Трансформаторы напряжения. | ЭЛЕКТРОлаборатория
Доброе время суток, дорогие друзья!
Сегодня продолжим разговор о измерительных трансформаторах. Поговорим о трансформаторах напряжения.
В ходе работы мне чаще всего приходится сталкиваться с трансформаторами напряжения следующих типов: НТМИ, который сейчас вытесняется НАМИ и ЗНОЛ.
Назначение трансформаторов напряжения (ТН).
При напряжении свыше 1000 В, непосредственное включение приборов недопустимо как по условию изоляции, так и безопасности обслуживающего персонала. В связи с этим при высоких напряжениях измерительные приборы включаются через промежуточные измерительные трансформаторы, называемые трансформаторами напряжения (ТН).
ТН предназначены как для измерения напряжения, мощности, энергии, так и для питания автоматики, синхронизации и релейной защиты ЛЭП от замыканий на землю.
Обозначения некоторых ТН, наиболее используемых в электроустановках.
НОМ – ТН. Однофазный, масляный;
ЗНОМ – заземляемый ввод ВН, напряжения, однофазный, масляный;
НТМИ – напряжения, трехфазный, масляный, с обмоткой для контроля изоляции сети;
Рисунок 1. Внешний вид ТН НТМИ-6(10)кВ.
Рисунок 2. Схема соединения обмоток ТН НТМИ-6(10)кВ.
НАМИ – напряжения, антирезонансный, масляный, с обмоткой для контроля изоляции сети;
Рисунок 3. Внешний вид ТН НАМИ-6(10)кВ.
Рисунок 4. Схема соединения обмоток ТН НАМИ-6(10)кВ.
НКФ – напряжения, каскадный, в фарфоровой покрышке;
СР – серия трансформаторов напряжения: измерительный, однофазный, емкостной напряжением 110-500 кВ.
НОЛ.11-6.05; НОЛ.0.8; НОЛ.12; НОЛ – незаземляемые трансформаторы напряжения 3-6-10 кВ;
ЗНОЛ.06; ЗНОЛЭ-35; ЗНОЛ – заземляемые ТН;
ЗхЗНОЛ; ЗхЗНОЛП – трехфазные антирезонансные группы ТН;
Рисунок 5. Внешний вид ТН 3хЗНОЛ-6(10)кВ
Рисунок 6. Схема соединения обмоток ТН 3хЗНОЛ-6(10)кВ.
Хочу отметить, что в высоковольтных узлах учета, устанавливаемых на ВЛ-10кВ вместо резисторов R1; R2; R3 (2,4кОм) устанавливается один резистор R (0,8кОм). Часто возникающий дефект – прогорание изоляции в точке соединения вывода Х ТН и резистора R1(R2 илиR3), что приводит перегоранию предохранителя в фазе, в которой стоит поврежденный резистор
ЗНОЛП; НОЛП – заземляемые и незаземляемые ТН со встроенными защитными предохранительными устройствами. В трансформаторах этих серий высоковольтные выводы первичной обмотки выполнены со встроенными защитными предохранительными устройствами (ЗПУ), которые, также как и магнитопровод с обмотками залиты изоляционным компаундом, образуя монолитный блок. ЗПУ выполнено в виде разборной конструкции с плавкой вставкой, представляющей собой металлодиэлектрический резистор, подобранный для каждого типа трансформаторов. Это устройство срабатывает при токах менее 1 А, время отключения от 5 до 10 секунд. После срабатывания ЗПУ подлежит перезарядке, которая производится персоналом предприятия, эксплуатирующего трансформатор.
Рисунок 7. Расположение ТН в высоковольтной ячейке.
Какое напряжение принято во вторичной обмотки ТН
Для основной вторичной обмотки ТН с номинальным напряжением, соответствующим линейному напряжению сети, установлено напряжение 100 В. Соответственно для ТН с фазным номинальным напряжением основной вторичной обмотки 100 /В при включении их по схеме звезда-звезда вторичное линейное напряжение, соответствующее номинальному, будет тоже 100 В.
Номинальное напряжение дополнительных вторичных обмоток устанавливается таким образом, чтобы максимальное значение напряжения 3Uо (на разомкнутом треугольнике) при однофазном замыкании на землю в сети, когда линейное напряжение соответствует номинальному напряжению ТН, было 100 В. Поэтому для дополнительных обмоток ТН, предназначенных для сети с заземленной нейтралью, установлено Uном = 100 В, а в сети с изолированной нейтралью Uном=100/3 В.
Трансформаторы напряжения производятся со следующим исполнением внутренней изоляции:
· Сухая (трансформаторы напряжения до 10кВ включительно типа НОСК-6, ЗНОЛТ-3, ЗНОЛТ-6, ЗНОЛТ-10 и др.).
· Бумажно-масляная (трансформаторы напряжением до 35кВ включительно типа НОМ-10, НОМ-35) с изоляцией выводов обмотки на полное номинальное напряжение.
· Литая эпоксидная (чешские однофазные трансформаторы напряжения и трансформаторы типа НОЛ).
Испытания ТН.
Объём испытаний трансформаторов напряжения:
1) измерение сопротивления изоляции обмоток первичной и вторичной (вторичных) (К, М)
2) испытание повышенным напряжением трансформаторов напряжения с литой изоляцией (К, М).
3) испытание трансформаторного масла (К, М). Сразу отмечу, что в ТН до 35кВ трансформаторное масло допускается не испытывать
Примечание: К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания
для трансформаторов напряжения 3-35кВ – при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.
Измеренные значения сопротивления изоляции при вводе в эксплуатацию и в эксплуатации должны быть не менее значений, приведённых в таблице 5.
Испытания повышенным напряжением следует проводить согласно таблицы 6 или требований заводов изготовителей.
На этом у меня на сегодня все. Если есть вопросы, задавайте, будем вместе искать ответы.
Успехов!
Трансформаторы напряжения 220 220, 10 кв, 110 и 6 кв. Трансформатор напряжения 110 кв назначение
Устройство и принцип действия / Справка / Energoboard
4. Устройство и принцип действия трансформаторов напряжения.
Трансформаторы напряжения типа НКФ – 110.
Масляный трансформатор напряжения типа НКФ-110 кВ в фарфоровом кожухе выпускается для наружной установки. Он состоит из двух каскадов, выполненных на одном общем магнитопроводе. Обмотка высшего напряжения (ВН) разделена на две одинаковые последовательно соединенные секции, представляющие собой первый и второй каскад. Магнитопровод соединен с серединой обмотки ВН и находится под напряжением, равным половине рабочего напряжения. Благодаря этому изоляция обмотки ВН каждого каскада может быть выполнена на половину рабочего напряжения, что существенно уменьшает размеры и массу ТН по сравнению с ТН обычного (не каскадного) исполнения.
Активная часть трансформатора напряжения размещена внутри фарфоровой покрышки, соединенной болтами внизу с плитой стальной подставки сварной конструкции, а вверху – с маслорасширителем.
Соединения фарфора покрышки со сталью плиты и расширителя выполнены через уплотняющие прокладки из маслоупорной резины. Покрышка и половина расширителя заполнены трансформаторным маслом.
При установке ТН крепится к опорной конструкции болтами, пропускаемыми через монтажные отверстия в раме подставки.
Расширитель предназначен для компенсации температурных изменений объема масла трансформатора напряжения. В ТН НКФ-110 кВ расширителем является верхняя часть фарфоровой покрышки. Расширитель трансформатора напряжения имеет указатель уровня масла.
Воздухоосушитель – это влагопоглощающий фильтр, предотвращающий свободный доступ воздуха в трансформаторе напряжения. Верхняя часть стеклянного цилиндра воздухоосушителя заполнена силикагелем – индикатором, который при насыщении влагой меняет свою окраску.
Через масловыпускной патрубок цоколя производится слив и отбор проб масла.
Трансформаторы напряжения типа ЗНОМ-35, НОМ-35.
Конструкция трансформаторов напряжения типа ЗНОМ-35, НОМ-35 аналогична НКФ-110. Выводные концы НН трансформаторов типа ЗНОМ-35, НОМ-35 выведены на доски зажимов, расположенные в коробках, на боковых стенках бака и закрыты козырьком.
ТН типов ЗНОМ-35-66, НОМ-35-66 имеют маслорасширители, установленные на вводах ВН. Эти трансформаторы герметичны, т. е. «дыхания» не имеют. У трансформаторов напряжения остальных типов маслорасширитель отсутствует, уровень масла у них находится ниже крышки на 20 – 30 мм.
Трансформаторы напряжения типа НТМИ-6.
Масляный трансформатор напряжения для внутренней установки выпускается для использования в сети с изолированной нейтралью. Имеет две вторичные обмотки. Одна соединена в звезду с выведенным нулем, а вторая (дополнительная) – в разомкнутый треугольник (для осуществления контроля изоляции).
Трансформатор НТМИ-6 состоит из трех однофазных трансформаторов (активная часть), помещенных в один общий бак, залитый маслом. Магнитопроводы трансформаторов – однофазные, броневого типа. Обмотки слоевые, намотанные на цилиндр из электрокартона одна поверх другой. Обмотки первичного (ВН) напряжения имеют электростатический экран для защиты от перенапряжений. На крышке трансформатора смонтированы вводы первичного и вторичного напряжения, размещена пробка для доливки трансформаторного масла. На баке трансформатора имеется пробка для взятия пробы и спуска масла, болты для заземления.
Трансформаторы типа НТМИ-6 являются понижающим и рассчитан таким образом, чтобы при номинальном первичном напряжении, напряжение основной вторичной обмотки составляло 100 В с погрешностью, соответствующей классу точности. При замыкании одной из фаз первичного напряжения на землю на дополнительной вторичной обмотке возникает напряжение 100 В ± 10 %, при котором срабатывает защита и сигнализация.
Трансформаторы напряжения типа НАМИ-10.
ТН типа НАМИ изготавливаются на номинальное напряжение первичных обмоток 6 и 10 кВ и основных вторичных обмоток 100 В.
Трансформатор обеспечивает измерение трех линейных, трехфазных напряжений и напряжений нулевой последовательности. Трансформатор НАМИ благодаря антирезонансным свойствам имеет повышенную надежность и устойчив к перемежающимся дуговым замыканиям на землю.
Трансформатор состоит из двух трехобмоточных трансформаторов, первичные обмотки одного включаются на линейное напряжение, а с другого – на фазное напряжение, размещаемых в одном блоке.
Схема соединения ТН приведена на рис. 7, она эквивалентна схеме трехфазного трансформатора / / Δ.
Напряжение на выводах аД, хД разомкнутого треугольника дополнительных вторичных обмоток не превышает 3 В при активно – индуктивной нагрузке 30 ВА и симметричном номинальном первичном фазном напряжении. Этот небаланс создается всегда имеющейся незначительной несимметрией вторичных фазных напряжений.
Напряжение на выводах аД, хД разомкнутого треугольника дополнительных вторичных обмоток – от 90 до 110 В при изменении активно – индуктивной нагрузки от 0 до 30 ВА при номинальном первичном напряжении и при металлическом замыкании одной из фаз сети на землю.
Трансформатор выдерживает однофазное металлическое замыкание на землю без ограничения длительности, а дуговые замыкания – в течении 6 часов.
Напряжение, обеспечивающее срабатывание реле, подключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны
Что такое трансформатор напряжения / Описание
Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение. Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.
Трансформаторы тока ЗНОЛ-СЭЩ
Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.
Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:
- ТН — трансформатор напряжения
- Т — трансформатор трехобмотачный
- Д и Е — делитель имеющий определенную емкость
- Т и О — буквы обозначающие количество фаз
- З — наличие в трансформаторе напряжения заземляющего вывода
- Л — литая изоляция трансформатора
- С — сухая изоляция трансформатора
- У1 — климатическое исполнение и категория размещения
- М — естественное охлаждение трансформатора
- И — трансформатор содержит дополнительные подключенные к нему приборы
- К — дополнительная обмотка
Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.
Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.
Виды трансформаторов напряжения:
- Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
- Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
- Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
- Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
- Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
- Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
- Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
- Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
- Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.
5.2. Обслуживание трансформаторов напряжения. Эксплуатация электрических подстанций и распределительных устройств
5.2. Обслуживание трансформаторов напряжения
Трансформатор напряжения (ТН) — это измерительный трансформатор, в котором при нормальных условиях применения вторичное напряжение практически пропорционально первичному напряжению и при правильном включении сдвинуто относительно него по фазе на угол, близкий к нулю (СТ МЭК 50(321)—86).
ТН является трансформатором, питающимся от источника напряжения, и служит для преобразования высокого напряжения в низкое стандартных значений: 100; 100/?3; 100/3 с целью питания измерительных приборов и различных реле управления, защиты и автоматики.
ТН (так же как и ТТ) отделяют (изолируют) измерительные приборы и реле от высокого напряжения, обеспечивая их работоспособность и безопасность обслуживания.
Применение ТН позволяет изолировать логические схемы защиты и цепи измерения от цепи высокого напряжения.
По принципу устройства и схеме включения ТН практически не отличаются от силовых трансформаторов. Отличие состоит в малых мощностях, не превышающих десятков или сотен ВА. При малой мощности режим работы ТН близок к режиму ХХ трансформаторов. Размыкание их вторичных обмоток не приводит к опасным последствиям.
На напряжение до 35 кВ ТН включаются через предохранители, чтобы при повреждении ТН был отключен — во избежание развития аварии в сети. На напряжении 110 кВ и выше из-за крайне редких повреждений ТН предохранители можно не устанавливать.
Коммутация (включение и отключение) ТН производятся разъединителями.
Для защиты ТН от токов КЗ в его вторичных цепях устанавливают съемные трубчатые предохранители или автоматические выключатели максимального тока: трехполюсные (типа АП50-3М) и двухполюсные (типа АП50-2М) с электромагнитным расцепителем на номинальные токи от 2,5 до 50 А. Предохранители устанавливают в том случае, если ТН не питает быстродействующие защиты, поскольку эти защиты могут ложно действовать при недостаточно быстром перегорании плавкой вставки. Установка же автоматических выключателей обеспечивает эффективное срабатывание специальных блокировок, выводящих из действия отдельные виды защит при обрыве цепей напряжения.
Для безопасного обслуживания вторичных цепей при пробое изоляции и попадании высокого напряжения на вторичную обмотку один из ее зажимов или нулевая точка присоединяется к заземлению. При соединении вторичных обмоток в звезду заземляется не нулевая точка, а начало обмотки фазы В, что вызвано стремлением сократить на 1/3 число переключающих контактов во вторичных цепях, поскольку заземленная фаза может подаваться на реле помимо рубильников и вспомогательных контактов разъединителей.
При использовании ТН для питания оперативных цепей переменного тока допускается заземление нулевой точки вторичных обмоток через пробивной предохранитель, что необходимо для повышения уровня изоляции оперативных цепей.
При производстве работ непосредственно на ТН и его ошиновке действующими правилами безопасности предписывается создание видимого разрыва как со стороны ВН, так и со стороны вторичных цепей, чтобы избежать появления напряжения на первичной обмотке за счет обратной трансформации напряжения от вторичных цепей, питающихся от другого ТН. С этой целью во вторичных цепях ТН устанавливаются рубильники или применяются предохранители. Отключение автоматических выключателей, а также разрыв вторичных цепей вспомогательными контактами разъединителей не создают видимого разрыва цепи и поэтому считаются недостаточными.
На ПС применяются как однофазные, так и трехфазные двух-и трехобмоточные ТН. В основном это ТН с бумажно-масляной изоляцией, магнитопроводы и обмотки которых погружены в масло. Масляное заполнение бака или фарфорового корпуса предохраняет от увлажнения и изолирует обмотки от заземленных конструкций. Кроме того, такое заполнение является охлаждающей средой.
В ЗРУ до 35 кВ используются ТН с литой эпоксидной изоляцией, которые имеют ряд преимуществ по сравнению с маслонаполненными при установке в КРУ.
На ПС 110–500 кВ применяются каскадные ТН серии НКФ. В каскадном ТН обмотка ВН делится на части, размещаемые на разных стержнях одного или нескольких магнитопроводов, что облегчает ее изоляцию.
У ТН (типа НКФ-110) обмотка ВН разделена на две части (ступени), каждая из которых размещается на противоположных стержнях двухстержневого магнитопровода. Магнитопровод соединен с серединой обмотки ВН и находится по отношению к земле под потенциалом Uф /2, благодаря чему обмотка ВН изолируется от магнитопровода только на Uф /2, что существенно уменьшает размеры и массу трансформатора.
С другой стороны, ступенчатое исполнение усложняет конструкцию трансформатора, так как появляется необходимость в дополнительных обмотках.
Каскадные ТН на 220 кВ и выше имеют два и более магнитопровода. Число магнитопроводов обычно в 2 раза меньше числа ступеней каскада. Для передачи мощности с обмоток одного магнитопровода на обмотки другого служат связующие обмотки.
Наряду с обычными электромагнитными ТН для питания измерительных приборов и релейной защиты применяют емкостные делители напряжения, которые получили распространение на ЛЭП напряжением 500 кВ и выше.
На рис. 5.1 показана принципиальная схема включения емкостного делителя напряжения типа НДЕ-500.
На схеме видно, что напряжение между конденсаторами распределяется обратно пропорционально емкостям:
U1/U2 = С2 /C1, (5.1)
где С1 и С2 — емкости конденсаторов;
U1 и U2 — напряжения на них.
Подбором емкостей обеспечивается получение на нижнем конденсаторе С2 требуемой доли общего напряжения Uф. Если к конденсатору С2 подключить понижающий трансформатор Т (рассчитан на напряжение до 15 кВ), то он будет выполнять те же функции, что и обычный ТН.
Емкостной делитель напряжения на рис. 5.1 состоит из трех конденсаторов связи типа СМР-166/?3–0,014 и одного конденсатора отбора мощности типа 0МР-15-0,017.
Первичная обмотка трансформатора Т имеет восемь ответвлений для регулирования напряжения. Заградитель L препятствует ответвлению токов высокой частоты в трансформатор Т во время работы высокочастотной связи, аппаратура которой подключена к конденсаторам через фильтр ФП. Реактор LR улучшает электрические свойства схемы при росте нагрузки. Балластный фильтр в виде резистора R служит для гашения феррорезонансных колебаний во вторичной цепи при внезапном отключении нагрузки.
Контроль исправности вторичных цепей основной обмотки ТН обычно производится при помощи трех реле минимального напряжения. При отключении автоматического выключателя или сгорании предохранителя эти реле подают сигнал о разрыве цепи.
Более совершенным является контроль с помощью комплектного реле, подключенного по схеме рис. 5.2 к шинам вторичного напряжения.
В этой схеме реле KV1 включено на три фазы фильтра напряжения обратной последовательности ZV, которое срабатывает при нарушении симметрии линейных напряжений, что имеет место, например, при обрыве одной или двух фаз. При размыкании его контактов срабатывает реле KV2, подающее сигнал о разрыве цепи напряжения. Это реле срабатывает также и при трехфазном симметричном КЗ, когда реле KV1 не работает. Таким образом обеспечивается подача сигнала при всех нарушениях цепей напряжения со стороны как НН, так и ВН. Для того чтобы исключить подачу ложного сигнала, устройство действует с выдержкой времени, превышающей время отключения КЗ в сети ВН.
Блокировка защит при повреждениях в цепях напряжения подает сигнал о возникшей неисправности и блокирует те защиты, которые могут при этом сработать, лишившись напряжения. Напряжение исчезает или искажается по фазе при перегорании предохранителей, срабатывании автоматических выключателей или обрыве фаз.
На линиях дальних электропередач 500 кВ и выше ТН устанавливаются на вводе линии. Питание цепей напряжения реле и приборов каждой линии производится от подключенного к ней ТН.
Обслуживание ТН и их вторичных цепей оперативным персоналом заключается в контроле за работой самих ТН и за исправностью цепей вторичного напряжения. В процессе надзора (осмотра) обращают внимание на общее состояние ТН, а именно:
наличие в них масла;
отсутствие течей и состояние резиновых прокладок;
отсутствие разрядов и треска внутри ТН;
отсутствие следов перекрытий на поверхности изоляторов и фарфоровых покрышек;
степень загрязненности изоляторов;
отсутствие трещин и сколов изоляции;
состояние армировочных швов.
ТН напряжением 6-35 кВ с малым объемом масла не имеют маслоуказателей и расширителей. Масло в них не доливают до крышки на 20–30 см. Оставшееся пространство выполняет роль расширителя. При обнаружении следов вытекания масла из таких расширителей необходимы срочный вывод ТН из работы, проверка уровня масла и устранение течи.
При осмотрах проверяется отсутствие щелей в уплотнениях дверей шкафов вторичных соединений, через которые могут проникнуть снег, пыль и влага; осматриваются рубильники, предохранители и автоматические выключатели, а также ряды зажимов.
В соответствии с действующими ПУЭ, номинальный ток плавкой вставки предохранителей должен быть в 3 раза меньше тока КЗ в наиболее отдаленной от ТН точке вторичных цепей.
На щитах управления и релейных защит необходимо контролировать наличие напряжения на ТН по вольтметрам и сигнальным устройствам.
При оперативных переключениях необходимо соблюдать последовательность операций не только с аппаратами высокого напряжения, но и с вторичными цепями напряжения устройств защиты и автоматики.
При исчезновении вторичного напряжения из-за перегорания предохранителей НН они подлежат замене, а отключившиеся автоматические выключатели следует включить, причем первыми должны восстанавливаться цепи основной обмотки, а потом — дополнительной.
К замене перегоревших предохранителей ВН приступают после выполнения операций с устройствами тех защит, которые могут сработать на отключение электрической цепи. Не рекомендуется установка новых предохранителей ВН без выявления и устранения причин их перегорания.
Данный текст является ознакомительным фрагментом.Читать книгу целиком
Поделитесь на страничкеСледующая глава >
23894-12: ЗНОГ-110 Трансформаторы напряжения — Производители и поставщики
Назначение
Трансформаторы напряжения ЗНОГ-110 предназначены для передачи сигнала измерительной информации измерительным приборам и/или устройствам защиты и управления в установках переменного тока промышленной частоты, применяются в сетях 110 кВ с заземленной нейтралью.
Описание
Трансформаторы напряжения типа ЗНОГ-110 представляют собой масштабные преобразователи индуктивного типа. Принцип действия основан на явлении взаимной индукции в обмотках, намотанных на один сердечник.
Трансформаторы ЗНОГ-ПО имеют первичную и три вторичные обмотки: две основные (для измерений и для коммерческого учета) и дополнительную. Обмотки размещены в баке, заполненном элегазом, плотность которого контролируется специальным монитором плотности. Для обеспечения безопасности предусмотрен предохранительный клапан с разрывной мембраной. Высокое напряжение подается на установленный на высоковольтном полимерном вводе фланец. Внутренняя изоляция ввода — элегазовая. Вторичные основные обмотки обеспечивают коэффициенты трансформации, равные 1100, дополнительная обмотка — 1100/V3. Вывод Х первичной обмотки и выводы вторичных обмоток a1 — x1, a2 — x2 и ад -хд подключены к клеммам контактной коробки, расположенной на боковой поверхности бака у его основания. Крышка коробки пломбируется для предотвращения несанкционированного доступа. Выводы X, х1, х2 и хд заземляются.
Технические характеристики
110/V3
2/1
100/V3
100
50
— номинальное первичное напряжение, кВ
— количество вторичных обмоток — основных/дополнительных:
— номинальные вторичные напряжения, В
— основных обмоток (для измерений и для коммерческого учета)
— дополнительной обмотки
— номинальная частота, Гц
— номинальная мощность основной вторичной обмотки 2 (для коммерческого учета) при нагрузке с коэффициентом мощности cos ф = 0.8 (при отсутствия нагрузки на других обмотках) в классе точности 0,2, В-А 30
— номинальная мощность основной вторичной обмотки 1 (для измерений) при нагрузке с коэффициентом мощности cos ф = 0.8 (при условии отсутствия нагрузки на других обмотках) , В-А:
— в классе точности 0,2/ 0,5
100 / 400 600/1200
1200
2500
2000
0,45±0,01
0,40±0,01
126/V 3 120 000 6 450
— в классе точности 1/ 3
— номинальная мощность дополнительной вторичной обмотки при нагрузке с коэффициентом мощности cos ф = 0,8 в классе точности 3,0 (при условии отсутствия нагрузки на других обмотках), В-А
— суммарная предельная мощность вторичных (основных и дополнительной) обмоток трансформатора, В-А
— предельная мощность вторичной дополнительной обмотки, В-А
— давление заполнения (абсолютное) трансформатора элегазом при температуре +20°С, МПа
— предельно-допустимое давление (абсолютное) элегаза при температуре +20 °С в течение 24-х часов, МПа
— наибольшее рабочее напряжение, при давлении избыточном элегаза равном нулю в течение 2-х часов, кВ
— средняя наработка на отказ, не менее, ч
— масса элегаза, кг
— масса трансформатора не более, кг Климатическое исполнение У1 по ГОСТ 15150-69.
Знак утверждения типа
Знак утверждения типа наносится на табличку трансформатора методом сеткографии, а на эксплуатационную документацию — типографским способом.
Комплектность
Трансформатор напряжения ЗН0Г-110 — 1 шт.
Руководство по эксплуатации — 1 экз.
Паспорт — 1 экз.
Поверка
Осуществляется по ГОСТ 8.216-88 » ГСИ. Трансформаторы напряжения. Методика поверки». Основные средства поверки:
-Трансформаторы напряжения эталонные NVOS (номинальное первичное напряжение 110/V3; 220/V3, класс точности 0,01).
— Прибор сравнения КНТ-03, погрешность напряжения ± (0,001+0,03хА) %, угловая погрешность ±(0,1+0,03хА) мин, где А-значения измеряемой погрешности.
Сведения о методах измерений
Сведения приведены в руководстве по эксплуатации «Трансформаторы напряжения типа ЗНОГ-110».
Нормативные документы, устанавливающие требования к трансформатору напряжения ЗНОГ-110:
ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».
ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки».
Рекомендации к применению
— осуществление торговли и товарообменных операций;
— выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.