эксплуатации обеспечивается благодаря автономной работе обмоток. Каждая катушка разделена и не соприкасается с другой обмоткой, не зависимо от мощности. Прикасаться к контурам при эксплуатации категорически запрещается. Если человек одновременно дотронется до них и к железным проводникам, последует удар током.

Сегодня в продаже представлены разделительные трансформаторы 220/220В, 380/380В. Они понижают напряжение для питания приборов постоянным током до 120 В, а переменным – до 50 В. Минимальное напряжение в сети при этом будет 24 В.

Назначение агрегата заключается помимо всего прочего в устранении перепадов напряжения в сети. Он способен защитить бытовую технику, промышленное оборудование от поломки, а человека – от удара током.

Разделительный трехфазный или однофазный аппарат применяется с целью минимизировать риски в процессе эксплуатации электрооборудования.

Существует три основных направления, для которых применяется представленный прибор:

  • Исключает поражение током при попадании на работающий инструмент брызг воды. Для этого катушки имеют усиленную изоляцию. Ручной электрический инструмент изготавливается по этому принципу.
  • Для техники с металлическим корпусом или режущего оборудования (дрель, болгарка и т. д.).
  • Между первичной и вторичной обмоткой может идти заземленный контур. Она предотвращает появление между цепями переменного тока емкостные связи.


Благодаря перечисленным качествам применение трехфазных или однофазных трансформаторов разделительного типа рекомендуется применять как в бытовых целях, так и на производстве. Оно способно снизить риск мастеров в процессе эксплуатации электрооборудования. Подобные агрегаты применяются в банях, ваннах, громкоговорителях, а также прочих условиях повышенной опасности поражения током. В промышленности различные станки, машины работают на электричестве, которое генерирует разделительный трансформатор. Производители бытовой техники рекомендуют устанавливать УЗО перед подключением аппаратуры в сеть. Это позволяет выполнить требования безопасности ее эксплуатации.

Продемонстрировать важность применения такого устройства, как разделительный трансформатор можно на простом примере. Если в ванной комнате, сауне или бане установлена розетка без гальванической развязки, попадание в нее воды приведет к короткому замыканию. Произойдет разрушение изоляции. Напряжение произведет разрушительное действие на стену и незаземленные соседние объекты. При наличии в электросхеме защитного устройства позволяет сделать такое воздействие напряжения минимальным даже при разрушении изоляции. Если же материал не будет пробит вообще, воздействия тока на окружающие точку питания предметы вовсе не будет.

Трансформатор напряжения что это – назначение и принцип действия

Давайте разберемся, для чего нужен трансформатор напряжения и какие функции он выполняет? Данное устройство необходимо службам, занимающимся учетом электроснабжения. Функция электросетей – выработка энергии, передача ее на большие расстояния и перераспределение электрической энергии между потребителями. Именно для этих целей существует данный прибор.

Трансформаторы промышленного типа широко используются на электроподстанциях. Более мелких размеров трансформаторы находят свое применение во многих цепях бытовых электроприборов. Такие устройства изменяют напряжение – увеличивают либо понижают его. Появления трансформатора стало возможным после того, как Майкл Фарадей открыл в 1831 году электромагнитную индукцию.

В статье информация о всех особенностях трансформаторов напряжения, описаны их технические характеристики. В качестве бонуса, в статье содержится видеоролик о трансформаторах, а также материл на данную тему.

трансформатор напряжения

Трансформатор напряжения.

Расшифровка аббревиатур устройств

Различаются и по способу изоляции, сухая, она же литая и масляной. У каждого свое, буквенное обозначение трансформатора. Есть на разные классы напряжения, такие как, нтми-10,  ном-10, зном-35, ном-35, нкф-110, нами-10. В предыдущем предложении, цифры означают номинальное напряжение. Начнём с самой важной буквы, которая находится в самом начале практически всех аббревиатур, это буква Н. Она как раз и означает трансформатор напряжения. Кстати говоря, его сокращённо называют просто ТН.

Следующие по списку и по важности буква это, Т и О, которые означаю количество фаз. Трехфазный и однофазный соответственно. У буквы Т есть ещё одно значение, она означает что, трансформатор трёх обмоточный. Следующие буквы, относятся к изоляции и способам охлаждения. Она может быть, литой (Л), С сухой, Естественное мысленно охлаждение, маркируется буквой М.

Следующие значения, можно отнести к дополнительным функциям. Для подключения измерительных приборов, наносится (И).  Если видим (К), следует понимать, что в трансформаторе напряжения есть дополнительная обмотка, которая уменьшает угловую погрешность или каскад. «З» – наличие заземляющего вывода. Активную часть, часто помещают в фарфоровую покрышку, поэтому присутствует символ «Ф». (У) — относится к установки в умеренно климате. Д, Е – делитель, имеет определённую ёмкость.

расшифровка аббревиатур

Расшифровка аббревиатур.

Виды и их особенности

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • тяговые;
  • лабораторные, в которых возможно регулировать напряжение;
  • для выпрямительных установок;
  • источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке. Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Влияет на классификацию, и форма магнитопровода. Он может быть:

  1. стержневой;
  2. броневой;
  3. тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • внутренние;
  • наружные;
  • для КРУ.
виды трансформаторов

Виды трансформаторов.

Критерии выбора оборудования

Трансформатор напряжения состоит из двух обмоток и сердечника. Обмотки также подразделяются на первичную и вторичную. Вот тут и начинаются различия, если сравнивать трансформатор напряжения с трансформатором тока. Первичная обмотка трансформатора напряжения содержит значительно больше витков, чем вторичная.

На первичную обмотку подается напряжение, которое нам нужно измерить а к вторичной обмотке подсоединяется вольтметр. Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • напряжения обмоток, которые указываются на щитке;
  • коэффициент трансформации;
  • угловой погрешности.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. частота тока;
  2. фазность;
  3. способ установки;
  4. место расположения;
  5. нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Параметры выбора трансформаторов тока приведены в таблице ниже.

Выбор трансформаторов тока

Таблица выбора трансформаторов тока.

Как работает

схема работы трансформатора После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения. Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличаются

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы

Измерительные-трансформаторы При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству.  Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Феррорезонанс и способы защиты от него

Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза.

Чем отличаются трансформаторы напряжения от трансформаторов тока

В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.

Существует множество способов защиты ТН от резонансных явлений в сети:

  • изготовление ТН с максимально уменьшенной рабочей индукцией;
  • включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
  • изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
  • применение специальных устройств, включаемых в цепь разомкнутого треугольника;
  • заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
  • применение специальных компенсационных обмоток и т.д.;
  • применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.

Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.

Заземляемые устройства

заземление трансформатора Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная.

Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск. Это связано с тем, что:

  • заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
  • изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.

Незаземляемые приборы

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью, на нашем предприятии разработана новая трехфазная группа. Трехфазная 3хНОЛ.08-6(10)М группа, состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ.08-6(10)М — отсутствие заземляемого вывода с ослабленной изоляцией.

Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Также изоляцию этого трансформатора возможно испытать приложенным одноминутным напряжением промышленной частоты в условиях эксплуатации, так как в этом случае нет необходимости в источнике повышенной частоты.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

незаземленные трансформаторы У незаземляемых трансформаторов нет высоковольтных выводов с ослабленной изоляцией, что так-же позволит избежать нарушений, которые зачастую случаются в эксплуатации, при определении сопротивления изоляции вывода «Х», так как есть разночтения в нормативной документации. На сегодняшний день большое количество пунктов коммерческого учета (ПКУ) имеют в своем составе заземляемые трансформаторы напряжения со встроенными предохранителями (ЗНОЛП). При однофазных замыканиях на землю, а они как указывалось выше, случаются достаточно часто в воздушных распределительных сетях, срабатывает встроенное защитное предохранительное устройство (ЗПУ). Встраиваемое ЗПУ, прежде всего, предназначено для защиты трансформатора напряжения от коротких замыканий во вторичных цепях.

Так как ток срабатывания предохранителя достаточно мал, то при различных перенапряжениях, вызванных, в том числе, и однофазными замыканиями на землю, — происходит отключение ТН. ЗПУ защищает обмотку ВН от сверхтоков, которые возможны при различных технологических нарушениях в электрических сетях. При срабатывании предохранителя учет электроэнергии будет отсутствовать. Для восстановления учета, необходимо заменить плавкую вставку ЗПУ.

Ремонт оборудования

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов. Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

Заключение

В данной статье были рассмотрены основные особенности трансформаторов  напряжения и трансформаторов тока. Больше информации можно найти в скачиваемой версии учебника по электромеханике “Различия трансформаторов напряжения и трансформаторов тока”. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.generatorvolt.ru

www.elec.ru

www.popayaem.ru

www.podvi.ru

www.leg.co.ua

www.energytik.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *