Термостат на микроконтроллере для холодильника: Терморегулятор для холодильника на микроконтроллере ATMEGA8 и термодатчике DS18B20. Схема, плата, прошивка – Цифровой термостат для холодильника | Все своими руками

Цифровой термостат для холодильника | Все своими руками

Опубликовал admin | Дата 10 ноября, 2015

     На сайте была статья посвященная термостату для холодильника «Самодельный термостат для холодильника », В ней шла речь об аналоговой схеме. Пришло несколько пожеланий о написании программы уже цифрового термостата для замены штатного реле отрицательной температуры. Схема представлена на рисунке 1.


     Основой схемы является микроконтроллер PIC16F628A. Для работы контроллера в качестве тактирующего генератора используется внутренний RC генератор, что позволило сэкономить на кварце. Информация о контролируемой температуре отображается на трехразрядном семисегментном светодиодном индикаторе с общим катодом. В качестве датчика температуры применен цифровой датчик BS18B20. Датчик подключен к двум выводам микроконтроллера. Вывод RA5 постоянно сконфигурирован на вход, а RA4, имеющий на выходе полевой транзистор с открытым стоком, постоянно является выходом. Это позволило значительно упростить программную реализацию интерфейса Wire-1 с датчиком температуры. Для подтягивания шины данных от датчика к напряжению питания (к логической единице) в схему включен резистор R2. Резисторы 1, 3 и 4 тоже подтягивающие для соответствующих входов микроконтроллера, к которым подключены кнопки управления. Резисторы с 5 по 11 – гасящие, от величины их номинала зависит яркость свечения сегментов индикатора.

Не забывайте, что максимальный ток выходов микроконтроллера равен двадцати пяти миллиамперам. Иногда попадаются индикаторы с разной яркостью свечения сегментов, выровнять яркость можно так же с помощью этих резисторов. Управление термостатом осуществляется с помощью трех кнопок. Установка температуры термостатирования производится с помощью кнопок BS2 и ВS3, уменьшение и увеличение соответственно. Установка гистерезиса осуществляется этими же кнопками, но при нажатой кнопке BS1. Гистерезис имеет величину от 1 до 10 градусов и имеет отрицательную величину. Т.е. компрессор будет выключаться в соответствии с выставленной температурой, а включаться в соответствии с выставленной минус гистерезис. Питается устройство от стабилизированного напряжения величиной пять вольт. В схеме нет схемы ключа, управляющего компрессором. Это может быть реле, тиристорные или симисторные ключи, ключи, собранные с использованием полевых транзисторов, твердотельные реле и т.д. Конденсатор С1 лучше всего устанавливать между выводами питания микроконтроллера.

     Проверка термостата в реальности не производилась, схема с программой была промоделирована в протеусе. Отсюда вывод – рисунка печатной платы нет. Если возникнет желание, то можете прислать, я выложу для других посетителей. Успехов. К.В.Ю.

Скачать “Цифровой термостат для холодильника” digit_term_xolodilnik.rar – Загружено 992 раза – 29 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:5 901


Термостат для управления однокамерным холодильником.

Сайт http://c2.at.ua.

Автор: C@at.

Программа предназначена для управления самодельным холодильником, подробней про самодельный холодильник здесь.

«Термостат для управления холодильником» собственно представляет собой; термостат, который предназначен для поддержания температуры внутри одной холодильной камеры с точностью до 0.1°С, с использованием настраиваемого гистерезиса, установки пользователь выбирает самостоятельно.

И дополнительно используется два термометра с точностью до 0.1°С.

Назначение термометров, информация о температуре окружающего воздуха.

Схема.

Основные элементы схемы это; ЖКИ 16х2 на базе контроллера HD44780 или KS0006, МК ATmega8 с любой буквой и корпусе, внешний кварц 8 МГц, пьезодинамик с генератором.

Датчики температуры DS18b20.

Остальная часть схемы, может иметь различные варианты исполнения, если вы имеете достаточную практику в сборке подобных схем, вам не составит большого труда, сделать замену какой либо части схемы. Например; Step-down converter микросхема MC34063 – на «кренку», подключить реле 12V — вместо реле 5V, или часть схемы МОС3063 + ВТ137 заменить на релейную в случае необходимости.

FUSE. Схема МК работает с кварцем, на частоте 8MHz.

Принцип работы программы.

Термостат — датчик U-1, имеет настраиваемый порог температуры и гистерезиса. Настройка производится из пользовательского меню, вход в меню происходит после нажатия кнопки Кн2, в этом же меню вводится вручную количество используемых датчиков DS18b20 (по умолчанию 3 шт.), это такая необходимость, чтобы в случае ошибки определения температурных датчиков во время работы термостата, это обеспечивает управление компрессором только тем датчиком, который подключен для него при настройке схемы.

Датчик U-2, U-3, это дополнительные термометры, используются для отображения на ЖКИ температуры окружающего воздуха в помещении и улице.

Сигнальный выход РВ1 (15 нога МК) предназначен для подачи звукового сигнала в случае обрыва датчика.

Исполнительный выход РС0 (23 нога МК) управляется термостатом U-1, предназначен для управления компрессором холодильника. Выход РС2 (25 нога МК) это инверсия выхода РС0.

Исполнительный выход РС1 (24 нога МК) предназначен для подключения второго компрессора, отличие от выхода РС0 это 3-х секундная задержка на включение и выключение, ( в приведенной выше схеме, показано последовательное включение реле для одного компрессора).

Исполнительный выход РС5 (28 нога МК) управляет вентилятором, предназначенным для смешивания воздушных потоков внутри холодильной камеры. Команда на включение вентилятора подается периодически на 10 секунд, пауза между включениями вентилятора, во время работы компрессора в активном состоянии 3 минуты, во время простоя компрессора пауза 8 минут.

Измерительный вход РС4 (27 нога МК) используется для определения пропадания основного питания схемы, в это время у МК проходит команда на сохранение накопленных данных статистики работы термостата. Порог напряжения при котором происходит запись в память МК, при настройке можно видеть визуально на экране ЖКИ, в виде графической буквы z (место-расположение на дисплее, в первой строке, 8-е знако-место).

Просмотр статистики.

Текущий в первой строке ЖКИ правая часть экрана, или более полный осуществляется по нажатию кнопки Кн1.

Первая строка это время текущее время работы компрессора в активном состоянии, вторая строка это время неактивности компрессора, то есть паузы.

Далее Кн2, просмотр общего (накопленного) времени работы компрессора в активном состоянии, и количество подачи команд на его включение. Переход в следующий пункт меню, где при желании можно обнулить эту статистику.

Работу схемы можно протестировать в proteus’е.

Печатная плата;

Архив файлов проекта термостата для холодильника: прошивка, proteus, печатная плата.

Терморегулятор на микроконтроллере PIC16F84 и датчике DS18B20.

РадиоКот >Схемы >Цифровые устройства >Бытовая техника >

Терморегулятор на микроконтроллере PIC16F84 и датчике DS18B20.

Не смотря на огромное количество цифровых термометров и терморегуляторов, представленных на различных форумах, тема всегда остается актуальной, ввиду большого разброса пожеланий к такому изделию. Попытки сделать его универсальным увеличивают сложность схемы и естественно габариты всего устройства. В данной статье представлена попытка собрать более-менее универсальное, законченное устройство для применения в быту. Хотя первоначально это задумывалось, как отладочное и экспериментальное средство для изучения программирования, так как этот процесс должен подразумевать конкретную цель с конечным результатом, иначе будет не интересно, и все желания что-то изучить быстро остывают, не имея практического подтверждения и проверки. Выбор компонентов и микроконтроллера обусловлен их наличием и желанием хоть как-то применить, чтобы не валялось зря, вот и результат работы.

Область применения терморегулятора широка. Возможно его использовать для поддержания температуры в овощехранилище в зимнее время, как реле управления холодильником, и прочие варианты. Изготовление в отдельном корпусе G766 позволяет использовать его, как самостоятельное устройство, или в составе какой-либо системы управления. Терморегулятор состоит из двух плат, спаянных под прямым углом между собой, небольшого пластинчатого радиатора для симистора, внешнего датчика температуры, на 3-х метровом шнуре. Датчик использован один, в схеме с 3-х проводным включением и 12-и разрядным разрешением. Выход терморегулятора рассчитан на подключение нагрузки переменного тока 220В до 10A. (ток зависит от применяемого симистора и радиатора).

Схема разработана на основе аналогичных конструкций из журнала Радио № 10 за 2003г. и Радио № 1 за 2006г. В этом варианте изменены алгоритм работы, индикация, анализ сравнения чисел, выбор установок. Обновление температуры (опрос датчика) один раз в 1,05 сек. Расположение индикатора, кнопок и выключателя питания на передней панели, а всех разъемов подключения на задней панели, позволило использовать прибор более функционально и возможность скрыть все провода, при монтаже в составе другого изделия. Индикатор 4-х разрядный семисегментный с ОА (цвет свечения по желанию пользователя). Отображение температуры с фиксированной запятой младшего разряда, а старшие разряды с гашением не значащих нулей. Применение индикатора с суперяркими светодиодами в сегментах, или красного цвета позволит использовать плату (первоначальный вариант) без доработки. В моем распоряжении оказался обычный индикатор с зелеными светодиодами, что потребовало установку дополнительных ключей в цепи анодов (доработка указана на схеме), для увеличения яркости свечения сегментов, это еще и снизило влияние на яркость свечения сегментов, при разном количестве горящих в разряде. Чтобы исключить вопросы про точность датчика и необходимость вывода десятичной доли градуса, на краях измеряемого диапазона, можно сказать, что датчик работает в 12 разрядном режиме, считываются все разряды и преобразуются в цифровой вид, индикатор позволяет это сделать во всем диапазоне измеряемых температур. А вот оценка точности, потребность в десятичных долях градуса, на краях диапазона, на усмотрение пользователя, тем более эти возможности осуществимы изменением программы, под конкретные задачи. Сколько людей, столько и мнений, и пожеланий. На мой взгляд, все функционально и есть возможность подстроиться под широкую область применения. Была задумка ввести калибровку под применяемый датчик и записывать ее в память (где то встречалось в интернете) но пока такая точность не была востребована. А если и будет замечена неточность измерений и в поддержании заданной температуры, то все можно решить подстройкой гистерезиса и сдвигом установленного значения в требуемую сторону.

На передней панели кнопка «SET» переключает выбор режима установок: гистерезиса температуры, инверсии выхода (для холодильника), скважности (П- регулирование), температуры уставки. Кнопки «Минус» и «Плюс» меняют значения уставок, включают или выключают соответственно режимы инверсии и П-регулирования. После изменения установок и режимов, все записывается в энергонезависимую память EEPROM МК. Светодиод отображает подачу напряжения питания на выходную розетку.
При включении прибора на мигающем индикаторе по 2 секунды последовательно отображаются:
1 установленная температура ( далее по тексту Ту )в формате «XXX.X»
2 установленный гистерезис ( далее по тексту дТ ) в формате «d X.X»
3 если установлена инверсия, то отображается в формате «? O.n»
4 если установлено П-регулирование, то отображается в формате «П O.n»
Далее происходит инициализация датчика и его проверка, если он неисправен или не получен импульс присутствия по различным причинам, то на индикаторе отображается ошибка в формате «Егг.» в течении 2 сек, а затем вновь происходит проверка до восстановления связи с датчиком. Если все исправно, то далее происходит измерение температуры ( Ти ) и ее сравнение с установленной с учетом гистерезиса, причем гистерезис, как в положительную, так и в отрицательную сторону. Например, установленная температура +2гр. с гистерезисом в 0,4гр. будет поддерживаться в интервале от +1,8 гр. до +2,2 гр. Реакция на включение, или выключение нагревателя, при отключенных инверсии и П-регулировки происходит только после 5 замеров, подтверждающих необходимость коммутации выхода (для исключения ложных замеров). Исключение составляет режим П-регулирования, при котором по достижении температуры нижнего порога уставки (Ту-дТ/2) начинается ограничение мощности нагревателя, при помощи импульсного выключения/включения на определенное время, в течении каждого замера (т.е. каждую секунду). А по достижении верхнего предела уставки (Ту+дТ/2) нагреватель выключается полностью. При нулевом гистерезисе П-регулирование не работает, а нагреватель выключается при Ти>Ту и наоборот (так же через 5 замеров). Пропорции в соотношении вкл./выкл. нагрева устанавливаются исходя из дТ и Ти. Так например, при дТ в 1гр. количество ступеней регулировки 10. Длительность импульса включения определится из: (1Сек/дТ)*(Ту+дТ/2-Ти) с учетом десятичной части веса числа. Таким образом при равенстве Ти и Ту соотношение импульса и паузы 1:1 т.е. соблюдается пропорциональность регулирования мощности нагревателя на участке изменения температуры в диапазоне дТ.
Режим инверсии используется для управления холодильником и исключает включение П-регулировки. Более того, выключение компрессора холодильника осуще-ствляется при пятикратном подтверждении условия Ти Ту+дТ/2 и выдержки времени более 2 минут, после предыдущего выключения или пропадания напряжения питания в сети. Это необходимо, чтобы не сжечь компрессор при тяжелом пуске, после его выключения на короткое время.
В режиме изменения установок индикатор мигает с частотой 3Гц. Установка порога температуры осуществляется кнопками «Плюс» и «Минус». Кратковременное нажатие кнопок изменяет Ту на 0,1°, а длительное удержание в нажатом положении изменяет Ту по 1° за 0,3 сек. (т.е. изменить уставку на 30° можно примерно за 10 сек).
По нажатию кнопки «Set» последовательно переходим в режимы установок:
1 Гистерезиса (от 0 до 8 град. кнопками «плюс» и «минус» с точностью 0,1°)
2 Включения инверсии ( кн. «плюс» включает, а кн. «минус» выключает)
3 П-регулирование ( кн. «плюс» включает, а кн. «минус» выключает)
4 Вновь установка температуры (далее по кольцу к п.1)
Так производят установки, нажимая кнопки с периодом менее 5 Сек. А если кнопки не нажимать более 5сек, то происходит запись режимов в память и переход к штатному установленному режиму работы. Есть особенность в установке инверсии и П-регулировки, они друг друга исключают, поэтому, если последним установить П-рег. то инверсии не будет, и наоборот, если установить инверсию, то П-рег. отключено, хоть до этого и было включено. Рекомендуется после изменений и записи в память, выключить терморегулятор на 3 сек, а потом включить, чтобы удостовериться в том, что установили (на всякий случай). Конструктивно прибор можно собрать в любом подходящем корпусе, использовать внешний блок питания на +5В, компоненты могут быть заменены любыми, подходящими по параметрам. Печатная плата выполняется любыми доступными средствами, по собственному усмотрению (ЛУТ, монтажка и др.) поэтому, думаю нет смысла навязывать собственный вариант. Программирование микроконтроллера производится внутрисхемно через разъем IDC10, но возможна установка МК в панельку и программировать во внешнем программаторе. Я использовал простейший комплект: программу WinPic800 и программатор собственного изготовления, немного отредактированный вариант из журнала Радио №10 за 2007г. Стр 31. Никаких проблем с установками бит конфигурации не было, они присутствуют в файле прошивки. Единственное условие, это необходимость отключать датчик во время программирования, мешает процессу своими ответами на импульсы по РВ7. Пытался прошивать программой Pony-prog, но что-то не получалось это делать стабильно. Программа дописывалась кусочками, по мере возможности, возникающих пожеланий и окончательной отладки. Вот вроде бы и все.

Файлы:
Печатные платы в формате PDF.
Файл проекта для Proteus.
Прошивка МК.

Вопросы, как всегда в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

САМОДЕЛЬНЫЙ ТЕРМОСТАТ К ХОЛОДИЛЬНИКУ

Вот конструкция термостата для холодильника, который работает уже более 2 лет. А всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог — холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода — они сигнализируют что агрегат включен или температура выше верхнего порога.

Схема термостата холодильника на МК

Фото оригинального термостата и самодельного

   

Для подключения потребовалось провести второй провод 220 В (взял от лампы освещения) для питания трансформатора. 
Разъем, к которому подключен потенциометр — это одновременно разъем программирования ISP.

Плата защищена от влаги специальным лаком для печатных плат. 

Термостат в настоящее время работает без проблем, и что главное — обошёлся по цене примерно в 10 раз меньше оригинального.

Трансформатор тут на 6 В. Был выбран такой, чтобы свести к минимуму потери на микросхеме 7805.

Реле здесь можно поставить и на 12 В. Если взять на него напряжение до стабилизатора. Чтобы снизить расходы, можно было бы создать блок питания бестрансформаторным, хотя найдутся сторонники и противники такого решения (электробезопастность). Еще одно сокращение расходов — это исключение микроконтроллера AVR. Есть термометры Даллас, которые могут работать тоже в режиме термостата.

   Ремонт электроники

Термостат на PIC контроллере

Термостат – поддерживает заданную температуру, в определённой среде.

Задумка
Появилось у меня помещение для станка. Там должна быть температура определённого уровня, при влаге и холоде на улице. Электрокамин и печи не по мне, много дров, топлива и большое энергопотребление, при не так уж и большой производительности тепла на выходе. Присмотрел и приобрёл тепловентилятор, промышленного образца, с минимумом пластиковых, горючих материалов:

Термостат на PIC контроллере

Характеристики:
– Номинальное напряжение, частота сети, В/Гц __220 / 50;
– Потребляемая мощность, кВт ____ 1 / 2 кВт;
– Отдача тепла, м3/час _____200;

Управление
Тепловентилятор есть, теперь необходимо сделать умную систему управления и контроля. Поискав в интернете нашлась схема из журнала Р-К №11/2008г., – «Цифровой термостат». Конструкция оказалась простой, как по мне, с двухстрочным цифровым экранчиком. Ниже приведена схема, нарисованная в программе SPlan 7.0.

Термостат на PIC контроллере
По характеристикам термостат способен задавать температуру от -25 до +75°С, при шаге 0,25°С. Так же можно задать в предустановках меню спад и нарастание температуры шагом по 0,1°С.

Работа с термостатом осуществляется с помощью кнопок. Кнопками «+» и «-» (S1 и S2) определяется значения температуры или спада (нарастания), кнопка «MODE» (S3) – режим установки.

Для того чтобы задать температуру поддержания, нажимаем кнопку S3 и удерживаем её пока на экране не засветится «SET TEMPERATURE».

Термостат на PIC контроллере
Кнопкой S1 и S2 устанавливаем необходимый спад (нарастание).
Термостат на PIC контроллере
При последующем нажатии кнопки S3, происходит возврат к отображению текущей температуры.
Термостат на PIC контроллере
Контроль температуры осуществляется при помощи цифрового термометра А1 – DS1820. Это готовый элемент, не нуждающийся в настройке. Термодатчик изготовлен в виде отдельного элемента, присоединяемого к основному блоку экранированным проводом со штекером 3,5мм (аудио).
Термостат на PIC контроллере
При поломке, неисправности или не подключенном выносном датчике, на дисплее светится предупреждающая надпись

Управление схемой происходит микроконтроллером PIC16F628. Тактовая частота организована кварцом ZQ1 с частотой резонанса – 4МГц.

Управление тепловентилятором происходит с симистором VS1 – BT136. Управление симистором осуществляется при помощи оптопары MOC3043. Силовую схему управления тепловентилятора я дополнил промежуточным реле. Катушка реле стала играть роль нагрузки симистора, а её контакты запараллелил и скомутировал в цепь питания тепловентилятора.

Схема оперативного питания выполнена на малогабаритном герметичном трансформаторе, у него сдвоенная вторичная обмотка, 9V-0-9V, на номинальный ток 100mA. Выпрямитель исполнен на на двух диодах VD1и VD2. Если трансформатор с одной понижающей обмоткой необходимо применить схему моста. Контроллер и дисплей запитан от +5V через стабилизатор напряжения А2 (7805).

Для отключения подсветки пин 16 экрана можно отключить, или как я поставил выключатель.
Печатная плата термостата, чисто моя разработка.

Термостат на PIC контроллере
Собранный вид платы управления:
Термостат на PIC контроллере
В файле термостат.lay есть несколько страниц.

Корпус

Третья задача – корпус. Выбрал Z20. Ниже приведена технология подгонки корпуса и изготовления отверстий при помощи шаблонов.

Термостат на PIC контроллере

Всё поместилось в корпус. Установлена розетка для подключения коммутируемой нагрузки.
Термостат на PIC контроллере

Файлы:

datasheet.rar [4.08 Mb] (скачиваний: 580)
plata-spl.rar [70.96 Kb] (скачиваний: 615)
rk_2008_11.rar [2.79 Mb] (скачиваний: 712)
termo.hex.rar [2.31 Kb] (скачиваний: 692)


Источник Термостат на PIC контроллере Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Терморегулятор для холодильника — Proton PICBasic

Купил я БУ холодильник, а в нём неисправна плата электроники, вместо которой наши доблестные ремонтники впендюрили механический терморегулятор ТАМ — 133… Непорядок! Хорошо, хоть всё остальное осталось буржуйское — почему, собственно, и покупался.
Данное устройство включит компрессор, когда температура повысится на 2 градуса относительно установленной и выключит, когда температура понизится на 2 градуса. (Гистерезис 4 градуса — по некоторым данным оптимальный для работы компрессора и с точки зрения потребления электроэнергии)
Кроме того, компрессор НЕ включится, если после последнего выключения (по любой причине) прошло менее 4-х минут. (Интервал для выравнивания давления в системе, иначе компрессор не пустится, и для остывания пускового терморезистора компрессора (термистора))
И, компрессор НЕ включится (или выключится) если напряжение сети упало ниже 170 В или поднялось выше 270 В. (ПИК идёт в сон) Если напряжение пропало на секунду (двигатель остановится) и сразу же появилось, то, как я указывал выше, произойдёт выдержка примерно на 4 минуты и дальше холодильник будет работать в штатном режиме.
Режим по желанию или необходимости:
После 6-ти часов работы компрессор останавливается, включается нагреватель на плачущей морозилке (если таковой есть — у меня не оказалось), морозилка нагревается до 10 градусов, потом выдержка в течении 10 минут, чтобы стекла вода и опять холодильник возвращается к нормальной работе. Если не надо — закомментировать строчку GoTo OTTAYKA ‘—сходить на оттайку!
Да, при работе компрессора бегают снизу вверх точечки на индикаторе…
Для аварийного питания у меня используется БУ аккумулятор от мобильного телефона. Устройство работает и без резервного питания, но выдержка собьётся, да и ЕЕПРОМ этот ПИК не имеет…
Фу-у-у, вроде всё.
Схема:

Вместо светодиодов, соответственно, оптопары и симисторы. Динамичек не используется.
Верхняя по-схеме кнопка выведена наружу — при коротком нажатии индицируется установленная температура, при длительном нажатии происходит изменение установленной температуры — в пределах 0 — 9 градусов ( у меня установлено 7).
При нажатии на среднюю кнопку на индикаторе напряжение сети. Я использовал только при наладке.
Нижняя должна была использоваться при открывании двери — духу не хватило, может, со-временем…
На вход RA0 поступает напряжение сети (через делитель, конечно).
Вот как выглядит это дело:

Вот расположение термодатчика в камере холодильника:

Печатка разрабатывалась по размеру старой. Есть в архиве.
 Архив со всеми файлами на яндексе 
Вопросы и предложения приветствуются!

Цифровой термостат для холодильника — Good Chip

Термостат собран на микроконтроллере AtMega8. В  качестве термодатчика используется ds18b20. Разработан как альтернатива аналоговым термореле для холодильника. Основной алгоритм работы следующий: если температура превысила установленную на 0,4 градуса, включается охлаждение, когда температура упала на 0,4 градуса ниже установленной, выключается охлаждение.

Индикация построена на светодиодах, так как их использовать на много дешевле чем ЖК 1602 или семисегментный LED  дисплей. Аналогичным образом это реализовано на современных холодильниках. Каждый светодиод начиная с D1 и заканчивая D6 отвечает за свою температуру  — 1, 2, 3, 4, 6 и 7 градусов соответственно.

Выставленная температура сохраняется в EEPROM. И при включении питания считывается от туда. Если в EEPROM нет корректной величины, то применяется максимальное значение таблицы. Переключать температуру возможно с помощью кнопки.

Если при включении контроллер не может найти датчик, то включается светодиод D8 «Авария». Так же светодиод включается и в случае если температура не реальная, т.е. не попадает в величины от -1 до +50 градусов. Если во время работы охладителя датчик выдал нереальную температуру три раза подряд, то охладитель отключается.

Светодиод  D7 сигнализирует о том что охладитель включен.

 

Скачать (Зеркало) — архив с прошивкой, исходниками для CodeVision и проектом для Proteus.

Fuse bit необходимо устанавливать по умолчанию:

  • hight fuse: 0xD9
  • low fuse: 0xE1

Работает контроллер от внутреннего тактового генератора на частоте 1мгц.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *