3. Режим короткого замыкания однофазного трансформатора
Необходимо различать два режима короткого замыкания:
Аварийный режим – тогда, когда замкнута вторичная обмотка при номинальном первичном напряжении. При таком замыкании токи возрастают в 1520 раз. Обмотка при этом деформируется, а изоляция обугливается. Железо так же подгорает. Это тяжелый режим. Максимальная и газовая защита отключает трансформатор от сети при аварийном коротком замыкании.
Опытный режим короткого замыкания – это режим, когда вторичная обмотка накоротко замкнута, а к первичной обмотке подводится такое пониженное напряжение, когда по обмоткам протекает номинальный ток – это UК – напряжение короткого замыкания.
UK выражается в %
UK
UK% = 5,5 для трансформаторов малой мощности;
UK% = 10,5 для трансформаторов средней и большой мощности.
При номинальном напряжении ток холостого хода I0 = (2 5)% IН .
При коротком замыкании напряжение в 1520 раз меньше номинального, поэтому ток холостого хода ничтожно мал и им можно пренебречь
,
т.е. намагничивающая сила первичной обмотки полностью уравновешенна намагничивающей силой вторичной обмотки.
Векторная диаграмма трансформатора при коротком замыкании
Основные уравнения:
Схема замещения трансформатора при коротком замыкании
, подставив в уравнение (1),
Тогда (6)
где: — полное сопротивление короткого замыкания;
— активное сопротивление короткого замыкания;
— индуктивное сопротивление короткого замыкания.
из уравнения (6) ток , откуда схема замыкания
т.е. схема замещения при коротком замыкании представляет собою цепь, состоящую из двух последовательных сопротивлений.
Потери при коротком замыкании
При коротком замыкании трансформатор потребляет из сети активную мощность. Эта мощность в основном идет на покрытие потерь в обмотках.
Так как потери в стали pмг = B2 ; B U
При коротком замыкании напряжение уменьшено в 1520 раз, то потери в стали будут ничтожно малы и ими можно пренебречь.
Экспериментальное определение параметров короткого замыкания
Для определения параметров короткого замыкания измеряют
PK, IK, UK, тогда
Треугольник короткого замыкания
Используя схему замещения трансформатора при коротком замыкании, получим треугольник короткого замыкания. Из треугольника следует:
Обычно треугольник короткого замыкания строится для номинального тока и стороны его выражены в процентах от номинального напряжения.
UK – представляет собой полное падение напряжения в обеих обмотках трансформатора.
4. Работа однофазного трансформатора под нагрузкой
Приведение параметров вторичной обмотки трансформатора к первичной. Так как в общем случае W1 W2, E1 E2, и т.д. соответственно разным W и E соответствуют разные параметры. Это затрудняет производить количественный анализ процессов происходящих в трансформаторе и построение векторных диаграмм. Обычно приводят параметры вторичной обмотки к числу витков W
E2 E2; ;
E2 = E2k
I2 I2; E2I2 = E2I2; I2==
I2 = I2/k
r2 r2; ;
x2 L2 W22;
x’2 = x2k2; z’2 = z2k2
Далее в схемах замещения и векторных диаграммах будем использовать приведенные параметры.
Физические процессы в трансформаторе при нагрузке
При разомкнутом ключе k – xx.
При замыкании ключа k под действием ЭДС E2 протекает ток I2
Вторичный ток I2 по закону Ленца создает поток встречный потоку Ф0. Суммарный поток уменьшается, уменьшается E1 и из сети будет протекать такой дополнительный ток, который скомпенсирует поток вторичной обмотки и поток будет равен потоку при x.x .Вторичная обмотка создает н.с. F2 = I2W
Намагничивающая сила трансформатора при нагрузке
; ;.
Для сохранения неизменности потока необходимо чтобы при нагрузке сумма ампер-витков первичной и вторичной обмоток трансформатора по величине и по фазе была равна ампер- виткам трансформатора при холостом ходе.
; ;.
Основной поток Ф0 создается малой намагничивающей силой I0W1, но при малом магнитном сопротивлении, достигает большой величины. Поток рассеяния ФS создается большой намагничивающей силой – I1W1, но т.к. он проходит в основном по маслу, то величина его мала. Далее построим векторную диаграмму трансформатора при нагрузке.
Векторная диаграмма трансформатора при нагрузкеЗ
Ф0
На основе этих уравнений строится векторная диаграмма.
Пример расчета тока в месте КЗ с учетом подпитки от электродвигателей напряжением до 1000 В
В данном примере я буду рассматривать приближенный расчет тока в месте КЗ с учетом подпитки от электродвигателей напряжением до 1000 В. Почему я рассматриваю приближенный метод расчета, связано это с тем, что при проектировании очень часто неизвестен состав нагрузки и исходя из этого приходиться рассматривать как обобщенную нагрузку трансформатора, состоящую из электродвигателей и других электроприемников.
Пример
Требуется определить ток в месте КЗ с учетом подпитки от электродвигателей для схемы представленной на рис.1.
Исходные данные:
- КТП с трансформатором масляным типа ТМГ-1000 мощность 1000 кВА, напряжением 6,3/0,4 кВ, напряжение короткого замыкания Uк = 5,5%, группа соединений обмоток Y/Yн-0.
- ток короткого замыкания на зажимах ВН трансформатора 6,3/0,4 кВ составляет 20 кА.
Решение
Для начала определим максимальный ток металлического трехфазного тока КЗ на шинах 0,4 кВ в точке К2.
1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:
1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:
2. Для упрощения расчетов определяем сопротивления трансформатора для группы соединения обмоток Y/Yн-0 по таблице 2.4 [Л1. с. 28], где: rт = 2,0 мОм, хт = 8,5 мОм.
3. Определяем максимальный ток металлического трехфазного к.з. на шинах 0,4 кВ по формуле 2-1 [Л1. с. 14]:
4. Определяем ток подпитки от двигателей по приближенному методу, используя формулу 2-14 [Л1. с. 34]:
где:
- Е*=0,8 и х*=0,35 – данные значения являются константой и не изменяются;
- Sн.т = 1000 кВА – номинальная мощность трансформатора;
- Uн = 400 В – номинальное линейное напряжение трансформатора стороны НН.
5. Определяем суммарный ток в месте подпитки КЗ с учетом подпитки от двигателей по формуле 2-15 [Л1. с. 34]:
6. Определяем ударный ток КЗ по формуле 2-13 [Л1. с. 33]:
- I(3)к — максимальный ток металлического трехфазного к.з.
- kу – ударный коэффициент определяется в зависимости от отношения результирующих соотношений цепи КЗ x∑/ r∑ = (хс + хт)/rc = (0,734+8,5)/2=4,6, с учетом этого kу = 1,5.
7. Определяем ударный ток КЗ от двигателей по формуле 2-16 [Л1. с. 34]:
8. Определяем суммарный ударный ток КЗ с учетом подпитки от двигателей по формуле 2-17 [Л1. с. 34]:
Для упрощения расчетов, в таблице 1 приведены значения тока подпитки и ударный ток КЗ от двигателей, исходя из обобщенной нагрузки трансформатора.
Таблица 1 — Значения тока подпитки и ударного тока КЗ от двигателей, исходя из обобщенной нагрузки трансформатора.
Мощность тра-ра, кВА | Ном.напряжение, В | Ном. ток тра-ра, кА | E* | х* | Ток подпитки от двигателей, кА | Ударный ток КЗ от двигателей, кА |
---|---|---|---|---|---|---|
100 | 400 | 0,145 | 0,8 | 0,35 | 0,332 | 0,481 |
160 | 0,231 | 0,529 | 0,74 | |||
250 | 0,361 | 0,827 | 1,16 | |||
400 | 0,578 | 1,32 | 1,86 | |||
630 | 0,910 | 2,08 | 2,93 | |||
1000 | 1,445 | 3,31 | 4,65 | |||
1600 | 2,312 | 5,29 | 7,44 | |||
2500 | 3,613 | 8,27 | 11,63 |
Литература:
1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Поделиться в социальных сетях
Режим короткого замыкания трансформатора
Как известно, в режиме нагрузки вторичная обмотка трансформатора включается на сопротивление приемников. Во вторичной цепи устанавливается ток, пропорциональный нагрузке трансформатора. При питании большого числа приемников нередки случаи, когда нарушается изоляция соединительных проводов. Если в местах повреждения изоляции произойдет соприкосновение проводов, питающих приемники, то возникнет режим, называемый коротким замыканием (к. з.) участка цепи. Если соединительные провода, идущие от обмотки, замкнутся где-то в точках а и б, расположенных до приемника энергии (рисунок 1), то возникнет короткое замыкание вторичной обмотки трансформатора. В этом режиме вторичная обмотка окажется замкнутой накоротко. При этом она будет продолжать получать энергию из первичной обмотки и отдавать ее во вторичную цепь, которая состоит теперь только из обмотки и части соединительных проводов. 1 — первичная обмотка; 2 — вторичная обмотка; 3 — магнитопровод Рисунок 1 — Короткое замыкание на выводах вторичной обмотки трансформатора На первый взгляд кажется, что при коротком замыкании трансформатор должен неизбежно разрушиться, так как сопротивление r2 обмотки и соединительных проводов в десятки раз меньше сопротивления r приемника. Если допустить, что сопротивление r нагрузки хотя бы в 100 раз больше r2, то и ток короткого замыкания I2к должен быть в 100 раз больше тока I2 при нормальной работе трансформатора. Так как первичный ток также возрастает в 100 раз (I1ω1 = I2ω2), потери в обмотках трансформатора резко увеличатся, а именно в 1002 раз (I2r), т. е. в 10000 раз. При этих условиях температура обмоток за 1—2 с достигнет 500—600° С и они быстро сгорят. Кроме того, при работе трансформатора между обмотками всегда существуют механические усилия, стремящиеся раздвинуть обмотку в радиальном и осевом направлениях. Эти усилия пропорциональны произведению токов I1 I2 в обмотках, и если при коротком замыкании каждый из токов I1 и I2 увеличится, например, в 100 раз, то и усилия увеличатся в 10000 раз. Их величина при этом достигнет сотен тонн и обмотки трансформатора должны были бы мгновенно разрушиться. Однако на практике этого не происходит. Трансформаторы выдерживают, как правило, короткие замыкания в те весьма малые промежутки времени, пока защита не отключит их от сети. При коротком замыкании резко проявляется действие какого-то дополнительного сопротивления, ограничивающего ток короткого замыкания в обмотках. Это сопротивление связано с магнитными потоками рассеяния ФР1 и ФР2, которые ответвляются от основного потока Ф0 и замыкаются каждый вокруг части витков «своей» обмотки 1 или 2 (рисунок 2). 1 — первичная обмотка; 2 — вторичная обмотка; 3 — общая ось обмоток и стержня трансформатора; 4 — магнитопровод; 5 — главный канал рассеяния Рисунок 2 — Потоки рассеяния и концентрическое расположение обмоток трансформатора Непосредственно измерять величину рассеяния очень трудно: слишком разнообразны пути, по которым могут замыкаться эти потоки. Поэтому на практике рассеяние оценивают по влиянию, которое оно оказывает на напряжение и токи в обмотках. Очевидно, что потоки рассеяния возрастают с увеличением тока, протекающего в обмотках. Очевидно также, что при нормальной работе трансформатора поток рассеяния составляет сравнительно небольшую долю основного потока Ф0. Действительно, поток рассеяния сцеплен только с частью витков, основной поток — со всеми витками. Кроме того, поток рассеяния большую часть пути вынужден проходить по воздуху, магнитная проницаемость которого принята за единицу, т. е. она в сотни раз меньше магнитной проницаемости стали, по которой замыкается поток Ф0. Все это справедливо как для нормальной работы, так и для режима короткого замыкания трансформатора. Однако поскольку потоки рассеяния определяются токами в обмотках, а в режиме короткого замыкания токи увеличиваются в сотни раз, то во столько же увеличиваются и потоки Фр; при этом они значительно превосходят поток Ф0. Потоки рассеяния индуктируют в обмотках эдс самоиндукции Еp1 и Ер2, направленные против тока. Противодействие, например, эдс Ер2 можно считать некоторым дополнительным сопротивлением в цепи вторичной обмотки при ее коротком замыкании. Это сопротивление называют реактивным. Для вторичной обмотки справедливо уравнение Е2 = U2 + I2r2 + (-Ep2). В режиме короткого замыкания U2=0 и уравнение преобразуется следующим образом: E2 = I2Kr2K + (-Ep2K), или E2 = I2Kr2K + I2Kх2K, где индекс «к» относится к сопротивлениям и токам в режиме короткого замыкания; I2Kх2K — индуктивное падение напряжения в режиме короткого замыкания, равное но величине Ep2K; х2K — реактивное сопротивление вторичной обмотки. Опыт показывает, что в зависимости от мощности трансформатора сопротивление х2 в 5—10 раз больше r2. Поэтому в действительности ток I2K не в 100, а лишь в 10—20 раз будет больше тока I2 при нормальной работе трансформатора (активным сопротивлением из-за его малой величины пренебрегаем). Следовательно, в действительности потери в обмотках увеличатся не в 10000, а только в 100—400 раз; температура обмоток за время короткого замыкания (несколько секунд) едва достигнет 150—200° С и в трансформаторе за это малое время не возникнет никаких серьезных повреждений. Итак, благодаря рассеянию трансформатор способен сам защищаться от токов короткого замыкания. Все рассмотренные явления происходят при коротком замыкании на зажимах (вводах) вторичной обмотки (см. точки а и б на рисунке 1). Это — аварийный режим работы для большинства силовых трансформаторов и возникает он, конечно, не каждый день или даже не каждый год. За время работы (15—20 лет) трансформатор может иметь всего несколько столь тяжелых коротких замыканий. Тем не менее, он должен быть так спроектирован и изготовлен, чтобы они не разрушили его и не привели к аварии. Надо четко представлять себе явления, происходящие в трансформаторе при коротком замыкании, сознательно собирать наиболее ответственные узлы его конструкции. В этом отношении весьма существенную роль играет одна из важнейших характеристик трансформатора — напряжение короткого замыкания.Что такое напряжение короткого замыкания и как рассчитать ток?
Напряжение короткого замыкания представляет собой напряжение, которое нужно подать на одну из обмоток трансформатора, для того чтобы в цепи возник электрический ток. При этом остальные обмотки необходимо закоротить. Данное значение приведено в паспорте на сам агрегат в процентном соотношении. Опираясь на его величину, можно определить, способен ли трансформатор работать параллельно.
Содержание:
- Понятие напряжения КЗ.
- Расчёт тока короткого замыкания.
Понятие напряжения КЗ
Для того чтобы определить потоки рассеивания в трансформаторе, необходимо учитывать разнообразные пути, по которым замыкаются силовые магнитные линии. Это очень сложно. В связи с этим на практике проводят оценку влияния данных потоков, которое они оказывают на ток и напряжение в самих обмотках трансформатора.
Напряжение короткого замыкания – это, таким образом, одна из основополагающих характеристик данных агрегатов.
Напряжение КЗ трансформатора должно быть минимальным. Это позволит избежать сильного ограничения тока короткого замыкания.
Стоит помнить и о том, что испытание трансформаторов напряжения позволит проверить соответствие их параметров нормативным значениям, установленным ПУЭ. А также проверить состояние изоляционного покрытия проводов.
Расчёт тока короткого замыкания;
Данный ток представляет собой соединение фазных точек электрических установок между собой либо же с землёй. При этом токи в их ветвях резко увеличиваются, превышая номинальное значение.
Для того чтобы уменьшить последствия от аварийных ситуаций, стоит правильно выбирать оборудование. Но для этого ещё необходимо и произвести расчёты тока. Как рассчитать ток короткого замыкания?
Во время такого эффекта, как короткое замыкание, в электрической цепи начинают возникать переходные процессы, которые напрямую связаны с наличием в ней индуктивности, не дающей току резко изменять своё значение. Следовательно, ток КЗ подразделяется на такие составляющие, как:
- периодическая. Она возникает изначально и остаётся неизменной до тех пор, пока электрическая установка не осуществит отключение от защиты;
- апериодическая. Возникает она также в самом начале, но сразу же снижается до нулевой отметки по истечению переходных процессов.
Расчёт тока короткого замыкания основан на двух этапах:
- составление схемы заземления, исходя из известных параметров. Элементы схемы электроснабжения заменяются эквивалентными сопротивлениями;
- определение величины результирующего сопротивления до точек короткого замыкания.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания разъединителей, короткозамыкателей и отделителей, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать испытания разъединителей, короткозамыкателей и отделителей или задать вопрос, звоните по телефону: +7 (495) 181-50-34.