Типы биполярных транзисторов: Биполярные транзисторы.Виды и характеристики.Работа и устройство

Содержание

Биполярные транзисторы.Виды и характеристики.Работа и устройство

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления: кремний или арсенид галлия.
  • Величине частоты: до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности: 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора: 3 слоя полупроводника с последовательной очередностью типа проводимости.
Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы Iб. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к.

Характеристики
  • Коэффициент усиления тока β = Iк / Iб.
  • Коэффициент усиления напряжения Uэк / Uбэ.
  • Сопротивление на входе.
  • Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.
Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление RL, которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

Сигнал входа проходит через С1, далее снимается в цепи выхода коллектора, где базовый электрод общий. В итоге образуется усиление напряжения по подобию с общим эмиттером.

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки RL, к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С1, которая не дает пройти току на вход, сопротивление R1, благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik Rk+Vke.

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Отсечка

Этот режим образуется при снижении напряжения VБЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью Vke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении IВ ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью Ik и наиболее крутым графиком.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Похожие темы:

Транзисторы (полевые, биполярные) — обозначение, типы, применение

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Транзистор был изобретен в 50-х годах прошлого века, его появление произвело настоящий фурор — достаточно сказать, что его изобретатели получили Нобелевскую премию.

Здесь будут рассмотрены основные типы транзисторов, принцип их работы в объеме, соответствующем основам схемотехники, поскольку начинающим тонкости работы транзистора на электронно — молекулярном уровне, на мой взгляд, ни к чему.

Технология изготовления транзисторов определяет основные их типы:

  • биполярные,
  • полевые.

Кроме того, каждый из перечисленных типов можно классифицировать по типу проводимости, определяемой материалами, комбинациями (сочетаниями) полупроводников, используемых при их производстве.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Принцип действия, условные обозначения биполярного транзистора.

  1. Биполярный транзистор состоит из трех слоев полупроводника, называемых «база» (Б), «коллектор» (К), «эмиттер» (Э). Ток, протекающий через переход база — эмиттер (Iб) вызывает изменения сопротивления зоны эмиттер — коллектор, соответственно изменяется ток коллектора Iк, причем его значения больше нежели базового. Это основной принцип работы биполярного транзистора, его практические приложения рассмотрим позже.
  2. Поскольку материал транзистора полупроводник, то ток может протекать только в одном направлении, определяемом типом перехода. Соответственно этим определяется полярность подключения (тип проводимости) транзистора (прямая — p-n-p, обратная — n-p-n. Вот, собственно, вся теория, которая Вам первоначально необходима.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор имеет несколько иную конструкцию. Замечу — это достаточно простой вариант, но для понимания принципа действия полевого транзистора вполне подходит.

Принцип действия, условные обозначения полевого транзистора.

  1. Выводы здесь называются «затвор» (З), «сток» (С), «исток» (И). Сток — исток соединены между собой зоной полупроводника, называемой каналом. Сопротивление этого канала зависит от величины напряжения, приложенного к затвору, значит ток, протекающий от истока к стоку (Iс) зависит от напряжения между затвором и истоком.
  2. В зависимости от проводимости кристалла различают полевые приборы с p каналом и n каналом.

ПРИМЕНЕНИЕ ТРАНЗИСТОРОВ

Область применения транзисторов определяется не только их типом, но также характеристиками конкретного прибора, однако можно выделить два основных режима работы:

  • динамический — при нем любое входного сигнала вызывает соответствующее изменение выходного. Иначе этот режим называют усилительным.
  • ключевой — при этом режиме транзистор или полностью открыт или полностью закрыт. В идеале, переходные процессы между этими состояниями должны отсутствовать. Ключевой режим позволяет применять транзистор для управления значительными нагрузками при сравнительно слабых управляющих сигналах.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


принцип работы и как проверить

Существуют различные виды полупроводниковых приборов – тиристоры, триоды, они классифицируются по назначению и типу конструкции. Полупроводниковые биполярные транзисторы способны переносить одновременно заряды двух типов, в то время, как полевые только одного.

Конструкция и принцип работы

Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.

Фото — мпринципиальные схемы включения

Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.

Фото — конструкция

Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).

Фото — виды биполярных триодов

По виду подключения и уровню пропускаемого питания, они делятся на:

  1. Высокочастотные;
  2. Низкочастотные.

По мощности на:

  1. Маломощные;
  2. Средней мощности;
  3. Силовые (для управления необходим транзисторный драйвер).

Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.

Фото — пример

Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.

Существуют следующие ключевые виды работы:

  1. Активный режим;
  2. Отсечка;
  3. Двойной или насыщения;
  4. Инверсионный.

Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.

Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.

Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.

Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.

Видео: как работает биполярные транзисторы

Проверка

Самый простой способ измерить h31e мощных биполярных транзисторов – это прозвонить их мультиметром. Для открытия полупроводникового триода p-n-p подается отрицательное напряжение на базу. Для этого мультиметр переводится в режим омметра на -2000 Ом. Норма для колебания сопротивления от 500 до 1200 Ом.

Чтобы проверить другие участки, нужно на базу подать плюсовое сопротивление. При этой проверке индикатор должен показать большее сопротивление, в противном случае, триод неисправен.

Иногда выходные сигналы перебиваются резисторами, которые устанавливают для снижения сопротивления, но сейчас такая технология шунтирования редко используется. Для проверки характеристики сопротивления импульсных транзисторов n-p-n нужно подключать к базе плюс, а к выводам эммитера и коллектора — минус.

Технические характеристики и маркировка

Главными параметрами, по которым подбираются эти полупроводниковые элементы, является цоколевка и цветовая маркировка.

Фото — цоколевка маломощных биполярных триодовФото — цоколевка силовых

Также используется цветовая маркировка.

Фото — примеры цветовой маркировкиФото — таблица цветов

Многие отечественные современные транзисторы также обозначаются буквенным шифром, в который включается информация о группе (полевые, биполярные), типе (кремниевые и т. д.,) годе и месяце выпуска.

Фото — расшифровка

Основные свойства (параметры) триодов:

  1. Коэффициент усиления по напряжению тока;
  2. Входящее напряжение;
  3. Составные частотные характеристики.

Для их выбора еще используются статические характеристики, которые включают сравнение входных и выходных ВАХ.

Необходимые параметры можно вычислить, если произвести расчет по основным характеристикам (распределение токов каскада, расчет ключевого режима). Коллекторный ток: Ik=(Ucc-Uкэнас)/Rн

  • Ucc – напряжение сети;
  • Uкэнас – насыщение;
  • Rн – сопротивление сети.

Потери мощности при работе:

P=Ik*Uкэнас

Купить биполярные транзисторы SMD, IGBT и другие можно в любом электротехническом магазине. Их цена варьируется от нескольких центов до десятка долларов, в зависимости от назначения и характеристик.

Типы транзисторов — подробная классификация полупроводника

Классификация, основанная на их структуре

 

Точечный транзистор

Это были одни из первейших германиевых транзисторов, которые работали на основе сложного и ненадёжного процесса образования электричества. По этой причине не справлялись с возложенными на них задачами довольно часто. У них был коэффициент усиления тока a с общей базой больше единицы и демонстрировал отрицательное сопротивление.

Биполярный плоскостной транзистор

Эти транзисторы имеют три вывода (эмиттер, базу и коллектор), отсюда вытекает то, что они обладают двойным соединением, а именно соединением база-эмиттер и соединением коллектор-база. Это токоуправляемые устройства, чья проводимость тока основывается одновременно на главном, и на побочном носителе заряда (поэтому транзистор и называется биполярным).

Они могут быть и (i) npn с основными носителями заряда в виде электронов или (ii) pnp. Обособленно стоят многие другие типы биполярных плоскостных транзисторов:

Биполярный гетеротранзистор: эти транзисторы подходят для устройств с высокой частотой и у них участки эмиттера и базы сделаны из отличающихся полупроводниковых материалов.

Транзистор Шотки или зажатые транзисторы Шотки: они используют барьер Шотки для избегания насыщения транзистора.

Лавинные транзисторы: это по-особенному устроенные транзисторы, которые действуют в зоне лавинного сбоя (где действующее напряжение будет больше чем напряжение сбоя) и имеют очень высокие скорости переключения.

Транзисторы Дарлингтона: эти транзисторы имеют два отдельных транзистора, которые каскадно включены таким образом, что в результате устройство обладает очень высоким коэффициентом усиления тока.

Транзистор с множественным эмиттером: этот вид транзисторов специально сделан так, чтобы понимать логические операции.

Транзистор с множественной базой: он использует для усиления очень низкий уровень сигнала среди шумного окружения за счёт конструктивного добавления сигнала, в отличии от случайного шума.

Диффузионный транзистор: эти транзисторы основаны на том, что имеется диффундирующий полупроводниковый материал с необходимыми присадками.

 

Полевой транзистор

Эти транзисторы являются транзисторами, которые управляются напряжением. Эти транзисторы имеют три вывода. Один из них, вывод затвора, контролирует поток электрического тока между выводом источника и выводом стока. Их также называют монополярными устройствами, поскольку их проводимость тока является лишь следствием основных носителей заряда, согласно с чем, они могут быть одновременно N-канальными (большинство носителей заряда являются электронами) и P-канальными полевыми транзисторами.

Полевые транзисторы также могут быть подразделены на:

Плоскостные полевые транзисторы: Они могут быть как pn, так и транзисторами с металлическим полупроводником, которые зависят от того, имеют ли они pn-соединение или соединение в виде Барьера Шотки.

Металлические оксидные полупроводниковые полевые транзисторы или транзисторы с изолированным затвором: Эти устройства имеют изолирующий слой под их выводом затвора, который приводит к очень высокому полному сопротивлению на входе. Они могут быть как истощающими, так и усиливающими, что зависит от того, имеют ли они уже существующий канал или нет, что уже влияет на их поведение в присутствии или отсутствии напряжения на затворе.

Металлические окисел полупроводниковые полевые транзисторы с двойным затвором: Это в частности очень полезные транзисторы в устройствах с радиочастотой. Они имеют два последовательных контроля затвора.

Транзистор с высокой мобильностью электронов или гетероструктурный полевой транзистор: Эти транзисторы характеризуются присутствием гетеро-связей, которые заключаются между разными материалами на той и другой стороне соединения и используются в устройствах с очень высокой микроволновой частотой. Другие разновидности этих транзисторов, включая метаморфные, псевдоморфные, индуцированные, гетероструктрные изолированные и модуляционные с примесями.

Плавниковые полевые транзисторы: Они имеют двойной затвор, ширина их эффективного канала обеспечивается тонким кремниевым “плавником”, который формирует тело транзистора.

Вертикальный металл-окисел полупроводниковый: По конструкции схож с обычным металл-окисел полупроводниковым, но есть и различие, заключающееся в наличии V-образной канавки, которая увеличивает их сложность и стоимость.

Металл-окисел полупроводниковый с U-образной канавкой: У них структура в виде траншей, и они почти такие же как предыдущие, только канавка у них не V-образная, а U-образная.

Траншейный металл-окисел полупроводниковый: Имеется вертикальная структура с выводом источника и стока на вершине и дне соответственно.

Металлический нитрид окисел полупроводниковый: Этот вид транзистора является дополнением к технологии металл окисел полупроводниковых и использует нитрид окисел как изоляционный слой.

Полевые транзисторы с быстрым обратным или быстрым восстанавливающим эпитаксиальным диодом: Это ультра быстрые полевые транзисторы с возможностью быстрого выключения для диода, расположенного в корпусе.

Обеднённый полевой транзистор: Эти транзисторы основаны на абсолютно истощенных субстратах.

Туннельный полевой транзистор: Они работают на принципе квантового туннелирования и широко применяются в электронике с низкой энергией, включая цифровые схемы.

Ионно-чувствительный полевой транзистор: Данный транзистор использует концентрацию ионов для регулирования величины потока электрического тока, проходящего через него. Эти устройства широко используются в медико-биологических исследованиях и наблюдении за окружающей средой.

Биологически-чувствительные полевые транзисторы: В этих транзисторах биологические молекулы, привязанные к выводу затвора, изменяют распределение заряда и меняют проводимость каналов. Существует множество разновидностей этих устройств, например днк полевые транзисторы, иммунные полевые транзисторы и т.д.

Полевые транзисторы с органической памятью за счёт наночастиц: Эти устройства имитируют поведение интернейрон сигнала и применяется в области искусственного интеллекта.

Органические полевые транзисторы: Их структура основана на концепции тонкоплёночных транзисторов. Для их канала используются органические полупроводники. Они широко используются в электронике, разлагаемой микроорганизмами.

Шестиугольные полевые транзисторы: Их область матрицы основана на базовых ячейках, имеющих шестиугольную форму, которые, в свою очередь, уменьшают размер матрицы, увеличивая плотность канала.

Полевые транзисторы с углеродной нанотрубкой: Канал сделан из углеродной нанотрубки (одиночной или массива), а не из кремния.

Полевой транзистор с нанолентой из графена: Они используют наноленты из графена как материал для их каналов.

Полевые транзисторы с вертикальной прорезью: Эти двух-затворные устройства с вертикальной кремниевой прорезью ни что иное как узкий коридор кремния между двух более больших кремниевых участков.

Квантовые полевые транзисторы: эти транзисторы характеризуются очень высокой скоростью действия и работой на принципе квантового туннелировнаия.

T-инвертированные транзисторы: Часть такого устройства вертикально расширена из горизонтальной плоскости.

Тонкоплёночный транзистор: В качестве активного полупроводника используются тонкие плёнки, изолятор и металл прокладываются по непроводящему материалу, такому как стекло.

Баллистические транзисторы: Их используют в высокоскоростных интегрированных схемах, их работа основана на использовании электромагнитных сил.

Электролит окисел полупроводниковые полевые транзисторы: У них металлическая часть стандартных металл-окисел полупроводниковых заменена на электролит. Их используют для обнаружения нейронной активности.

Классификация, основанная на функциях транзисторов

1. Транзисторы с маленьким сигналом: Этот тип транзисторов используется в частности для усиления сигналов с низким уровнем (редко – для переключения) и может быть как npn, так и pnp по своей конструкции.

2. Маленькие переключающие транзисторы: Широко применяются для переключения, несмотря на то, что они могут быть вовлечены в процесс усиления. Эти транзисторы доступны сразу и в виде npn, и в виде pnp.

3. Силовой транзистор: Их используют как силовые усилители в мощных устройствах. Это могут быть npn, или pnp, или транзисторы Дарлингтона.

4. Высокочастотные транзисторы: их также называют радиочастотными транзисторами. Они используются в устройствах, где есть высокоскоростное переключение, где маленькие сигналы действуют на больших частотах.

5. Фототранзистор: Это устройства с двумя выводами, которые чувствительны к свету. Они являются ни чем иным, как стандартными транзисторами, которые имеют фоточувствительную область как замещение базовой области.

6. Однопереходные транзисторы: Используются исключительно как переключатели и не подходят для усиления.

7. Транзисторы для биомедицинских исследований и для исследования окружающей среды: Их название говорит само за себя.

В дополнение к этому, существуют также биполярные транзисторы с изолированным затвором, которые сочетают в себе особенности одновременно биполярных плоскостных транзисторов и полевых транзисторов. Они используют изолированный затвор для контроля биполярного силового транзистора, выступая в роли переключателя.

Также есть устройства, которые имеют два туннельных перехода, включая участок, контролирующий затвор. Их называют одиночными электронными транзисторами. Транзисторы без переходов и с нанопроволокой не имеют перехода затвора, что приводит к более плотным и дешёвым микрочипам. Наконец, стоит отметить, что это были лишь некоторые типы транзисторов среди множества типов, которые представлены на рынке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Виды транзисторов

Существуют десятки тысяч транзисторов. Их все можно разделить на несколько типов по характеристикам. Я расскажу какие существуют виды транзисторов и чем они друг от друга отличаются. 

Транзисторы можно разделить на виды по таким характеристикам как: 

  • Физическое строение
  • Принцип действия
  • Мощность
  • Полоса пропускания частот
  • Коэффициент усиления по току
  • и т.д.

Но основными являются четыре: физическая структура транзистора, принцип действия транзистора, мощность и полоса рабочих частот транзистора.

По принципу действия все транзисторы можно разделить на две большие группы: биполярные транзисторы и полевые транзисторы. Различаются они как принципом действия, так и физическим строением. При этом различается как структура транзистора, так и принцип их функционирования. Внешне оба вида выполняют те же функции, но внутри у полевых и биполярных транзисторов всё работает иначе. 

Посмотри на схему выше. Как ты уже заметил, и у биполярных и у полевых транзисторов есть общие характеристики: мощность и частота. Которые могут быть малыми, средними, высокими.

Рассеиваемая мощность транзистора

При это маломощными считаются транзисторы, которые в состоянии рассеять не более 0.3 Вт, транзисторы средней мощности в состоянии рассеять уже от 0.3 Вт до 1.5 Вт. Ну а мощные транзисторы рассеивают более 1.5Вт. 

Полоса пропускания транзистора

Так называют диапазон частот, в которых транзистор сохраняет свои качества как транзистора. На выбор транзистора по частоте сильно влияет тип твоего устройства и с какими частотами сходящих сигналов оно должно уметь работать правильно.

Биполярный транзистор

Я не буду описывать строение транзистора, для этого сущесвуют другие статьи. В этот раз я хочу заострить твоё внимание на том, что в семейсве биполярных транзисторов есть два клана. Этоклан транзисторов со структурой N-P-N и клан со структурой P-N-P. Кроме физ. строения каких либо других различий между ними нет. 

Полевые транзисторы

Полевые транзисторы также как и биполярные можно разделить на транзисторы P- и N-типа. Но помимо этого они делять ещё два вида: MOSFET и JFET. MOSFET — это полевой транзистор с изолированным затвором и JFET — это полевой транзистор с единственным PN-переходом.

Разница между полевым и биполярным транзисторами
Принцип работы биполярный полевой
Управляются током. Для работы требуется подавать начальный ток смещения на базу Управляются напряжением. Всё что им требуется для работы — это подача напряжения на затвор
 

Обладают сравнительно малым входным сопротивлением, поэтому потребляют от больший ток, чем полярные

Обладают высоким входным сопротивлением, что означает практически отсутствующих входной ток транзистора. Позволяет меньше нагружатьисточник питания за счет меньшего потребления тока от источника
Усиление по току Биполярные транзисторы обладают больее высоким коэфф. усиления. Коэфф. усиления меньше, чем в биполярном транзисторе.
Размер Имеют средний и большой размер. Полевые транзисторы можно производить для повернохстного монтажа. А также использовать в интегральных схемах.
Популярность Сегодня биполярне транзисторы стали уступать свои позиции перед FET FET-транзисторы сновятся все более популярны и активно используются в коммерческом ПО.
Стоимость Биполярные транзисторы дешевы в производстве. FET, а особенно MOSFET значительно дороже произвести, чем биполярные транзисторы.

 

Вот и всё. Конечно за кадром остались глубокие принципы работы транзисторов. Но сделано это намеренно. О них я расскажу как-нибудь в другой раз. 

Что такое транзистор, виды транзисторов и их обозначение

Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы.

Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор.

Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

На схемах транзисторы обозначают, как показано на рис. 1,а. Здесь короткая черточка с линией-выводом от середины символизирует базу, две наклонные линии, проведенные к ней под углом 60°, — эмиттер и коллектор.

 Рис. 1. Внешний вид транзисторов, обозначение транзисторов на принципиальных схемах.

Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (рис. 1,а), то это означает, эмиттер имеет электропроводность типа р, а база — типа п; если же стрелка направлена в противоположную сторону (рис. 1,6), электропроводность эмиттера и базы — обратная (соответственно пир).

Поскольку, как уже отмечалось, электропроводность коллектора та же, что и эмиттера, стрелку на символе коллектора не изображают. Знать электропроводность эмиттера, базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы.

Транзистор, база которого имеет проводимость типа п, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа P, — формулой n-p-n. В первом случае на базу и коллектор следует подавать отрицательное (по отношению к эмиттеру) напряжение, во втором — положительное.

Для наглядности условное обозначение транзистора обычно помещают в кружок, символизирующий его корпус. Корпус нередко изготовляют из металла и соединяют с одним из выводов транзистора. На схемах это показывают точкой в месте пересечения лиши-вывода с символом корпуса (у транзистора, изображенного на рис. 1,в, с корпусом соединен вывод коллектора).

Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (рис. 1,г). С целью повышения информативности схем рядом с позиционным обозначением транзистора обычно указывают его тип.

Линии-выводы, идущие от символов эмиттера и коллектора, проводят в одном из двух направлений: перпендикулярно или параллельно линии-выводу базы (рис. 1,д). Излом этой линии допускается лишь на некотором расстоянии от символа корпуса (рис. 1,е).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а кружок-корпус заменяют овалом (рис. 1,ж).

В некоторых случаях ГОСТ 2.730—73 допускает изображать транзисторы и без символа корпуса, например при изображении бескорпуоных транзисторов ИЛ|Ц когда на схеме необходимо показать транзисторы, входящие в так называемые транзисторные сборки или матрицы (их выпускают в тех же корпусах, что и интегральные микросхемы).

 Рис. 2. Транзисторные сборки.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельных приборов, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (в этом случае на поле схемы помещают такую, например, запись: VT1—VT4 К1НТ251), либо берут код аналоговых микросхем DA и указывают принадлежность транзисторов к матрице в позиционном обозначении (рис. 2,а).

У выводов таких транзисторов, как правило, приводят условные номера, присвоенные выводам корпуса, в котором выполнена сборка. Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 1,6 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (рис. 3,а). При повороте условного обозначения положение этого знака должно оставаться неизменным.

 Рис. 3. Лавинный транзистор.

Иначе построено обозначение так называемого однопереходного транзистора. У него один р-п переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3,6). Об электропроводности базы судят по символу эмиттера (все сказанное ранее о транзисторах с двумя р-п переходами полностью применимо и к однрпереход-ному транзистору).

На обозначение однопереходного транзистора похоже условное обозначение довольно большой группы транзисторов с р-п переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n-или p-типа.

Сопротивлением канала управляет третий электрод — затвор, соединенный с его средней частью р-п переходом. Канал полевого транзистора изображают так же, как и базу биполярного транзистора, но помещают в средней части кружка-корпуса , символы истока и стока присоединяют к нему с одной стороны, затвора — с другой.

Чтобы не вводить каких-либо знаков для различения символов истока и стока, затвор изображают на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора.

В условном обозначении полевого транзистора с изолированным затворам (его изображают в виде черточки, параллельной символу канала, с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока: если она направлена к символу канала, то это значит, что изображен транзистор с каналом п-типа, а если в противоположную сторону, — с каналом р-типа (рис. 4,а, б).

Рис. 4. Изображение полевых транзисторов на принципиальных схемах.

Аналогично указывают тип электропроводности канала и при наличии вывода от кристалла-подложки (рис. 4,в), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три короткие штриха (рис. 4,г, д). Если подложка соединена с одним из электродов (обычно с истоком), это соединение показывают внутри символа без точки (рис. 4, е).

В палевом транзисторе может быть несколько затворов. Изображают их в этом случае короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (рис. 4,ж).

Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (рис. 4,з), который может быть соединен с одним из электродов или иметь самостоятельный вывод (рис. 4,ы).

Из транзисторов, управляемых внешними факторами, в настоящее время находят применение фототранзисторы. В качестве примера на рис. 5 показаны условные обозначения фототранзжггоров с выводом базы и без него.

Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с символом излучателя света (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта заменяют знаком оптической связи — двумя параллельными стрелками.

Рис. 5. Изображение на принципиальных схемах фототранзисторов.

Для примера на рис. 5,а изображена одна из оптопар сдвоенного оптрона К249КП1, о чем говорит позиционное обозначение U1.1. Аналогично строят условное графическое обозначение оптрона с составным транзистором (рис. 5,6).

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Биполярные транзисторы — это… Что такое Биполярные транзисторы?

Обозначение биполярных транзисторов на схемах

Простейшая наглядная схема устройства транзистора

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Принцип действия транзистора

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передает ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10 − 1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Режимы работы биполярного транзистора

  • Нормальный активный режим;
  • Инверсный активный режим;
  • Режим насыщения;
  • Режим отсечки;

Нормальный активный режим

Переход эмиттер — база включен в прямом направлении (открыт), а переход коллектор — база — в обратном (закрыт)

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Схемы включения

Схема включения с общей базой

Любая схема включения транзистора характеризуется двумя основными показателями:

  • коэффициент усиления по току Iвых/Iвх.

Для схемы с общей базой Iвых/Iвх=Iк/Iэ=α [α<1])

  • входное сопротивление Rвхб=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Недостатки схемы с общей базой :

  • Схема не усиливает ток, так как α < 1
  • Малое входное сопротивление
  • Два разных источника напряжения для питания.

Достоинства:

  • Хорошие температурные и частотные свойства.

Схема включения с общим эмиттером

Iвых=Iк
Iвх=Iб
Uвх=Uбэ
Uвых=Uкэ

Достоинства:

  • Большой коэффициент усиления по току
  • Большое входное сопротивление
  • Можно обойтись одним источником питания

Недостатки:

  • Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Выходное переменное напряжение инвертируется относительно входного.

Схема с общим коллектором

Iвых=Iэ
Iвх=Iб
Uвх=Uбк
Uвых=Uкэ

Достоинства:

  • Большое входное сопротивление
  • Малое выходное сопротивление

Недостатки:

  • Не усиливает напряжение

Схему с таким включением также называют «эмиттерным повторителем»

Технология изготовления транзисторов 1

  • Планарно-эпитаксиальная
  • Сплавная
    • Дифузионный
    • Дифузионносплавной

Применение транзисторов

Ссылки и литература

Типы транзисторов: работа и их применение

Транзистор является активным компонентом и используется во всех электронных схемах. Они используются как усилители и коммутационные аппараты. В качестве усилителей они используются в каскадах высокого и низкого уровня, частотных каскадах, генераторах, модуляторах, детекторах и в любой цепи, которая должна выполнять определенную функцию. В цифровых схемах они используются как переключатели. Во всем мире существует огромное количество производителей, которые производят полупроводники (транзисторы являются членами этого семейства устройств), поэтому существует ровно тысячи различных типов.Существуют транзисторы малой, средней и большой мощности, для работы с высокими и низкими частотами, для работы с очень высоким током и / или высоким напряжением. В этой статье дается обзор того, что такое транзистор, различных типов транзисторов и их применения.


Что такое транзистор

Транзистор электронный. Он сделан через полупроводник p- и n-типа. Когда полупроводник помещается в центр между полупроводниками одного типа, такое устройство называется транзисторами.Можно сказать, что транзистор — это комбинация двух диодов, это соединение спина к спине. Транзистор — это устройство, которое регулирует ток или напряжение и действует как кнопка или затвор для электронных сигналов.

Типы транзисторов

Транзисторы состоят из трех слоев полупроводникового устройства, каждый из которых способен перемещать ток. Полупроводник — это такой материал, как германий и кремний, который проводит электричество «полуэнтузиазмом». Это где-то между настоящим проводником, таким как медь, и изолятором (похожим на провода в пластиковой оболочке).

Символ транзистора

Показана схематическая форма транзисторов n-p-n и p-n-p. Внутрисхемная форма соединения используется. Символ стрелки определяет ток эмиттера. В соединении n-p-n мы идентифицируем поток электронов в эмиттер. Это означает, что из эмиттера течет консервативный ток, как показано исходящей стрелкой. Точно так же можно видеть, что для соединения p-n-p консервативный ток течет в эмиттер, как показано направленной внутрь стрелкой на рисунке.

Транзисторы PNP и NPN

Существует так много типов транзисторов, каждый из которых различается по своим характеристикам, и каждый имеет свои преимущества и недостатки. Некоторые типы транзисторов используются в основном для коммутации. Другие могут использоваться как для переключения, так и для усиления. Тем не менее, другие транзисторы находятся в особой группе, например фототранзисторы, которые реагируют на количество падающего на них света, создавая ток, протекающий через них. Ниже приведен список различных типов транзисторов; мы рассмотрим характеристики, которые создают их каждую до

Каковы два основных типа транзисторов?

Транзисторы подразделяются на два типа, такие как BJT и полевые транзисторы.

Биполярный переходной транзистор (BJT)

Биполярные транзисторы

— это транзисторы, состоящие из трех областей: базы, коллектора и эмиттера. Транзисторы с биполярным соединением, различные полевые транзисторы, являются устройствами с регулируемым током. Небольшой ток, поступающий в базовую область транзистора, вызывает гораздо больший ток, протекающий от эмиттера к области коллектора. Биполярные переходные транзисторы бывают двух основных типов: NPN и PNP. NPN-транзистор — это транзистор, в котором большинство носителей тока — электроны.

Электроны, протекающие от эмиттера к коллектору, составляют основу большей части тока, протекающего через транзистор. Остальные типы зарядов, дырки, составляют меньшинство. Транзисторы PNP — наоборот. В транзисторах PNP большинство дырок носителей тока. Биполярные транзисторы доступны двух типов: PNP и NPN

. Контакты биполярного переходного транзистора
Транзистор PNP

Этот транзистор представляет собой еще один вид BJT — транзисторов с биполярным переходом и содержит два полупроводниковых материала p-типа.Эти материалы разделены тонким полупроводниковым слоем n-типа. В этих транзисторах основными носителями заряда являются дырки, а неосновными носителями заряда являются электроны.

В этом транзисторе стрелка указывает на обычный ток. Направление тока в этом транзисторе — от вывода эмиттера к выводу коллектора. Этот транзистор будет включен, когда клемма базы переместится в низкий уровень по сравнению с клеммой эмиттера. Транзистор PNP с символом показан ниже.

NPN транзистор

NPN также является одним из видов BJT (биполярных транзисторов) и включает в себя два полупроводниковых материала n-типа, которые разделены тонким полупроводниковым слоем p-типа. В транзисторе NPN основными носителями заряда являются электроны, а неосновными носителями заряда — дырки. Электроны, протекающие от вывода эмиттера к выводу коллектора, будут формировать ток в выводе базы транзистора.

В транзисторе меньшая величина тока, подаваемого на вывод базы, может вызвать подачу большого количества тока от вывода эмиттера к коллектору.В настоящее время обычно используются BJT-транзисторы, так как подвижность электронов выше, чем подвижность дырок. NPN-транзистор с символом показан ниже.

Полевой транзистор

Полевые транзисторы

состоят из 3 областей: затвора, истока и стока. Различные биполярные транзисторы, полевые транзисторы — это устройства, управляемые напряжением. Напряжение, подаваемое на затвор, управляет током, протекающим от истока к стоку транзистора. Полевые транзисторы имеют очень высокий входной импеданс, от нескольких мегамом (МОм) до гораздо больших значений.

Из-за этого высокого входного сопротивления через них проходит очень небольшой ток. (Согласно закону Ома, на ток обратно пропорционально влияет значение импеданса цепи. Если импеданс высокий, ток очень низкий.) Таким образом, оба полевых транзистора потребляют очень небольшой ток от источника питания схемы.

Полевые транзисторы

Таким образом, это идеальный вариант, поскольку они не нарушают работу силовых элементов исходной схемы, к которым они подключены. Они не приведут к перегрузке источника питания.Недостатком полевых транзисторов является то, что они не обеспечивают такое усиление, которое можно получить от биполярных транзисторов.

Биполярные транзисторы лучше в том, что они обеспечивают большее усиление, хотя полевые транзисторы лучше в том, что они вызывают меньшую нагрузку, дешевле и проще в производстве. Полевые транзисторы бывают двух основных типов: полевые транзисторы JFET и полевые МОП-транзисторы. JFET и MOSFET очень похожи, но MOSFET имеют даже более высокие значения входного импеданса, чем JFET. Это вызывает еще меньшую нагрузку в цепи.Полевые транзисторы делятся на два типа, а именно JFET и MOSFET.

JFET

JFET расшифровывается как Junction-Field-Effect Transistor. Это простой, а также первый тип полевых транзисторов, которые используются в качестве резисторов, усилителей, переключателей и т. Д. Это устройство, управляемое напряжением, и в нем не используется ток смещения. Как только напряжение приложено между выводами затвора и истока, оно управляет током между истоком и стоком транзистора JFET.

Переходный полевой транзистор (JUGFET или JFET) не имеет PN-переходов, но вместо него имеет узкую часть полупроводникового материала с высоким удельным сопротивлением, образующую «канал» кремния N-типа или P-типа для протекания большинства носителей. через два омических электрических соединения на обоих концах, которые обычно называются стоком и источником соответственно.

Соединительные полевые транзисторы

Существуют две основные конфигурации соединительных полевых транзисторов: N-канальный JFET и P-канальный JFET.Канал N-канального JFET легирован донорными примесями, что означает, что ток через канал отрицательный (отсюда и термин N-канал) в форме электронов. Эти транзисторы доступны как в P-канальном, так и в N-канальном исполнении.

МОП-транзистор

MOSFET или полевой транзистор металл-оксид-полупроводник наиболее часто используется среди всех типов транзисторов. Как следует из названия, он включает в себя вывод металлических ворот. Этот транзистор включает в себя четыре вывода, таких как исток, сток, затвор и подложка или корпус.

MOSFET

По сравнению с BJT и JFET, полевые МОП-транзисторы имеют ряд преимуществ, так как они обеспечивают высокий импеданс i / p, а также низкий импеданс o / p. МОП-транзисторы в основном используются в схемах малой мощности, особенно при разработке микросхем. Эти транзисторы доступны в двух типах, таких как истощение и усиление. Кроме того, эти типы подразделяются на типы с P-каналом и N-каналом.

Основные характеристики FET включают следующее.

  • Он униполярен, потому что за передачу ответственны носители заряда, такие как электроны или дырки.
  • В полевом транзисторе входной ток будет протекать из-за обратного смещения. Следовательно, входной импеданс этого транзистора высокий.
  • Когда напряжение o / p полевого транзистора регулируется входным напряжением затвора, этот транзистор называется устройством, управляемым напряжением.
  • На токопроводящей дорожке переходов нет. Таким образом, полевые транзисторы имеют меньше шума по сравнению с биполярными транзисторами.
  • Определение коэффициента усиления может быть выполнено с помощью крутизны, потому что это отношение тока изменения o / p к изменению входного напряжения
  • Низкое сопротивление полевого транзистора.
Преимущества полевого транзистора

К преимуществам полевого транзистора по сравнению с BJT можно отнести следующее.

  • FET — это униполярное устройство, тогда как BJT — биполярное устройство.
  • FET — это устройство, управляемое напряжением, тогда как BJT — это устройство, управляемое током
  • Сопротивление i / p полевого транзистора высокое, тогда как у BJT низкое
  • Уровень шума полевого транзистора низкий по сравнению с BJT
  • У полевого транзистора термическая стабильность высокая, а у BJT — низкая.
  • Характеристика усиления полевого транзистора может быть выполнена через крутизну, тогда как в BJT с усилением по напряжению
Применение полевого транзистора

Применения полевого транзистора включают следующее.

  • Эти транзисторы используются в различных схемах для уменьшения эффекта нагрузки.
  • Они используются в нескольких схемах, например, в генераторах фазового сдвига, вольтметрах и буферных усилителях.

Клеммы полевого транзистора

FET имеет три вывода, такие как исток, затвор и сток, которые не похожи на выводы BJT. В FET терминал источника аналогичен терминалу эмиттера BJT, тогда как терминал ворот аналогичен базовому терминалу, а терминал стока — терминалу коллектора.

Терминал источника
  • В полевом транзисторе вывод истока — это тот вывод, через который носители заряда входят в канал.
  • Это похоже на вывод эмиттера BJT
  • Терминал источника может быть обозначен буквой «S».
  • Поток тока через канал на клемме источника можно указать как IS.
    Выходной терминал
  • В полевом транзисторе терминал затвора играет важную роль в управлении потоком тока по каналу.
  • Поток тока можно контролировать через клемму затвора, подав на нее внешнее напряжение.
  • Клемма
  • Gate представляет собой смесь двух клемм, которые связаны внутри и сильно легированы. Проводимость канала можно модулировать через терминал Gate.
  • Это похоже на базовый терминал BJT
  • Терминал ворот может быть обозначен буквой «G».
  • Поток тока через канал на выводе ворот можно указать как IG.
Сливной терминал
  • В полевом транзисторе вывод стока — это тот вывод, через который несущие покидают канал.
  • Это аналог клеммы коллектора в биполярном переходном транзисторе.
  • Напряжение стока в источник обозначено как VDS.
  • Дренажный терминал может быть обозначен как D.
  • Поток тока, движущийся от канала на сливном терминале, можно указать как ID.

Различные типы транзисторов

Существуют различные типы транзисторов в зависимости от их функции, такие как малосигнальный, малый коммутирующий, силовой, высокочастотный, фототранзистор, UJT.Некоторые виды транзисторов в основном используются для усиления или переключения.

Типы транзисторов с малым сигналом

Малосигнальные транзисторы используются в основном для усиления сигналов низкого уровня, но могут также хорошо работать в качестве переключателей. Эти транзисторы доступны через значение hFE, которое определяет, как транзистор усиливает входные сигналы. Диапазон типичных значений hFE составляет от 10 до 500, включая диапазон максимального тока коллектора (Ic) от 80 мА до 600 мА.

Эти транзисторы доступны в двух формах, таких как PNP и NPN. Наибольшие рабочие частоты этого транзистора имеют от 1 до 300 МГц. Эти транзисторы используются при усилении небольших сигналов, таких как несколько вольт, и просто, когда используется ток миллиампер. Силовой транзистор применим, когда используется большое напряжение, а также ток.

Типы транзисторов с малой коммутацией

Малые переключающие транзисторы

используются как переключатели, а также как усилители.Типичные значения hFE для этих транзисторов находятся в диапазоне от 10 до 200, включая наименьший номинальный ток коллектора, который находится в диапазоне от 10 мА до 1000 мА. Эти транзисторы доступны в двух формах, таких как PNP и NPN

.

Эти транзисторы не способны к усилению слабого сигнала транзисторов, которое может включать до 500 усилений. Таким образом, это сделает транзисторы более удобными для переключения, хотя их можно использовать в качестве усилителей для обеспечения усиления. Если вам потребуется дополнительное усиление, эти транзисторы будут лучше работать как усилители.

Силовые транзисторы

Эти транзисторы применимы там, где используется большая мощность. Вывод коллектора этого транзистора соединен с металлическим выводом базы, поэтому он работает как радиатор, отводящий избыточную мощность. Диапазон типичных номинальных мощностей в основном колеблется от примерно 10 Вт до 300 Вт, включая номинальные частоты от 1 МГц до 100 МГц.

Силовой транзистор

Максимальный ток коллектора находится в диапазоне от 1 до 100 А.Силовые транзисторы доступны в формах PNP и NPN, тогда как транзисторы Дарлингтона доступны в формах PNP или NPN.

Высокочастотные типы транзисторов

Высокочастотные транзисторы

используются особенно для небольших сигналов, которые работают на высоких частотах, и используются в приложениях для высокоскоростной коммутации. Эти транзисторы применимы в высокочастотных сигналах и должны иметь возможность включения / выключения на чрезвычайно высоких скоростях.

Применение высокочастотных транзисторов в основном включает усилители HF, UHF, VHF, MATV и CATV, а также генераторы.Диапазон максимальной номинальной частоты составляет около 2000 МГц, а максимальный ток коллектора находится в диапазоне от 10 мА до 600 мА. Их можно получить как в формах PNP, так и в NPN.

Фототранзистор

Эти транзисторы светочувствительны, и общий тип этого транзистора выглядит как биполярный транзистор, в котором вывод базы этого транзистора удален, а также заменен через светочувствительную область. Вот почему фототранзистор включает просто две клеммы вместо трех.Как только внешняя область остается в тени, устройство будет выключено.

Фототранзистор

В основном нет протекания тока от областей коллектора к эмиттеру. Но всякий раз, когда светочувствительная область подвергается воздействию дневного света, может создаваться небольшое количество базового тока для управления гораздо большим током коллектора к эмиттеру.

Подобно обычным транзисторам, это могут быть как полевые транзисторы, так и биполярные транзисторы. Полевые транзисторы — это светочувствительные транзисторы, в отличие от фотобиполярных транзисторов. В фотобиполярных транзисторах свет используется для создания напряжения затвора, которое в основном используется для управления током сток-исток.Они очень чувствительны к изменениям света, а также более деликатны по сравнению с биполярными фототранзисторами.

Типы однопереходных транзисторов

Однопереходные транзисторы (UJT) включают в себя трехпроводные транзисторы, которые работают полностью как электрические переключатели, поэтому они не используются как усилители. Как правило, транзисторы работают как коммутатор, а также как усилитель. Однако UJT не дает никакого усиления из-за своей конструкции. Таким образом, он не предназначен для обеспечения достаточного напряжения в противном случае тока.

Выводы этих транзисторов: B1, B2 и вывод эмиттера. Работа этого транзистора проста. Когда напряжение существует между его эмиттерным или базовым выводом, будет небольшой ток от B2 к B1.

Однопереходный транзистор

Управляющие провода в других типах транзисторов будут обеспечивать небольшой дополнительный ток, тогда как в UJT все наоборот. Первичным источником транзистора является его эмиттерный ток. Прохождение тока от B2 к B1 — это просто небольшая часть всего комбинированного тока, что означает, что UJT не подходят для усиления, но подходят для переключения.

Биполярный транзистор с гетеропереходом (HBT)

Биполярные транзисторы с гетеропереходом (HBT)

AlgaAs / GaAs используются для цифровых и аналоговых микроволновых приложений с частотами вплоть до Ku-диапазона. HBT могут обеспечивать более высокую скорость переключения, чем кремниевые биполярные транзисторы, в основном из-за пониженного сопротивления базы и емкости между коллектором и подложкой. Обработка HBT требует менее сложной литографии, чем полевые транзисторы GaAs, поэтому производство HBT бесценно и может обеспечить лучший литографический выход.

Эта технология также может обеспечить более высокое напряжение пробоя и более простое согласование широкополосного импеданса, чем полевые транзисторы на основе GaAs. При оценке Si-транзисторов с биполярным переходом (BJT), HBT демонстрируют лучшее представление с точки зрения эффективности инжекции эмиттера, сопротивления базы, емкости база-эмиттер и частоты среза. Они также обладают хорошей линейностью, низким фазовым шумом и высоким КПД. HBT используются как в прибыльных, так и в высоконадежных приложениях, таких как усилители мощности в мобильных телефонах и лазерные драйверы.

Транзистор Дарлингтона

Транзистор Дарлингтона, который иногда называют «парой Дарлингтона», представляет собой схему транзистора, состоящую из двух транзисторов. Его изобрел Сидни Дарлингтон. Он похож на транзистор, но имеет гораздо более высокую способность к увеличению тока. Схема может состоять из двух дискретных транзисторов или находиться внутри интегральной схемы.

Параметр hfe для транзистора Дарлингтона — это взаимное умножение hfe каждого транзистора. Схема полезна в усилителях звука или в датчике, который измеряет очень небольшой ток, который проходит через воду.Он настолько чувствителен, что может улавливать ток через кожу. Если вы подключите его к куску металла, вы можете создать сенсорную кнопку.

Транзистор Дарлингтона

Транзистор Шоттки

Транзистор Шоттки представляет собой комбинацию транзистора и диода Шоттки, которая предотвращает насыщение транзистора за счет отклонения крайнего входного тока. Его также называют транзистором с зажимом Шоттки.

Транзистор с несколькими эмиттерами

Транзистор с несколькими эмиттерами — это специализированный биполярный транзистор, часто используемый в качестве входов логических вентилей NAND транзисторной логики (TTL).Входные сигналы подаются на излучатели. Ток коллектора перестает течь просто, если все эмиттеры управляются логическим высоким напряжением, таким образом выполняя логический процесс NAND с использованием одного транзистора. Транзисторы с несколькими эмиттерами заменяют диоды DTL и позволяют сократить время переключения и рассеиваемую мощность.

МОП-транзистор с двойным затвором

Одной из разновидностей полевого МОП-транзистора, который особенно популярен в нескольких ВЧ-приложениях, является МОП-транзистор с двойным затвором. МОП-транзистор с двойным затвором используется во многих ВЧ и других приложениях, где требуются два управляющих затвора последовательно.Двухзатворный полевой МОП-транзистор по сути является формой МОП-транзистора, в котором два затвора расположены по длине канала один за другим.

Таким образом, оба затвора влияют на уровень тока, протекающего между истоком и стоком. Фактически, работу двухзатворного полевого МОП-транзистора можно рассматривать как то же самое, что и двух последовательно соединенных полевых МОП-транзисторов. Оба затвора влияют на общую работу полевого МОП-транзистора и, следовательно, на выходной сигнал. МОП-транзистор с двойным затвором может использоваться во многих приложениях, включая РЧ-смесители / умножители, РЧ-усилители, усилители с регулировкой усиления и т.п.

Лавинный транзистор

Лавинный транзистор — это транзистор с биполярным переходом, предназначенный для обработки в области характеристик напряжения коллектор-ток / коллектор-эмиттер за пределами напряжения пробоя коллектор-эмиттер, называемой областью лавинного пробоя. Эта область характеризуется лавинным пробоем, подобным разряду Таунсенда для газов, и отрицательным дифференциальным сопротивлением. Работа в области лавинного пробоя называется работой в лавинном режиме: она дает лавинным транзисторам возможность коммутировать очень высокие токи с временем нарастания и спада менее наносекунд (время перехода).

Транзисторы, специально не предназначенные для этой цели, могут иметь достаточно стабильные лавинные свойства; Например, 82% образцов высокоскоростного переключателя 2N2369 на 15 В, изготовленных за 12-летний период, были способны генерировать импульсы лавинного пробоя с временем нарастания 350 пс или меньше, используя источник питания 90 В, как пишет Джим Уильямс. .

Диффузионный транзистор

Диффузионный транзистор — это транзистор с биполярным переходом (BJT), образованный диффузией примесей в полупроводниковую подложку.Процесс диффузии был реализован позже, чем процессы соединения сплава и выращивания соединения для изготовления BJT. Bell Labs разработала первый прототип диффузионных транзисторов в 1954 году. Первоначальные диффузионные транзисторы были транзисторами с диффузной базой.

У этих транзисторов все еще были эмиттеры из сплава, а иногда и коллекторы из сплава, как в более ранних транзисторах с переходом из сплава. В подложку распылялась только основа. Иногда коллектор производился из подложки, но в транзисторах, подобных диффузионным транзисторам из микролегированного сплава Philco, подложка составляла основную часть базы.

Применение типов транзисторов

Соответствующее применение силовых полупроводников требует понимания их максимальных номинальных и электрических характеристик, информация, которая представлена ​​в техническом описании устройства. Хорошая практика проектирования использует пределы таблицы, а не информацию, полученную из небольших партий образцов. Рейтинг — это максимальное или минимальное значение, ограничивающее возможности устройства. Действия с превышением номинального значения могут привести к необратимой деградации или отказу устройства.Максимальные рейтинги означают экстремальные возможности устройства. Их нельзя использовать в качестве конструктивных обстоятельств.

Характеристика — это мера производительности устройства в отдельных условиях эксплуатации, выраженная минимальными, характеристическими и / или максимальными значениями или отображаемая графически.

Таким образом, это все о том, что такое транзистор, а также о различных типах транзисторов и их применениях. Мы надеемся, что вы лучше понимаете эту концепцию или реализуете проекты в области электротехники и электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже.Вот вам вопрос, какова основная функция транзистора?

Обзор биполярных транзисторов

Биполярный транзистор, полное название биполярного переходного транзистора (BJT), представляет собой электронное устройство с тремя выводами, состоящее из трех частей полупроводников с разными уровнями легирования. Поток заряда в транзисторе в основном происходит из-за диффузионного и дрейфового движения носителей в PN-переходе.

Каталог

I Биполярный и униполярный транзистор

Биполярный транзистор — революционное изобретение в истории электроники.Его изобретатели Уильям Шокли, Джон Бардинг и Уолтер Брэтон были удостоены Нобелевской премии по физике в 1956 году.

Работа этого типа транзистора включает поток как электронных, так и дырочных носителей , поэтому он является биполярным и называется биполярным носителем. транзистор. Этот режим работы отличается от униполярных транзисторов, таких как полевые транзисторы, которые включают дрейф только одного типа несущей. Граница между двумя различными областями накопления легирующей примеси образована PN-переходом.

0

Вход

BJT

FET

Устройство с контролем тока

Устройство с контролем напряжения

входное сопротивление

Биполярное устройство

Униполярное устройство

Уровень шума

Менее шумный

Обычно большие по размеру

Обычно маленькие по размеру

Биполярные транзисторы состоят из трех частей полупроводников с различными уровнями легирования .Поток заряда в транзисторе в основном происходит из-за диффузионного и дрейфового движения носителей в PN-переходе. Если взять в качестве примера NPN-транзистор, согласно конструкции, электроны в высоколегированной области эмиттера перемещаются к базе посредством диффузии. В основной области дырки являются основными носителями, а электроны — неосновными носителями. Поскольку площадь основания очень тонкая, эти электроны достигают коллектора посредством дрейфующего движения, тем самым формируя ток коллектора, поэтому биполярные транзисторы классифицируются как устройства с неосновными носителями.

Биполярные транзисторы могут усиливать сигналы и обладают хорошим регулированием мощности, возможностью высокоскоростной работы и долговечностью, поэтому их часто используют для формирования схем усилителя или привода динамиков, двигателей и другого оборудования, а также широко используются в аэрокосмической технике. , медицинское оборудование и роботы.

II Как работает биполярный транзистор?

Здесь мы берем биполярный транзистор NPN в качестве цели для обсуждения принципа работы биполярных транзисторов.

Биполярный транзистор типа NPN можно рассматривать как два диода с общим анодом, соединенных вместе.При нормальной работе биполярного транзистора переход база-эмиттер («коллекторный переход») находится в состоянии прямого смещения, в то время как база-коллектор («коллекторный переход») находится в состоянии обратного смещения.

Рисунок 1. Схема поперечного сечения биполярного транзистора PNP

Когда нет приложенного напряжения, концентрация электронов в N-области эмиттерного перехода (большинство носителей в этой области) больше, чем электронная. концентрация в P-области, и часть электронов диффундирует в P-область.Таким же образом часть отверстий в области P также будет распространяться в область N. Таким образом, на эмиттерном переходе образуется область пространственного заряда (также известная как обедненный слой), генерирующая внутреннее электрическое поле, направление которого — от области N к области P. Это электрическое поле будет препятствовать дальнейшему протеканию вышеупомянутого процесса диффузии и достичь динамического баланса.

В это время, если прямое напряжение приложено к эмиттерному переходу, динамический баланс между вышеупомянутой диффузией носителей и внутренним электрическим полем в обедненном слое будет нарушен, что приведет к инжекции термически возбужденных электронов в базовый регион.В NPN-транзисторе базовая область легирована P-типом, где дырки являются основной примесью, поэтому электроны в этой области называются «неосновными носителями».

С одной стороны, электроны, инжектированные из эмиттера в базовую область, здесь рекомбинируют с дырками основных носителей заряда, с другой стороны, потому что базовая область слабо легирована с тонким физическим размером, а коллекторный переход находится в обратном направлении. В состоянии смещения большая часть электронов достигнет области коллектора посредством дрейфующего движения, образуя ток коллектора.

Чтобы минимизировать рекомбинацию электронов до того, как они достигнут коллекторного перехода, базовая область транзистора должна быть сделана достаточно тонкой, чтобы время, необходимое для диффузии носителей, было меньше, чем время жизни неосновных полупроводниковых носителей.

При этом толщина базы должна быть много меньше диффузионной длины электронов (см. Закон Фика). В современных биполярных транзисторах толщина базовой области обычно составляет несколько десятых микрон.

Следует отметить, что, хотя коллектор и эмиттер легированы N-типом, степень легирования и физические свойства у них не одинаковы. Следовательно, биполярный транзистор следует отличать от двух диодов, соединенных последовательно в противоположных направлениях.

III Типы биполярных транзисторов

Биполярный транзистор состоит из трех различных легированных полупроводниковых областей: эмиттерной области , базовой области , и области коллектора .Эти области представляют собой полупроводники N-типа, P-типа и N-типа в транзисторах типа NPN и полупроводники P-типа, N-типа и P-типа в транзисторах типа PNP. У каждой полупроводниковой области есть штыревой конец, обычно с буквами E, B и C, обозначающими эмиттер, базу и коллектор.

База физически расположена между эмиттером и коллектором, и она сделана из легированных материалов с высоким сопротивлением. Коллектор окружает основание. Из-за обратного смещения коллекторного перехода электроны отсюда трудно инжектировать в область базы.Это приводит к тому, что коэффициент усиления по току общей базы становится примерно равным 1, в то время как коэффициент усиления по току общего эмиттера больше. Числовое значение.

В биполярном транзисторе NPN площадь коллекторного перехода больше, чем эмиттерного перехода. Кроме того, эмиттер имеет относительно высокую концентрацию легирования.

В нормальных условиях некоторые области биполярных транзисторов имеют асимметричные по физическим свойствам и геометрическим размерам. Предполагая, что транзистор, включенный в схему, расположен в области прямого усилителя, если в это время соединение коллектора и эмиттера транзистора в схеме поменять местами, транзистор выйдет из области прямого усилителя и войдет в рабочую область обратного направления.

Внутренняя структура транзистора определяет, что он подходит для работы в области прямого усилителя, поэтому коэффициент усиления по току общей базы и коэффициент усиления по току общего эмиттера в обратной рабочей области намного меньше, чем в области прямого усилителя.

Эта функциональная асимметрия в основном связана с разными уровнями легирования эмиттера и коллектора. Следовательно, в NPN-транзисторе, хотя коллектор и эмиттер оба легированы N-типом, электрические свойства и функции обоих не могут быть взаимозаменяемы вообще.

Эмиттерная область имеет наивысшую степень легирования , коллекторная область является второй, а базовая область имеет наименьшую степень легирования. Кроме того, физические размеры трех регионов также различаются. Базовая область очень тонкая, а площадь коллектора больше, чем площадь эмиттера. Поскольку биполярный транзистор имеет такую ​​структуру материала, он может обеспечивать обратное смещение для коллекторного перехода, но при этом предполагается, что обратное смещение не может быть слишком большим, иначе транзистор будет поврежден.Целью сильного легирования эмиттера является повышение эффективности инжекции электронов из эмиттера в базовую область для достижения максимально возможного усиления по току.

При соединении биполярных транзисторов с общим эмиттером небольшие изменения напряжения, приложенного к базе и эмиттеру, вызовут значительные изменения тока между эмиттером и коллектором. Используя это свойство, вы можете усилить входной ток или напряжение.

Что касается базы биполярного транзистора в качестве входа и коллектора в качестве выхода, двухпортовая сеть может быть проанализирована с помощью теоремы Тевенина.Используя принцип эквивалентности, биполярный транзистор можно рассматривать как источник тока, управляемый напряжением, или источник напряжения, управляемый током.

1.

NPN Тип

NPN-транзистор — это один из двух типов биполярных транзисторов. Он состоит из двух слоев легированных областей N-типа и слоя легированного полупроводника P-типа (основы) между ними. Крошечный ток, подаваемый на базу, будет усилен, создавая больший ток коллектор-эмиттер.

Когда базовое напряжение NPN-транзистора выше, чем напряжение эмиттера, а напряжение коллектора выше, чем базовое напряжение, транзистор находится в состоянии прямого усилителя.В этом состоянии между коллектором и эмиттером транзистора есть ток. Усиленный ток является результатом того, что электроны инжектируются эмиттером в базовую область (неосновные носители в базовой области) и перемещаются к коллектору под действием электрического поля. Поскольку подвижность электронов выше подвижности дырок , большинство используемых сегодня биполярных транзисторов относятся к типу NPN.

Электрический символ биполярного транзистора NPN показан справа, а стрелка между базой и эмиттером указывает на эмиттер.

Рисунок 2. a) Символ биполярного транзистора NPN b) Символ биполярного транзистора PNP

2.

Тип PNP

Другой тип биполярного транзистора PNP состоит из двух слоев легированных областей P-типа и слоя легированных полупроводников N-типа между ними. Крошечный ток, протекающий через базу, может быть усилен на конце эмиттера. Другими словами, когда базовое напряжение PNP-транзистора ниже, чем у эмиттера, напряжение коллектора ниже, чем базовое напряжение, и транзистор находится в области прямого усилителя.

В символе биполярного транзистора стрелка между базой и эмиттером указывает направление тока. В отличие от типа NPN, стрелка транзистора типа PNP указывает от эмиттера к базе.

3.

Гетеропереход

Биполярный транзистор с гетеропереходом — это улучшенный биполярный транзистор, способный работать на высокой скорости . Исследования показали, что этот транзистор может обрабатывать сверхвысокочастотные сигналы с частотами до нескольких сотен ГГц, поэтому он подходит для приложений, требующих жестких рабочих скоростей, таких как усилители мощности ВЧ и драйверы лазеров.

Гетеропереход — это тип PN-перехода. Два конца этого перехода сделаны из различных полупроводниковых материалов . В этом типе биполярного транзистора эмиттерный переход обычно имеет структуру гетероперехода, то есть материал с широкой запрещенной зоной используется в области эмиттера, а материал с узкой запрещенной зоной используется в области базы. Обычный гетеропереход использует GaAs для создания основной области и AlxGa1-xAs для создания области эмиттера. С такой структурой гетероперехода эффективность инжекции биполярного транзистора может быть улучшена, а коэффициент усиления по току также может быть увеличен на несколько порядков.

Концентрация легирования в области базы биполярного транзистора с гетеропереходом может быть значительно увеличена, так что сопротивление электрода базы и ширина области базы могут быть уменьшены. В традиционном биполярном транзисторе, то есть транзисторе с гомопереходом, эффективность инжекции носителей из эмиттера в базу в основном определяется соотношением легирования эмиттера и базы. В этом случае, чтобы получить более высокую эффективность инжекции, базовая область должна быть слегка легирована, что неизбежно увеличивает базовое сопротивление.

В основной области состав полупроводникового материала распределен неравномерно, что приводит к постепенному изменению ширины запрещенной зоны базовой области. Эта медленно изменяющаяся ширина запрещенной полосы может создавать внутреннее электрическое поле для неосновных носителей, ускоряющее их через базовую область. Это дрейфовое движение будет иметь синергетический эффект с диффузионным движением, чтобы уменьшить время прохождения электронов через базовую область, тем самым улучшая высокочастотные характеристики биполярного транзистора.

970265

Хороший

970264 970264 902

970264 902

Параметры

Si Биполярный

SiGe HBT

GaAs FET

4 GaAs FET

Прирост

Нормальный

Хороший

Хороший

Хороший

Хороший

Нормальный

Отличный

Хороший

Эффективность

Нормальный

Хороший

3

70 Хорошо

70 Отличный 9026 5

Заслуги

Отлично

Хорошо

Отлично

Отлично

Хорошо

Хорошо

Хорошо

Хорошо

Одиночный источник питания

3

70 √

3

70

Хотя для создания транзисторов с гетеропереходом можно использовать множество различных полупроводников, чаще используются транзисторы с гетеропереходом кремний-германий и транзисторы с гетеропереходом на основе арсенида алюминия и галлия.Процесс изготовления транзисторов с гетеропереходом представляет собой кристаллическую эпитаксию, такую ​​как эпитаксия из паровой фазы металлоорганических соединений (MOCVD) и молекулярно-лучевая эпитаксия.

IV Параметры

1.

Рассеиваемая мощность коллектора

Максимальная рассеиваемая мощность коллектора биполярного транзистора — это максимальная мощность, при которой устройство может нормально работать при определенной температуре и условиях рассеивания тепла. В тех же условиях, если фактическая мощность превышает это значение, температура транзистора превысит максимально допустимое значение, что ухудшит производительность устройства и даже вызовет физическое повреждение.

2.

Ток и напряжение

Когда ток коллектора увеличивается до определенного значения, хотя биполярный транзистор не будет поврежден, коэффициент усиления по току будет значительно уменьшен. Чтобы транзистор нормально работал, как задумано, необходимо ограничить значение тока коллектора. Кроме того, поскольку биполярные транзисторы имеют два PN перехода, их обратное напряжение смещения не может быть слишком большим, чтобы предотвратить обратный пробой PN перехода.Эти параметры подробно перечислены в таблице данных биполярного переходного транзистора.

Когда напряжение обратного смещения коллектора силового биполярного транзистора превышает определенное значение, а ток, протекающий через транзистор, превышает определенный допустимый диапазон, в результате чего мощность транзистора превышает критическую мощность вторичного пробоя, возникает своего рода опасная ситуация. будет произведено явление « секунд пробоя ». В этом случае ток, выходящий за пределы расчетного диапазона, вызовет локальный температурный дисбаланс в различных областях внутри устройства, и температура в некоторых областях будет выше, чем в других областях.

Поскольку легированный кремний имеет отрицательный температурный коэффициент , его проводимость выше, когда он находится при более высокой температуре. Таким образом, более горячая часть может проводить больше тока, и эта часть тока будет генерировать дополнительное тепло, в результате чего локальная температура превысит нормальное значение, и устройство не сможет нормально работать.

Вторичный пробой — это разновидность теплового разгона. При повышении температуры проводимость будет еще больше увеличиваться, вызывая порочный круг и в конечном итоге серьезно разрушая структуру транзистора.Весь процесс вторичной поломки может быть завершен за миллисекунды или микросекунды.

Если эмиттерный переход биполярного транзистора обеспечивает обратное смещение, которое превышает допустимый диапазон и не ограничивает ток, протекающий через транзистор, в эмиттерном переходе произойдет лавинный пробой, который приведет к повреждению устройства.

3.

Температурный дрейф

Как аналоговое устройство, все параметры биполярных транзисторов в той или иной степени зависят от температуры, особенно на коэффициент усиления по току.Согласно исследованиям, каждый раз при повышении температуры на 1 градус Цельсия коэффициент усиления тока увеличивается примерно на 0,5–1%.

4.

Радиационная стойкость

Биполярные транзисторы более чувствительны к ионизирующему излучению . Если транзистор находится в среде ионизирующего излучения, устройство будет повреждено излучением. Повреждение происходит из-за того, что излучение вызывает дефекты в области основания, которые образуют центры рекомбинации в энергетической зоне.Это приведет к более короткому сроку службы неосновных носителей, которые работают в устройстве, что, в свою очередь, постепенно снизит производительность транзистора.

Биполярные транзисторы типа NPN имеют большую эффективную площадь рекомбинации носителей в радиационной среде, и отрицательное влияние более значимо, чем у транзисторов типа PNP. В некоторых специальных приложениях, таких как электронные системы управления в ядерных реакторах или космических кораблях, должны использоваться специальные меры для смягчения негативного воздействия ионизирующего излучения.

В Рабочая область

В зависимости от состояния смещения трех выводов транзистора можно определить несколько различных рабочих областей биполярного транзистора. В полупроводниках NPN (примечание: профили напряжения PNP-транзисторов и NPN-транзисторов прямо противоположны), в соответствии с смещением эмиттерного перехода и коллекторного перехода, рабочую область можно разделить на:

1.

Биполярный транзисторный усилитель Область

(1) Область прямого усилителя

Когда эмиттерный переход смещен в прямом направлении, а коллекторный переход имеет обратное смещение, транзистор работает в области усилителя.Конструктивная цель большинства биполярных транзисторов — получить максимальный коэффициент усиления по току с общим эмиттером bf в области прямого усилителя. Когда транзистор работает в этой области, ток коллектор-эмиттер и ток базы примерно линейны. Из-за усиления по току, когда ток базы немного нарушен, ток коллектор-эмиттер значительно изменится.

(2) Область обратного усилителя

Если вышеупомянутые напряжения смещения эмиттера и коллектора транзистора в области прямого усилителя поменять местами, биполярный транзистор будет работать в области обратного усилителя.В этом режиме работы области эмиттера и коллектора полностью противоположны функциям в области прямого усилителя. Однако, поскольку концентрация легирования коллектора транзистора ниже, чем у эмиттера, эффект, производимый областью обратного усилителя, не такой, как в области прямого усилителя.

Целью конструкции большинства биполярных транзисторов является получение максимального усиления по току прямого усилителя, насколько это возможно. Следовательно, коэффициент усиления по току в области обратного усилителя будет меньше, чем в области прямого усилителя.Фактически, этот режим работы вряд ли принят, но для предотвращения повреждения устройства или других опасностей, вызванных неправильным подключением, его необходимо учитывать при проектировании. Кроме того, некоторые типы биполярных логических устройств также учитывают область обратного усилителя.

Рисунок 3. Прямое обратное отсечение и насыщение BJT

2. Область насыщения

Когда два PN-перехода в биполярном транзисторе смещены в прямом направлении, транзистор будет находиться в области насыщения.В это время ток от эмиттера до коллектора транзистора достигает максимального значения. Даже если базовый ток увеличится, выходной ток больше не будет увеличиваться. Область насыщения может использоваться для обозначения высокого уровня логических устройств.

3.

Область отсечки

Если смещение двух PN переходов биполярного транзистора точно противоположно таковому в области насыщения, то транзистор будет в области отсечки.В этом режиме работы выходной ток очень мал (менее 1 мкА для маломощных кремниевых транзисторов и менее даже мкА для германиевых транзисторов), что может быть использовано для представления низких уровней в цифровой логике.

4.

Лавинный пробой

Когда обратное смещение, приложенное к коллекторному переходу, превышает диапазон, который может выдержать коллекторный переход, PN переход будет разрушен. Если сила тока достаточно велика, устройство выйдет из строя.

Кроме того, когда мы анализируем и проектируем схемы биполярных транзисторов, следует отметить, что максимальная рассеиваемая мощность коллектора Pcm биполярного транзистора не может быть превышена. Если рабочая мощность транзистора меньше этого значения, совокупность этих рабочих состояний называется безопасной рабочей зоной. Если рабочая мощность транзистора превышает этот предел, температура устройства выйдет за пределы нормального диапазона, и производительность устройства значительно изменится и даже вызовет повреждение.

Допустимая температура перехода кремниевых транзисторов составляет от 150 до 200 градусов Цельсия. Максимально допустимое рассеивание мощности может быть увеличено за счет уменьшения внутреннего теплового сопротивления, использования радиаторов и таких мер, как воздушное охлаждение, водяное охлаждение и масляное охлаждение.

Фактически, нет абсолютной границы между вышеупомянутыми рабочими регионами. В пределах диапазона небольших изменений напряжения (менее нескольких сотен милливольт) между различными областями может быть определенное перекрытие.

Рекомендуемый артикул:

Введение в TFT-дисплеи

Структура и принцип работы полевых транзисторов

Какие методы тестирования и типы транзисторов?

Биполярный переходной транзистор (BJT) — Работа, типы и применение

BJT — Биполярный переходный транзистор — Конструкция, работа, типы и применение

История

Биполярный переходный транзистор (BJT) был изобретен Уильям Шокли и Джон Бардин.Первый транзистор был изобретен 70 лет назад, но до сих пор он изменил мир с загадочных больших компьютеров на маленькие смартфоны. Изобретение транзистора изменило представление об электрических цепях до интегральных схем (ИС). В настоящее время использование BJT сокращается, поскольку технология CMOS использовалась при разработке цифровых ИС.

Полезно знать: Название Transistor происходит от комбинации двух слов, например: Transfer и Resistance = Transistor .Другими словами, транзистор передает сопротивление от одного конца к другому. Короче говоря, транзистор имеет высокое сопротивление на входе и низкое сопротивление на выходе.

Что такое биполярный транзистор ?

Транзистор с биполярным соединением (BJT) — это двунаправленное устройство, в котором в качестве носителей заряда используются как электрона, , так и дырки . В то время как униполярный транзистор, то есть полевой транзистор , использует только один тип носителя заряда.BJT — это устройство, управляемое током. Ток течет от эмиттера к коллектору или от коллектора к эмиттеру в зависимости от типа подключения. Этот основной ток контролируется очень небольшим током на клемме базы.

Конструкция

Биполярный переходной транзистор образован комбинацией двух последовательно легированных полупроводниковых материалов. Другими словами, BJT образован «сэндвичем» из двух сторонних полупроводниковых материалов.Эти внешние полупроводники представляют собой диоды с PN переходом. Два диода PN-перехода соединены вместе, образуя трехконтактное устройство, известное как BJT-транзистор . BJT — трехполюсное устройство с двумя переходами.

После легирования собственного полупроводника трехвалентными или пятивалентными примесями получается полупроводник P-типа или полупроводник N-типа соответственно. Если количество электронов больше, чем количество дырок и (положительные носители), то это известно как полупроводниковый материал N-типа.В то время как в полупроводнике P-типа количество дырок больше, чем количество электронов. Когда материал P-типа и N-типа соединяются вместе, он становится диодом с PN-переходом . Биполярные транзисторы (BJT) образуются после соединения двух PN-переходов спина к спине. Эти транзисторы известны как биполярные переходные транзисторы PNP или NPN , в зависимости от того, являются ли они зажатыми между собой P или N.

В основном транзисторы имеют три части и два перехода.Эти три части называются Emitter , Collector, и Base . Эмиттер и коллектор помещают основание между ними. Средняя часть (основание) образует два перехода с эмиттером и коллектором. Соединение базы с эмиттером известно как соединение эмиттер-база , в то время как соединение базы с коллектором известно как соединение коллектор-база .

Терминалы BJT

Есть три терминала BJT.Эти терминалы известны как коллектор , эмиттер и базовый . Эти терминалы кратко обсуждаются здесь.

Эмиттер

Эмиттер — это часть на одной стороне транзистора, которая испускает электроны или дырки в две другие части. База всегда имеет обратное смещение по отношению к эмиттеру, так что она может излучать большое количество основных несущих . Это наиболее сильно легированная область БЮТ. Переход эмиттер-база всегда должен иметь прямое смещение в транзисторах PNP и NPN.Эмиттер подает электроны к переходу эмиттер-база в NPN, в то время как он подает дырки в тот же переход в транзисторе PNP.

Коллектор

Часть на противоположной стороне эмиттера, которая собирает излучаемые носители заряда (то есть электроны или дырки), известна как коллектор . Коллектор сильно легирован, но уровень легирования коллектора находится между слабым уровнем легирования базы и сильнолегированным уровнем эмиттера. Коллектор-база всегда должен иметь обратное смещение в транзисторах PNP и NPN.Причиной обратного смещения является удаление носителей заряда (электронов или дырок) из перехода коллектор-база. Коллектор NPN-транзистора собирает электроны, испускаемые эмиттером. Находясь в транзисторе PNP, он собирает дыры, испускаемые эмиттером.

База

База представляет собой среднюю часть между коллектором и эмиттером и образует между ними два PN-перехода. Основание — это наиболее слаболегированная часть БЮТ. Средняя часть БЮТ позволяет ему управлять потоком носителей заряда между эмиттером и коллектором.Переход база-коллектор показывает высокое сопротивление, потому что это соединение с обратным смещением.

Тип BJT

Это трехуровневое устройство, образованное встречным соединением, имеет определенные имена. Это может быть погода PNP или NPN . Оба соединения здесь ненадолго не используются.

Конструкция PNP

В биполярном транзисторе PNP полупроводник N-типа зажат между двумя полупроводниками P-типа. Транзисторы PNP могут быть сформированы путем соединения катодов двух диодов.Катоды диодов соединены вместе в общей точке, известной как база . В то время как аноды диодов, которые находятся на противоположных сторонах, известны как коллектор и эмиттер .

Переход эмиттер-база имеет прямое смещение, а переход коллектор-база — обратное смещение. Итак, в типе PNP ток течет от эмиттера к коллектору. Эмиттер в этом случае имеет высокий потенциал как по отношению к коллектору, так и по отношению к базе.

NPN Construction

Тип NPN прямо противоположен типу PNP.В биполярном транзисторе NPN полупроводник P-типа зажат между двумя полупроводниками N-типа. Когда аноды двух диодов соединены вместе, он образует NPN-транзистор. Ток будет течь от коллектора к эмиттеру, потому что вывод коллектора более положительный, чем эмиттер в NPN-соединении.

Разница между символами PNP и NPN — это стрелка на эмиттере, которая показывает направление протекания тока. Ток будет течь либо от эмиттера к коллектору, либо от коллектора к эмиттеру.Стрелка на PNP-транзисторе направлена ​​внутрь, что показывает протекание тока от эмиттера к коллектору. В случае коллектора NPN стрелка направлена ​​наружу, что показывает поток тока от коллектора к эмиттеру.

Связанное сообщение: Что такое транзистор NPN? Конструкция, работа и применение BJT

Работа BJT

Слово «транзистор» — это комбинация двух слов: «Trans» (преобразование) и «istor» (варистор).Значит, транзистор может изменять свое сопротивление. Сопротивление изменяется таким образом, что оно может действовать как изолятор или проводник, подавая небольшое напряжение сигнала. Эта изменяющаяся способность позволяет ему работать как «усилитель » или «коммутатор ». Его можно использовать либо как переключатель, либо как усилитель одновременно. Следовательно, для выполнения указанной операции BJT может работать в трех разных регионах.

Активная область:

В активной области один из переходов находится в прямом смещении, а другой — в обратном.Здесь базовый ток I b может использоваться для управления величиной тока коллектора I c . Следовательно, активная область используется для целей усиления, где BJT действует как усилитель с коэффициентом усиления β , используя уравнение;

i c = β x I b

Он также известен как линейная область . Эта область находится между областью отсечки и областью насыщения .В этой области происходит нормальная работа БЮТ.

Область насыщения:

В области насыщения оба соединения BJT находятся в прямом смещении. Эта область используется для включенного состояния переключателя, где;

i c = i sat

I sat — это ток насыщения, и это максимальная величина тока, протекающего между эмиттером и коллектором, когда BJT находится в области насыщения. Поскольку оба перехода находятся в прямом смещении, BJT действует как короткое замыкание.

Область отсечки:

В области отсечки оба соединения BJT имеют обратное смещение. Здесь BJT работает как выключенное состояние переключателя, где

i c = 0

Работа в этой области полностью противоположна области насыщения. Внешние источники питания не подключены. Нет тока коллектора и, следовательно, нет тока эмиттера. В этом режиме транзистор действует как выключенное состояние переключателя. Этот режим достигается за счет уменьшения базового напряжения ниже, чем напряжение эмиттера и коллектора.

V be <0,7

Принцип работы BJT

BJT имеет два соединения, образованных комбинацией двух стыковых PN-переходов. Переход база-эмиттер (BE) — это прямое смещение, а переход коллектор-эмиттер (CE) — обратное смещение. В BE-переходе потенциальный барьер уменьшается при прямом смещении. Итак, электрон начинает течь от вывода эмиттера к выводу базы. Поскольку база является слабо легированной клеммой, очень небольшое количество электронов из клеммы эмиттера объединяется с отверстиями на клемме базы.Из-за комбинации электронов и дырок начнет течь ток от клеммы базы, известный как Базовый ток (i b ) . Базовый ток составляет только 2% от тока эмиттера I e , в то время как оставшиеся электроны будут течь из коллекторного перехода обратного смещения, известного как Collector current ( i c ). Полный ток эмиттера будет комбинацией тока базы и тока коллектора, заданной формулой;

i e = i b + i c

Где i e приблизительно равно i c , потому что I b составляет почти 2% от I C .

Конфигурация BJT

BJT — это трехконтактное устройство, поэтому существует три возможных способа подключения BJT в цепи, при этом одна клемма является общей среди других. Другими словами, один терминал является общим для входа и выхода. Каждое соединение по-разному реагирует на входной сигнал, как показано в таблице ниже.

270
Конфигурации Коэффициент усиления по напряжению Коэффициент усиления по току Коэффициент усиления по мощности Входное сопротивление Выходное сопротивление Фазовый сдвиг
Конфигурация с общей базой High Очень высокий 0 градусов
Общая конфигурация излучателя Средняя Средняя Высокая Средняя Высокая 180 градусов
Общая конфигурация коллектора 1075 Низкая Низкая Низкая Низкая Низкая Высокий Низкий 0 градусов
Общая базовая конфигурация:

В общей базовой конфигурации базовая клемма является общей между входными и выходными сигналами.Входной сигнал подается между базой и выводом эмиттера, а выходной сигнал — между базой и выводом коллектора.

Выходной сигнал на стороне коллектора меньше входного сигнала на эмиттере. Таким образом, его коэффициент усиления меньше 1. Другими словами, он « ослабляет» сигнал.

Он имеет неинвертирующий выход, что означает, что и входные, и выходные сигналы синфазны . Этот тип конфигурации обычно не используется из-за высокого коэффициента усиления по напряжению.

Из-за очень высокочастотной характеристики эта конфигурация используется для одноступенчатого усилителя. Эти одноступенчатые усилители можно использовать как усилитель радиочастоты, микрофонный предусилитель.

Коэффициент усиления общей базовой конфигурации

5 902 9064 970
Коэффициент усиления по напряжению
Коэффициент усиления по току I c / i e 902 L / R в

Общая конфигурация эмиттера

Как следует из названия, в общем эмиттере эмиттер является общим между входом и выходом.Входной сигнал применяется между базой и эмиттером, а выходной — между коллектором и эмиттером. Это можно просто распознать, взглянув на схему. Если эмиттер заземлен, а вход и выход снимаются с базы и коллектора соответственно.

Эта конфигурация имеет максимальный коэффициент усиления по току и прирост мощности среди всех трех конфигураций. Причина в том, что вход находится в переходе с прямым смещением, поэтому его входное сопротивление очень низкое ().В то время как выход берется из перехода обратного смещения, поэтому его выходное сопротивление очень высокое.

Ток эмиттера в этой конфигурации равен сумме токов базы и коллектора. Задано в уравнении как;

I e = i c + i b

Где i e — ток эмиттера

Эта конфигурация имеет высокий коэффициент усиления по току, который составляет i c / i b . Причина такого огромного увеличения тока в том, что сопротивление нагрузки последовательно соединено с коллектором. Из уравнения видно, что незначительное увеличение базового тока приведет к чрезвычайно высокому току на выходной стороне.

Эта конфигурация действует как инвертирующий усилитель, в котором выходной сигнал полностью противоположен по полярности входному сигналу. Следовательно, он сдвигает выходной сигнал на 180 ° по отношению к входному сигналу.

Конфигурация с общим коллектором

Конфигурация с общим коллектором, известная как повторитель напряжения Эмиттерный повторитель или имеет заземленный коллектор.В конфигурации с общим коллектором клемма коллектора заземлена на источник питания. Таким образом, клемма коллектора является общей как для входа, так и для выхода. Выходной сигнал берется с клеммы эмиттера с последовательно подключенной нагрузкой, в то время как входной сигнал подается непосредственно на клемму базы.

Обладает высоким входным сопротивлением и низким выходным сопротивлением. Это позволяет ему работать как согласователь импеданса. Таким образом, эта конфигурация очень полезна в технике согласования импеданса.

BJT Biasing

Процесс установки уровней напряжения или тока постоянного тока транзистора таким образом, чтобы обеспечить надлежащее усиление подаваемого входного сигнала переменного тока.При дальнейшем уточнении, смещение — это метод, используемый для предотвращения работы транзистора либо в режиме отсечки, либо в режиме насыщения.

Чтобы сохранить выходной сигнал без потерь после усиления, необходимо правильное смещение. Работа в установившемся режиме в основном зависит от тока коллектора ( i c ), тока базы ( i b ) и напряжения коллектор-эмиттер ( V ce ). Если транзистор предназначен для правильной работы в качестве усилителя.Затем эти параметры должны быть выбраны правильно, что известно как смещение транзистора . Целью смещения транзистора является достижение известной рабочей точки покоя или Q-точки для BJT для получения неискаженного выходного сигнала. Q2 , приведенное на приведенном выше графике, не является правильной точкой q и приводит к ограничению верхней части выходного сигнала.

Типы смещения

Без смещения транзистор будет работать как изолятор или проводник.Итак, для правильной цели усиления BJT смещается с помощью различных методов. Хотя существует множество различных техник, но вкратце обсуждаются лишь некоторые из наиболее распространенных.

Фиксированное смещение

Один источник питания используется как для коллектора, так и для базы. В конфигурации с фиксированным смещением базовый ток BJT остается постоянным независимо от входного постоянного напряжения (V cc ). Это зависит от выбора резистора таким образом, чтобы точка Q оставалась фиксированной и, следовательно, известна как конфигурация с фиксированным смещением .Значение резистора смещения можно найти по номеру

(V cc -V be ) / I b .

, где В будет = 0,7 В для стандартных транзисторов и

I b = I c / β .

Преимущества фиксированного смещения

Обсуждаются некоторые преимущества этой схемы.

  • Нет эффекта нагрузки: Нет эффекта нагрузки.Где эффект нагрузки можно определить как воздействие нагрузки на источник. Используя эту схему для смещения, мы можем избавиться от понижающего уровня напряжения источника напряжения.
  • Простая схема: Схема очень проста, поскольку требует только одного постоянного резистора RB.
  • Простой расчет: Метод расчета очень прост.
Фиксированное смещение с сопротивлением эмиттера

Это модифицированная форма фиксированного смещения цепи, в которой внешнее сопротивление подключено к выводу эмиттера.Эта схема требует дополнительного резистора для эмиттера, обеспечивающего отрицательную обратную связь.

Напряжение смещения В BB -V BE = I B R B + I E R E должно появиться поперек RE установить I E ≈I c .

Цепь фиксированного смещения с сопротивлением эмиттера

Преимущества фиксированного смещения с конфигурацией эмиттера
  • Отсутствие теплового разгона: Недостаток теплового отклонения при фиксированном смещении можно преодолеть с помощью фиксированного смещения с эмиттером конфигурация сопротивления.Термический разгон можно определить как увеличение тока коллектора при повышении температуры. Это вызывает самоуничтожение из-за перегрева, вызванного перегрузкой по току.
  • Проблема с этой конфигурацией заключается в том, что она снижает коэффициент усиления усилителя BJT. Эту проблему очень легко решить, обойдя сопротивление эмиттера.
Смещение коллектора к базе

Резистор базы подключается к клемме коллектора при этом типе смещения. Эта конфигурация стабилизирует рабочую точку и предотвращает тепловой пробой за счет использования отрицательной обратной связи.Эта конфигурация также является улучшенной версией конфигурации с фиксированным смещением. Сопротивление смещения подключено между коллектором и базой, которые обеспечивают путь обратной связи. Смещение от коллектора к основанию — это улучшенный метод по сравнению с методом фиксированного смещения.

Эта конфигурация также известна как схема обратной связи со смещением напряжения . Потому что Rb напрямую появляется на выходе и входе. Другими словами, часть вывода возвращается на вход. Значит, в цепи существует отрицательная обратная связь.

Если есть изменение бета из-за разницы между частями или повышения температуры в бета и I , то ток коллектора пытается увеличиться дальше, из-за чего падение напряжения на R увеличивается.В результате уменьшается V ce и I b . Следовательно, окончательное значение коллектора I c поддерживается стабильным с помощью схемы, которая поддерживает точку Q на фиксированном уровне.

Эта схема также известна как схема смещения обратной связи по напряжению , потому что R b появляется непосредственно на входе и выходе в этой схеме. увеличение тока коллектора уменьшает ток базы.

Делитель напряжения смещения или делитель потенциала

Для этого типа используются два внешних резистора R 1 и R 2 .Напряжение на R 2 смещает в прямом направлении эмиттерный переход. При правильном выборе R 1 и R 2 рабочая точка транзистора может быть сделана независимой от Beta. Смещение делителя потенциала — самый популярный и используемый метод смещения транзистора. Эмиттерный диод смещен в прямом направлении, контролируя падение напряжения на R 2 .

R b = R 1 || R 2

В цепи смещения делителя напряжения значение R b равно параллельной комбинации R 1 и R 2 .

Схема смещения делителя напряжения:

Преимущество смещения делителя напряжения

Независимо от бета: Основным преимуществом схемы смещения делителя напряжения является то, что транзистор больше не будет зависеть от бета-сигнала. Причина в том, что напряжения на клеммах транзистора, то есть напряжения коллектора, эмиттера и базы, будут зависеть от внешней цепи. Сопротивление эмиттера R и обеспечивает стабильность усиления, несмотря на колебания бета-излучения.

Ограничения BJT

Вот некоторые ограничения биполярного переходного транзистора;

  • Громоздкие: BJT громоздки, требуют больше места и, следовательно, очень редко используются в производстве интегральных схем (ИС).
  • Низкая частота переключения: время переключения очень низкое, что является еще одной причиной того, что оно редко используется в IC По сравнению с MOSFET частота очень низкая
  • Ток утечки: Токов утечки с BJT достаточно, чтобы они не может использоваться для высокой частоты.
  • Температурная стабильность BJT: по сравнению с другими транзисторами, термическая стабильность BJT очень низкая, и это устройство шумно.
  • Температурный разгон: BJT страдает от проблемы теплового разгона, которая приводит к выделению избыточного тепла. Другими словами, это вызывает самоуничтожение. Поскольку выделяемое тепло равно I 2 Таким образом, избыточный ток вызовет чрезмерное тепло, которое сожжет BJT.
  • Ранний эффект: Ток от эмиттера к коллектору управляется током базы.Если ширина основания сдвинута к нулю, известному как пробивной, , то стык коллектора и эмиттера соприкасается друг с другом. После этого от эмиттера к коллектору начинает течь огромный ток, который не может контролироваться током базы. Этот выход из-под контроля известен как ранний эффект и является одним из основных ограничений среди ограничений BJT.

Уязвимость

Радиационное повреждение вызывает транзистор, когда транзисторы подвергаются воздействию ионизирующего излучения.Срок службы неосновного носителя уменьшается после воздействия излучения, что приводит к постепенной потере усиления транзистора.

Транзистор имеет номинальную мощность и напряжение обратного пробоя , при превышении которого BJT может не работать. Когда BJT работают за пределами своей номинальной мощности или напряжения обратного пробоя, BJT не будет работать должным образом или может выйти из строя.

В случае обратного смещения переход эмиттер-база вызовет лавинный пробой , который необратимо повредит коэффициент усиления по току биполярного переходного транзистора.

Преимущества BJT
  • Ширина полосы большого усиления: Ширина полосы усиления — это разница между максимальной и минимальной частотой среза. Коэффициент усиления на частоте среза составляет 0,7. При дальнейшем увеличении или уменьшении частоты от максимальной и минимальной частоты среза соответственно, усиление уменьшается, что неприменимо. Таким образом, BJT предлагает широкий диапазон частот, предлагая большее усиление, чем 0,7. Следовательно, BJT имеет огромную полосу усиления .
  • Низкое прямое падение напряжения: BJT имеют прямое падение напряжения 0,6 В, , что является очень низким и очень важным моментом. Это имеет большое значение, потому что большее прямое напряжение вызовет ненужные потери мощности согласно P = VI . Это означает, что для того же типа нагрузки устройство с высоким прямым падением напряжения вызовет ненужные потери мощности.
  • Пара Дарлингтона: Благодаря низкому выходному сопротивлению и высокому входному сопротивлению, BJT может обеспечить достойное усиление по току .
  • Долгий срок службы: BJT имеют относительно долгий срок службы. Устройство нагноивается, потому что ток насыщения увеличивается с течением времени. Хотя для решения этой проблемы и дальнейшего увеличения срока службы устройства могут использоваться различные методы смещения.

Связанные сообщения: В чем разница между транзистором и тиристором (SCR)?

Применение BJT

Вот некоторые из применений биполярного переходного транзистора;

  • Преобразователи: BJT могут использоваться в подавляющем большинстве преобразователей.Эти преобразователи могут быть разных типов, такие как инверторы, понижающие преобразователи, повышающие преобразователи или любые DC-DC , DC-AC , AC-DC или AC-AC
  • Датчики температуры: Определение температуры это одно из других приложений BJT. Если это может быть найдено по двум напряжениям на двух разных уровнях в известном соотношении, вычитается
  • Высокая управляемость : Высокая управляемость. Для обеспечения возможности работы с высоким напряжением или током устройства подключаются последовательно и параллельно, соответственно.Но всегда учитываются возможности управления отдельными устройствами.
  • Высокочастотный режим: BJT могут работать на очень высокой частоте. Частота BJT для слабого сигнала намного выше, чем его частота переключения, в основном из-за задержки сохранения. Время хранения 2N2222 составляет 310 нс, таким образом, максимальная частота переключения составляет около 3 МГц.
  • Цифровой переключатель : Семейство цифровых логических схем включает логику с эмиттерной связью, используемую в BJT в качестве цифрового переключателя.
  • Колебательный контур : Они предпочтительны в колебательных контурах.
  • Машинки для стрижки: BJT можно использовать в схемах отсечения для изменения формы волн. Его можно использовать как простой диод для ограничения, но проблема с диодом заключается в том, что диод не управляется.
  • Демодулятор и модулятор: BJT могут использоваться в схемах демодуляции и модуляции. BJT все еще используются в очень старой известной технике модуляции, известной как « Амплитудная модуляция ».
  • Схемы обнаружения : BJT могут использоваться в схемах обнаружения. BJT может быть новым типом полупроводникового датчика для измерения дозы ионизирующего излучения.
  • Усилители: Одним из наиболее важных применений BJT является усиление, когда он используется в схеме усилителя для усиления слабых сигналов. например, в усилителях звука, эти крошечные компоненты усиливают очень слабый аудиосигнал до слышимого диапазона.
  • Электронные переключатели: Может использоваться как электронный переключатель.BJTS используются в инверторе для изменения направления постоянного тока на переменный ток.
  • Автоматический выключатель: Может использоваться вместо ручного выключателя в электрической цепи. выходной сигнал датчиков иногда бесполезен в электрических цепях, потому что эти сигналы очень низкие. Однако эти сигналы станут полезными, если они управляют BJT. Поскольку BJT работает на слабых сигналах. Тогда эти переключатели BJT могут работать с большими нагрузками, включая двигатели.

Похожие сообщения:

Shahram Marivani — ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА

ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА

ЗАДАЧИ:

Ознакомиться с теорией работы биполярных переходных транзисторов (БЮТ). и изучить V-I характеристики BJT

ВВЕДЕНИЕ:

Тип транзистора (NPN или PNP) можно определить с помощью мультиметра.Тест проверяет полярность переходов база-эмиттер и база-коллектор. Этот тест необходимо выполнить в начале лабораторного сеанса. Для BJT есть три региона работы;

  1. Активная область: в этой области базовый эмиттерный переход смещен в прямом направлении, а переход база-коллектор имеет обратное смещение. Эта область — нормальный транзистор режим работы на усиление и характеризуется коэффициентом усиления транзистора по току значение, бета.
  2. Область отсечки: в этой области переходы база-эмиттер и база-коллектор обратное смещение, и транзистор действует как разомкнутый переключатель. (Я С = 0)
  3. Область насыщения: в этой области переходы база-эмиттер и база-коллектор смещен в прямом направлении, и транзистор действует как замкнутый переключатель. (V CE = 0)

В активной области транзистора определена добротность для количественной оценки способность транзистора усиливать входной сигнал.Этот параметр определяется как соотношение между I C и I B , которое обычно называется β-фактором. Аналогично коэффициент α равен определяется как отношение между I C и I E . Таким образом;

β = I C / I B и α = I C / I E

Легко показать, что β = α / (1 — α) и α = β / (β + 1). Как показывает практика, чем больше значение β, тем выше коэффициент усиления транзистор, т.е.е. тем лучше транзистор. Типичные значения β находятся в диапазоне от 80 до 300 или выше.

РАБОТА В ЛАБОРАТОРИИ

  1. Определите тип транзистора, используя сопротивление перехода постоянного тока транзистора:
    Проверьте тип транзистора для каждого блока, проверив полярность базы-эмиттера соединение. Используйте мультиметр Fluke в режиме сопротивления. Сведите ваши измеренные данные в таблицу. Для данного транзистора (2N3904) измерьте сопротивление прямого и обратного смещения. между базой и эмиттером, базой и коллектором и коллектором и эмиттером.Выводы этого транзистора показаны на Рисунок 1.

  2. Рисунок 1 — Упрощенная схема и подключение выводов транзистора 2N3904
  3. I C — V BE Характеристика биполярного переходного транзистора:
    Подключите испытательную схему транзистора, как показано на рисунке 2. Установите напряжение постоянного тока (V B ) на нулевого напряжения и V CC до 10 В. Увеличивайте V B с шагом 0,1 В и измерьте напряжение постоянного тока между базой и эмиттером (V BE ), постоянный ток через коллектор I C и ток через базу I B .Сведите свои показания в ясную таблицу и постройте график зависимости I C от V BE . Убедитесь, что вы взяли достаточно точек данных, чтобы построить типичную характеристику. БЮТ. Вычислить β для каждой измеренной точки данных и свести в таблицу рассчитанные значения β с измеренными данными. График β по сравнению с V BE .

  4. Рисунок 2 — Тестовая схема для измерения характеристик биполярного транзистора V BE и I C
  5. Измерение I C в сравнении с характеристикой V CE биполярного транзистора:
    Используя испытательную схему на Рисунке 2, отрегулируйте V B , чтобы генерировать ток 50 мкА в базе транзистор.Измените V CC , чтобы изменить V CE . Выберите разумные шаги для V CE (маленькие шаги при более низких напряжениях; 0,1 В для значений от 0 до 1,0 В и большие шаги при более высоких напряжениях; 1,0 В для значений выше 1,0 В). Измерьте V CE и I C .
    Повторите вышеуказанное измерение для I B = 100 мкА, 150 мкА и 200 мкА. Постройте набор кривые для I C в сравнении с V CE для постоянного I B .
    По измеренным данным определите диапазон V CE , в котором I C близок к нулю ампер.
    Найдите значение α из этого набора измеренных данных, затем вычислите β. Сравните значение β, полученное в результате этого измерения, и значение β, полученное в результате измерения выполнено в 2.

Обозначения схем биполярных транзисторов »Примечания по электронике

Условные обозначения схем для различных форм биполярных транзисторов: NPN, PNP, Дарлингтона, светочувствительный транзистор или фототранзистор. .


Цепи, схемы и символы Включает:
Обзор схемных символов Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, переключатели и соединители Блоки аналоговых и функциональных схем Логика


Для биполярных транзисторов не так много условных обозначений схем.Конечно, существуют разные символы схем для обозначения транзисторов NPN и PNP.

В дополнение к этому, некоторые символы схем транзисторов имеют кружок вокруг них, а другие нет. Те, у которых нет, широко используются в схемах, детализирующих внутреннюю схему ИС, поскольку легче включить несколько эмиттеров и другие варианты базового транзистора, если круг не включен.

Другие символы схем биполярных транзисторов включают символы фототранзисторов, транзисторов Дарлингтона и т. Д.


Обозначения цепи биполярного транзистора
Описание транзистора Обозначение цепи
Транзистор биполярный NPN
Транзистор биполярный PNP
Транзистор биполярный NPN
с маркированными электродами.
Биполярный транзистор NPN
без внешнего круга
Фототранзистор биполярный NPN
Биполярный фототранзистор NPN
без подключения к базе
Фототранзистор биполярный NPN
NPN фотодарлингтон
Обозначение цепи транзисторной оптопары
Предыдущая страница Следующая страница

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Типы биполярных переходных транзисторов

Есть два типа биполярных переходных транзисторов (BJT), которые приведены ниже;

  1. NPN транзистор с биполярным соединением.
  2. PNP транзистор с биполярным соединением.

NPN Биполярный переходной транзистор

В транзисторе NPN ток проводится электронами, поскольку они являются основными носителями заряда, а дырки являются неосновными носителями заряда.Дырки имеют положительный заряд, а электроны — отрицательный.

Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем полупроводника p-типа.

NPN-транзистор имеет три вывода: эмиттер, база и коллектор. Он имеет два PN-перехода, а именно переход между базой и эмиттером (B-E) и переход между коллектором и базой (C-B).

NPN-транзистор с биполярным переходом в основном используется, потому что подвижность электронов выше подвижности дырок.

Биполярный переходной транзистор NPN

Принцип действия:

NPN-транзистор в режиме прямого смещения, то есть переход эмиттер-база (E-B) транзистора смещен в прямом направлении батареей V EE , переход коллектор-база (C-B) смещен в обратном направлении батареей V CC.

Если напряжение V EB превышает потенциал барьера, который составляет 0,7 В для кремния и 0,3 В для германиевых транзисторов, то переход эмиттер-база (E-B) смещается в прямом направлении.

В прямом смещении на переходе эмиттера с базой из-за основных носителей в свободном электронном потоке n-типа к базе p-типа это составляет ток эмиттера I E .

Достигнув базовой области, свободный электрон соединяется с дыркой в ​​базе. Электроны соединяются с дырками в основной области, они составляют базовый ток I B .

Большинство электронов не соединяются с дырками в основной области. Потому что база слегка легированная и очень тонкая.

Большая часть электронов диффундирует в область коллектора и составляет ток коллектора I C .

Коллекторный ток создается за счет инжекции электронов из области эмиттера, также называется инжектированным током.

Таким образом, почти весь ток эмиттера протекает в цепи коллектора.

Стандартные направления тока эмиттера I E , тока базы I B и тока коллектора I C , как показано на рисунке выше.

I E = I B + I C

Базовый ток очень мал по сравнению с током коллектора, поэтому

I E = I C

Биполярный переходной транзистор NPN

PNP Биполярный переходной транзистор

В транзисторе PNP ток проходит через дырки, поскольку они являются носителями основных зарядов, а электроны являются носителями неосновных зарядов.

Транзистор PNP состоит из двух полупроводниковых материалов p-типа, разделенных тонким слоем полупроводника n-типа.

Транзистор PNP имеет три вывода: эмиттер, база и коллектор. Он имеет два PN-перехода, а именно переход от базы к эмиттеру (B-E) и переход от коллектора к базе (C-B).

Биполярный переходной транзистор PNP

Принцип действия:

Работа транзистора PNP аналогична работе транзистора NPN.

Рис.показывает NPN-транзистор в режиме прямого смещения, то есть переход эмиттер-база (E-B) транзистора смещен в прямом направлении батареей V EE , переход коллектор-база (C-B) смещен в обратном направлении батареей V CC .

Если напряжение V EB превышает потенциал барьера, который составляет 0,7 В для кремния и 0,3 В для германиевых транзисторов, то переход эмиттер-база (E-B) смещается в прямом направлении.

В прямом смещении на переходе базы эмиттера из-за основных носителей, то есть дыр в области эмиттера, которые текут к области базы.Это составляет ток эмиттера I E .

После пересечения эмиттера с базой (E-B) дырки переходят в базовую область и объединяются с основными носителями, то есть дырками, которые присутствуют в базовой области. Дырки объединяются со свободными электронами в базе и протекает ток, хотя он называется базовым током I B .

Большинство дырок не объединяются с электронами в основной области. Это потому, что основание слегка легировано и очень тонкое.

Из-за этого дырки не получали достаточно электронов для рекомбинации. Следовательно, большинство отверстий возвращаются в область коллектора, и ток, производимый в этой области, равен току коллектора I C .

Этот ток коллектора также называется инжектируемым током, потому что этот ток создается за счет дырок, инжектируемых из этой области.

Из-за термически генерируемых носителей возникает еще одна небольшая составляющая тока коллектора. Эта составляющая тока называется током обратного насыщения (I CO ) и довольно мала.

Таким образом, почти весь эмиттерный ток I E протекает в цепи коллектора.

В ПНП токопроводящие дырочки. Однако во внешних соединительных проводах ток по-прежнему осуществляется свободными электронами.

Условные направления эмиттерных токов I E , базовых токов I B и коллекторных токов I E соответственно на рис. Эмиттерные токи складываются из токов базы и коллектора.

I E = I B + I C

Базовый ток очень мал по сравнению с током коллектора.

I E = I C

Биполярный переходной транзистор PNP

Нравится4 Дизлайк1

Схема транзистора «Классификация» | Основы электроники

Классифицируется по форме.

Размер и форма транзистора определяются потребляемой мощностью и способом монтажа. Транзисторы можно разделить на выводы с выводами и на поверхность.

Типовые формы транзисторов

(На рисунках показаны виды в разрезе)

Миниатюрный транзистор поверхностного монтажа Транзистор вставного типа

Классификация по конструкции

Транзисторы

обычно делятся на два основных типа в зависимости от их конструкции. Эти два типа представляют собой транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).

Биполярные транзисторы

Слово «биполярный» состоит из двух корневых слов.Би (что означает «два») и полярный (что означает «противоположности»). Биполярный транзистор — это транзистор, в котором ток через транзистор передается через отверстия (положительная полярность) и электроны (отрицательная полярность). Транзисторы с биполярным переходом были первым типом транзисторов, которые начали массово производиться в 1947 году в виде транзисторов с точечным контактом (Bell Labs). Они представляют собой комбинацию двух переходных диодов и образованы либо из тонкого слоя полупроводника p-типа, зажатого между двумя полупроводниками n-типа (транзистор n – p – n), либо из тонкого слоя полупроводника n-типа, зажатого между два полупроводника p-типа (транзистор ap – n – p).

полевые транзисторы

Полевые транзисторы (полевые транзисторы) обычно можно разделить на три различных типа; полевые транзисторы переходного типа, полевые транзисторы типа MOS (металл-оксид-полупроводник) и полевые транзисторы типа MES (металл-полупроводник). Полевые транзисторы переходного типа в основном используются в аналоговых схемах, например, в звуковом оборудовании, а полевые транзисторы типа МОП используются в основном в цифровых ИС, таких как те, которые используются в микрокомпьютерах. Полевые транзисторы типа MES используются для усиления микроволн, например, в приемопередатчиках спутникового вещания.

Классификация по допустимой мощности

Существует две широких классификации транзисторов в зависимости от их допустимой мощности: малосигнальные транзисторы и силовые транзисторы.Эти классификации основаны, прежде всего, на максимальном номинальном значении рассеиваемой мощности коллектора Pc.

Малосигнальные транзисторы

Это транзисторы, у которых максимальный ток коллектора (IC (max)) составляет около 500 мА или меньше, а максимальная рассеиваемая мощность коллектора (Pc (max)) меньше 1 Вт. Эти транзисторы называются малосигнальными транзисторами, чтобы отличать их от силовых транзисторов, и имеют то свойство, что они, как правило, представляют собой формованные из эпоксидной смолы.

Силовые транзисторы

Если Pc транзистора составляет 1 Вт или более, его обычно классифицируют как силовой транзистор.По сравнению с малосигнальными транзисторами, силовые транзисторы имеют больший максимальный ток коллектора, максимальную рассеиваемую мощность коллектора, а также имеют больший размер для удовлетворения тепловыделения. Обычно они экранированы металлом или имеют конструкцию с теплоизлучающими ребрами.

В Японии транзистор называют «камнем». Слово «транзистор» — это комбинация передачи и резистора. Поскольку транзистор сделан из кремния, который является основным элементом всех горных пород и камней на Земле, многие японские дизайнеры называют транзистор камнем.

Классификация по типу интеграции

Помимо транзисторов дискретного типа, ROHM также производит композитные транзисторы. Они объединяют несколько транзисторов вместе, чтобы удовлетворить различные потребности пользователей. К ним относятся цифровые транзисторы со встроенными резисторами, массивы транзисторов, состоящие из нескольких транзисторов в одном корпусе, и транзисторные блоки со встроенными простыми схемами.

Дискретные транзисторы

Это транзисторы в индивидуальной упаковке.Они становятся менее распространенными, поскольку подавляющее большинство транзисторов в настоящее время производится в интегральных схемах вместе с диодами, резисторами, конденсаторами и другими электронными компонентами для создания законченных электронных схем.

Композитные транзисторы

Составной транзистор (иногда известный как транзистор Дарлингтона) представляет собой комбинацию двух или более транзисторов (обычно транзисторов с биполярным переходом) с целью увеличения коэффициента усиления по току.

* Цифровые транзисторы

Цифровой транзистор — это биполярный транзистор со встроенными резисторами.Это стандартные транзисторы, которые используются в схемотехнике.

Транзистор .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *