Тип транзистора как определить: Виды, типы, характеристики, принцип работы

Содержание

Как определить неисправный транзистор — Морской флот

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Как” определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

>

Как проверить работоспособность разных видов биполярных транзисторов мультиметром? Как проверить биполярный транзистор

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э .

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до

1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области . Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой , которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными .

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Технологии проверки

Биполярный

Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.

Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.

Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.

Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:

  • База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
  • База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
  • Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.

При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.

На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:

Полевой

Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.

На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.

Рисунок 3 – Структурная схема ПТ

Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.

Рисунок 4 – Антистатический браслет

Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.

«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».

Технология проверки полевого транзистора показана на видео:

Составной

Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.

Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.

При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.

В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.

Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.

Выводы :

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Как проверить биполярный транзистор мультиметром?

Биполярный транзистор состоит из двух . Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.

На рисунке ниже структурная схема PNP-транзистора:

Схематическое обозначение PNP-транзистора в схеме выглядит так:

где Э — это эмиттер, Б — база, К — коллектор.

Существует также другая разновидность биполярного транзистора: NPN-транзистор. Здесь уже материал P заключен между двумя материалами N.


Вот его схематическое изображение на схемах

Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!


Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать .

Проверяем транзистор с помощью мультиметра

Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:


Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся английскими буквами.

Нас больше всего интересует распиновка контактов и какого он типа: NPN или PNP. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор.

А вот и схемка распиновки:


Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.

Возвращаемся к нашему рисунку


Наш подопечный — это NPN-транзистор.

Ставим на прозвонку и начинаем проверять «диоды» транзистора. Для начала ставим «плюс» к базе, а «минус» к коллектору


Все ОК, прямой PN-переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.

Проверяем переход база-эмиттер, поставив на базу «плюс» , а на эмиттер «минус».


Видим снова падение напряжения прямого PN перехода. Все ОК.

Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.

Все ОК, так как видим единичку.

Проверяем теперь обратное падение напряжения перехода база-эмиттер.


Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору — здоров.

Давайте проверим еще один транзистор. Он подобен транзистору, который мы вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.


Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.

Очень удобно проверять транзисторы, имея

Заключение

В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь заморская микросхема. Поэтому, не ленитесь пользоваться интернетом.

Как проверить тарнзистор — тестирование биполярных, полевых, цифровых, однопереходных транзисторов

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды. Именно с этого мы и начнем…

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5…0,8 В, для германиевых — 0,2…0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Как проверить исправность транзистора

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов, так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45…0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления — более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2…1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. «программировать» его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже — для ОПТ — рис. слева, для программируемого ОПТ — рис. справа).

Рис. 3

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа — схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение — «тестирование цифровых транзисторов затруднено… Лучший вариант — замена на заведомо исправный транзистор». Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 — 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор, с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором — истоком (3-И) и затвором — стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток — сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя — стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором — истоком и затвором — стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй — между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление — около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа — требования к напряжению на выводах — второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом — к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов — определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» — транзистор структуры n-p-n, если «-» — структуры р-n-р.

Как проверить транзистор | Электрик



Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов


Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и  n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.

Проверка транзистора стрелочным тестером


Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?


У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора


Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник


В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.


Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора

  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)

  • Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)

  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт

  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.

  • Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется

  • Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.


Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов


Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.

Как проверить транзистор мультиметром не выпаивая

Как проверить биполярный транзистор мультиметром

Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h31э.

Проверка транзистора

Однако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.

Эквивалентные схемы транзисторов

Так можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор – база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.

Но напряжение источника питания, приложенное к переходу эмиттер – коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.

Как проверить p-n-p транзистор мультиметром

Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.

Находим обратное сопротивление переходов

Минус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 – 1200 Ом. Чтобы проверить переходы коллектор – база и эмиттер – база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.

Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.

Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.

Как найти цоколевку транзистора мультиметром

Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.

Как найти эмиттер и коллектор

Допустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.

На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база – коллектор имеет меньше значение сопротивления, чем переход база – эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.

Как проверить мощный биполярный транзистор и его цоколевку!!!

типы, режимы и инструкции, разбивка

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

Устройство транзисторов

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор – два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

Схема проверки транзистора

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h – касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие – просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка диода

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

Как проверить транзистор самому: способы и правила

Транзисторы, наряду с конденсаторами, резисторами, — одни из основных элементов на платах электроприборов, почти всегда присутствуют в схемотехнике. Эти детали от небольшого импульса управляют током, поэтому некорректный подбор, любая поломка ведет к существенному нарушению функциональности устройств, а часто из-за этого они перегорают. Опишем способы, как проверить транзистор, а это потребуется сделать при анализе неисправностей электроприборов и при подборе запчастей для сборок.

Что такое транзистор

Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.

Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.

Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.

Разновидности по принципу действия:

  • биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
  • полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.

У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.

Зачем проверять

Когда затребована проверка транзистора:

  • новые элементы перед сборкой схем крайне рекомендовано перепроверить;
  • при поломке электроприбора. Неполадки описываемых запчастей редкие, но их неисправности (чаще всего возникают пробои) не исключены.

Проверка биполярных типов

Ниже схема проверки npn, pnp транзисторов тестером, после нее распишем процедуру по пунктам.

Биполярный транзистор снабжен p-n линиями — условно, это диоды, а точнее, 2 таковых расположенных встречно, точка их пересечения — «база».

Один условный диод сконструирован контактами базы/коллект., иной — базы/эмит. Для анализа хватит посмотреть сопр. (прямо и обратно) указанных участков: если там нет неполадок, то деталь без изъянов.

Проверка своими руками без выпаивания биполярного pnp, npn транзистора предполагает прозвонку 3 комбинаций ножек:

Вариант p-n-p

Структуры (типы) показывает стрелка эмит. участка: p-n-p/n-p-n (к базе/от нее). Начнем с проверки первого варианта. Раскрываем p-n-p деталь подачей на базу минусового напряжения. На мультиметре селектор ставим на замеры Ом на отметку «2000», допускается также выставлять на «прозвонку».

Жила «−» (черная) — на ножку базы. Плюс (красная) — поочередно к коллект., эмит. Если участки не поврежденные, то отобразят около 500–1200 Ом.

Дальше опишем, как прозвонить обратное сопр.: «+» – на базу, «−» — на колл. и эмит. Должно отобразиться высокое сопр. на обоих p-n участках. У нас появилась «1», то есть для выставленной рамки в «2000» значение превышает 2000. Значит, 2 перехода без обрывов, изделие исправное.

Аналогично, как описано, можно прозвонить на исправность транзистор, не выпаивая из схемы. Реже есть сборки, где к переходам применено основательное шунтирование, например, резисторами. Тогда, если отобразится слишком низкое сопр., потребуется выпаивать деталь.

Структура n-p-n

Элементы n-p-n проверяются аналогично, только на базу от тестера идет щуп «+».

Признаки неисправности

Если сопр. (прямое и обратное) одного из участков (p-n) стремится к бесконечности, то есть на отметке «2000» и выше на дисплее «1», значит, данный участок имеет обрыв, транзистор не годный. Если же «0» — изделие также с изъяном, пробит участок. Прямое сопр. там должно быть 500–1200 Ом.

Где база, коллектор, эмиттер

Определяем базовую ножку (режим тот же — «2000 Ом»): «+» тестера касаемся левого контакта, «−» — остальных поочередно.

Ножки левая/средняя «1», левая/правая — 816 Ом. Пока это малоинформативно. Щупом «+» — на средний контакт, «−» — на остальные.

Результат схожий. Следующий этап: «+» на правую ножку, «−» — на среднюю и затем на левую.

Получаем по «1», то есть сопр. одинаковое на этих участках и оно идет к бесконечности. Выходит, что мы замерили обратную эту величину на обоих p-n сегментах. Итак, база — это правая ножка. Но полная процедура как проверить исправность предполагает нахождение колл. и эмит. замерами прямого сопр. Минусом касаемся базового вывода, «+» — остальных.

Ножка слева — 816 Ом, это эмит., средняя — 807 Ом, это коллект., там значение всегда ниже.

Итог такой:

  • имеющийся тип — p-n-p;
  • база справа, эмит. — слева; колл. — посередине.

Особенности транзисторов по мощности

Транзисторы выпускаются высоко, средне и маломощными. У первых двух коллект. напрямую связывается с корпусом и размещен между базой и эмит. (посередине). Такие изделия имеют радиаторы, они интенсивно нагреваются.

Проверка полевых транзисторов

Прозвонка, не выпаивая, полевого транзистора, схожая как для не смонтированного экземпляра. Полевики чувствительные к статике — перед мероприятием ее снимают заземлением. Достаточно прикоснуться одной рукой к запчасти, другой — к отопительным батареям. Для проверки полевых транзисторов перед процедурой определяют их цоколевку.

Метки, по которым можно определить выводы (не всегда есть, особенно на отечественной продукции): S — исток, D — сток, G — затвор. Смотрят также техдокументацию, данные есть в интернете.

Как проверить полевой транзистор:

  1. Снимаем статику.
  2. Ставим режим для полупроводников («прозвонка»).
  3. Красный провод «+» и черный «–» вставляем в соответствующие гнезда мультиметра.
  4. «+» к истоку, «−» — к стоку. Рабочее состояние — 0.5–0.7 В.
  5. Меняем щупы. Если цифры идут к бесконечности — транзистор исправный.
  6. «+» к затвору, «−» к истоку, происходит открытие. Последний провод не отсоединяем, первым — к стоку. Рабочий экземпляр покажет 0–800 мВ. Меняем полярность проводков — значения не должны меняться.
  7. Выполняем закрытие: «−» — на затвор, «+» — на исток.

Определяют исправность полевика по его открытию/закрытию (наблюдается ли это вообще) подачей слабого вольтажа с тестера. Входная емкость в элементе большая, для разрядки требуется определенное время. Это имеет значение, так как сначала происходит открытие небольшим напряжением мультиметра (п. 4), а далее надо провести замеры в рамках короткого периода (п. 6, 7).

Процедура как проверить полевой транзистор p типа такая же, как и для n, только подсоединять надо красный щуп к «−», а черный — к «+», то есть поменять полярность.

Составные транзисторы

Чтобы проверить составной транзистор, надо его запустить. Удобно применять стрелочный тестер, установленный на анализ сопр. (1000 или 2000 Ом). Для типа n-p-n: щуп «+» — на коллект., минусовый — на эмит. Для pnp — наоборот. Стрелка будет нерушимой (в начале секции «бесконечность»), а в цифровом мультиметре «1». Если увлажнить палец и сделать замыкание, прикоснуться им к ножке базы и коллектора, то стрелка подвинется, так как деталь чуть приоткроется. Исправность транзистора подтверждена.

Проверка IGBT

IGBT имеют изолированный затвор, это 3-электродные силовые полупроводниковые элементы. Тут каскадным включением соединяются 2 транз. в 1 структуре: полевик и биполярный (управляющий и силовой каналы).

Проанализировать можно транзистор на плате и выпаянный аналогичным методом. Тестер ставят на анализ полупроводников («прозвонка», значок диода) или сопр. 2000 Ом. Затем замеряют сопр. на участке эмит./затвор прямо и обратно. Так выявим замыкание, если оно есть. Далее, красный провод подключают к эмит., черным делают краткое касание затвора. Происходит заряд последнего отрицательным напряжением, транзистор останется закрытым.

Следующий пункт — надо подтвердить функциональность. Заряжают плюсовым напряжением входной участок затвор-эмит.: одновременно коротко красной жилой касаются затвора, черной — эмит.

Далее, проверяем переходную точку между колл. и эмит.: красный провод к первому, черный — к другому. Если отобразится слабое падение значения на 0.5–1.5 В и величина будет несколько сек. стабильной, то вх. емкость целая, транзистор рабочий.

Проверка мощных высоковольтных транзисторов имеет особенность. Если напряжения мультиметра не хватает, чтобы открыть IGBT, то для его зарядки на выходе используют источники на 9–15 В, например, батарейку «крону» 9 В.

Цифровые транзисторы

Цифровой транзистор — особый вид, есть особенности как правильно его проверить.

Составными частями цифровых транзисторов являются резист. (R1 и 2), их номинал одинаковый (10, 22, 47 кОм) или смешанный, разный. Внешне изделие имеет обычный вид, но при «прозвонке» возникают существенные различия.

Удобный прибор для проверки транзисторов — ампервольтметр, можно взять и multimeter. При прямонаправленности, при открытом сегменте, на тестере появится сопр. приблизительно сравнимое с базовым резист. R1. При изменении полярности щупов точка база/эмит. закрытая, ток течет через последовательно включенные резист. R1 (10 кОм) и 2 (22 кОм), на табло будет сумма их сопр., в нашем примере 32 кОм.

Сегмент база-эмит. (VD2) шунтируется резистором R2. Сопротивление там должно быть примерно в 10 раз ниже R2, а при смене полярности АВОметра — бесконечно большим.

Проверка тиристоров

Рассмотрим также как прозванивать тиристоры, они во многом напоминают рассматриваемые детали. Тут есть 3 p-n сегмента, а режим после сигнала управления не меняется — в этом и заключается разница. Структуры идут поочередно как полосы на зебре. Thyristor открыт, пока значение протекающей величины не спадет «до тока удержания». Такие детали позволяют создавать экономные схемы.

Мультиметр ставят на отметку 2000 Ом. Чтобы открыть проверяемый thyristor, черную жилу — к катоду, красную — к аноду. Деталь открывается как зарядом «+», так и «−». В двух случаях сопр. должно быть меньше «1». Деталь открытая, если величина управляющего импульса превысит рамку удержания, если меньше — ключ закрывается.

Сборка кустарного пробника

Самодельный прибор (пробник) позволит мгновенно определить исправность transistor любого типа. Приведем элементарную действенную схему.

Что потребуется (всего рабочих 3 компонента):

  • основа — любой небольшой понижающий трансф. (из импульсн. БП, балласта лампочек экономок, небольших электроприборов). У нашего первичка из 24 витков со средним отводом; вторичка — 15;
  • далее, 2 элемента. Светодиод подсоединяется к вторичке через резист. 100 Ом, мощность его не важная, как и полярность первого элемента, поскольку на выходе возникает переменная величина.

Есть также гнездо для вставки проверяемых деталей согласно цоколевке. Для биполярных прямопроводных типов (КТ 814…818 и так далее) база идет через резист. на один из контактов трансформ., средний вых. которого (отвод) подключен к «+» питания. Эмит. подсоединяем к «−» питания, коллект. — к свободному вых. первички. Если проводимость у детали обратная, то просто меняем «+» и «−». Аналогично с полевиками, главное — соблюсти цоколевку. Если после подачи питания появится свет, то изделие рабочее.

Пробник запитывается от 3.7–6 В, подойдет свинцовая или литий-ионная аккумуляторная батарейка.

Итог

Любой транзистор проверяется мультиметром. Надо узнать назначение его ножек (база/колл./эмит., сток/исток/затвор). Далее, тестер поставить на «прозвонку» или на отметку 2000 Ом. Затем проанализировать прямое и обратное сопр. По результату можно определить работоспособность транзистора. А также можно проанализировать коэф. усиления: на тестере есть специальное гнездо и отметка hFE.

Видео по теме

Тест транзисторов

для определения клемм, типа и состояния

Как выполнить тест транзистора для определения клемм, типа (NPN или PNP) и состояния (хорошее или плохое)

Как мы знаем, транзистор является наиболее часто используемым компонентом в любом проекте, схеме или устройстве, но вы не можете использовать его до испытания транзистора. Самая важная задача в любом проекте или построении схемы — это знать « Как выполнить тест транзистора ». Этот тест транзистора поможет вам в идентификации терминала , NPN / PNP и Хорошие / поврежденные транзисторы .

Этот тест применим только для транзисторов BJT . Итак, перед любым тестом транзистора нам нужно узнать о структуре BJT.

Транзистор (БЮТ)

BJT (Bipolar Junction Transistor) — это трехконтактный полупроводниковый прибор. Он состоит из двух диодов P-N , соединенных вместе, образуя три слоя, известные как Base, Emitter & Collector .

Существует два типа транзисторов в зависимости от полярности слоев.

НПН

В этом BJT Base , то есть P-легированный слой , зажат между N-легированными слоями, известными как Collector & Emitter .

Разница между коллектором и эмиттером заключается в том, что эмиттером является сильно легированный слой .

NPN соответствует двум диодам, соединенным вместе клеммой анода, как показано на рисунке ниже.

Также читайте: Разница между силовым трансформатором и распределительным трансформатором

PNP

PNP-транзистор состоит из легированного N слоя ( Base ), зажатого между P-легированными слоями, известными как Collector & Emitter .

Транзистор

PNP соответствует двум диодам, катодный вывод этих двух диодов сплавляется вместе, как показано на рисунке ниже.

Также прочтите: Как проверить реле?

В этом тесте транзисторов используется функция мультиметра для проверки диодов. Итак, для этого теста транзистора вам нужно знать о тесте диода .

режим проверки диодов:

Прямое смещение P-N переход: мультиметр считывает напряжение и подает звуковой сигнал.

Соединение P-N с обратным смещением: мультиметр показывает OL (превышение предела)

Идентификация терминала

Первым шагом в тесте транзистора является идентификация выводов (база , эмиттер и коллектор ) транзистора.

Для начала нужно обозначить выводы транзистора номерами 1,2,3 . Для этого возьмите транзистор плоской стороной к себе и начните с левой стороны, как показано на рисунке ниже.

Читайте также: Тиристор | Его работа, типы и применение

Идентификация базового терминала
  • Перевести мультиметр в режим проверки диодов .
  • Поместите черный (общий) зонд и красный зонд на любые две клеммы одновременно.
  • Проверьте все возможные комбинации клемм, например, 1-2 , 1-3 , 2-1 , 2-3 , 3-1 , 3-2 .
  • Две из этих комбинаций должны пройти проверку диодов (показания показывают напряжение 0.От 5 В до 0,8 В ), общая клемма в этих двух комбинациях является базовой клеммой .
  • Предположим, 2-1 и 2-3 комбинаций прошли проверку диодов, тогда 2 является базовым выводом.

Идентификация эмитента и коллектора

После успешной идентификации базового терминала два терминала ( 1 и 3 ) остаются неизвестными. если вы идентифицируете второй терминал, впоследствии вы также узнаете и третий терминал.

  • Установите мультиметр в режим проверки диодов .
  • Запишите показания напряжения клеммы базы с обеих клемм 1 и 3 по очереди.
  • Клемма, имеющая на более высокое напряжение между ними, — это Эмиттер .
  • Терминал с более низким напряжением по сравнению с другим Коллектор .

В этом примере предположим, что показание напряжения 2-1 = 0.6 В и 2-3 показание напряжения = 0,7 В

  • Итак, Эмиттер — это клемма 3, а Коллектор — это клемма 1.

Также прочтите: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

Тип: NPN или PNP

Следующим шагом в тесте транзистора является определение типа датчика: NPN или PNP .

Этот шаг зависит от результатов вышеуказанного теста транзистора.

Тест NPN
  • Перевести мультиметр в режим проверки диодов .
  • Поместите зонд Red (положительный) на Base клемму и черный (общий или отрицательный) клемму на Emitter и Collector по очереди.
  • Если они проходят проверку диодов, это означает, что переходы имеют прямое смещение и это транзистор NPN .

Если вы не знаете терминалы.

  • Установите мультиметр в режим проверки диодов .
  • Проверьте все шесть комбинаций клемм для проверки диодов.
  • Обратите внимание на двух комбинаций, , у которых тест диодов положительный (мультиметр издает звуковой сигнал или показывает напряжение).
  • Если общая клемма в этих двух комбинациях подключена к красному щупу мультиметра, то это транзистор NPN .
Тест PNP Тест транзистора

PNP немного отличается от теста транзистора NPN .

  • Переведите мультиметр в режим проверки диодов .
  • Соедините датчик Black (общий) с Base и датчик Red с эмиттером и коллектором по очереди.
  • Если обе эти комбинации проходят проверку диодов, транзистор PNP .

Если вы не знаете терминалы.

  • Проверьте все (шесть) возможных комбинаций клемм для проверки диодов .
  • Обратите внимание на две комбинации , которые проходят проверку диодов.
  • Если общая клемма в этих двух комбинациях подключена к Black или общему щупу мультиметра, используется транзистор PNP .

Проверка транзистора (исправна или повреждена)

Этот тест транзистора помогает нам определить, является ли транзистор исправным или поврежденным .

Установите мультиметр в режим проверки диодов и проверьте все возможные комбинации для проверки диодов.Запишите показания для каждой комбинации.

Если транзистор соответствует показаниям, приведенным в таблице ниже, это хорошо .

Если показания не совпадают с приведенной выше таблицей, транзистор поврежден и его необходимо заменить .

Вы также можете прочитать:

Как определить клеммы и тип транзистора с помощью цифрового мультиметра?

Требование для определения клемм (база, эмиттер и коллектор) и типа (PNP или NPN)

с использованием измерителя AVO, мультиметра или цифрового мультиметра, если мультитестер должен иметь функцию проверки диодов.Функция тестирования диодов обычно обозначается символом диода, как показано на рисунке мультитестера ниже.



Возьмем для измерения пример транзистора типа C945, который довольно широко используется. Мы научились определять клеммы и тип транзистора C945, а также следующие шаги:

1. Измерение и создание таблиц измерений

  • Set Multitester поворотная ручка мультитестера на элементе тестирования диода
  • Представьте или опишите положение клеммы транзистора с порядковыми номерами 1, 2 и 3
  • Создайте таблицу с 6 единицами измерения точки измерения, то есть 1-2, 1-3, 2-3, 2-1, 3-1 и 3-2
  • Укажите черный датчик или отрицательный тестовый датчик для первого числа и красный датчик или положительный тестовый датчик для второго числа, т.е. точка измерения 1-2, черный датчик в точке 1 и красный датчик в точке 2
  • Запись результаты каждого измерения

2.Определите клеммы и тип транзистора.
В таблице измерений есть две точки измерения, по которым можно получить результаты: точка 1-3 при 0,720 В постоянного тока и точка 2-3 при 0,716 В постоянного тока (см. Рисунок выше). Пришло время определить клеммы и тип транзистора, кстати:

  • База — это тот же номер, что и на двух точках измерения
  • Тип NPN или тип PNP, мы можем установить его, чтобы увидеть, какой датчик подключен к базе. Если базовая точка подключена к черному щупу, тогда транзистор типа PNP, а когда базовая точка подключена к красному щупу, тогда прямое смещение эмиттер-база NPN
  • больше, чем коллектор-база, или EB> CB, то есть транзистор типа PNP.Прямое смещение база-эмиттер больше, чем база-коллектор, или BE> BC, то есть транзистор типа NPN

Итак, мы получаем вывод:

  1. В точке 3 база транзистора C945
  2. C945 является транзистором NPN, основание на красном щупе
  3. В точке 1 клеммы эмиттера и в точке 2 клеммы коллектора C945, потому что точка 1-3> 2-3
  4. Клеммы и тип транзистора C945, как показано на рисунке ниже


Что такие методы тестирования и типы транзисторов?

Транзистор — это полупроводниковое устройство, которое обычно используется в усилителях или переключателях с электронным управлением.Это основной строительный блок, который регулирует работу компьютеров, сотовых телефонов и всех других современных электронных схем. Благодаря быстрому времени отклика и высокой точности транзисторы могут использоваться для множества цифровых и аналоговых функций, включая усиление, переключение, регулировку напряжения, модуляцию сигнала и генераторы.

Каталог

I Метод классификации транзисторов

Строго говоря, транзистор относится ко всем отдельным компонентам на основе полупроводниковых материалов, включая диоды (два вывода), транзисторы, полевые транзисторы, тиристоры (последние три имеют три терминала).

Трехполюсные транзисторы в основном делятся на две категории: биполярные транзисторы (BJT), и полевые транзисторы (, , полевые транзисторы, , ), . Три вывода биполярного транзистора — это эмиттер, база и коллектор, состоящие из полупроводников N-типа и P-типа; Три вывода полевого транзистора — это исток, затвор и сток.

Транзисторы можно классифицировать по:

● Материал

Транзисторы можно разделить на кремниевые транзисторы и германиевые транзисторы на основе полупроводниковых материалов.И в зависимости от полярности, два типа транзисторов можно разделить на германиевый транзистор типа NPN, германиевый транзистор PNP, кремниевый транзистор типа NPN и кремниевый транзистор типа PNP.

Производственный процесс

Существуют транзисторы диффузного типа, транзисторы из сплава и транзисторы планарного типа в соответствии с процессом изготовления транзисторов.

● Токовая нагрузка

Транзисторы можно разделить на три группы: транзисторы малой мощности, транзисторы средней мощности и транзисторы большой мощности в зависимости от их текущей емкости.

● Рабочая частота

По рабочей частоте бывают низкочастотные транзисторы, высокочастотные транзисторы и сверхвысокочастотные транзисторы.

● Структура корпуса

В свете структуры корпуса транзисторы можно разделить на транзисторы в металлической упаковке, транзисторы в пластиковой упаковке, транзисторы в стеклянной упаковке, транзисторы для поверхностного монтажа и транзисторы в керамической упаковке.

Функции и использование

Транзисторы можно разделить на малошумящие транзисторы усилителя, средние и высокочастотные транзисторы усилителя, транзисторы усилителя низкой частоты, переключающие транзисторы, транзисторы Дарлингтона, высоковольтные транзисторы, полосовые транзисторы, демпфирующие транзисторы, микроволновые транзисторы, фототранзисторы и магнитные транзисторы.

II Типичные типы транзисторов

Полупроводниковый транзистор — это полупроводниковый прибор , который обычно содержит два PN-перехода внутри и три извлекающих электрода снаружи. Строго говоря, под транзистором понимаются все отдельные компоненты на основе полупроводниковых материалов, включая диоды (два вывода), транзисторы, полевые транзисторы, тиристоры (последние три имеют три вывода).

Трехполюсные транзисторы в основном делятся на две категории: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).Три вывода биполярного транзистора — это эмиттер, база и коллектор, состоящие из полупроводников N-типа и P-типа; Три вывода полевого транзистора — это исток, затвор и сток. Ниже в основном обсуждаются биполярные транзисторы, полевые транзисторы и некоторые другие типичные типы транзисторов.

1. Биполярные переходные транзисторы (BJT)

Биполярные переходные транзисторы (BJT) — это устройство, которое объединяет два PN-перехода посредством определенного процесса.Здесь «биполярный» означает, что и электронных , и отверстий участвуют в движении одновременно, когда они работают. Есть две комбинированные структуры: PNP и NPN. Снаружи выведены три полюса: коллектор, эмиттер и база. Коллектор выводится из области коллектора, эмиттер выводится из области эмиттера, а база выводится из области базы (в середине).

Схематическое обозначение PNP (a) , схематическое обозначение (b), схематическое обозначение NPN (c) , расположение (d)

2 Эффект усиления BJT в основном зависит от передачи эмиттерного тока от области базы к области коллектора.Для обеспечения этого процесса передачи должны быть выполнены два условия:

Внутренние условия

Концентрация примеси в эмиттерной области должна быть намного больше, чем в базовой области, а толщина базовой области должна быть небольшой.

Внешние условия

Эмиттерный переход должен быть смещен в прямом направлении, а коллекторный переход — в обратном.

2. Полевые транзисторы

Полевые транзисторы — это транзисторы, которые работают по принципу полевого эффекта полупроводников.Существует два основных типа полевых транзисторов: Junction FET (JFET) и Metal-Oxide Semiconductor FET (MOSFET) .

Обозначение схемы переходного полевого транзистора

Эффект поля используется для изменения направления или величины приложенного электрического поля, перпендикулярного поверхности полупроводника, чтобы контролировать плотность или тип основных носителей в проводящем слое ( канал) полупроводника. Ток в канале модулируется напряжением, а рабочие токи исходят от основных носителей заряда в полупроводнике.

В отличие от BJT, только один вид несущих (основные несущие) полевого транзистора участвует в процессе проводимости, поэтому его также называют униполярным транзистором.

Преимущества полевых транзисторов:

○ высокий входной импеданс

○ низкий уровень шума

○ высокая предельная частота

○ низкое энергопотребление

○ простой производственный процесс

○ хорошие температурные характеристики

Эти особенности сделать их широко используемыми в различных схемах усилителей, цифровых схемах, микроволновых схемах и т. д.Металлооксидно-полупроводниковые полевые транзисторы на основе кремния (MOSFET) и полевые металло-полупроводниковые транзисторы на основе GaAs (MESFET) являются двумя наиболее важными полевыми транзисторами, которые, соответственно, являются основными устройствами крупномасштабных МОП-транзисторов. интегральные схемы и сверхбыстрые интегральные схемы MES.

3. Другие типичные типы транзисторов

Гигантские транзисторы (GTR)

Гигантский транзистор — это своего рода биполярный транзистор, который может выдерживать высокое напряжение и большой ток, поэтому его также можно назвать power BJT .

Его характеристики:

○ высокое сопротивление напряжению

○ большой ток

○ хорошие коммутационные характеристики

○ сложная схема управления и большая мощность привода

Принцип работы GTR такой же, как и у обычных биполярных транзисторов. .

Фототранзисторы

Фототранзистор — это тип фотоэлектрического устройства, состоящего из трехконтактного устройства, такого как биполярный транзистор или полевой транзистор.Свет поглощается в активной области устройства, производя фотогенерируемые носители, которые усиливаются внутренним механизмом и генерируют усиление фототока. Поскольку фототранзистор работает с тремя выводами, легко добиться электрического управления или синхронизации.

Схема и чертеж фототранзистора

В основном фототранзисторы бывают двух типов: биполярные фототранзисторы и полевые фототранзисторы .Биполярные фототранзисторы обычно имеют высокий коэффициент усиления, но скорость невысока. Для биполярных фототранзисторов GaAs-GaAlAs его коэффициент усиления может быть больше 1000, а время отклика больше наносекунд. Фототранзистор такого типа часто используется для оптических детекторов или оптического усиления. Фототранзистор с полевым эффектом имеет быструю скорость отклика (около 50 пикосекунд), но его светочувствительная площадь и коэффициент усиления невелики, что часто используется в качестве чрезвычайно высокоскоростного фотодетектора.

Время отклика планарных оптоэлектронных устройств составляет десятки пикосекунд, что делает их пригодными для оптоэлектронной интеграции.

Транзисторы статической индукции

Транзистор статической индукции (SIT) на самом деле является переходным полевым транзистором. Для маломощного SIT, используемого для обработки информации, если мы изменим его горизонтальную проводящую структуру на вертикальную проводящую структуру, он может быть преобразован в устройство SIT высокой мощности.

Рабочая частота SIT эквивалентна или даже выше, чем у силовых MOSFET, а его мощность больше, чем у силовых MOSFET.Следовательно, он подходит для приложений высокочастотных и высокомощных , таких как оборудование радиолокационной связи, ультразвуковое усиление мощности, усиление импульсной мощности и высокочастотный индукционный нагрев.

Однако SIT включается, когда на затвор не подается сигнал, и выключается, когда затвор применяется с отрицательным смещением, что неудобно в использовании. Кроме того, большое сопротивление SIT в открытом состоянии увеличивает потери, поэтому он не получил широкого распространения в большинстве силового электронного оборудования.

Одноэлектронные транзисторы

Одноэлектронные транзисторы могут записывать сигналы с одним или несколькими электронами.

С развитием техники травления полупроводников уровень интеграции крупномасштабных интегральных схем становится все выше и выше. В настоящее время каждая ячейка общей памяти содержит 200 000 электронов, в то время как каждая ячейка памяти одноэлектронного транзистора содержит только один или небольшое количество электронов, что может значительно снизить энергопотребление и повысить уровень интеграции интегральных схем.

Принципиальная схема одноэлектронного транзистора

В 1989 г. J.H. Ф. Скотт Томас и его партнеры обнаружили в ходе эксперимента кулоновскую блокаду . На испытании они попытались сделать металлический электрод с небольшой площадью на двумерном электронном газе на границе раздела гетероперехода с модуляцией, чтобы можно было сформировать квантовую точку с небольшой емкостью (10 ~ 15 фарас). в электронном газе.При подаче напряжения через устройство не будет протекать ток, пока напряжение не станет достаточно большим, чтобы вызвать изменение заряда электрона. Следовательно, соотношение тока и напряжения не линейное, а ступенчатое. В этом эксперименте впервые в истории вручную контролировалось движение электрона, что обеспечило экспериментальную основу для производства одноэлектронных транзисторов.

Чтобы повысить рабочую температуру одноэлектронного транзистора, размер квантовой точки должен быть менее 10 нанометров, что является актуальной проблемой для лабораторий во всем мире.

III Как тестировать транзисторы

Транзисторы в схеме в основном включают кристаллические диоды, кристаллические транзисторы, тиристоры и полевые транзисторы, среди которых чаще всего используются кристаллические транзисторы и диоды. Так как же правильно судить о качестве диодов и транзисторов?

1. Обнаружение кристаллических диодов

Рабочие характеристики: хорошие или плохие

Во-первых, мы должны судить, что материал кристаллического диода — кремний или германий.Используйте один мультиметр, чтобы измерить его прямое сопротивление, и другой мультиметр, чтобы измерить падение напряжения. Обычно прямое падение напряжения германиевой трубки составляет 0,1-0,3 В, а кремниевой трубки — 0,6-0,7 В.

Кроме того, разница между прямым и обратным сопротивлением диодов должна быть как можно большей. Если прямое сопротивление кристаллического диода составляет от сотен до тысяч Ом, а обратное сопротивление составляет десятки тысяч Ом или более, то его можно рассматривать как хороший диод.

Электрод: положительный или отрицательный

Также можно одновременно определять положительный и отрицательный электроды диода. Когда измеренное сопротивление составляет несколько сотен или несколько тысяч Ом, его следует определять как прямое сопротивление диода. В это время отрицательный измерительный провод подключается к отрицательному электроду, а положительный измерительный провод подключается к положительному электроду.Кроме того, если прямое и обратное сопротивление бесконечно, это означает внутреннее отключение; если прямое и обратное сопротивление равны нулю, что указывает на короткое замыкание.

2. Метод испытания кристаллических транзисторов

Проверка способности к усилению

Кристаллический транзистор в основном используется для усиления, так как же мы оцениваем его способность к усилению?

Сначала установите шестерню мультиметра на R × 100 или R × 1K.Когда мы измеряем трубку NPN, положительный измерительный провод подключается к эмиттеру, а отрицательный измерительный провод подключается к коллектору. Измеренное сопротивление обычно должно быть больше нескольких тысяч Ом.

Затем последовательно подключите резистор 100 кОм между базой и коллектором. В это время значение сопротивления, измеренное мультиметром, должно быть значительно уменьшено. Чем больше изменение, тем сильнее усилительная способность транзистора. Если изменение небольшое или даже отсутствует, это означает, что транзистор имеет слабую способность усиления или ее отсутствие.


● Оценочные электроды

Найдите основание

Сначала подключите красный измерительный провод к одному из контактов и используйте черную измерительную ручку для измерения другого два контакта.

Чтобы проверить, можно ли измерить два малых сопротивления , в противном случае подключите черный тестовый провод к одному контакту и соедините красный тестовый провод с другими контактами для измерения, пока не будут получены два небольших сопротивления.

Когда обнаружены два малых сопротивления, фиксированный измерительный провод, используемый в этот момент, является базой. Если фиксированная контрольная ручка черного цвета, это транзистор NPN-типа; если фиксированный измерительный провод красный, трубка представляет собой транзистор типа PNP.

Примечание: германиевая трубка измеряется с R & times; 100, а силиконовая трубка измеряется с R × 1k.

○ Определите эмиттер и коллектор

Используйте мультиметр для измерения сопротивления двух полюсов, кроме основного электрода.Замените измерительный провод и снова измерьте его.

Если это германиевая трубка, для оценки используется меньшее сопротивление. Когда достигается меньшее сопротивление, для транзистора PNP черный измерительный провод подключается к эмиттеру, а красный — к коллектору. Если это тип NPN, черный измерительный провод подключается к коллектору, а красный измерительный провод подключается к эмиттеру.

Если это кремниевый транзистор, используется большее сопротивление. Для типа PNP черный провод подключается к эмиттеру, а красный измерительный провод подключается к коллектору.Что касается транзистора NPN, черный и красный щупы подключены соответственно к коллектору и эмиттеру.

Кроме того, мы также могли измерить прямое сопротивление двух PN-переходов по отдельности. Один с большим прямым сопротивлением — это эмиттер, а другой — коллектор.

IV Darlington T ransistor Testing Method

1. Обнаружение обычного транзистора Дарлингтона

Во внутренней структуре обычного транзистора Дарлингтона два или более коллектора транзисторов соединены вместе, и есть множественные эмиттерные переходы между базой и эмиттером.

● Проверка прямого и обратного сопротивления

Для измерения используется мультиметр R × 1 кОм или R × 10 кОм.

Обычно прямое сопротивление между коллектором и базой аналогично значению коллектора обычных кремниевых транзисторов, которое составляет 3-10 кОм, а значение обратного сопротивления бесконечно. Значение прямого сопротивления между эмиттером и базой в 2–3 раза больше, чем между коллектором и базой, а значение обратного сопротивления также бесконечно.

Теоретически положительное и отрицательное сопротивление между коллектором и эмиттером должно быть близко к бесконечности . Если значение положительного и обратного сопротивления между коллектором и эмиттером транзистора Дарлингтона близко к нулю или значение между базой и эмиттером или между базой и коллектором равно нулю, это указывает на то, что лампа сломалась. И если прямое и обратное сопротивление между базой и эмиттером или между базой и коллектором измерено как бесконечное, это означает, что имеется разомкнутая цепь.

Примечание : когда мы измеряем трубку NPN, черный измерительный провод подключается к основанию; при обнаружении трубки PNP черный измерительный провод подключается к коллектору.

Базовая конфигурация транзистора Дарлингтона

2. Обнаружение транзистора Дарлингтона большой мощности

На основе обычных транзисторов Дарлингтона высокомощный транзистор Дарлингтона имеет схему защиты, состоящую из диода свободного хода и спускного клапана. резистор, который может повлиять на данные измерения.

● Метод обнаружения 1

Используйте диапазон мультиметра R × 1 кОм или R × 10 кОм для измерения прямого и обратного сопротивления коллекторного перехода Дарлингтона (между коллектором и базой). В нормальных условиях, когда основание трубки NPN подсоединено к черному испытательному проводу, значение прямого сопротивления должно быть небольшим, в пределах от 1 до 10 кОм, а обратное сопротивление должно быть близким к бесконечности. Если измеренные значения прямого и обратного сопротивления очень малы или бесконечны, это означает, что трубка была замкнута накоротко или повреждена обрывом цепи.

● Метод обнаружения 2

Используйте шестерню мультиметра R × 100 Ом для измерения прямого и обратного сопротивления между эмиттером и базой. Нормальные значения составляют от нескольких сотен Ом до нескольких тысяч Ом. если измеренное сопротивление равно 0 или бесконечно, тестируемая трубка повреждена.

● Метод обнаружения 3

R × l кОм или R × 10 кОм мультиметра используется для измерения прямого и обратного сопротивления между эмиттером и коллектором.Обычно значение прямого сопротивления должно составлять 5-15 кОм, а значение обратного сопротивления должно быть бесконечным, в противном случае коллектор и эмиттер (или диоды) сломаны или имеется разрыв цепи.

Примечание : когда мы измеряем трубку NPN, черный измерительный провод подключается к эмиттеру, а красный измерительный провод подключается к коллектору; когда мы измеряем трубку PNP, черный измерительный провод подключается к коллектору, а красный измерительный провод подключается к эмиттеру.

Заключение

В этом отрывке, во-первых, мы узнали об общем методе классификации и основных типичных типах транзисторов.Затем был введен метод тестирования кристаллических диодов и кристаллических транзисторов, который включает средства для оценки характеристик и определения электродов. И напоследок обсудим методы обнаружения обычных и мощных транзисторов Дарлингтона. Надеюсь, эта статья будет вам полезна!

Рекомендуется Статьи:

Введение в TFT-дисплеи

Обзор биполярных транзисторов

Структура и принцип работы полевых транзисторов

Найти клеммы транзистора с помощью мультиметра

все о транзисторе и его тестировании мультиметром.

Транзистор

Транзистор представляет собой комбинацию двух PN-диодов, расположенных вплотную друг к другу, в которой полупроводник P-типа или N-типа находится между другим типом полупроводникового материала. В основном есть два типа транзисторов, NPN и PNP, с разными символами схемы. Буквы транзисторов (PNP и NPN) относятся к слоям полупроводникового материала P-типа или N-типа, используемых для формирования транзистора. В наши дни в основном используются транзисторы

NPN, потому что их проще всего сделать из полупроводникового материала кремниевого типа.Этот пост в основном связан с идентификацией выводов NPN-транзисторов. Если вы не знаете об этом, то лучше всего сначала научиться их определять. Транзистор NPN имеет три ножки, которые обозначены как эмиттер (E), база (B) и коллектор (C). Транзисторы NPN представляют собой транзисторы с биполярным переходом (BJT). В котором присутствуют два слоя полупроводника N-типа, которые разделены тонким слоем полупроводника P-типа. В этом большинстве транзисторов носителями заряда являются электроны, а неосновными носителями заряда — дырки.

Изображение транзистора

Точно так же транзистор PNP также является BJT. В этом транзисторе полупроводниковый сэндвич N-типа между двумя полупроводниками P-типа. В PNP основными носителями заряда являются дырки, а неосновными носителями заряда — электроны.
Существует очень много методов идентификации выводов транзисторов, но мы обсуждаем только один метод, который выполняется с помощью мультиметра.

В цифровых мультиметрах (DMM) есть контрольная точка диода или точка целостности. Символ этой точки представляет собой что-то вроде диода (изобразите знак «больше» в виде черного треугольника, указывающего на черную линию и касающегося нее).Во-первых, вы должны знать о хорошем транзисторе, чтобы вы могли определить, есть ли у вас плохой транзистор.

Изображение цифрового мультиметра

Этапы тестирования транзистора

  • Прежде всего, убедитесь, что транзистор, который будет проверять, находится вне цепи.
  • Теперь вставьте вилку красного провода в гнездо «V» миллиметра, а вилку черного провода — в гнездо «COM».
  • Установите цифровой мультиметр на контрольную точку диода на целостность цепи.
  • Теперь подключите положительный или красный и отрицательный или черный щупы к любым двум выводам транзистора, пока мы не получим на экране мультиметра показание, отличное от бесконечности.
  • Когда мы получим значение, отличное от бесконечности, оставьте один из щупов на одной из ножек транзистора (не имеет значения, какой именно).
Тестирование транзистора
  • Теперь подключите другой щуп к третьей ножке транзистора. Если следующее показание будет отличным от бесконечности, повторите шаг 4.
  • Теперь оставьте другой датчик на ножке транзистора, который был подключен ранее, когда мы получили показание, отличное от бесконечности.
  • После этого возьмите другой датчик и подключите его к третьей ноге, тогда на экране будет отображаться отличное от бесконечности показание.
  • Та же бесконечность отображается на экране, затем повторите 3-6, но начните с 2 разных отведений, пока мы не сможем оставить одну ногу на месте и получить показание, отличное от бесконечности, на двух других ногах.
  • Если мы разместим положительный щуп на центральной ножке транзистора, то это будет NPN-транзистор. Если оставить отрицательный пробник на центральной ножке, то получится PNP-транзистор.
Транзистор с мультиметром
  • Центральная ножка транзистора называется базой.
  • Когда мы меняем, тестовые щупы-
  • Ветвь с более низким показанием сопротивления — это коллектор.
  • Ветвь с более высоким показанием сопротивления — это эмиттер.

Неисправности транзисторов

  • Раздел 7.3 Тестирование транзисторов
  • • Модель с двумя диодами для BJT.
  • • Определение соединений транзисторов.
  • • Тестирование BJT.
  • • Тестирование полевых транзисторов.
  • • Тестирование полевых МОП-транзисторов

Модель с двумя диодными транзисторами

Рис.7.3.1 Модель двухдиодного транзистора.

Как показано на рис. 7.3.1, независимо от того, является ли транзистор (а) типом NPN или (б) биполярным транзистором типа PNP, он состоит из двух диодных переходов, перехода база-эмиттер и перехода база-коллектор.В целях тестирования их можно представить себе просто как два диода с одним общим соединением, то есть с базой. Итак, чтобы проверить транзистор, вам просто нужно проверить прямое и обратное сопротивление каждого из этих переходов. Однако для этого сначала необходимо выяснить, какой штифт какой.

План A — Используйте лист данных производителя

Лучший способ проверить функции контактов — воспользоваться таблицей данных производителя. Практически каждый транзистор, когда-либо созданный, имеет свой собственный лист данных в Интернете.Просто введите номер транзистора в строку поиска в Интернете, и вы найдете несколько сайтов, на которых публикуются нужные вам данные. Вы также должны найти схему в техническом описании, показывающую соединения контактов транзистора (распиновку), где показаны контакты коллектора, базы и эмиттера, а также любые варианты. Если вы не можете найти нужную информацию, придется прибегнуть к Плану Б.

Рис.7.3.2 Общие транзисторные блоки.

Plan B — Определение функций выводов путем просмотра информации о корпусе транзистора.

Что делать, если вы не можете найти идентификационный номер жизненно важного транзистора на самом транзисторе? Еще не все потеряно; вы все еще можете найти функции булавки, немного поработав детективом. Если транзистор, который вы тестируете, имеет металлический корпус, как, например, на схемах компоновки обычных корпусов TO18, TO3, TO126, TO202, TO72 и т. Д., Это полезно. К коллектору почти всегда присоединяется металлический корпус или зона радиатора, чтобы тепло отводилось легче. Это означает, что если вы измеряете сопротивление от корпуса или металлической монтажной области к каждому контакту по очереди, один контакт, который измеряет нулевое сопротивление, является коллектором.Однако нам действительно нужно найти базу. В корпусах транзисторов, таких как TO39, это просто; эмиттер почти всегда находится рядом с металлическим язычком, а коллектор подсоединен к банке.

Обратите внимание, что часто это делает основание центром трех соединений — но это не всегда так; не полагайтесь на то, что база находится в центре. Изучите распространенные типы пакетов, показанные на рис. 7.3.2. Возможны вариации даже в пределах одного и того же типа упаковки. Так что, если план B не решил загадку, не беспокойтесь, всегда есть план C.

Plan C — Тестирование транзисторов с неизвестными выводами.

Еще один полезный способ найти базу — это измерить сопротивление между различными контактами. Представьте для начала, что мы подозреваем, что неизвестный транзистор может быть типа NPN (они гораздо более распространены, чем PNP в современных схемах), и он может быть неисправным

Рис.7.3.3 Определение выводов транзисторов и поиск неисправных транзисторов


.

Использование таблицы поиска неисправностей

Следуйте инструкциям в ячейках 1, 2 и 3

Если вы переходите к блоку 4, и оба теста дают показания от 500 Ом до 1 кОм, молодцы! Вы нашли базовый вывод с первой попытки, и в поле 5 сообщается, что вы тестируете транзистор NPN.

В качестве альтернативы, если оба измерения указывают на бесконечность, вы перейдете к блоку 6, так как положительный провод не был на базе. Так что вернитесь к тесту 2 и попробуйте еще раз, подключив положительный провод к другому контакту. Повторяйте этот тест, пока не найдете основной штифт.

Или, если оба измерения на шаге 4 показывают бесконечность, либо транзистор неисправен (один или оба перехода имеют разомкнутую цепь), либо транзистор имеет тип PNP. Поэтому вам нужно начать все сначала, но на этот раз используя отрицательный вывод измерителя, чтобы найти базовый штифт.

Если в тесте 3 один или оба теста показывают 0 Ом (короткое замыкание), и вы случайно не коснулись положительного и отрицательного выводов вместе во время тестов, транзистор неисправен из-за короткого замыкания одного или обоих переходов.

Диагностическая таблица проверяет биполярный транзистор независимо от того, знаете ли вы, какие контакты какие или нет, но-

Если вы уже знаете распиновку

Вот сокращенная версия для подтверждения неисправности известного транзистора.Если все тесты прошли успешно, транзистор в порядке. Если какие-либо тесты не пройдут, транзистор выброшен в мусорное ведро.

1. Проверить сопротивление между коллектором и эмиттером.

2. Затем поменяйте местами положительное и отрицательное подключение счетчика. Если транзистор исправен, в обоих направлениях должно быть показание бесконечности.

Теперь подключите положительный провод измерительного прибора к базе и проверьте сопротивление обоих переходов, подключив отрицательный измерительный щуп (3) к коллектору, а затем (4) к эмиттеру.В обоих случаях вы должны получить типичное значение прямого сопротивления от 500 Ом до 1 кОм.

Наконец, поменяйте местами подключения счетчика, чтобы отрицательный провод был подключен к базе. Подключите положительный зонд (5) к коллектору, затем (6) к эмиттеру. Оба соединения теперь должны показывать бесконечность.

Тестирование полевых транзисторов

Рис.7.3.4 Модель JFET-диода

Полевые транзисторы

сконструированы иначе, чем биполярные транзисторы, и поэтому требуют других методов тестирования.Сначала рассмотрим схемы JFET на рис. 7.3.4, которые показывают путь сток / исток в виде единого блока кремния типа N или P, а затвор — как простой диод, который имеет либо анод (в JFET с каналом P), либо катод ( в N-канальных полевых транзисторах), подключенных непосредственно к тракту сток / исток. Поэтому вместо того, чтобы тестировать два PN перехода, как в BJT, в JFET нам нужно проверить только один переход.

Первое, что нужно знать перед тестированием подозрительного JFET, — это распиновка выводов, как и любого другого транзистора, ее можно получить, загрузив лист данных для конкретного интересующего JFET.

Рис.7.3.5 2N3819 Паспорт.

После идентификации контактов источника, стока и затвора следующие тесты цифрового измерителя должны выявить состояние полевого транзистора:

  • 1. Переключите измеритель в режим проверки диодов.
  • 2. Измерьте сопротивление между источником и сливом с помощью положительного измерительного провода на сливном штыре.
  • 3. Поменяйте местами провода измерителя (положительный на источник) и снова снимите показания сопротивления.

Результаты испытаний 1.и 2. обычно должно быть от 130 до 180 Ом, но это может варьироваться в разных полевых транзисторах JFET. Если сопротивление кажется подозрительно низким, это может означать, что на затворе с очень высоким импедансом имеется остаточное напряжение из-за емкости затворного перехода. Чтобы устранить эту возможность, закоротите затвор и источник, на мгновение коснувшись обоих контактов вместе, затем повторите тесты 1. и 2. Показание 0 Ом или бесконечность означает, что JFET неисправен.

  • 4. Предполагая, что шаги 2 и 3 в порядке, проверьте сопротивление между затвором и источником с помощью положительного измерительного щупа на выводе затвора.Ожидайте сопротивление от 700 Ом до 1 кОм. Это прямое сопротивление диода затвора.
  • 5. Удерживая положительный датчик измерителя на затворе, переместите отрицательный зонд к сливу и проверьте сопротивление между затвором и сливом. Ожидайте аналогичных результатов для теста 4.
  • 6. Теперь поменяйте местами подключения измерителя и проверьте обратное сопротивление диода затвора, поместив отрицательный щуп на вывод затвора, а положительный щуп на вывод истока. Сопротивление теперь должно быть бесконечным.
  • 7. Наконец, проверьте сопротивление затвора для слива, оставив отрицательный зонд на затворе и переместив положительный зонд к штифту слива. Снова чтение должно быть бесконечным.

Рис. 7.3.6 JFET в антистатической пене


.

Во всех этих тестах вы должны по возможности воздерживаться от работы с JFET. В идеале при работе с полевыми транзисторами любого типа вы должны работать на рабочей станции ESD (антистатический разряд) или носить антистатический браслет.В качестве альтернативы вы можете, по крайней мере, воткнуть штыри (при условии, что они достаточно длинные) в кусок антистатической пены, например полевые транзисторы, в которых обычно хранятся полевые транзисторы. Тогда сопротивление между штырями позволит избежать накопления статического напряжения, но будет достаточно высоким. чтобы не сильно повлиять на показания сопротивления, которые вы снимаете во время этих тестов.

Тестирование полевых МОП-транзисторов

Первое, что нужно понять о полевых МОП-транзисторах, это то, что они намного более чувствительны к повреждению статическим разрядом, чем любые другие типы транзисторов, даже полевые транзисторы.Это связано с тем, что полевые МОП-транзисторы являются транзисторами с изолированным затвором, поэтому затвор полностью изолирован от тракта сток / исток. Это означает, что между затвором и другими выводами существует значительная емкость. Эту емкость можно легко зарядить до любого напряжения, включая чрезвычайно высокие напряжения, которые могут присутствовать на человеческом (вашем) теле, например, просто при ходьбе по комнате с ковровым покрытием. Такое статическое напряжение может легко вывести из строя полевой МОП-транзистор. Поэтому с самого начала следует проявлять осторожность, чтобы не прикасаться к клеммам MOSFET, когда MOSFET не находится в антистатической упаковке или не подключен к цепи.Поэтому для целей этих тестов мы будем предполагать, что тестировщик (вы) будете использовать антистатические методы, как описано в разделе о тестировании JFET. Однако одна мера предосторожности, которую мы не можем использовать, — это вставить MOSFET в антистатическую пену; так как это помешает нашим тестам работать. Поэтому для проведения тестов мы постараемся максимально не прикасаться к контактам полевого МОП-транзистора и вставить контакты в макетную плату.

Тестовая последовательность полевого МОП-транзистора

Рис.7.3.7 MOSFET на макетной плате.

  • 1. Установите цифровой мультиметр в положение проверки диодов.
  • 2. На мгновение закоротите клеммы затвора и стока вместе с одним из щупов измерителя, чтобы разрядить любую емкость затвора.
  • 3. Подключите положительный датчик измерителя к клемме слива, а отрицательный датчик к клемме источника. Счетчик должен показывать бесконечность.
  • (Если измеритель показывает 0 Ом, попробуйте снова замкнуть затвор и сток с отрицательным проводом измерителя, чтобы убедиться, что любой заряд затвора удален).
  • Подключите положительный провод измерителя к источнику, а отрицательный датчик — к клемме слива. Измеритель должен теперь показать около 500 Ом
  • То, что вы сейчас проверили, — это обратное и прямое сопротивление внутреннего защитного диода полевого МОП-транзистора.
  • 4. Теперь подключите отрицательный щуп измерительного прибора к клемме источника и на мгновение коснитесь клеммы затвора положительным щупом измерительного прибора. Это на мгновение зарядит базовую емкость, достаточную для включения полевого МОП-транзистора.
  • 5. Подключите положительный датчик к сливу, а отрицательный — к источнику (повторение теста 3). На этот раз измеритель должен показывать 0 Ом, потому что MOSFET теперь включается напряжением, которое вы приложили к затвору.
  • 6. Поменяйте местами провода измерителя (положительный на источник и отрицательный на сток). Сопротивление сток / исток снова должно быть 0 Ом, что подтверждает включение полевого МОП-транзистора.
  • 7. Чтобы выключить полевой МОП-транзистор, используйте любой датчик, чтобы на мгновение замкнуть затвор на слив.
  • 8.Убедитесь, что полевой МОП-транзистор теперь выключен, поместив положительный датчик на клемму слива и отрицательный датчик на источник, чтобы убедиться, что сопротивление между стоком и источником равно бесконечности, что еще раз показывает, что при нулевом напряжении на затворе полевой МОП-транзистор находится в выключен, и полевой МОП-транзистор работает правильно.

Заключение.

Проведение тестов JFET или MOSFET поможет вам выявить неисправные полевые транзисторы и лучше понять полевые транзисторы, но также призвано дополнить ваши исследования этих компонентов.Для получения более подробной информации обратитесь к модулю полупроводников 4 (полевые транзисторы), чтобы завершить изучение этих важных компонентов.

Предупреждение. Никогда не работайте с цепями под напряжением, если вы не знаете И ИСПОЛЬЗУЕТЕ безопасные методы работы. Многие цепи, которые получают питание от сети (сети) (а некоторые нет), содержат СМЕРТЕЛЬНОЕ напряжение, а также другие опасности. Работать с цепями под напряжением должен только полностью обученный персонал. Перед тем, как пытаться работать с цепями под напряжением с использованием любой информации, представленной на этом веб-сайте, прочтите важный ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ.

Начало страницы.>

Основы работы с транзисторами

Основы работы с транзисторами

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

ТРАНЗИСТОРЫ

В. Райан 2002 — 09

PDF ФАЙЛ — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТНОЙ ВЕРСИИ РАБОЧАЯ ТАБЛИЦА НА ОСНОВЕ УПРАЖНЕНИЯ НИЖЕ

Транзисторы

можно рассматривать как разновидность переключателя, так как может много электронных компонентов.Они используются в различных схемах и вы обнаружите, что схема, построенная в школе, Технологический отдел не содержит хотя бы одного транзистора. Они есть центральный в электронике и бывает двух основных типов; НПН и ПНП. Самый схемы обычно используют NPN. Существуют сотни работающих транзисторов. при разных напряжениях, но все они попадают в эти две категории.

ДВА ПРИМЕРА РАЗЛИЧНЫЕ ФОРМЫ ТРАНЗИСТОРА

Транзисторы бывают разной формы, но у них есть три отведения (ножки).
BASE — вывод, отвечающий за активацию транзистора.
КОЛЛЕКТОР — положительный вывод.
EMITTER — отрицательный провод.
На схеме ниже показан символ транзистора NPN . Они не всегда располагайте так, как показано на схемах слева и справа, хотя вкладка на типе, показанном слева, обычно находится рядом с эмиттер.

Выводы на транзистор не всегда может быть в таком расположении. При покупке транзистор, в направлениях обычно четко указывается, какой вывод является БАЗА, ЭМИТТЕР или КОЛЛЕКТОР.

ПРОСТОЕ ИСПОЛЬЗОВАНИЕ ТРАНЗИСТОРА

ДИАГРАММА ‘A’

ДИАГРАММА ‘B’

На схеме A показан NPN-транзистор, который часто используется как переключатель.Небольшой ток или напряжение на база позволяет большему напряжению проходить через два других вывода (с коллектора на эмиттер ).

Схема, показанная на диаграмме B , основана на транзисторе NPN. При нажатии переключателя ток проходит через резистор в база транзистора. Затем транзистор пропускает ток. течет с +9 вольт на 0вс, и лампа загорается.

Транзистор должен получить напряжение на своей базе и до тех пор, пока это случается лампа не горит.

Резистор присутствует для защиты транзистора, так как они могут быть повреждены легко из-за слишком высокого напряжения / тока. Транзисторы необходимы компонент во многих схемах и иногда используется для усиления сигнала.

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ ТРАНЗИСТОРЫ (ПАРЫ ДАРЛИНГТОНА)

НАЖМИТЕ ЗДЕСЬ ДЛЯ ИНДЕКСА ЭЛЕКТРОНИКИ СТР.

Ваше полное руководство по их использованию в электронике

Здесь вы найдете полное руководство по транзисторам.

В этом руководстве по транзисторам я расскажу вам об основах транзисторов, различных типах, наиболее популярных частях и способах их использования в схемах.

Это часть нашей серии статей, посвященных диодам и транзисторам.

Что такое транзистор?

Давайте начнем с простого для понимания определения транзистора. Чтобы дать определение транзистору, мы хотим взглянуть на общую картину и на то, как она вписывается в электронику.

Мы можем определить это следующим образом:

транзистор = электронное устройство, которое может использоваться для переключения или усиления электрической энергии

# 1 Уроки: из транзисторов получаются отличные переключатели и усилители, и два основных типа из них:

Биполярные переходные транзисторы (BJT) — вы используете ток для управления полевыми транзисторами (FET)

— вы используете напряжение для управления

Транзистор — это фундаментальный строительный блок современной электроники.Когда он был изобретен, он привел к электронной революции, которая открыла новую эру технологий.

Транзисторный радиоприемник был одним из первых, кто произвел революцию в этой технологии. Размер радиоприемника резко уменьшился, поскольку больше не нужно было использовать электронные лампы

Без транзистора не существовало бы современной электроники.

Кто изобрел транзистор?

Вы можете спросить: а когда же был изобретен транзистор? В отношении изобретения транзистора есть три важные даты:

1927 — Юлиус Лилиенфельд запатентовал полевой транзистор, но не смог произвести его в то время из-за ограничений технологии.

1947 — Уильям Шокли, Джон Бардин и Уолтер Браттейн изобрели транзистор с точечным контактом в компании Bell Telephone Laboratories, Inc.

1956 — Нобелевская премия по физике присуждена Шокли, Бардину и Браттейну за транзистор.

Что делает транзистор?

Две основные функции транзистора — усилитель и переключатель, работают как с отдельными транзисторами, так и с их комбинациями.

Соединение нескольких транзисторов с другими электрическими компонентами, такими как резисторы и диоды, может даже создать логические вентили.

Далее мы рассмотрим каждый из них более подробно

Транзисторный усилитель

Каждый раз, когда вы хотите использовать немного чего-то, чтобы получить еще больше, это называется усилением.

Рассмотрим аналогию с механическим рычагом. Когда вам нужно выполнить механическую работу над чем-то, если вы добавите рычаги воздействия, вы сможете усилить свою работу.

Физика транзисторов позволяет нам использовать напряжение или ток, чтобы управлять передачей электрической энергии в транзисторе.

В результате мы можем использовать небольшое напряжение или ток для управления гораздо большим напряжением или током. Это то, что мы называем усилителем.

Мы рассмотрим это более подробно, когда рассмотрим различные типы транзисторов позже. транзистор может действовать как переключатель.

Когда вы включаете выключатель света в своем доме, вы делаете небольшую механическую работу руками, которая позволяет электричеству течь через ваши лампочки.

Использование транзистора в качестве переключателя, подобного выключателю света, позволяет нам использовать напряжение или ток для его включения или выключения, что затем позволяет току течь через другую часть схемы.

Соединение множества разных переключателей вместе в различных комбинациях позволяет нам создавать всевозможные логические вентили, которые мы рассмотрим далее.

Транзисторный вентиль

Типичный логический вентиль в наши дни имеет несколько транзисторов, а также другие компоненты. создание логических вентилей в схемах претерпело долгую эволюцию по мере того, как производственные технологии становились все лучше и лучше.

Транзисторные логические вентили в наши дни обычно изготавливаются из полевых МОП-транзисторов, а точнее — из КМОП. Мы рассмотрим их подробно позже

Транзистор И затвор, например, может быть выполнен как минимум с двумя транзисторами. Чтобы увидеть, как другие вентили могут быть сделаны из транзисторов, ознакомьтесь с этим замечательным средством.

С годами развития транзисторы становятся все меньше и меньше. Например, еще в 1971 году транзисторы были 10 микрометров.

По состоянию на 2014 год они составляют 14 нанометров с ожидаемыми 10 нанометрами к 2017 году.Если посчитать, то всего за 46 лет размер уменьшится примерно на 1000 человек.

Имейте в виду, что это то, что может быть произведено. Есть группы исследований и разработок, которые достигли размера транзисторов в 1 нанометр. Это самый маленький из известных транзисторов на 2017 год.

Уменьшение размера транзистора позволяет размещать все больше и больше транзисторов в таких устройствах, как центральные процессоры (ЦП) в компьютерах.

Общая тенденция уменьшения размера компонентов, ведущая к удвоению количества, которое вы можете разместить в устройстве, известна как закон Мура.Всегда интересно увидеть количество транзисторов в устройствах за разные годы.

Например, количество транзисторов современных процессоров Intel исчисляется миллиардами и продолжает расти. Популярный процессор i7 содержит около 1,75 миллиарда транзисторов.

Кроме того, способ оптимизации количества транзисторов, используемых в затворах, называется логикой проходных транзисторов. Это приводит к тому, что в одном и том же физическом пространстве помещается больше возможностей.

Символ транзистора

Итак, как выглядит схема транзистора? Давайте разберемся.

Чтобы упростить задачу, мы рассмотрим 6 различных типов транзисторов, с которыми вы чаще всего сталкиваетесь.

Символ транзистора NPN и символ транзистора PNP являются наиболее распространенными. Они являются частью биполярной семьи.

Также будет включать N-канальный JFET и P-канальный JFET, которые представляют собой полевые транзисторы с переходным затвором.

И, наконец, что не менее важно, у нас есть N-канальные MOSFET и P-канальные MOSFET, которые представляют собой металлооксидные полупроводниковые полевые транзисторы.

Примечание для NMOS и PMOS (MOSFET) на схеме: пунктирная линия в середине означает, что они находятся в расширенном режиме. Если бы они были прямыми линиями без тире, это были бы транзисторы с режимом истощения.

Мы рассмотрим каждый из этих типов транзисторов более подробно. Вот символы для каждого из них:

Обратите внимание, что направление стрелки на символах обычно указывает на n-тип по сравнению с p-типом.

Распиновка транзистора

Как видно из символьной диаграммы, у нас есть несколько разных выводов для каждого типа транзистора.

Для биполярного транзистора три основных контакта — это база (B), коллектор (C) и эмиттер (E).

В то время как для полевых транзисторов (JFET и MOSFET), контакты являются нашими Source (S), Gate (G) и Drain (D).

Мы рассмотрим, что эти контакты делают в следующем разделе.

Как работает транзистор?

Мы рассмотрели, что такое транзисторы, что они делают, и какие символы мы используем для них в схемах. Теперь давайте рассмотрим, как работает транзистор более подробно

Мы рассмотрим некоторые основы работы с транзисторами, а затем покажем вам режимы работы каждого типа.

Вся цель транзистора состоит в том, чтобы позволить вам использовать немного электрической энергии для управления гораздо большим количеством электрической энергии.

Мы можем сделать это либо в двоичном режиме (включен или выключен), как в переключателе, либо мы можем использовать полный диапазон работы транзистора и создать усилитель.

С учетом сказанного, есть два основных транзистора типы, которые работают по-разному. Мы собираемся поддерживать теорию на высоком уровне, чтобы вы могли использовать ее на практике в электронике.

Если вас интересует вся физика, лежащая в основе этого, есть целые области изучения полупроводников и множество книг, которые вы можете изучить.Помните, что люди делают карьеру из этого материала.

Биполярный переходной транзистор

Первый тип называется биполярным переходным транзистором (БЮТ). Биполярный транзистор использует как электронные, так и дырочные носители, как и диоды.

Дырки и носители создаются полупроводниковыми материалами, известными как P-тип (дырки) и N-тип (электроны).

Материалы как N-типа, так и P-типа ведут себя определенным образом, и если их сложить вместе, можно получить еще более интересные эффекты.

Типичный диод обычно представляет собой материал N-типа и P-типа вместе. В то время как BJT — это их три вместе.Транзисторы бывают как типа NPN, так и PNP.

Например, NPN — это именно то, как оно названо, где есть сэндвич из материалов N-типа, P-типа и N-типа, соединенных вместе.

В свое время германиевые транзисторы были обычным способом изготовления биполярных транзисторов.Однако сейчас кремниевые транзисторы стали нормой.

Несколько ключевых моментов, касающихся BJT, заключаются в том, что hfe (иногда называемый бета) — это быстрый индикатор способности транзистора к усилению, также известный как усиление постоянного тока.

Кроме того, насыщение транзистора просто означает, что больше тока через базу не даст больше тока через коллектор и эмиттер.

Теперь давайте посмотрим на транзисторы NPN и PNP, чтобы лучше понять, как они работают.

Транзистор NPN

NPN — это именно то, как его называют, где есть сэндвич из материалов N-типа, P-типа и N-типа, соединенных вместе.Пример конструкции можно увидеть ниже.

Конструкция этого устройства устроена так, что ток обычно не течет между двумя материалами N-типа, потому что материал P-типа разделяет их.

Что интересно, так это то, что когда мы манипулируем материалом P-типа током, мы можем создать мост между двумя материалами N-типа, который позволяет току течь между ними.

Например, для типичного одиночного NPN , если мы подадим на базу около 0,7 Вольт, то ток будет течь через базу к эмиттеру.

Это, в свою очередь, позволит току легче проходить через материал P-типа. Это позволяет току течь от коллектора к эмиттеру в качестве конечного результата. Это позволяет манипулировать материалами.

Основы, которые вам нужно знать здесь на высоком уровне, следующие:

Для BJT NPN, когда ток течет от базы к эмиттеру, он включает транзистор и позволяет гораздо больше. ток течет от коллектора к эмиттеру.

Вот почему мы часто называем BJT устройствами с регулируемым током.

NPN Operation

Теперь давайте рассмотрим несколько общих способов работы с NPN. Мы знаем, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Cut Off («off»): Emitter> Base
  • Saturation («on»): Emitter Collector
  • Forward Active («пропорционально»): Emitter
  • Reverse Active («отрицательный пропорциональный»): Emitter> Base> Collector

Для этих различных режимов переключатель будет использовать режимы отсечки и насыщения.

Усилитель будет использовать прямой активный режим, в котором ток от коллектора к эмиттеру пропорционален току от базы к эмиттеру.

Обратный активный режим — это когда ток течет от эмиттера к коллектору, что является обратным нормальному активному режиму. Этот режим используется нечасто.

Ключевым моментом здесь является то, что напряжение между базой и эмиттером (Vbe), обычно около 0,7 В, является одним из основных ингредиентов для включения NPN.

Конечно, поведение NPN намного сложнее, но это это общий вынос.

Транзистор PNP

Аналогичным образом, PNP имеют порядок материалов P-типа, N-типа и P-типа, как показано ниже.

PNP похожи на NPN, но направление тока другое.

Основная идея, лежащая в основе этого устройства, заключается в том, что два материала P-типа разделены N-типом, что означает, что ток не будет нормально течь между двумя материалами P-типа.

Однако, когда мы добавляем ток в смесь, мы можем управлять материалом N-типа, чтобы он действовал как мост между материалами P-типа, позволяя току течь.

Вот наш главный вывод:

Для BJT PNP, когда ток течет от эмиттера к базе, гораздо больше тока может течь от эмиттера к коллектору.9

Работа PNP

Далее мы рассмотрим различные способы работы PNP. Мы помним, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Cut Off («off»): эмиттер Collector
  • Saturation («on»): Emitter> Base
  • Forward Active («пропорционально»): Emitter> Base> Collector
  • Reverse Active («отрицательный пропорциональный»): Эмиттер <База <Коллектор

PNP аналогичен NPN, но токи меняются местами.Использование NPN гораздо более распространено, но иногда вы можете встретить PNP.

Часто NPN и PNP используются вместе, чтобы получить более сложное поведение схемы. Хорошим примером является схема двухтактного усилителя.

Опять же, PNP немного сложнее, но для большинства схем это все, что вам нужно знать

Полевой транзистор

Что может быть круче, чем манипулирование материалом с помощью тока? Вместо этого манипулируем напряжением! Именно это мы и делаем с полевыми транзисторами (FET).Полевые транзисторы

позволяют нам использовать электрическое поле для управления электропроводностью канала в них, который управляет переключателем.

Давайте подробнее рассмотрим два основных типа полевых транзисторов

JFET-транзистор

Переходный полевой транзистор (JFET) — очень простое устройство.

Основная идея заключается в том, что полевой транзистор JFET обычно проводит ток между источником и стоком, если на затвор не подается напряжение.

Это означает, что JFET обычно включен, пока напряжение на затворе не отключит его.

Напряжение создает электрическое поле, которое «зажимает» канал, по которому течет ток. Точно так же, как если бы вы зажали садовый шланг, чтобы вода не протекала через него.

Здесь есть два аромата, где для канала можно использовать материал N-типа или P-типа. Тип материала будет определять, какое напряжение необходимо приложить к затвору.

N-канальный JFET

Типичная конструкция n-канального JFET представлена ​​ниже.

Основные сведения о N-канальном JFET:

  • Напряжение между источником и стоком вызывает протекание тока. Чем больше напряжение, тем больше ток будет протекать до определенного момента. В режиме насыщения ток остается неизменным при увеличении напряжения от стока до источника, Vds.
  • Подача напряжения на затвор и источник ограничит общий ток от источника к стоку в зависимости от величины напряжения. Как только напряжение затвора к источнику достигает напряжения отсечки, ток не течет от источника к стоку.Это отключает устройство.

Чтобы разобраться в этом, посмотрите эту потрясающую визуализацию.

P-Channel JFET

Напротив, типичная конструкция JFET с p-каналом показана ниже.

P-канальный JFET работает очень похоже на N-канальный JFET, за исключением того, что токи и напряжения меняются местами.

МОП-транзистор

Гораздо более популярной формой полевого транзистора является металлооксидный полупроводниковый полевой транзистор (МОП-транзистор).Иногда люди для краткости называют их МОП-транзисторами.

Как мы увидим, МОП-часть имени происходит от структуры транзистора, что упрощает запоминание его общей функции.

МОП-транзистор обычно выключен до тех пор, пока напряжение на затворе не включит транзистор и позволяет току течь между источником и стоком.

Они обычно используются в цифровой электронике и процессорах.

Существует две формы полевого МОП-транзистора. Это N-канал (NMOS) и P-канал (PMOS).Давайте теперь подробно рассмотрим различия.

NMOS-транзистор

Для NMOS у нас есть простая структура, в которой исток и сток представляют собой материал N-типа, и они разделены материалом P-типа. Поверх разделения находится оксидный слой, а поверх него — металлический слой, который является воротами.

Вы можете увидеть эту структуру ниже.

В основном, всякий раз, когда на Воротах Источника присутствует напряжение (Vgs), создаваемое электрическое поле воздействует на материал P-типа, образуя канал между двумя другими материалами N-типа, которые являются Источником и Стоком.

Это напряжение создает канал и позволяет току течь по нему между Источником и Стоком.

Далее, давайте более подробно рассмотрим различные режимы работы для режима расширения NMOS.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs
  • Омический: Vgs> Vth и Vds
  • Насыщение : Vgs> Vth и Vds> Vds-sat, канал полностью сформирован, увеличение Vds не вызывает увеличения тока

Здесь можно найти отличную визуализацию для этих режимов.В таблице данных для вашей части NMOS должно быть несколько графиков, отображающих ток стока (Id) в зависимости от Vds, с линиями, представляющими разные Vgs.

Отличным примером сильноточного NMOS является IRLML6344TRPBF.

Если вы откроете техническое описание этой детали, вы увидите, что для этого требуется, чтобы напряжение Vgs было выше 1,1 вольт (Vth). Кривая показывает нам, что для разных уровней Vgs выше этого порогового напряжения мы получаем разные кривые тока стока.

В большинстве случаев напряжение Vds-sat составляет около 1 Вольт, и именно здесь кривые переходят в плоскую линию.

Для CMOS, когда напряжение на затворе высокое, транзистор включен, а когда напряжение на затворе низкое, транзистор выключен.

Транзистор PMOS

Для PMOS он очень похож на NMOS, за исключением того, что материалы N-типа и P-типа поменяны местами. Вы можете увидеть структуру ниже.

PMOS работает очень похоже на NMOS, за исключением того, что некоторые вещи работают наоборот. Давайте посмотрим на разные режимы.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs> -Vth, ток не течет от источника к стоку
  • Омический: Vgs <-Vth и -Vds> -Vds-sat, канал формируется на основе Vgs, -Vds, становясь более отрицательным, вызывает больший ток линейно
  • Насыщенность: Vgs <-Vth и -Vds <-Vds-sat, канал полностью сформирован, -Vds становится более отрицательным, не вызывает больше тока

Вот главный момент:

Для PMOS, когда напряжение на затворе высокое, транзистор выключен, а когда напряжение на затворе низкое, транзистор включен.

Транзистор CMOS

Что произойдет, если объединить NMOS и PMOS в одной детали? Вы получаете очень удобный компонент.

Фактически, комплементарная MOS (CMOS) лежит в основе процессоров, SRAM и логических микросхем. Использование КМОП дает множество технических преимуществ, подробности см. Здесь

Упаковка транзисторов

Транзисторы выпускаются в различных вариантах корпусов, включая сквозное отверстие, поверхностный монтаж и монтаж на шасси.

В большинстве конструкций электроники используется поверхностный монтаж.Однако любители часто используют варианты со сквозным отверстием.

Для более высокого рассеивания мощности может потребоваться установка через отверстие или монтаж на шасси для отвода тепла от схемы

Распространенным корпусом со сквозными отверстиями является TO-92, который имеет пластиковый корпус с тремя выводами. Популярным корпусом для поверхностного монтажа является SOT-23, который также имеет 3 контакта.

Самые популярные транзисторы

Транзистор Дарлингтона

Допустим, вам нужен усилитель или переключатель тока NPN, но найденные вами одиночные транзисторы просто не имеют достаточно высокого коэффициента усиления (hfe), чтобы вывести низкотоковый вход на высокий выходной ток.

Мы знаем, что мы можем усилить ток одним транзистором, тогда почему мы не можем сделать это дважды, чтобы получить еще больше?

Ответ — мы можем.Многочисленные транзисторы вызывают несколько ступеней усиления, которые умножаются друг на друга, что в целом дает нам гораздо больший коэффициент усиления.

Это так же просто, как соединить два коллектора NPN вместе и подключить эмиттер первого к основанию второго.

Символ Дарлингтона показан ниже, чтобы проиллюстрировать эту установку.

Оказывается, это очень мощный аппарат. Конечно, мы могли бы создать его с двумя дискретными транзисторами, но он сэкономит намного больше места, если будет выполнен на той же интегральной схеме.

Например, с FZT605TA мы могли бы использовать 1 миллиампер для управления первым транзистором, который усиливается для управления вторым транзистором и позволяет нам управлять током, протекающим от коллектора к эмиттеру, более 1 ампер.

Это усиление более чем в 1000 раз!

Силовой транзистор

Когда мы говорим силовой транзистор, мы обычно подразумеваем транзисторы, которые могут обрабатывать более 1 А на выходной стороне.Это означает, что для BJT, тока коллектора и эмиттера, а также для полевых транзисторов, ток источника и стока имеет максимальное значение более 1 А.

При поиске такого транзистора следует обратить внимание на его внутреннее сопротивление и максимальное тепловыделение.

Кроме того, если вы имеете дело с большим количеством тепла, есть ли у него упаковка, позволяющая подключить его к радиатору?

Корпус TO220 — это знаменитый корпус со сквозными отверстиями, в котором есть хорошая металлическая посадочная площадка и отверстие для винта для установки различных радиаторов.

Транзисторы серии TIP являются популярным вариантом BJT в этом классе деталей. Вот несколько отличных примеров:

Транзистор TIP31 — ток коллектора макс = 3 А, hfe = 10, максимальная мощность = 2 Вт, л чернил

Транзистор TIP120 — ток коллектора макс = 5 А, hfe = 1000, максимальная мощность = 2 Вт, ссылка

Если вам нужен силовой полевой транзистор, то популярным выбором будет IRLML6344TRPBF. Он имеет максимальный ток стока 5 А и максимальную мощность 1,3 Вт. FET — это расширенный режим NMOS.

Фототранзистор

Если вы хотите преобразовать фотоны в ток, наиболее распространенным способом является использование фотодиода. Однако иногда диод не производит большого тока из-за количества света, которому он подвергается.

Поскольку мы уже знаем, что из транзисторов получаются отличные усилители тока, почему бы не использовать транзистор, чтобы довести выходной ток до желаемого уровня?

Здесь явно два варианта.

1. Как разработчик схем, мы могли бы использовать фотодиод с транзистором, чтобы получить более высокий выходной ток диода.Их часто называют схемами усилителя фототока.

2. Другой вариант заключается в том, что для специализированных случаев производители фактически делают отдельные детали (например, PT15-21B / TR8), в которых просто вырезано окно, чтобы подвергать транзистор фотонам, которые напрямую воздействуют на транзистор в детали. . Он также известен как оптический транзистор.

В зависимости от ситуации вы можете выбрать, какой из них использовать, исходя из ваших требований.

Предлагаются фототранзисторы для видимого света.Чаще они предназначены для инфракрасного диапазона спектра. Таким образом, они невидимы для человеческого глаза. Скорее всего, ваш ТВ-приемник для вашего пульта дистанционного управления использует один из них

Если вы можете найти решение, состоящее из одной детали, по приемлемой цене и для необходимой длины волны света, тогда сделайте это. Если нет, вы всегда можете использовать фотодиод и транзистор вместе, чтобы усилить ток с фотодиода.

Оказывается, Sharp выпустила отличное приложение для этих типов схем, которое охватывает все различные варианты.Вы можете найти его здесь: SMA99017

Оптоизоляторы

Кроме того, оптоизоляторы (также известные как оптопары) — это части, которые работают за счет встроенного в корпус светодиода и фототранзистора.

См. Например, FOD817. Таким образом, вы получаете настоящую электрическую изоляцию, поскольку внутренние части взаимодействуют только с помощью фотонов.

Photointerruptor

С механической стороны, если вам нужен способ обнаружить что-то в движении, которое может точно пройти через прорезь в материале , то фотопрерыватель — это изящное маленькое устройство.

Он работает таким же образом, имея светодиод и фототранзистор, так что ваша схема может определять, когда свет между ними прерывается, а когда нет. GP1S094HCZ0F — отличный тому пример.

2n2222 Транзистор

На протяжении многих лет одним из самых популярных транзисторов для малых токов и малой мощности был транзистор 2n2222. Его также часто называют 2n2222a. Эта часть является BJT NPN.

Вот типичные характеристики 2n2222a:

  • Макс.ток коллектора = 0.8 А
  • Максимальная мощность = 0,5 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой между коллектором и эмиттером = 40 В

Деталь по-прежнему очень популярна. Большинство людей выбирают вариант в пластиковом корпусе, поскольку он намного экономичнее. Эта версия известна как Pn2222a, а примером является PN2222ABU.

2n3055 Транзистор

Если вам нужен сильноточный транзистор, то 2n3055 — отличный вариант. Это BJT NPN, и он поставляется в мощной упаковке TO-3.

Вот типичные характеристики 2 n30 55:

  • Максимальный ток коллектора = 15 А
  • Максимальная мощность = 115 Вт
  • Коэффициент усиления постоянного тока = 20
  • Пробой коллектора к эмиттеру = 60 Вольт

2n3904 Транзистор

Другой чрезвычайно популярный слаботочный транзистор — 2n3904. Это также BJT NPN.

Этот транзистор — один из лучших вариантов для усилителей тока цепи общего назначения, если он соответствует вашим требованиям.

Вот типичные характеристики транзистора 3904:

  • Максимальный ток коллектора = 0,2 А
  • Максимальная мощность = 0,625 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой коллектора к эмиттеру = 40 Вольт

Деталь предлагается в пластиковом корпусе TO-92, что делает ее очень экономичной для большинства применений, где требуются детали со сквозными отверстиями. Любители часто выбирают этот транзистор.

2n4401 Транзистор

Если вам нужен транзистор общего назначения, но требуется немного больше тока, чем у 2n3904, то 2n4401 — хороший выбор.

Вот типичные характеристики для 2n4401:

  • Макс.ток коллектора = 0,6 А
  • Макс.мощность = 0,625 Вт
  • Усиление постоянного тока = 100
  • Разрыв между коллектором и эмиттером = 40 В

BC547 Транзистор

Еще один популярный слаботочный транзистор — BC547.Это также BJT NPN. Он известен своим сверхвысоким коэффициентом усиления по току.

Вот типичные характеристики BC547:

  • Максимальный ток коллектора = 0,1 А
  • Максимальная мощность = 0,5 Вт
  • Усиление постоянного тока = 420
  • Пробой между коллектором и эмиттером = 45 В

Использование транзисторов

Теперь, когда мы ознакомились с большей частью теории и различными частями, давайте рассмотрим некоторые полезные транзисторные схемы.

Прежде чем мы перейдем к некоторым учебным пособиям по транзисторам, давайте рассмотрим очень базовую концепцию, которую важно знать дальше.

Смещение транзистора

Проще говоря, смещение транзистора устанавливает уровни напряжения и / или тока на оптимальную точку так, чтобы транзистор должным образом усиливал сигнал переменного тока по своему вкусу.

Очевидно, это во многом зависит от используемого транзистора, а также от окружающей цепи и напряжений.

Лучший совет — внимательно изучить техническое описание транзистора, так как там можно найти все напряжения и токи для различных режимов.В таблицах данных

также обычно есть несколько отличных примеров схем, которые вы можете использовать в качестве справочника для своего проекта

Следующий совет — использовать программное обеспечение типа SPICE для моделирования вашей схемы. Удивительно, чему вы можете научиться, когда можете быстро преодолеть массовые отказы с молниеносной скоростью с помощью программного обеспечения для моделирования.

Следующее лучшее — это смонтировать схему и поиграть. Вы можете пойти на больший риск, если имеете дело с дешевыми запчастями на случай, если что-то взорвется.Однако, если вы имеете дело с дорогими деталями, которые трудно заменить, сначала выполните описанные выше действия. использование транзистора — вариант.

Основы просто заключаются в том, что вы используете транзистор для тяжелой работы с током.

Это можно сделать несколькими способами:

  1. Emitter F ollower — один из наиболее распространенных, также известный как обычный коллектор, см. Пример
  2. Common Emitter — см. Пример
  3. Push Pull — см. Пример

Для простых усилителей лучше всего использовать транзистор.Если вам нужно более продвинутое усиление, вам действительно стоит подумать об использовании операционного усилителя. Таким образом вы сможете лучше контролировать полосу пропускания и уровень шума в цепи.

Если вы этого еще не знали, операционные усилители в основном состоят из транзисторов. В S pa rkfun есть отличная статья, в которой они познакомят вас с самыми основными схемами усиления, а в конечном итоге все это соберут вместе и покажут основы внутреннего устройства операционного усилителя.

Есть причина, по которой операционные усилители имеют много транзисторов. в них, чтобы контролировать все маленькие эффекты.Не бойтесь использовать операционный усилитель по назначению.

Операционный усилитель общего назначения будет стоить столько же, сколько один или два транзистора, так зачем создавать сложную схему усилителя из транзисторов, если можно просто взять операционный усилитель и получить гораздо лучший результат.

Транзисторный переключатель NPN

Часто у нас есть процессор или микроконтроллер с цифровым выводом, который может подавать только около 10–20 мА (проверьте свой лист данных). Следовательно, мы не можем напрямую управлять чем-либо с большим током.

Транзистор — отличный буфер, который мы можем использовать для усиления тока, чтобы контролировать вещи. Например, вентилятор, обогреватель или другое устройство со средним или большим током. BJT NPN является популярным выбором для таких ситуаций.

Пример конструкции

В следующей транзисторной схеме NPN мы используем NPN для управления большим током вентилятора, позволяя нам управлять вентилятором с помощью слаботочного цифрового вывода.

В этом примере мы используем BJT в качестве переключателя NPN, поскольку два рабочих состояния либо включены, либо выключены.

Из схемы видно, что распиновка NPN-транзистора такова, что база подключена к управляющему сигналу с помощью резистора, коллектор подключен к нижнему концу вентилятора, а эмиттер подключен к земле.

Выбор транзистора

Итак, как выбрать подходящий транзистор для работы? В этом случае мы рассмотрим несколько ключевых характеристик, и нам нужно снизить номинальные характеристики, выбрав для нашего транзистора значения 2x-3x.

  • Максимальный ток от коллектора к эмиттеру должен быть в 2–3 раза больше тока через вентилятор.Пример: если вентилятор потребляет 0,15 А, NPN должен иметь ток коллектора (Ic) max более 0,3 А
  • ВЧ должно быть достаточно высоким, чтобы, по крайней мере, быть током через вентилятор, деленным на ток с нашего цифрового вывода. Пример: если наш вентилятор потребляет 0,15 А, и мы можем подавать 0,01 А через цифровой вывод, тогда hfe должно быть больше 15 (0,15 / 0,01)
  • Максимальное напряжение пробоя коллектора NPN-эмиттер (Vce) должно быть в 2 раза больше. -3x напряжение питания нашего вентилятора. Пример: если у нас есть вентилятор на 12 В, то нам нужно максимальное напряжение 24 В или больше

Это основные вещи, на которые следует обращать внимание при выборе транзистора для этой схемы.Имейте в виду, что в разработку этой схемы было вложено гораздо больше, над чем кто-то давно работал.

Когда мы смотрим на доступные детали, мы обнаруживаем, что PN2222ABU отвечает всем нашим требованиям. Он имеет Ic = 1 А макс., Vce = 40 В макс. И hfe = 50 мин при Ic = 0,15 А.

Чтобы получить дополнительную маржу, мы можем разделить hFE на 2, что станет 25. Это больше, чем наши требуемые 15, что мы и хотим.

Значит, нам, вероятно, сойдет с рук 0.006 А базового тока для управления током коллектора 0,15 А (0,15 / 25). Мы планируем использовать базовый ток 0,01 А, что еще больше переведет нас в режим насыщения.

Что делать, если ваш вентилятор или нагрузка потребляют намного больше тока, чем в нашем примере? Возможно, вам понадобится более мощный NPN. TIP120 — это чудовище с минимальным hFE 1000 на многих токах коллектора. Это также не намного дороже, чем наш предыдущий выбор.

Выбор резистора

Для пытливых умов, чтобы выбрать правильное значение резистора, R1, нам нужно заглянуть в лист данных транзистора и увидеть максимальное напряжение между базой и эмиттером, Vbe.Для этого транзистора его 1,2 Вольт.

Затем, какой бы логический уровень мы ни использовали, мы можем рассчитать резистор. Например:

3,3 Вольт логики — 0,6 В Vbe = 2,7 В

Теперь мы берем:

2,7 В / 0,01 А Базовый ток = 270 Ом для R1

Это ограничивает ток с нашего цифрового вывода до 0,01 А макс. 0,6 Vbe, а ток составляет 0,008 ампер мин при 1,2 Vbe. Мы должны быть в насыщении NPN для обоих из них.

Выбор диода

Диод присутствует из-за индуктивной нагрузки вентилятора.Диод не нужен, если нагрузка представляет собой нагреватель, светодиод или другую резистивную нагрузку.

Типичный диод для D1 в этой ситуации — 1N4001. Он имеет прямой ток 1 А и максимальное обратное смещение 50 В.

Транзистор hFE

При выборе правильного транзистора hFE:

В большинстве интернет-источников есть практическое правило рассматривать каждый транзистор как имеющий hfe равный 10. Это немного глупо, так как частично лишается необходимости иметь много разных транзисторов. Выбери из.

Какой нормальный путь выбрать для определения того, имеет ли транзистор достаточно высокое hfe и какой базовый ток требуется, — это посмотреть на лист данных.

Вы хотите найти кривые насыщения, сопоставить максимальный ток коллектора для вашей схемы и определить базовый ток, который переводит транзистор в режим полного насыщения. Кривая будет похожа на хоккейную клюшку.

Насыщение означает, что увеличение базового тока больше не приводит к увеличению коллекторного тока на кривой.Пройдите немного дальше по кривой после того, как она выровнена ровно. Это золотая середина.

В некоторых таблицах данных нет этих кривых, поэтому вам придется полагаться на таблицу, которая сообщает вам hFE при определенных токах коллектора. Это типичный сценарий.

Попробуйте сопоставить ток коллектора вашей схемы в таблице, а затем выберите минимальное значение hFE. На всякий случай, вы можете разделить hFE на 2, чтобы получить достаточный запас на ошибку.

Многие люди ошибаются здесь и получают ток коллектора из таблицы, который не соответствует их схеме, поэтому hfe, которое они используют, неправильное. .

Затем соберите и протестируйте свою схему, чтобы убедиться, что она работает правильно. Попробуйте поменять местами несколько транзисторов с одинаковым номером детали, чтобы убедиться, что все они работают.Схема должна работать, а транзистор не должен нагреваться.

Если для вашей схемы требуется, чтобы вы подавали ток через транзистор (вместо потребляемого тока для NPN), вы можете вместо этого сделать схему переключения транзистора PNP. Хотя это не так часто, как использование NPN в этой ситуации. .

Тестирование транзисторов

Время от времени вам может потребоваться убедиться, что часть транзистора работает правильно.

Оказывается, довольно легко проверить транзистор, если вы можете изолировать часть от схемы. Далее мы рассмотрим некоторые методы. Важно удалить транзистор из схемы.

Если он находится в цепи, эти тесты, вероятно, не будут работать эффективно

Ручной метод мультиметра

Большинство современных мультиметров имеют режим проверки диодов.Иногда это сочетается с измерением сопротивления или это может быть отдельный режим регулятора. Ниже приведен пример счетчика Craftsman. Обратите внимание на символы диодов, кнопку и режим регулятора.

Чтобы проверить транзистор, нам нужно удалить его из схемы. В противном случае тест может быть неточным.

Чтобы измерить наш транзистор, мы делаем эти 4 шага:

1. Мы переводим нашу ручку-селектор в режим измерения диодов. В зависимости от нашего измерителя нам может потребоваться дополнительно нажать кнопку режима вверху, чтобы перейти от звукового сигнала к диодному режиму.Визуальный дисплей должен сообщить нам, в каком режиме мы находимся.

2. Для NPN поместите красный зонд на штырь Base, а черный зонд на штырь эмиттера. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

3. Для PNP поместите красный щуп на вывод эмиттера, а черный щуп на вывод основания. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

4. Для NPN или PNP поместите один датчик на коллектор, а другой датчик на излучатель.Здесь вы не должны получить достоверное прочтение. Поменяйте местами датчики, и снова вы не должны получить правильные показания.

Если транзистор проходит эти шаги, это хорошо. Если нет, то это плохо.

Автоматический метод мультиметра

В этом методе мы воспользуемся преимуществами тестера транзисторов, встроенного во многие мультиметры. Конечно, вам понадобится мультиметр, поддерживающий эту возможность.

Этот тест предназначен для деталей со сквозным отверстием. Если ваша деталь монтируется на поверхность, вам понадобится тестовые провода для подключения вашей детали к измерителю.

Если в вашем глюкометре есть эта функция, то где-нибудь на элементах управления вы найдете несколько отверстий с прорезями с метками для NPN и PNP. См. Пример ниже для счетчика мастера.

Этот тест состоит из трех этапов:

1. Сначала переместите ручку переключателя в раздел, обозначенный «hFE». Это переводит измеритель в транзисторный режим.

2. Затем обратите внимание на то, что отверстия помечены внизу для разных выводов NPN и PNP. Вам просто нужно совместить эти отверстия с выводами детали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *