Трансформатор не может выполнять следующую функцию – Ответы на модуль 1 (основные определения, топологические параметры и методы расчета электрических цепей постоянного тока) по предмету электротехника, электроника и схемотехника

Содержание

Ответы 9 АНАЛИЗ РАСЧЕТ МАГНИТНЫХ ЦЕПЕЙ электротехника электроника схемотехника

Ответы на модуль 9 (АНАЛИЗ И РАСЧЕТ МАГНИТНЫХ ЦЕПЕЙ) по предмету электротехника, электроника и схемотехника.

1) Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования: электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения той же частоты.

2) МДС при разбиении магнитной цепи на однородные участки, для которых напряженность H=const, а контур интегрирования выбирается вдоль магнитных линий, определяется следующим соотношением: произведение числа витков катушки индуктивности на протекающий по ней ток.

3) У каких магнитных веществ относительная магнитная проницаемость µ немного больше 1: парамагнитных.

4) Выделите один из общепринятых в теории видов магнитных цепей: неразветвленные.

5) В каждый момент времени отношение первичной ЭДС ко вторичной ЭДС, индуцированных изменяющимся магнитным потоком Фпрямо пропорционально отношению количества витков первичной к количеству витков вторичной обмоток.

6) Закон полного тока в магнитных цепях определяет следующую количественную связь: линейный интеграл от вектора напряженности магнитного поля Н вдоль любого произвольного контура равен алгебраической сумме токов, охваченных этим контуром.

7) Какое значение относительной магнитной проницаемости µ имеют магнитные вещества, относящиеся к группе диамагнитов? немного меньше 1.

8) Каких групп веществ по магнитным свойствам не существует? метамагнитных.

9) Какие вещества способны к намагничиванию и создают малое магнитное сопротивление для магнитного потока? ферромагнитные.

10) Второй закон Кирхгофа для сложных магнитных цепей, имеющих разветвления и содержащих несколько ис­точников МДС, гласит: алгебраическая сумма падений магнитных на­пряжений в замкнутом контуре магнитной цепи равна алгебраиче­ской сумме МДС.

11) Для последовательной неразветвленной магнитной цепи значение МДС равно: 

произведению магнитного потока и суммы магнитных сопротивлений на всех участках магнитной цепи.

12) Ферромагнитные материалы не обладают следующим свойством: используются в качестве магнитных изоляторов.

13) Неферромагнитные материалы не обладают следующим свойством: используются в качестве магнитных проводов.

14) Первый закон Кирхгофа для сложных магнитных цепей, имеющих разветвления и содержащих несколько ис­точников МДС, гласит: алгебраическая сумма магнитных пото­ков в любом узле маг­нитной цепи равна нулю.

15) Какой из этапов расчета неразветвленной магнитной цепи не относится к этапу прямой задачи: определение величины намагничивающей силы обмотки по заданному значению магнитного потока Ф (или индукции В в заданном сече­нии): построение магнитной характеристики F=f(Ф) методом последовательных приближений.

16) По закону Ома для магнитной цепи, падение магнитного напряжения UМ:  прямо пропорционально значению магнитного потока и магнитному сопротивлению участка магнитной цепи.

17) Какое утверждение не относится к магнитной цепи? относится к классу линейных цепей.

18) Магнитная проводимость участка магнитной цепи: прямо пропорциональна величине магнитного потока.

19) Какое из свойств не относится к свойствам напряженности магнитного поля Hизмеряется в теслах (Т).

20) Какие элементы не входят в состав магнитной цепи? электродвижущая сила (ЭДС).

21) КПД трансформатора максимален при условии: постоянные потери трансформатора равны переменным потерям трансформатора, т.е. потери в стали сердечника равны потерям в проводниках обмоток.

22) Одна из основных векторных величин, характеризующих магнитное поле, — магнитная индукция 

В, равна: произведению напряженности магнитного поля Н и относительной магнитной проницаемости µ.

23) Трансформатор не может выполнять следующую функцию: изменения частоты входного напряжения.

24) КПД трансформатора определяется как: отношение выходной мощности к входной мощности.

25) Одна из основных векторных величин, характеризующих магнитное поле, – напряженность магнитного поля H, равна: отношению магнитной индукции B к произведению относительной магнитной проницаемости µ и постоянной µ0, характеризующей магнитные свойства вакуума.

26) Какое из свойств не относится к свойствам магнитного сопротивления участка магнитной цепи? обратно пропорционально величине магнитного потока.

 Loading …

Ответы на модуль 1 (основные определения, топологические параметры и методы расчета электрических цепей постоянного тока) по предмету электротехника, электроника и схемотехника

с. 1 с. 2 с. 3 с. 4

Ответы на модуль 9 (АНАЛИЗ И РАСЧЕТ МАГНИТНЫХ ЦЕПЕЙ) по предмету электротехника, электроника и схемотехника.

1) Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования: электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения той же частоты.

2) МДС при разбиении магнитной цепи на однородные участки, для которых напряженность H=const, а контур интегрирования выбирается вдоль магнитных линий, определяется следующим соотношением: произведение числа витков катушки индуктивности на протекающий по ней ток.

3) У каких магнитных веществ относительная магнитная проницаемость µ немного больше 1: 

парамагнитных.

4) Выделите один из общепринятых в теории видов магнитных цепей: неразветвленные.

5) В каждый момент времени отношение первичной ЭДС ко вторичной ЭДС, индуцированных изменяющимся магнитным потоком Фпрямо пропорционально отношению количества витков первичной к количеству витков вторичной обмоток.

6) Закон полного тока в магнитных цепях определяет следующую количественную связь: линейный интеграл от вектора напряженности магнитного поля Н вдоль любого произвольного контура равен алгебраической сумме токов, охваченных этим контуром.

7) Какое значение относительной магнитной проницаемости µ имеют магнитные вещества, относящиеся к группе диамагнитов? немного меньше 1.

8) Каких групп веществ по магнитным свойствам не существует? метамагнитных.

9) Какие вещества способны к намагничиванию и создают малое магнитное сопротивление для магнитного потока? 

ферромагнитные.

10) Второй закон Кирхгофа для сложных магнитных цепей, имеющих разветвления и содержащих несколько источников МДС, гласит: алгебраическая сумма падений магнитных напряжений в замкнутом контуре магнитной цепи равна алгебраической сумме МДС.

11) Для последовательной неразветвленной магнитной цепи значение МДС равно: произведению магнитного потока и суммы магнитных сопротивлений на всех участках магнитной цепи.

12) Ферромагнитные материалы не обладают следующим свойством: используются в качестве магнитных изоляторов.

13) Неферромагнитные материалы не обладают следующим свойством: используются в качестве магнитных проводов.

14) Первый закон Кирхгофа для сложных магнитных цепей, имеющих разветвления и содержащих несколько источников МДС, гласит: 

алгебраическая сумма магнитных потоков в любом узле магнитной цепи равна нулю.

15) Какой из этапов расчета неразветвленной магнитной цепи не относится к этапу прямой задачи: определение величины намагничивающей силы обмотки по заданному значению магнитного потока Ф (или индукции В в заданном сечении): построение магнитной характеристики F=f(Ф) методом последовательных приближений.

16) По закону Ома для магнитной цепи, падение магнитного напряжения UМ:  прямо пропорционально значению магнитного потока и магнитному сопротивлению участка магнитной цепи.

17) Какое утверждение не относится к магнитной цепи? относится к классу линейных цепей.

18) Магнитная проводимость участка магнитной цепи: прямо пропорциональна величине магнитного потока.

19) Какое из свойств не относится к свойствам напряженности магнитного поля Hизмеряется в теслах (Т).

20) Какие элементы не входят в состав магнитной цепи? электродвижущая сила (ЭДС).

21) КПД трансформатора максимален при условии: постоянные потери трансформатора равны переменным потерям трансформатора, т.е. потери в стали сердечника равны потерям в проводниках обмоток.

22) Одна из основных векторных величин, характеризующих магнитное поле, — магнитная индукция В, равна: произведению напряженности магнитного поля Н и относительной магнитной проницаемости µ.

23) Трансформатор не может выполнять следующую функцию: изменения частоты входного напряжения.

24) КПД трансформатора определяется как: отношение выходной мощности к входной мощности.

25) Одна из основных векторных величин, характеризующих магнитное поле, – напряженность магнитного поля H, равна: отношению магнитной индукции B к произведению относительной магнитной проницаемости µ и постоянной µ0, характеризующей магнитные свойства вакуума.

26) Какое из свойств не относится к свойствам магнитного сопротивления участка магнитной цепи? обратно пропорционально величине магнитного потока. прямо пропорционально площади поперечного сечения

 

Ответы на модуль 10 (ВВЕДЕНИЕ В ЭЛЕКТРОНИКУ) по предмету электротехника, электроника и схемотехника.

1) Полная индуктивность последовательно соединенных катушек индуктивности равна: сумме их индуктивностей.

2) С точки зрения допусков, каких резисторов не существует? постоянного назначения.

3) Единица измерения силы тока: ампер.

4) Сколько времени необходимо для создания в катушке индуктивности максимального магнитного поля? 

5 постоянных времени цепи.

5) Максимальная мощность передается через трансформатор только тогда, когда импеданс нагрузки: равен импедансу источника сигнала.

6) Что происходит с напряжением при последовательном соединении однотипных элементов и батарей? увеличивается.

7) Какой из нижеперечисленных материалов относится к полупроводникам? германий.

8) Сопротивление проводника не зависит от: электрического напряжения.

9) Что из нижеперечисленного не относится к основным источникам напряжения? холод

10) Постоянная времени RС-цепи: прямо пропорционально емкости конденсатора и величине сопротивления.

11) В чем отличие катушек индуктивности от конденсаторов в плане прохождения через реактивный элемент электрического тока? пропускают постоянный ток.

12) Чем характеризуется индуктивность катушки индуктивности? способностью препятствовать изменению силы протекающего через катушку тока.

13) Какое соединение конденсаторов эффективно увеличивает толщину диэлектрика? последовательное.

14) Наименьшая величина для измерения емкости конденсатора: пикофарад.

15) Что происходит с током при последовательном соединении однотипных элементов и батарей? уменьшается.

16) Для каких целей используется потенциометр? управления напряжением

17) Общее сопротивление параллельной резистивной цепи: меньше, чем сопротивление наименьшего резистора цепи.

18) С какого элемента снимается выходное напряжение в RL-фильтрах нижних частот? с резистора.

19) Постоянная времени RL-цепи: прямо пропорциональна индуктивности и обратно пропорциональна величине сопротивления.

20) С какого элемента снимается выходное напряжение в RC-фильтрах верхних частот? резистора.

21) Как увеличение размера допускаемого отклонения от номинального сопротивления (допусквлияет на стоимость производства резисторов? уменьшает.

22) Электрический заряд какого количества электронов составляет 1 Кл? 6,28 ∙ 1018

23) С какого элемента снимается выходное напряжение в RC-фильтрах нижних частот? конденсатора.

24) Из скольких элементов не может состоять электрическая батарея? 1.

25) С какого элемента снимается выходное напряжение в RL-фильтрах верхних частот? с катушки индуктивности.

26) Какие материалы не используются для получения пьезоэлектрического эффекта? серебро.

27) Что происходит с сопротивлением термистора при повышении температуры? увеличивается.

28) Какой из факторов наименьшим образом влияет на емкость конденсатора? температура.

 

Ответы на модуль 11 (ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ) по предмету электротехника, электроника и схемотехника.

1) В варикапах используется следующее свойство p-n-перехода: барьерная емкость.

2) Что не относится к технологическому процессу создания электронно-дырочного перехода? нагревание.

3) Выпрямительные диоды предназначены для: преобразования переменного тока в постоянный ток.

4) Обращенные диоды применяются для выпрямления очень: малых напряжений на сверхвысоких частотах.

5) В светоизлучающих диодах при фотонной рекомбинации электронов и дырок происходит: излучение света.

6) Для какого электронного оборудования полупроводники, как правило, не являются основными компонентами? потенциометр.

7) Коэффициент перекрытия варикапа по емкости равен: отношению максимальной емкости варикапа к его минимальной емкости.

8) Какая характеристика не относится к фотодиоду? диапазон испускаемого излучения.

9) К статическим параметрам силового диода не относится: время восстановления обратного напряжения.

10) Какой элемент не относится к чистым полупроводниковым элементам? вольфрам.

11) Полная емкость p-n-перехода при прямом смещении равна: сумме барьерной и диффузной емкостей.

12) Назовите один из двух типов примесей, используемых в процессе легирования: пятивалентная.

13) Какой из материалов наиболее часто используют для изготовления светодиодов? фосфит или арсенид галлия.

14) Полная емкость p-n-перехода при обратном смещении равна: барьерной емкости.

15) Что является признаком того, что диод находится в запертом состоянии? ток, протекающий через диод, равен нулю.

16) Какой электрод называется катодом? электрод диода, подключенный к области N.

17) К динамическим параметрам силового диода не относится:  падение напряжения на диоде при некотором значении прямого тока

18) Теоретическое значение емкости варикапа не зависит от: контактной разности потенциалов.

19) В стабилитронах используется следующее свойство p-n-перехода: лавинный пробой.

20) В туннельном диоде электроны проходят через p-n-переход очень: быстро из-за малой толщины обедненного слоя перехода.

21) Диоды с барьером Шотки используются для выпрямления: малых напряжений высокой частоты.

22) При работе фотодиода в режиме короткого замыкания наблюдается: прямая пропорциональность между током в диоде и световым потоком.

23) Какой из параметров не относится к основным параметрам стабилитрона? добротность.

24) Какой участок не относится к вольт-амперной характеристике туннельного диода? участок, на котором ток не изменяется.

25) Какой из нижеперечисленных материалов, в основном, применяется для изготовления выпрямительных диодов большой мощности? кремний.

26) Стабилитроны используются для: поддержания напряжения источника питания на заданном уровне.

 

Ответы на модуль 12 (ВТОРИЧНЫЕ ИСТОЧНИКИ ПИТАНИЯ) по предмету электротехника, электроника и схемотехника.

1) В качестве вентильного блока не может использоваться: реостат.

2) Последовательный или параллельный диодный ограничитель, построенный на базе цепи резистор-диод, при подаче на его вход синусоидального сигнала: пропускает положительную или отрицательную полуволну входного сигнала.

3) Что происходит с прямоугольным сигналом при прохождении через RC-фильтр верхних частот? . искажается плоская вершина и основание прямоугольного сигнала

4) Какой группы источников вторичного электропитания, использующих электроэнергию, получаемую от сети переменного напряжения через силовой трансформатор, не существует? фиксированные.

5) Какую форму приобретает на выходе синусоидальный сигнал при подаче его на RC-фильтр любого типа? форма не изменяется.

6) Выпрямитель – устройство, предназначенное для: преобразования переменного напряжения в постоянное напряжение.

7) При классификации выпрямителей не используют следующий признак: по скорости преобразования.

8) Если в схеме фиксации уровня диод включен так, что ограничивает положительное отклонение входного синусоидального сигнала, то: выходной сигнал будет расположен ниже нулевого уровня.

9) Треугольные сигналы состоят из:  колебаний основной частоты и всех нечетных гармоник, сдвинутых по фазе на 180° относительно колебаний основной частоты

10) Эффективное значение переменного тока — это: среднеквадратичное значение переменного тока.

11) Что происходит с прямоугольным сигналом при прохождении через RC-фильтр нижних частот? искажаются фронты и срезы сигнала.

12) Схема нерегулируемого источника вторичного электропитания с трансформаторным входом не включает в себя:  стабилизатор

13) Какой группы характеристик источников вторичного электропитания не существует? потенциальные характеристики.

14) Пилообразные сигналы состоят из: . колебаний всех четных и всех нечетных гармоник, четные гармоники сдвинуты по фазе на 180° относительно нечетных гармоник

15) Какая из функций не относится к функции трансформатора? обеспечивает однонаправленное протекание тока в нагрузке.

16) По схеме вентильного блока не бывает выпрямителей с: барьерным включением.

17) Прямоугольные колебания состоят из: . колебаний основной частоты и всех нечетных гармоник

18) Какой сигнал появляется на выходе интегрирующей RC-цепи при подаче на вход сигнала прямоугольной формы? треугольной (пилообразной) формы.

19) Какой из этапов разработки не относится к этапам обеспечения надежности источников вторичного электропитания? выбор элементной базы, исходя из критерия минимальной стоимости электронных компонентов.

20) Емкость конденсаторов в выпрямителях с умножением напряжения не зависит от: . полярности входного напряжения

21) Двухфазный двухполупериодный выпрямитель представляет собой: параллельное соединение двух однофазных выпрямителей, питаемых от двух половин вторичной обмотки трансформатора.

22) Эффективность источников вторичного электропитания (ИВЭП) определяется как: отношение мощности, рассеиваемой ИВЭП, к суммарной рассеиваемой мощности.

23) Однофазный выпрямитель с удвоением напряжения представляет собой: последовательное соединение двух однофазных однополупериодных выпрямителей.

24) Среднеквадратичное значение синусоидального сигнала составляет: 0,707 амплитудного значения переменного тока.

25) Источники вторичного электропитания предназначены для: преобразования энергии первичного источника в комплект выходных напряжений.

 

Ответы на модуль 13 (БИПОЛЯРНЫЕ И УНИПОЛЯРНЫЕ ТРАНЗИСТОРЫ) по предмету электротехника, электроника и схемотехника.

1) При положительных входных напряжениях затвор-исток полевые транзисторы с p-n-затвором не используют, т. к. в этом режиме: резко возрастает ток затвора, а эффективность управления снижается.

2) Транзисторный усилитель с общим коллектором (ОК) имеет: очень высокое входное и очень низкое выходное сопротивление.

3) В режиме насыщения ток стока полевого транзистора:  полностью не зависит от напряжения на стоке

4) Эмиттерный повторитель можно представить как: источник тока, управляемый напряжением.

(ВОЗМОЖНО) ИДЕАЛЬНЫЙ ГЕНЕРАТОР НАПРЯЖЕНИЯ

5) К основным схемам включения биполярного транзистора в цепь не относится следующая схема: с общим затвором.

6) Биполярный транзистор можно заменить разомкнутым ключом в следующем режиме: отсечки.

7) Что из нижеперечисленного не относится к предельным эксплуатационным параметрам транзисторов? постоянный (импульсный) ток затвора.

8) При активном режиме работы биполярного транзистора: выходной ток пропорционален входному току.

9) К преимуществам полевых транзисторов не относится: низкое входное сопротивление в схеме с общим истоком.

10) Для схемы с общим эмиттером (ОЭ) выходная характеристика – это: зависимость тока коллектора от напряжения между коллектором и эмиттером при определенном значении тока базы.

11) В линейном режиме работы полевого транзистора обеспечивается: изменение выходного сопротивления, управляемое напряжением на затворе.

12) Транзисторный усилитель с общей базой (ОБ) имеет: очень низкое входное и очень высокое выходное сопротивление.

13) Что из нижеперечисленного относится к необратимым пробоям транзисторов? тепловой пробой.

ВОЗМОЖНО ЛАВИННЫЙ(ЭЛЕКТРИЧЕСКИЙ ПРОБОЙ)

14) Передаточная (стоко-затворная) характеристика полевого транзистора — это: зависимость тока на выходе от напряжения на входе.

15) Транзисторный усилитель с общей базой (ОБ) можно представить как: источник тока, управляемый током.

16) Какой электронный прибор называется МЕП-транзистором? транзистор с затвором Шотки.

17) Особенность представления биполярного транзистора в виде четырехполюсника заключается в том, что:  параметры цепи зависят от способа включения транзистора

18) Полевой транзистор можно представить как: прибор, управляемый напряжением на его входе.

19) Биполярный транзистор имеет в своем составе: два взаимодействующих между собой встречно включенных p-n-перехода.

20) При каком режиме работы биполярного транзистора эмиттерный переход смещен в прямом, а коллекторный – в обратном направлении? активном.

21) В каком режиме работы биполярного транзистора эмиттерный и коллекторный переходы смещены в прямом направления? в режиме насыщения.

22) Для схемы с общим эмиттером (ОЭ) входная характеристика – это: зависимость тока базы от напряжения между базой и эмиттером при постоянном падении напряжения между коллектором и эмиттером.

23) Каким образом можно защитить биполярный транзистор от вторичного пробоя: шунтирование выводов коллектор-эмиттер с помощью быстродействующего тиристора.

24) Транзисторный усилитель с общим эмиттером (ОЭ) можно представить как: источник тока, управляемый напряжением.

25) Какой из режимов работы биполярного транзистора является аварийным? пробоя.

26) Схему замещения полевого транзистора для области насыщения можно представить в виде: источника тока стока, управляемого напряжением на затворе.

27) Коллекторный p-n-переход в активном режиме работы биполярного транзистора создает потенциальный барьер: . только для основных носителей

28) При каком режиме работы биполярного транзистора эмиттерный переход смещен в обратном, а коллекторный – в прямом направлении? в инверсном режиме.

29) Для схемы с общим коллектором (ОК) входным сигналом является: напряжение между базой и коллектором.

 


с. 1 с. 2 с. 3 с. 4

Трансформатор в электрических цепях

Содержание:
  1. Что такое трансформатор
  2. Из чего состоит трансформатор
  3. Виды трансформаторов
  4. Маркировка
  5. Применение

Стандартный трансформатор является статическим электромагнитным устройством с двумя и более обмотками, индуктивно связанными между собой посредством магнитопровода. Его основная функция заключается в преобразовании одного значения напряжения в другое, с сохранением одной и той же частоты. Трансформатор в электрических цепях применяется в самых различных областях. Он используется для передачи электроэнергии, а также в электронных и радиотехнических схемах.


Что такое трансформатор

По своей сути, трансформатор является преобразователем электрического тока. Для изменения напряжения используется электромагнитная индукция.

Основные принципы работы данных устройств заключаются в следующем:

  • Электрический ток изменяется во времени и создает магнитное поле, подверженное аналогичным изменениям.
  • Измененный магнитный поток, проходящий через обмотку трансформатора, вызывает появление в ней электромагнитной индукции. Некоторые устройства с высокими или сверхвысокими частотами могут не иметь магнитопровода. В идеальном варианте не должно быть потерь электроэнергии, расходуемой на потоки рассеивания и нагрев обмоток.

Трансформаторы могут работать в различных режимах:

  • Холостой ход. В данном случае вторичная цепь устройства разомкнута и ток по ней не проходит. Компенсация напряжения источника питания происходит за счет компенсации электродвижущей силы индукции в первичной обмотке.
  • Режим нагрузки. Вторичная цепь находится в замкнутом состоянии. В ней появляется ток, под действием которого в магнитопроводе возникает магнитный поток. Он действует в противоположном направлении относительно магнитного потока, возникающего в первичной обмотке. Равновесие ЭДС индукции с источником питания оказывается нарушенным. В результате, ток в первичной обмотке будет увеличиваться, пока значение магнитного потока не выйдет на прежний уровень. Это основной рабочий режим для любого трансформатора.
  • В режиме короткого замыкания вторичная цепь замыкается накоротко. Данное состояние позволяет определить, насколько теряется полезная мощность трансформатора при нагреве проводов. Подача небольшого переменного напряжения осуществляется на первичную обмотку. Его величина должна быть одинаковой с номинальным током устройства.

Из чего состоит трансформатор

Основой каждого трансформатора является замкнутый сердечник, выполняющий функцию магнитопровода. Для его изготовления применяется электротехническая сталь в виде листов, толщиной 0,35 – 0,5 мм. На магнитопровод наматываются изолированные медные провода.

Участки сердечника с обмотками носят название стержней, а те, которые без обмоток, называются ярмами. Обмотка, на которую поступает электроэнергия, именуется первичной. Другая обмотка, из которой выходит преобразованный ток, называется вторичной. Они обе разделены между собой путем электрической изоляции, кроме автоматических трансформаторов.

Величины каждой обмотки определенным образом соотносятся между собой. Например, отношение напряжения между концами первичной и вторичной обмотки такое же, как и соотношение количества витков в этих обмотках.

В процессе работы трансформатора электрическая энергия, поступающая из сети в первичную обмотку, преобразуется в магнитное поле. Далее, попадая во вторичную обмотку, энергия магнитного поля вновь превращается в электроэнергию с такой же частотой, но с другим значением. На практике таких показателей достичь невозможно, поскольку КПД устройства всегда меньше единицы, поскольку имеют место потери энергии при нагреве обмоток и стержней. Если трансформатору обеспечен нормальный режим работы, то в этом случае КПД может составить даже 0,98 – 0,99.


Виды трансформаторов

Современные трансформаторные устройства имеют множество разновидностей и применяются в самых различных областях.

Силовые трансформаторы

Передача электроэнергии на расстояние осуществляется с помощью силовых трансформаторов. Эти низкочастотные приборы выполняют ее прием и преобразование. Название силовых они получили из-за работы с напряжением, которое может достигать более 1000 киловольт.

В городах такие трансформаторы понижают напряжение до 0,4 кВ, превращая в 380 или 220 вольт, необходимых для нормального потребления. Эти устройства оборудуются двумя, тремя и более обмоток, что позволяет одновременно преобразовывать напряжение сразу с нескольких генераторов. Нормальный температурный баланс поддерживается с помощью трансформаторного масла, а в особо мощных приборах дополнительно установлена система активного охлаждения.

Сетевые трансформаторы

До недавнего времени практически во всех электрических приборах устанавливались сетевые однофазные трансформаторы. С помощью этих устройств, обычное напряжение сети в 220 вольт снижалось до необходимого уровня в 5, 12, 24 и 48 В.

В сетевых трансформаторах практиковалась установка сразу нескольких вторичных обмоток. Такая конструкция обеспечивала питание разных частей схемы сразу от нескольких источников питания. Например, трансформатор накаливания обязательно присутствовал в схемах с радиолампами.

В современных приборах этого типа используются Ш-образные, тороидальные или стержневые сердечники. Их основой являются пластины, выполненные из электротехнической, стали. При тороидальной форме магнитопровода трансформаторы получаются более компактными, обмотка проходит по всей поверхности, не оставляя пустых участков ярма.

Автотрансформаторы

Автотрансформаторы также относятся к низкочастотным устройствам, в которых первичная и вторичная обмотка дополняет друг друга. Между ними существует не только магнитная, но и электрическая связь. Единственная обмотка оборудована сразу несколькими выводами, что позволяет получать разные значения напряжения. Данные устройства отличаются более низкой стоимостью, поскольку провода для обмоток нужно меньше, как и стали для сердечника. В итоге общая масса прибора также снижается.

Лабораторные трансформаторы

Для выполнения специфических задач используются лабораторные трансформаторы. С его помощью выполняется плавная регулировка напряжения. Конструкция выполнена в виде тороидального трансформатора. В единственной обмотке имеется неизолированная дорожка, позволяющая подключаться к любому витку. Для контакта с дорожкой используется скользящая угольная щетка, для управления которой предусмотрена специальная поворотная ручка. Данные устройства чаще всего применяются в лабораторных условиях, чтобы выполнить наладку оборудования.

Трансформаторы тока

Многие измерительные работы проводятся с применением трансформаторов тока. Специфика работы этих устройств заключается в подключении первичной обмотки к источнику тока, а вторичной – к измерительным или защитным приборам с незначительным внутренним сопротивлением.

В состав первичной обмотки входит всего один виток в виде единственного провода. Для проведения измерений выполняется его последовательное включение в цепь переменного тока. В результате, возникает пропорция между токами первичной и вторичной обмотки, используемой только под нагрузкой. В противном случае, слишком высокое напряжения во вторичной обмотке может привести к пробою изоляции. Кроме того, ее размыкание приведет к выгоранию магнитопровода под действием наведенного некомпенсированного тока.

Конструкция прибора состоит из сердечника, материалом для которого служит кремнистая шихтованная холоднокатаная электротехническая сталь. На него наматываются изолированные обмотки в количестве одной или нескольких, выполняющие функции вторичных. В качестве первичной обмотки чаще всего используется обычная шина или провод с измеряемым током, пропущенный через отверстие в магнитопроводе. Основным параметром трансформатора тока является коэффициент трансформации.

Импульсные трансформаторы

Многие устройства, например, сварочные аппараты, сетевые блоки питания, инверторы и другие аналогичные устройства не могут обойтись без импульсных трансформаторов. Основным конструктивным элементом стандартного прибора служит ферритовый сердечник, представленный большим количеством разнообразных форм. Их главным преимуществом является способность работы на частоте 500 кГц и выше.

Поскольку данное устройство относится к высокочастотным трансформаторам, его габаритные размеры существенно снижаются с увеличением частоты. Обмотки требуют меньшего количества проводов, а высокочастотный ток в первичной цепи вырабатывается за счет применения полевых или биполярных транзисторов.


Маркировка трансформаторов

Очень многие пользователи не всегда обращают внимания на маркировку трансформаторов, а некоторые просто не умеют правильно ее расшифровывать. Основные конструкции маркируются как ТМ, ТМЗ, ТСЗ, ТСЗС, ТРДНС, ТМН, ТДН, ТДНС и так далее.

Буквенные обозначения соответствуют следующим характеристикам:

  • Т – трехфазное устройство.
  • Р – разделение обмотки низкого напряжения на две части.
  • С – сухой трансформатор.
  • М – наличие масляного охлаждения с естественной циркуляцией.
  • Ц – принудительная циркуляция воды и масла. Вода циркулирует по трубам, а масло течет между ними в виде ненаправленного потока.
  • МЦ – циркуляция воздуха – естественная, а масло циркулирует принудительно, ненаправленным потоком.
  • Д – движение масла принудительное, а воздуха – естественное.
  • ДЦ – принудительное движение воздуха и масла.
  • Н – регулировка напряжения осуществляется под нагрузкой.
  • С – если проставлена в конце маркировки, значит трансформатор используется для собственных нужд электростанции.
  • З – трансформатор без расширителя, герметичный, с азотной подушкой.

Трансформаторы с тремя обмотками маркируются как ТМТН, ТДТН, ТДЦТН, где на три обмотки указывает вторая буква Т. Наличие буквы А указывает на автотрансформатор, О – однофазное устройство, Г – грозоупорная конструкция.

Кроме того, в маркировке указывается класс напряжения, применяемый в работе, режим и условия функционирования, а также точная конструкция устройства. Номинальная мощность и класс напряжения проставляется после буквенной маркировки через дефис. Обозначение имеет вид дроби, где числитель является номинальной мощностью в киловольт-амперах, а знаменатель соответствует классу напряжения в киловольтах.


Применение трансформатора

Недостаточно только выработать электрическую энергию. Не меньшую сложность представляет ее передача на значительные расстояния и дальнейшее распределение среди потребителей. И здесь не обойтись без специальных аппаратов – трансформаторов, выполняющих повышение или понижение напряжения.

Каждый трансформатор в электрических цепях может применяться на открытом воздухе или внутри помещений. Эти устройства дали возможность передачи электроэнергии с минимальными потерями в проводах, за счет уменьшенной площади сечения.

Высокое напряжение, поступающее со станции, не может напрямую поставляться потребителям. Поэтому на входе производится установка понижающих трансформаторов. Они доводят ток до нужного значения, при котором нормально функционирует оборудование и бытовая техника.

Вопрос №2. Классификация трансформаторов (15 мин.)

Классифицируют трансформаторы по нескольким признакам:

По назначению:

  • Силовые общего назначения, применяемые в линиях передачи и распределения электроэнергии;

  • Силовые специального назначения: для питания сварочных аппаратов, электропечей и других потребителей особого назначения, автотрансформаторы;

  • Трансформаторы для устройств автоматики:

  1. Импульсные — для изменения амплитуды импульсов, размножения импульсов и т.д.;

  2. Пик-трансформаторы — для преобразования напряжения синусоидальной формы в импульсы напряжения пикообразной формы;

  3. Преобразователи частоты — для удвоения или утроения частоты переменного тока;

  • Измерительные трансформаторы (тока и напряжения) — для изоляции устройств РЗиА от цепи высокого напряжения, расширения пределов измерения измерительных приборов.

  • Разделительные — для повышения безопасности электросетей, которые могут оказаться под напряжением в случае повреждения изоляции

  • Испытательные — для питания испытательных схем, используемых при метрологической поверке измерительных трансформаторов тока, при настройке релейных защит, испытания устройств высоким напряжением и т.д.

По виду охлаждения — с воздушным (сухие транс­форматоры) и масляным (масляные трансформаторы) охлаж­дением;

По числу трансформируемых фаз — однофаз­ные и трехфазные;

По форме магнитопровода — стержневые, броне­вые, бронестержневые, тороидальные;

По числу обмоток на фазу — двухобмоточные, трехобмоточные, многообмоточные (более трех обмоток, например, одна первичная, и три вторичные обмотки).

По частоте: пониженной частоты (ниже 50 гц), нормальной, или промышленной частоты — 50 гц, повышенной частоты — от 100 до 10 000 гц, высокой частоты — свыше 10 000 гц.

Существует особый тип трансформаторов – автотрансформатор. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и электрическую связь.

Условные обозначения трансформаторов приведены на рис. 4.

Однофазный Трехфазный

трансформатор трансформатор

ВН

ВН

НН

CН

НН

Двухобмоточный трехобмоточный Автотрансформатор

Рис. 4

Вывод по второму вопросу: классифицируются трансформаторы по нескольким признакам: назначению, виду охлаждения, числу фаз, форме магнитопровода, обмоток на фазу, по частоте.

Вопрос №3. Устройство силового трехфазного трансформаторов (20 мин.)

Трансформатор — простой, надежный и экономич­ный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%.

Современный трансформатор состоит из различных конструк­тивных элементов: магнитопровода, обмоток, вводов, бака и др. Магнитопровод с насаженными на его стержни обмотками со­ставляет активную часть трансформатора. Остальные элементы трансформатора называют неактивными (вспомогательными) частями.

Таким образом, трансформатор представляет собой замкну­тый магнитопровод, на котором расположены две или несколько обмоток. Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по кото­рой замыкается основной магнитный поток трансформатора, а во-вторых, он является основой для установки и крепления обмоток, отводов, переключателей. В маломощных высокочастот­ных трансформаторах, используемых в радиотехниче­ских схемах, магнитопроводом может являться воз­душная среда.

Для уменьшения потерь на гистерезис магнитопро­вод изготовляют из магнитомягкого материала – электротехнической стали.

Почему для изготовления трансформатора используют магнитомягкий материал?

Магнитомягкий материал имеет узкую петлю намагничивания, а следовательно, сокращаются потери электроэнергии на перемагничивание или на так называемый гистерезис.

Какое еще явление возникает в металлическом сердечнике магнитопровода при работе трансформатора?

Вихревые токи. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь крем­ния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изо­лированных друг от друга теплостойким лаком или специальной бумагой.

На рис. 5. представлены магнитопроводы стержневого, броневого и бронестержневого типов.

Рис. 5. Виды магнитопроводов

В магнитопроводе стержневого типа обмотки охватывают стержни, а броневого – магнитопровод частично охватывает обмотки.

Для чего предназначены магнитопроводы броневого типа?

Последний хорошо защищает обмотки катушек от механических повреж­дений. Стержневой магнитопровод проще по конструкции и облегчает получение необходимой изоляции обмоток, поэтому у большинства трансформаторов применяют именно этот вид магнитопровода. Из-за технологической сложности изготовления броневой вид магнитопровода не получил широкого распространения (в основном в качестве радиотрансформаторов). Бронестержневая конструкция магнитопроводов позволяет уменьшить трансформаторов.

Обмотки трансформаторов изготовляют из мед­ного провода и располагают на одном и том же или на разных стержнях, рядом (концентрические) или одну под другой (чередующиеся). В первом случае непосредственно к стержню при­мыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения, потому что ее труднее изолировать от магнитопровода (рис. 6). Чередующиеся обмотки применяются весьма редко, лишь в некоторых трансформаторах специального назначения.

Рис. 6. Расположение обмоток на магниопроводе

Устройство простейшего однофазного трансформатора продемонстрировано в следующем учебном фильме.

При работе трансформатора за счет токов в об­мотках, а также вследствие перемагничивания магни­топровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВА), для которых достаточно воздушного охлаждения, на­зывают сухими.

В мощных трансформаторах применяют масляное охлаждение. Магнитопровод с обмотка­ми размещается в баке, заполненном минераль­ным (трансформаторным) маслом. Трансформаторное масло — это электроизоляционный материал, теплоотводящая и дугогасящая среда, а также среда, защищающая твердую изоляцию от проникновения в нее влаги и воздуха. Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. В трансформаторах мощностью до 20-30 кВА применяют баки с гладкими стенками. У более мощных трансформаторов стенки бака делают ребристыми или применяют трубчатые баки.

Для чего делают баки такой конструкции?

Для увеличения охлаждаемой поверхности. Масло, нагреваясь, поднимается вверх, а охлаждаясь опускается вниз. При этом масло циркулирует в трубах, что способствует более быстрому охлаждению. При изменении температуры объем масла меняется. При повышении температуры излишек масла погло­щается расширителем, а при понижении темпера­туры масло из расширителя возвращается в основной бак.

Основные конструктивные элементы трансформатора:

1 магнитопровод; 2 – обмотка НН в разрезе; 3 – обмотка ВН; 4 выводы обмотки ВН; 5 – выводы обмотки НН; 6 трубчатый бак для масляного охлаждения; 7 – кран для заполнения маслом; 8 – выхлопная труба для газов; 9 газовое реле; 10 расширитель для масла; 11 – кран для спуска масла; 12 – рукоятка для переключателя напряжений.

Рис. 7. Устройство трансформатора

В тех случаях, когда требуется плавно изменять вторичное напряжение, трансформатор оборудую устройством регулирования напряжения под нагрузкой, которое представляет собой скользящий кон­такт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в авто­трансформаторах, рассчитанных на регулирование на­пряжения в небольших пределах.

К паспортным данным трансформатора относятся следующие величины:

1) номинальная полная мощность Sном;

2) номинальное первичное напряжение U1ном;

3) номинальное вторичное напряжение U2ном;

4) напряжение короткого замыкания , выражаемое в процентах;

5) мощность потерь холостого хода Рх и короткого замыкания Рк;

6) ток первичной обмотки при холостом ходе трансформатора , выраженный в процентах номинального тока;

7) частота;

8) число фаз;

9) габариты и масса трансформатора.

Более подробно эти параметры мы рассмотрим на следующей лекции.

Условное обозначение трансформатора состоит из буквенной и цифровой частей. Буквы означают следующее:

Т — трехфазный трансформатор, О – однофазный, М – естественное масляное охлаждение, Д – масляное охлаждение с дутьем (искусственное воздушное и с естественной циркуляцией масла), Ц – масляное охлаждение с принудительной циркуляцией масла через водяной охладитель, ДЦ – масляное с дутьем и принудительной циркуляцией масла, Г – грозоупорный трансформатор, Н – в конце обозначения – трансформатор с регулированием напряжения под нагрузкой, Н – на втором месте – заполненный негорючим жидким диэлектриком, Т на третьем месте – трехобмоточный трансформатор.

Необходимо отметить, что в качестве жидкого диэлектрика в трансформаторах используется совтол. Продукты разложения совтола ядовиты, поэтому такие трансформаторы снабжены газопоглотителями.

Первое число, стоящее после буквенного обозначения трансформатора, показывает номинальную мощность (кВ•А), второе и третье числа – номинальные напряжения соответственно обмоток ВН и НН (кВ).

Буква А в обозначении типа трансформатора означает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней.

Например, расшифруем марку трансформатора типа: ТДЦН-500/220/10 – трехфазный (масляный однозначно, т.к. мощность 500 кВА), масляное охлаждение с дутьем и принудительной циркуляцией масла, наличие устройства регулирования напряжения под нагрузкой, Sном – 500 кВА, напряжение обмотки ВН – 220 кВ, НН – 10 кВ.

Пожаровзрывоопасность трансформаторов заключается в пожаровзрывоопасных свойствах трансформаторного масла. Допустимая температура нагрева масла 95 °С. Масло хорошо горит, а продукты его горения взрывоопасны.

Что может вызвать нагрев трансформаторного масла выше допустимых пределов?

Причиной пожара в трансформаторе может быть короткое замыкание на зажимах вторичной обмотки из-за различных неисправностей: механического повреждения изоляции или ее электрического пробоя при перенапряжениях, ошибочных дейст­виях обслуживающего персонала и др.

При внезапном коротком замыкании на зажимах вторичной обмотки в трансформаторе возникает переходный процесс, со­провождаемый возникновением большого мгновенного тока к.з или так называемого ударного тока. Его значение может в 20-40 раз превышать номинальное значение тока. Длительность его в зависимости от мощности трансформатора составляет от 1 до 7 периодов. Затем трансформатор переходит в режим установившегося к.з., при котором ток короткого замыкания хоть и меньше ударного тока, но все же во много раз превышает номинальное значение тока. Токи к.з. вызывают:

  • нагрев обмоток, что может повредить их изоляцию;

  • резкое увеличение электромагнитной силы в обмотках трансформатора, которая прямо пропорциональна квадрату тока;

  • сильный нагрев трансформаторного масла.

Внутренние перенапряжения. Возникают либо в процессе коммутационных операций, например отключения или включения трансформатора, либо в результате аварийных процессов (короткое замыкание, дуговые замыкания на землю и др.).

Внешние (атмосферные) перенапряжения. Обусловлены атмосферными разрядами: прямыми ударами молний в провода или опоры линий электропередач, грозовыми разрядами, индуцирующими в проводах линии электромагнитные волны высокого напряжения. Значение перенапряжения в этом случае может достигать нескольких тысяч киловольт.

Развитие пожаров в трансформаторах зависит в основном от причин их возникновения и поведения корпуса трансформатора. Как протекает этот процесс, вы более подробно рассмотрите в ходе изучения дисциплины «Пожарная безопасность электроустановок». Об устройствах автоматического тушения пожаров в трансформаторах, правилах тушения трансформаторов вы узнаете из курсов «Пожарная автоматика» и «Пожарная тактика».

Как горит и взрывается трансформатор можно увидеть в следующем видеоклипе («Горение трансформатора».).

Сердечник трансформатора выполняется из электротехнической стали для …

  1. уменьшения магнитной связи между обмотками трансформатора

  2. увеличения магнитной связи между обмотками трансформатора

  3. для увеличения потерь на гистерезис;

  4. для уменьшения токов Фуко или вихревых токов.

Сердечник трансформатора изготавливают из тонких листов электротехнической стали

  1. для снижения потерь на гистерезис;

  2. для уменьшения токов Фуко или вихревых токов;

  3. для уменьшения веса трансформатора;

  4. для уменьшения размеров трансформатора.

Для уменьшения потерь на гистерезис в сердечнике трансформатора его изготавливают из

  1. магнитотвердого материала;

  2. диамагнетика;

  3. парамагнетика;

  4. магнитомягкого материала.

Вывод по третьему вопросу: таким образом, основными элементами трансформатора являются магнитопровод и обмотки. В трансформаторе пожаровзрывоопасность представляет масло, которое используется в них в качестве изоляционного и охлаждающего материала.

принцип действия прибора, показатели, влияющие на работу

Импульсный трансформатор Современные электронные и электрические приборы имеют достаточно сложное устройство. Их эффективную и бесперебойную работу обеспечивает большое количество составляющих. Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

Основная функция

Импульсный трансформатор , принцип работыУстройства, работа которых зависит от электрического тока, часто оснащаются импульсными трансформаторами (ИТ). Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов. Импульсный трансформатор, установленный внутрь блока питания, преобразует напряжение таким образом, что импульс, получаемый на выходе, имеет минимум искажения. Степень преобразования выходного импульса зависит от технических характеристик ИТ.

Использование подобного трансформирующего устройства даёт возможность существенно уменьшить вес, размер и цену приборов, в которых он устанавливается.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Принцип работы импульсного  трансформатора

Требования к производству

Процесс создания импульсного трансформатора проходит с чётким соблюдением определённых требований. Требования, которым должен соответствовать ИТ, делятся на:Технико-экономические. К ним относится вес, габариты, стоимость. Также важно, чтобы для изготовления прибора применялись доступные исходные материалы и производственные технологии. Эта категория требований является весьма условной, так как включённые в неё параметры могут легко изменяться в зависимости от разных факторов. К примеру, в качестве исходных материалов могут выступать проводники, диэлектрики разного типа, которые в дальнейшем могут по-разному повлиять на вес, размер или стоимость готового трансформатора.

  • Эксплуатационные. Определяют степень надёжности исходного сырья, его термостойкость, устойчивость к климатическим факторам и механическим повреждениям. Важным эксплуатационным требованием является обязательная проверка трансформатора на возможность работать в аварийном режиме.

Основные показатели работы ИТ, такие как напряжение, мощность и форма импульса, контролируются функциональными требованиями. Именно от того, насколько точно они будут соблюдены, зависит, как долго и с какой эффективностью импульсный трансформатор будет выполнять свою функцию.

В ходе изготовления сердечника может быть использован разный материал. Наиболее часто в качестве исходного сырья выступает:

  • Электротехническая сталь.
  • Феррит.
  • Пермаллой.

Самым лучшим сырьём для производства трансформаторных сердечников считается альсифер. Он является достаточно редким материалом, поэтому альсиферовые сердечники встречаются довольно редко.

Механизм действия и виды устройств

Где применяется импульсный трансформаторРабота импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации. Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство. Одна из отличительных особенностей конструкции — типы обмотки. В зависимости от неё выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Внутри этих трансформаторов может быть использована разная обмотка. Катушки могут иметь форму:

  • Особенности работы импульсных трансформаторовСпирали. В качестве основного материала используется фольга. Спиральные катушки характеризуются минимальной индуктивностью рассеивания, чаще всего устанавливаются в автотрансформаторы.
  • Цилиндра. Такая катушка отличается простотой формы и низким показателем индуктивности.
  • Конуса. Такая форма получается из-за разной толщины контуров, возрастающей от начала к концу.

Виды и формы обмоток оказывают непосредственное влияние на технические и эксплуатационные параметры ИТ, такие как напряжение, габаритная мощность, размеры и вес.

На каждом трансформаторе присутствует специальная маркировка, содержащая сведения о его разновидности и типе установленной катушки.

Расчёт показателей

Импульсный трансформатор не только выпускается на производстве, но и создаётся самостоятельно. Чтобы изготовленное своими руками устройство выполняло свои функции без ошибок и сбоев, потребуется предварительно рассчитать:

  • площадь сердечника (в его поперечном сечении),
  • минимальное число витков обмотки,
  • диаметр сечения проводов для контуров,

Виды катушек и сердечников

Определив значение основных параметров, не составит труда узнать габаритную мощность ИТ. Верные расчёты помогут создать импульсный трансформатор, который при относительно небольшом весе будет обладать высоким коэффициентом полезного действия, расширенным диапазоном напряжения. При этом затраты на самостоятельное изготовление устройства будут очень небольшими.

2. Повышающие и понижающие трансформаторы | 9. Трансформаторы | Часть2

2. Повышающие и понижающие трансформаторы

Повышающие и понижающие трансформаторы

До сих пор мы с вами рассматривали трансформаторы, у которых первичная и вторичная обмотки имели одинаковую индуктивность, давая примерно одинаковые уровни напряжения и тока в обоих цепях. Однако, равенство напряжений и токов между первичной и вторичной обмотками трансформатора не является нормой для всех трансформаторов. Если индуктивности двух обмоток имеют разную величину, происходит нечто интересное:

 

transformer   
v1 1 0 ac 10 sin
rbogus1 1 2 1e-12       
rbogus2 5 0 9e12
l1 2 0 10000    
l2 3 5 100      
k l1 l2 0.999   
vi1 3 4 ac 0    
rload 4 5 1k    
.ac lin 1 60 60 
.print ac v(2,0) i(v1)  
.print ac v(3,5) i(vi1) 
.end    
freq          v(2)        i(v1)       
6.000E+01     1.000E+01   9.975E-05    Primary winding

freq          v(3,5)      i(vi1)      
6.000E+01     9.962E-01   9.962E-04    Secondary winding

Обратите внимание на то, что вторичное напряжение примерно в десять раз меньше первичного (0,9962 вольт против 10 вольт), а вторичный ток примерно в десять раз превышает первичный (0,9962 мА против 0,09975 мА). В этом SPICE моделировании описано устройство, которое в десять раз понижает напряжение и в десять раз повышает ток.

 

Трансформатор — это очень полезное устройство. С его помощью мы легко можем повысить или понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) путем повышения переменного напряжения и понижения переменного тока. На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования. Трансформатор, который на выходе (во вторичной обмотке) вырабатывает более высокое напряжение, чем приложено на входе (к первичной обмотке), называется повышающим трансформатором (его вторичная обмотка имеет больше витков, чем первичная). И наоборот, понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем подается на его вход, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

Посмотрите еще раз на фотографию, показанную в предыдущей статье:

 

На поперечном разрезе трансформатора хорошо видно первичную и вторичную обмотки.

 

Это понижающий трансформатор, о чем свидетельствует большое количество витков первичной обмотки и малое число витков вторичной обмотки. Он преобразует высокое напряжение и маленький ток в низкое напряжение и большой ток. Благодаря большому току вторичной обмотки, в ней используется провод большого сечения. Первичная обмотка, ток в которой имеет небольшую величину, может быть выполнена из провода меньшего сечения.

Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку — к нагрузке). В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока (этот вопрос рассматривался в предыдущей статье). Поэтому, при использовании трансформатора по «противоположному» назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).

Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение «Н» для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение «X» для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «h2», «h3», «X1» и «X2».

Если вы вспомните, что мощность равна произведению напряжения и тока, то поймете почему напряжение и ток всегда движутся в «противоположных направлениях» (если напряжение увеличивается, то ток уменьшается, и наоборот). Вы так же поймете, что трансформаторы не могут производить энергию, они могут только преобразовывать ее. Любое устройство, которое могло бы произвести больше энергии, чем потребило, нарушило бы Закон сохранения энергии (энергия не может быть создана или уничтожена, она может быть только преобразована).

Практическая значимость вышесказанного становится более очевидной, когда рассматривается альтернатива: до появления эффективных трансформаторов, преобразование уровней напряжения и тока могло быть достигнуто только за счет использования установок, содержащих моторы и генераторы:

 

Установка мотор/генератор иллюстрирует основной принцип трансформатора

 

В этой установке мотор механически соединен с генератором. Генератор предназначен для получения желаемых уровней напряжения и тока за счет скорости вращения мотора. В то время, как и мотор и генератор являются достаточно эффективными устройствами, использование их в связке не обладает достаточной эффективностью, так что общий КПД установки находится в диапазоне 90% или менее. Кроме того, движущиеся части данных установок подвержены трению и механическому износу, а это, в свою очередь, влияет как на срок службы, так и на производительность. Трансформаторы же, с другой стороны, способны преобразовывать переменное напряжение и ток с очень высокой эффективностью без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Справедливости ради стоит сказать, что установки мотор/генератор не обязательно являются устаревшими в сравнении с трансформаторами во всех сферах применения. Если трансформаторы явно превосходят моторы/генераторы в преобразовании переменного напряжения и тока, то они не могут преобразовать одну частоту переменного тока в другую, а также преобразовать (сами по себе) постоянное напряжение в переменное или наоборот. Установки мотор/генератор могут все это делать относительно просто, хотя и с некоторыми ограничениями эффективности, описанными выше. Эти установки также обладают уникальным свойством сохранения кинетической энергии: то есть, если по какой-либо причине источник питания мотора мгновенно отключается, его угловой момент (инерция вращательного движения) будет еще некоторое время поддерживать вращение генератора, изолируя тем самым нагрузку (питаемую генератором) от «сбоев» в основной энергосистеме.

При внимательном просмотре цифр в SPICE анализе вы должны увидеть соотношение между коэффициентом трансформации и двумя индуктивностями. Обратите внимание на то, что первичная обмотка (l1) имеет в 100 раз большую индуктивность, чем вторичная (10000 Гн против 100 Гн), и что напряжение было понижено с 10 В до 1 В (в 10 раз). Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток. Поскольку обе обмотки трансформатора намотаны вокруг одного и того же сердечника (для наиболее эффективной магнитной связи между ними), параметры, влияющие на их индуктивность равны, за исключением количества витков в каждой из обмоток. Если мы еще раз взглянем на формулу индуктивности, то увидим, что индуктивность катушки пропорциональна квадрату числа ее витков:

 

 

Таким образом, должно быть очевидно, что две обмотки трансформатора в вышеприведенном SPICE моделировании при соотношении их индуктивностей 100 : 1 должны иметь соотношение витков провода 10 : 1, так как 10 в квадрате равно 100. Поскольку соотношение витков соответствует соотношению между первичным и вторичным напряжениями и токами (10 : 1), мы можем сказать, что коэффициент трансформации напряжения и тока равен соотношению витков провода между первичной и вторичной обмотками.

 

 

Повышающее / понижающее действие соотношения витков обмоток в трансформаторе аналогично соотношениям шестеренок в механических редукторных системах, которые преобразуют значения скорости и крутящего момента во многом таким же образом:

 

 

Повышающие и понижающие трансформаторы, применяющиеся для распределения электроэнергии, могут иметь гигантские размеры (сопоставимые с размером дома). На следующей фотографии показан трансформатор подстанции высотой около четырех метров:

 

 

Обзор:

  • Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношениями витков первичных и вторичных обмоток.

  • Коэффициент трансформации напряжения равен квадратному корню из отношения индуктивности первичной обмотки к индуктивности вторичной обмотки.

Параллельная работа трансформаторов: 5 условий и схема

Параллельная работа трансформатора характеризуется особенной работой обмоток. К первичным контурам подводится питающая сеть. Подключение обмотки вторичного типа производится к общей сети. Исходящее электричество питает различных потребителей.

параллельная работа трансформаторов

Требования сети

Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.

При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.

При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ. На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры. Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.

Особенности

Параллельное соединение трансформаторов тока должно выполнять установленные правила и условия включения. Силовые агрегаты при включении должны характеризоваться определенным показателем полной мощности. Эта величина соответствует сумме мощностей соединенных приборов. При этом выполняется условие. Величины сопротивлений, коэффициент трансформации в процессе включения трансформаторов на параллельную работу, равны.

включение трансформаторов на параллельную работу

Если величины мощности неодинаковы, нагрузка делится в соответствии с номиналами. Это происходит при условии равенства коэффициента трансформации подключаемых объектов.

Существует правило. Разрешается допускать соединения параллельным включением установок с мощностью выше в 2 раза. В этом случае нужно следить за работой агрегатов. Трансформаторы не функционируют постоянно.

Условия

Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:

  1. Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
  2. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
  3. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
  4. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
  5. Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.

условия параллельной работы трансформаторов

Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.

Невыполнение условий

Если не соблюдается хотя бы одно из условий, следует ожидать сбоев в работе оборудования. Нужно знать, в каком случае эксплуатация коммутированной установки будет небезопасной.

При использовании разных типов соединения появляется сдвиг фаз. При этом по контурам будет бежать ток, превышающий установленные производителем параметры. Максимальное увеличение значения появляется при возникновении короткого замыкания. Сдвиг фазы при этом составляет 180º для трансформаторов с группами обмоток 12 и 6.

Схема параллельной работы трансформатора

Следующая небезопасная ситуация возможна при неравенстве коэффициентов трансформации. Во вторичной обмотке появится результирующее напряжение. Электричество будет протекать по цепи на холостом ходу.

При несовпадении показателей короткого замыкания будут неравны внутренние сопротивления. На холостом ходу электричество не появится, но нагрузка распределится в обратной зависимости от их сопротивления. Маломощный агрегат в такой ситуации будет перегружен.

Выполнение фазировки

Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.

Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.

Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.

Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.

Отправить ответ

avatar
  Подписаться  
Уведомление о