Терморезистор в блоке питания компьютера: Для чего нужен термистор, терморезистор в блоке питания компьютера

Содержание

Доработка блока питания

Большинство проблем современной аппаратуры связанно с плохим её питанием.

Анализ ремонтов электронной техники показывает, что производители намеренно ставят конденсаторы заниженной ёмкости или просто некачественные, чтоб только-только устройство ещё работало, в среднем устройство и работает 1 год или чуть больше и дохнет, производителю это выгодно – чтобы чаще мы покупали продукцию!

В спутниковых ресиверах изначально конденсаторы рассчитаны для работы в течении гарантийного срока, причем в «натяжку», т.е. ёмкости установленных конденсаторов занижены и как правило при измерении не соответствуют указанной емкости на накопителях, что отражается на работе блока питания негативно (в плане допустимой пульсации и мгновенных просадок напряжения).

Эта «недоработка» на новых ресиверах может вызывать перезагрузки при переключении каналов с SD на HD (SD-HD-SD-HD-SD-HD), так как при включении режима HD потребление тока процессором увеличивается почти вдвое, а также проблема сохраняется при записи каналов (особенно HD).

После года эксплуатации нестабильность работы может проявиться и с SD каналами, а то вовсе неработоспособностью ресивера.

Снизить количество перезагрузок и провести профилактику после долгой эксплуатации ресивера можно заменив конденсаторы на новые аналогичные (того же номинала), но качественные или увеличенной емкости (не переусердствуйте — увеличивается реактивность конденсатора).

Приступим к доработке/профилактике ресивера:

  1. В каналах блока питания замена конденсаторов: +5V дежурка, +5V основной, +8V основной, +300V питающий. Конденсаторы можно найти на радио рынке или радио магазине, дефицита нет 

     {phocagallery view=category|categoryid=2|imageid=8}

  1. Установка термистора (на плате обозначен NTC, выглядит как диск 8-10 мм диаметром коричневого или тёмно-зелёного цвета с двумя ножками), который производитель заменил простой перемычкой. Термистор важная деталь — защищает цепи питания от перегрузки в момент его включения в сеть и гасит импульсные скачки напряжения в сети. Термистор так же можно купить или выпаять из любого импульсного блока питания (от БП компьютера например). Термистор — Чтоб легче было его распознать то он прозванивается как сопротивление с номиналом 5-10 Ом (при повышении температуры корпуса сопротивление уменьшается) через него питается блок питания ставится в разрыв одного из сетевых проводов также как предохранитель.

    Ставить термистор обязательно!

 {phocagallery view=category|categoryid=2|imageid=10}

  1. Заменить конденсаторы во вторичных цепях схемы, тем самым улучшить качество изображения (муар вокруг мелких деталей на изображении) и увеличить стабильность работы памяти, процессора и модулей тюнеров за счёт более стабильного питающего их напряжения.

 {phocagallery view=category|categoryid=2|imageid=9}


Всё в общем как в той поговорке (ДОРАБОТАТЬ НАПИЛЬНИКОМ).

 

Недостаточно прав для комментирования

Учебно-практический центр «Эксперт» — Учебно-практический центр «Эксперт»

Импульсные источники питания завоевывают все большее жизненное пространство. Надежность их растет, и те недостатки, которые характерны для импульсных преобразователей энергии, с лихвой компенсируются их несомненными преимуществами. Сейчас они начинают применяться уже в тех областях, где традиционно использовались линейные источники питания.

Один из недостатков импульсных преобразователей энергии это то, что они являются источником высокочастотных помех, проникающих в первичную сеть переменного тока. Это, в свою очередь, может приводить к нестабильной работе другого оборудования, подключенного к той же фазе первичной сети, что и импульсный источник. В связис этим, абсолютно любой блок питания должен иметь в своем составе входные помехоподавляющие цепи, обеспечивающие его защиту от помехиз первичной сети, а также защиту первичной сети от высокочастотных помех импульсного источника. Кроме того, эти цепи могут выполнять функции по защите от высоких напряжений и больших токов.

Переменный ток сети на первом этапе преобразования должен быть выпрямлен с помощью диодного моста.

На этот диодный мост переменный ток подается через сетевой выключатель, сетевой предохранитель, терморезистор с отрицательным температурным коэффициентом сопротивления (ТКС) и помехоподавляющий фильтр. В подавляющем большинстве источников питания построение входных цепей одинаково, и такая типовая схема входных цепей приводится на рис. 1.

Рис. 1

Терморезистор с отрицательным ТКС служит для ограничения броска зарядного тока через конденсатор С5 в момент включения источника питания. При включении блока питания в начальный момент времени через диодный мост протекает максимальный зарядный ток конденсатора С5, и этим током может быть выведен из строя один (или более) диод выпрямителя. Так какв холодном состоянии сопротивление терморезистора составляет несколько Ом, ток через выпрямительные диоды моста ограничивается на безопасном для них уровне. Через некоторый промежуток времени в результате протекания через терморезистор зарядного тока С5, он нагревается, его сопротивление уменьшается до долей Ома и большене влияетна работу схемы.

Такое решение проблемы ограничения броска зарядного тока при помощи элемента с нелинейной вольт – амперной характеристикой используется достаточно часто, так как схема при этом получается наиболее простой и дешевой по сравнению с другими вариантами. Кроме того, она обеспечивает минимальные потери и высокую надежность, что и обуславливаетее применение практически во всех блоках питания. Ограничительный терморезистор, как и всякий нагреваемый элемент, обладает тепловой инерцией. Это означает, что для того, чтобы он восстановил свои ограничительные свойства, после выключения блока питания из сети должно пройти некоторое время (порядка нескольких минут), то есть он должен остыть. При этом следующее включение блока питания произойдет так жес ограничением броска зарядного тока. И это является дополнительным условием, из-за которого настоятельно рекомендуется выждать одну-две минуты перед следующим включением источника питания после его выключения, хотя на практике часто встречаются ситуации, при которых необходимо выключить источник питания и тут же снова включить его.

Терморезисторы довольно часто выходят из строя при пробоях силового транзистора, пробоях диодов выпрямителя. Неисправности терморезисторов довольно очевидны, так как они перегорают обычно с физическими нарушениями корпуса, т. е. корпус элемента разламывается и на нем видны следы копоти. При перегорании терморезистора специалист, производящий ремонт, может применить несколько вариантов решения проблемы:

     — Заменить терморезистор на аналогичный — это наиболее оптимальное решение.

   — Заменить терморезистор обычным резистором малого сопротивления (несколько Ом) и большой мощности (порядка 5 Вт) —в этом случае такой резистор будет осуществлять ограничение тока через выпрямитель в течение всей работы блока питания, однако будет выделять довольно большое количество тепла.

    — Заменить терморезистор несколькими витками нихромовой проволоки — такой элемент будет выполнять общее ограничение тока, а витки будут способствовать плавному нарастанию тока. Однако стоит отметить, что такое решение нельзя назвать оптимальным, и лучше воздержаться от его применения.

   — Замена терморезистора перемычкой — такой способ ремонта не рекомендуется применять (а некоторые специалисты и категорически предупреждают от замены терморезистра перемычкой), однако в некоторых ситуациях это приходится делать. К тому же, если при ремонте пришлось заменить диоды выпрямителя и поставить более мощные (например, КД226), то, как показывает практика, зарядный ток для таких диодов не страшени схема вполне работоспособна без терморезистора.

Следует отметить, что ограничительный терморезистор некоторые производители размещают между «-» диодного моста и общим проводом первичной части (рис. 2).

Рис. 2

В некоторых источниках питания терморезисторы не используются,а применяются ограничительные резисторы большой мощности (обычно белого цвета и имеющие форму параллепипеда). Эти резисторы имеют номинал сопротивления, равный несколько Ом и мощность5 –10 Вт.Как уже отмечалось ранее, такой резистор обеспечивает ограничение тока не тольков момент включения, а постоянно при работе источника питания.

Поэтому на резисторе рассеивается достаточно большая мощность, и он очень сильно нагревается.

Сетевой плавкий предохранитель FU1 предназначен для защиты питающей сети от перегрузок, которые возникают при неисправностях сетевого выпрямителя или силового транзистора. Конструктивное изменение положения предохранителя при ремонте нежелательно, так как это может приводить к появлению сетевых электромагнитных помех.

Входной помехоподавляющий фильтр обладает свойством двунаправленного помехоподавления, то есть предотвращает проникновение высокочастотных импульсных помех из сетив блок питания и, наоборот, из блока питания в сеть.Эти импульсные помехи могут иметь значительную амплитуду. Сетевые помехи имеют в основном промышленную основу и создаются аппаратурой дуговой и контактной сварки, силовой пускорегулирующей аппаратурой, приводными электродвигателями, медицинской аппаратурой и т. д. Генерируемые блоком питания помехи обусловлены, главным образом, импульсным режимом работы силового транзистора и выпрямительных диодов. Помехи, генерируемые и силовой сетью и блоком питания можно разделить на два типа: симметричные и несимметричные.

Симметричная (дифференциальная) помеха — напряжение между проводами питания. Эта помеха измеряется между двумя полюсами шин питания.

Несимметричная (синфазная) помеха — напряжение между каждым проводом и корпусом блока питания (рис. 3).

Рис. 3

Для анализа работы помехоподавляющего фильтра рассмотрим случай, когда симметричная помеха воздействует на схему блока питания.

ЭДС помехи приложена к входу источника питания между фазным и нулевым проводом со стороны сети. Конденсатор С1 представляет собой очень большое сопротивление для питающего тока сетевой частоты (50Гц), и поэтому этот ток через конденсатор С1 не ответвляется.Для импульсного высокочастотного тока помехи этот конденсатор, напротив, имеет очень малое сопротивление, и поэтому большая часть тока помехи замыкается через него.

Однако одного конденсатора С1 оказывается недостаточно для полного подавления помехи. Поэтому далее включается двухобмоточный дроссель Т1 (нейтрализующий трансформатор), обмотки I иII которого имеют одинаковое число витков и намотанына одном сердечнике. Направление намотки обеих обмоток согласное. Из этого следует, что полезный ток сетевой частоты, протекающий по обмоткам I иII в противоположных направлениях, будет создавать в сердечнике Т1 два равных встречно-направленных магнитных потока, взаимно компенсирующих друг друга. Поэтому независимо от величины потребляемого от сети тока сердечник Т1 не будет намагничиваться, а значит, индуктивность обеих обмоток будет максимальна. Несмотря на это,из-за того, что питающий полезный ток имеет низкую сетевую частоту, обмотки Т1 не будут оказывать ему сколько-нибудь значительного сопротивления. Высокочастотный же ток помехи будет задерживаться этим дросселем. При этом, благодаря трансформаторному исполнению, индуктивность каждой из обмоток Т1 возрастает на величину взаимной индуктивности. Это объясняется тем, что магнитные потоки от высокочастотного тока помехи точно также взаимно компенсируются, как и токи сетевой частоты. Поэтому сердечник Т1 не намагничивается,а магнитная проницаемость его максимальна. Если бы вместо Т1 в каждый провод включался бы обычный дроссель, то протекающий ток намагничивал бы сердечники этих дросселей, в результате чего их магнитная проницаемость была бы меньше, даже при том же количестве витков.

Далее уже остаточная энергия помехи подавляется конденсатором С4, который замыкает через себя оставшуюся часть тока высокочастотной помехи, прошедшую через Т1.

Однако основное назначение конденсатора С4 иное. Диодный выпрямитель (D1-D4) также является генератором высокочастотных помех, что связано с импульсным характером тока через выпрямитель. Величина помех в основном зависит от свойств полупроводниковых диодов выпрямителя (крутизны вольтамперной характеристики, инерционности).

Процесс восстановления обратного сопротивления диодов при переключении не является мгновенным, и при смене полярности приложенного напряжения через диоды протекают импульсные обратные токи, обусловленные рассасыванием избыточных носителей. Эти импульсные токи и являются помехами, генерируемыми сетевым выпрямителем. Конденсатор С4, включенный в диагональ диодного моста, замыкает через себя токи этих импульсных помех, препятствуя их проникновениюв питающую сеть и нагрузку блока питания.

Конденсаторы С2 и СЗ — обязательные элементы и предотвращают проникновение несимметричных импульсных помех в питающую сеть. Такие же конденсаторы могут устанавливаться и до дросселя, образуя таким образом симметричный фильтр (рис. 4)

Рис. 4

Для предотвращения проникновения несимметричных помех из силового преобразователя в нагрузку через общий провод вторичной стороны в некоторых блоках питания этот общий провод не имеет гальванической связи с корпусом блока питания, а подключенк нему через дополнительный фильтрующий конденсатор малой емкости. При таком включении большая часть тока импульсной помехи замыкается через этот конденсатор внутри схемы блока питания. На рис. 5 таким конденсатором является С6 (4.7n/3kV).

Рис. 5

Следует отметить, что для разрядки конденсаторов сетевого фильтра после выключения блока питания из сетина выходе сетевого фильтра может включаться высокоомный резистор R1 на рис. 4. Включение такого резистора обусловлено требованиями техники безопасности при ремонте блока питания.

В современной схемотехнике во многих блоках питания по сетевому входу включается также варистор или динистор. Варистор — это нелинейный элемент, сопротивление которого зависит от приложенногок нему напряжения. Поэтому, пока сетевое напряжение не выходитза пределы допустимого, сопротивление варистора велико (десятки МОм), и он не влияетна работу схемы. При перенапряжениив сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми. Сам варистор при этом обычно выходит из строя, что очень легко заметить —он чернеет,на окружающих его элементах — копоть и обычно варистор раскалывается. Достаточно часто для защиты источника питания от работы при повышенных напряжениях сети используется зенеровский диод, обозначаемый на схемах ZNR. Принцип работы его практически не отличается,т. е. если к нему прикладывается напряжение выше уровня его пробивного напряжения, то он «пробивается» и также выжигает плавкий предохранитель.

Маркировка варистора или зенеровского диода является достаточно простой. На корпусе тремя цифрами указывается номинал пробивного напряжения. Например, число 301 соответствует пробивному напряжению 300В (30×101), число 271 – напряжению 270В (27×101) и т. д.

В случае неисправного варистора или зенеровского диода установка нового предохранителя и повторное включение источника питания опять приводит к перегоранию предохранителя. Замену варистора или диода желательно производить на аналогичное изделие. Установка прибора с меньшим пробивным напряжением часто приводит его «пробою» при включении источника питания, т. к. именно в момент включения наблюдается большой скачок напряжения. Если установить прибор с большим значением пробивного напряжения, то в момент включения он не будет выходить из строя, однако и защищать источник питания он буде хуже. Возможен и такой способ решения проблемы, как полное удаление варистора (зенеровского диода) из схемы. Источник питания при этом будет запускаться без проблем, и предохранитель будет оставаться целым, однако, как, наверное, всем понятно, защита от повышенного напряжения сети будет отсутствовать. Такой способ решения проблемы стоит применять только в том случае, если вы увереныв хорошем качестве питающего напряжения и нет возможности найти аналогичную замену неисправному прибору.

 

3.4. Принципиальная схема. Импульсные блоки питания для IBM PC

3.4. Принципиальная схема

Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством производителей блоков питания. Поэтому при описании узлов и каскадов источников питания и особенностей их функционирования будут также приведены и графические иллюстрации вариантов их исполнения. Для подробного обсуждения принципа построения и функционирования блока питания компьютеров типа AT/XT в качестве базовой выбрана модель, принципиальная схема которой показана на рис. 3.2.

Рис. 3.2. Принципиальная схема импульсного блока питания

На принципиальной схеме не показан сетевой выключатель, так как он относится к системному модулю компьютера. В самом блоке питания по входу первичной электрической сети установлен предохранитель – необходимый элемент системы защиты. Предохранитель предназначен для отключения импульсного источника питания от питающей сети при возникновении в нем неисправностей и не используется для сохранения работоспособности активных элементов источника питания, так как обладает высокой тепловой инерционностью. Процессы пробоя развиваются лавинообразно, остановить их может только электронная защита. Предохранитель способен лишь предотвратить лавинообразное нарастание процесса, который разрушает конструктивные элементы блока питания и повреждает проводники печатной платы.

Терморезистор TR1, также подключенный по входу первичной цепи, имеет отрицательный коэффициент сопротивления. Этот элемент имеет максимальное значения сопротивления в холодном состоянии, то есть в момент включения источника. Основным назначением терморезистора TR1 является ограничение пускового тока, протекающего по входной цепи блока питания. При включении источника питания возникает скачок тока, так как конденсаторы сглаживающего фильтра C10 и C11 в начальный момент времени не заряжены и их сопротивление крайне мало. По мере их заряда уровень тока, протекающего по входным цепям блока питания, постепенно снижается. Под действием тока терморезистор TR1 медленно разогревается, а его сопротивление снижается. После выхода на рабочий режим сопротивление TR1 имеет значение десятых долей Ома и практически не влияет на общие энергетические показатели блока питания.

После терморезистора и предохранителя в первичную цепь источника питания включен сетевой фильтр. В конструкции фильтра использованы элементы, которые должны обеспечивать значительный уровень затухания помех, проникающих в источник питания и исходящих из него. В отсутствие сетевого фильтра блок питания можно применять только в идеальных условиях, при полном отсутствии приборов, способствующих возникновению помех. Но даже в этом случае целесообразность его установки вполне оправдана, так как фильтр значительно ограничивает уровень паразитных колебаний, проникающих в сеть от самого источника с импульсным преобразователем. Конструкцию входного фильтра рассчитывают из условий, обеспечивающих работу блока питания при кратковременных бросках и провалах сетевого напряжения. Стандарт отечественной сети переменного тока допускает изменение напряжения в диапазоне 220 В ±15 %. Но стандарт не может предусмотреть уровней кратковременных импульсных помех, источником которых являются приборы и устройства на основе электродвигателей, электромагнитных пускателей. Импульсные помехи от таких приборов могут проникать во вторичные цепи источника питания и оказывать негативное влияние на функционирование нагрузочных элементов. Наличие входного фильтра способствует устранению или значительному ослаблению влияния внешних помех на работоспособность блока питания и элементов нагрузки, подключенных к его вторичным цепям.

Помехоподавляющий фильтр представляет собой звено П-типа, состоящее из конденсаторов C1 – C4 и дросселя T, две обмотки которого намотаны в одном направлении на общий сердечник из материала с высоким значением магнитной проницаемости. Обмотки имеют одинаковое количество витков. Конденсаторы C3 и C4 включены последовательно, точка их соединения подключается к корпусной клемме блока питания. В отечественной сети выполняется заземление нулевого провода и поэтому точка соединения обязательно должна подключаться через корпус к «нулю». Таким образом, один из конденсаторов C3, C4 оказывается зашунтированным, а второй подключается параллельно конденсатору C2. Если корпус источника питания с таким фильтром оставить без подключения к защитному «нулю», то в средней точке емкостного делителя образуется напряжение, равное половине входного питающего напряжения.

Емкостное сопротивление конденсаторов C1 и C2 фильтра на частоте питающей сети достаточно большое и составляет примерно 145 кОм. Такое сопротивление не оказывает заметного влияния на помехи с частотой, близкой к частоте промышленной сети. Импульсные же помехи, имеющие спектр от десятков килогерц до нескольких мегагерц, замыкаются через малое сопротивление этих конденсаторов, и поэтому происходит значительное снижение их уровня. Полностью нейтрализовать помеху, проникающую из сети, одними конденсаторами не удается, и для более глубокой фильтрации применяется индуктивный элемент – дроссель Т1. По конструкции и техническому смыслу дроссель T1 больше похож на трансформатор, поэтому в специальной литературе иногда его называют нейтрализующим трансформатором. Каждая из обмоток дросселя включена в цепь потенциального проводника. По одной из обмоток протекает ток прямого направления, по второй – возвратный ток. Направление токов противоположно, но их величины абсолютно одинаковы. Токи, протекающие по каждой из обмоток, будут создавать магнитные потоки, равные по величине, но противоположные по направлениям. Взаимно противоположные потоки будут компенсировать друг друга. Ни один из потоков не будет преобладающим, а значит, не будет происходить намагничивание сердечника и индуктивность обмоток дросселя будет иметь максимально возможное значение. Это положение справедливо независимо от уровня тока потребления блока питания. Магнитные потоки, создаваемые колебаниями помехи, также взаимно компенсируются. Индуктивное сопротивление обмоток дросселя прямо пропорционально частоте протекающего тока. На частоте сети его величина относительно небольшая, но для высокочастотных колебаний помех она значительна. Затухание помех растет по мере увеличения их частоты. Установка отдельных дросселей на каждом отдельном проводнике будет производить значительно меньший эффект. В выпрямителе сетевого напряжения устанавливаются НЧ диоды. Ток, протекающий через сетевой выпрямитель, имеет пульсирующий характер, определяемый частотой переключения силовых транзисторов импульсного преобразователя. В моменты изменения полярности напряжения на диодах D1 – D4 выпрямителя происходит перезарядка их внутренней емкости. Этот процесс занимает определенный временной интервал. Диоды, изменяющие свое проводящее состояние на закрытое, не могут переключиться мгновенно, и некоторое время остаются открытыми. В это время одна пара диодов еще не закрыта, а вторая – постепенно открывается и начинает пропускать ток. Возникают сквозные токи, которые возбуждают кратковременные помеховые колебания. Подавление помех такого типа выполняют конденсаторы C2 – C4, подключенные к защитному заземлению или «нулю». Все конденсаторы сетевого фильтра рассчитаны на максимальное рабочее напряжение 1 кВ.

С помощью селектора уровня входного напряжения S1 выполняется переключение входной цепи блока питания для работы от сетевого напряжения с номинальными уровнями 220 или 115 В. Переключатель имеет только два состояния: замкнутое и разомкнутое. Разомкнутое состояние переключателя устанавливается, когда напряжение сети равно 220 В. Контакты переключателя замыкаются для подключения блока питания к сети с пониженным напряжением. Естественно, что при сохранении энергетического баланса, ток потребления и соответственно нагрузка на входные цепи источника питания при пониженном входном напряжении увеличивается в два раза по сравнению с режимом работы от 220 В. Действие переключателя достаточно подробно рассмотрено в главе 2 при описании аналогичного узла источника питания для компьютеров ATX форм-фактора. Следует еще раз отметить, что коммутация переключателя S1 при его замыкании переводит схему выпрямителя на работу в режиме удвоителя напряжения. Основная же цель установки переключателя заключается в сохранении уровня постоянного напряжения питания на силовом каскаде. Когда происходит коммутация транзисторов полумостового усилителя, на силовой трансформатор подается импульсное напряжение, полный размах которого равен напряжению питания силового каскада. Сохранение этого напряжения на неизменном уровне позволяет использовать все элементы силового каскада без каких-либо модификаций. В этом случае отпадает необходимость применения транзисторов для силового каскада с повышенным напряжением коллектор-эмиттер, а также не происходит коммутации обмоток трансформатора для изменения коэффициентов трансформации.

Диодный мост выпрямителя нагружен на два электролитических конденсатора C10 и C11, включенных последовательно, а таже на силовой каскад импульсного преобразователя. Конденсаторы входят в состав фильтра, сглаживающего выпрямленное пульсирующее напряжение. Параллельно каждому из конденсаторов С10 и С11 сглаживающего фильтра включены высокоомные резисторы соответственно R17 и R18, создающие цепь разряда конденсаторов при отключении источника питания от сети. Резисторы выбраны с такими номиналами сопротивления, чтобы не оказывать влияния на работу ВЧ преобразователя.

Вся остальная электрическая схема блока питания предназначена непосредственно для генерации, усиления импульсных сигналов и их преобразования во вторичные напряжения, поступающие на элементы нагрузки. Этапы функционирования импульсного преобразователя приведены ниже в последовательности, соответствующей изложению материала в главе 2.

Но прежде чем перейти к детальному разбору функционирования отдельных каскадов, следует дать общую схему развития процессов, происходящих в блоке питания непосредственно после его включения в сеть. Именно начальный этап включения блоков питания для компьютеров AT/XT коренным образом отличается от более поздних модификаций, используемых в ATX системах.

В блоке питания, схема которого представлена на рис. 3.2, нет узла, аналогичного вспомогательному автогенератору ATX преобразователя, от которого блок управления получает первичное питание для запуска генератора импульсных последовательностей. Поэтому одним из основных вопросов при подключении к питающей сети такого источника является обеспечение начального запуска и первичная запитка узла управления. Решение этой проблемы заключается в особой конструкции силового каскада преобразователя и, в частности, в способе подключения трансформатора внешнего возбуждения T2 к базовой цепи транзистора Q5. Вторичная цепь T2 имеет три обмотки. Две из них традиционно подключены к базовым цепям силовых транзисторов Q5 и Q6, а третья – к эмиттеру транзистора Q5 и через конденсатор C15 с первичной обмоткой импульсного трансформатора T4. Базовая цепь каждого силового транзистора соединена со своим коллектором через резистор с большим сопротивлением. Таким образом, через резисторы R27 и R29 на базы транзисторов Q5 и Q6 подается положительное смещение. Благодаря этим двум особенностям происходит полное открывание одного из силовых транзисторов Q5 или Q6, в результате которого на вторичных обмотках появляется импульс напряжения. Этим импульсным напряжением заряжаются емкости конденсаторов C18 и C17, образующие сглаживающий фильтр. Положительная обкладка конденсатора C17 подключена к выводу питания IC1/12 микросхемы ШИМ регулятора. Уровня напряжения на конденсаторах C17 и C18 и энергии их заряда оказывается достаточно для запуска микросхемы IC1 и получения на выходах IC1/8,11 последовательностей импульсов. Через каскады промежуточного усилителя, выполненного на транзисторах Q3 и Q4, импульсы управления подаются в базовые цепи силовых транзисторов Q5 и Q6. Возникает устойчивый колебательный процесс переключения силовых транзисторов, происходящий под управлением импульсов, формируемых схемой управления. Когда импульсные колебания принимают установившийся характер, напряжения на вторичных обмотках нарастают до номинальных уровней, и происходит формирование сигнала «питание в норме». Далее начинает действовать система слежения за выходным уровнем напряжения канала +5 В и регулирования поступления энергии во вторичные цепи. Если нагрузка каналов находится в определенных пределах, источник питания обеспечивает энергетическую поддержку вторичных цепей. При резком и неконтролируемом отклонении уровня нагрузки, приводящего к КЗ по одному из каналов, включается система блокировки схемы управления и отключения силового каскада.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Диагностика и ремонт компьютерных блоков питания. А вы знаете — как устроен блок питания компьютера

Добрый день, друзья!

А вы хотели бы узнать, как устроен блок питания компьютера? Сейчас мы попытаемся разобраться в этом вопросе.

Для начала отметим, что , как и любому электронному устройству, необходим источник электрической энергии . Вспомним, что бывают

Первичные и вторичные источники электропитания

Первичные — это, в частности, химические источники тока (элементы питания и аккумуляторы) и генераторы электрической энергии, находящиеся на электростанциях.

В компьютерах могут применяться:

  • литиевые элементы напряжением 3 В для питания КМОП микросхемы, в которой хранятся установки BIOS,
  • литий-ионные аккумуляторы (в ноутбуках).

Литиевые элементы 2032 питают микросхему структуру CMOS, хранящую настройки Setup компьютера.

Потребление тока при этом невелико (порядка единиц микроампер), поэтому энергии батареи хватает на несколько лет .

После исчерпания энергии такие источник энергии восстановлению не подлежат.

В отличие от элементов литий-ионные аккумуляторы являются возобновляемыми источниками. Они периодически то запасают энергию, то отдают ее. Сразу отметим, что любые аккумуляторы имеют ограниченное количество циклов заряд-разряд.

Но большая часть стационарных компьютеров питается не от аккумуляторов, а от сети переменного напряжения.

В настоящее время в каждом доме имеются розетки с переменным напряжением 220 В (в некоторых странах 110 — 115 В) частотой 50 Герц (в некоторых странах – 60 Герц), которые можно считать первичными источниками .

Но основные компоненты компьютера не могут непосредственно использовать такое напряжение.

Его необходимо преобразовать. Выполняет эту работу источник вторичного электропитания (народное название — «блок питания ») компьютера. В настоящее время почти все блоки питания (БП) — импульсные. Рассмотрим более подробно, как устроен импульсный блок питания.

Входной фильтр, высоковольтный выпрямитель и емкостный фильтр

На входе импульсного БП имеется входной фильтр. Он не пропускает помехи, которые всегда есть в электрической сети, в блок питания.


Помехи могут возникать при коммутации мощных потребителей энергии, сварке и т.п.

В то же время он задерживает помехи и самого блока, не пропуская их в сеть.

Если быть более точным, помехи в БП и из него проходят, но достаточно сильно ослабляются .

Входной фильтр представляет собой фильтр нижних частот (ФНЧ).

Он пропускает низкие частоты (в том числе сетевое напряжение, частота которого равна 50 Гц) и ослабляет высокие.

Отфильтрованное напряжение поступает на высоковольтный выпрямитель (ВВ). Как правило, ВВ выполнен по мостовой схеме из четырех полупроводниковых диодов.

Диоды могут быть как отдельными, так и смонтированными в одном корпусе. Существует и другое название такого выпрямителя — «диодный мост ».

Выпрямитель превращает переменное напряжение в пульсирующее, т. е. одной полярности.

Грубо говоря, диодный мост «заворачивает» отрицательную полуволну, превращая ее в положительную.

Пульсирующее напряжение представляет собой ряд полуволн положительной полярности. На выходе ВВ стоит емкостной фильтр — один или два последовательно включенных электролитических конденсатора.

Конденсатор — это буферный элемент, который может заряжаться, запасая энергию и разряжаться, отдавая ее.

Когда напряжение на выходе выпрямителя ниже некоей величины («провал»), конденсатор разряжается, поддерживая его на нагрузке. Если же оно выше, конденсатор заряжается, обрезая пики напряжения.

В курсе высшей математике доказывается, что пульсирующее напряжение представляет собой сумму постоянной составляющей и гармоник , частоты которых кратны основной частоте сети.

Таким образом, емкостный фильтр можно рассматривать здесь как фильтр нижних частот, выделяющий постоянную составляющую и ослабляющий гармоники. В том числе и основную гармонику сети — 50 Гц.

Источник дежурного напряжения


В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).

Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.

Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.

Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.

В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.

Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением . Электролит в них подсыхает, срок службы уменьшается.

Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.

Выбор — удобство или надежность — за вами, уважаемый читатели.

Устройство источника дежурного напряжения


Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.

Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.

Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).

Напряжение ИДН должно находиться в пределах 4,75 — 5,25 В. Если оно будет меньше — основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.

Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.

Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара .

Оптопара содержит источник и приемник излучения. В чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.

Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.

В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.

С вами был Виктор Геронда.

До встречи на блоге!

P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!

Введение.

1. Техническое описание.

1.1 Описание принципа работы блока питания формата АТХ.

1.2 Описание структурной схемы блока питания формата АТХ.

1.3 Описание электрической принципиальной схемы.

1.4 Типичные неисправности и их устранения.

1.5 Технические характеристики.

2. Технологическая часть.

2.1 Технология изготовления печатной платы.

2.2 Техналогия монтажа SMD элементов.

3. Безопасные условия труда.

3.1 Безопасные условия труда при механосборочных работах.

3.2 Безопасность труда при электромонтажных работах.

3.3 Безопасность труда при регулировочных работах.

4. Заключение.

А. Структурная схема.

Б. Схема электрическая принципиальная.

В. Сборочный чертёж.

Г. Перечень элементов.

Введение.

Блок питания — это не только один из самых важных компонентов ПК, но, к сожалению, наименее всего замечаемый. Покупатели компьютеров помногу часов обсуждают частоту процессоров, ёмкость модулей памяти, объём и скорость жёстких дисков, производительность видеоадаптеров, размер экрана монитора и т.д., однако крайне редко (или вообще никогда) упоминают о блоках питания. Когда система собирается из самых дешёвых компонентов, на какой элемент производитель обращает меньше всего внимания? Правильно, на блок питания. Для многих это просто невзрачная серая металлическая коробка, расположенная внутри компьютера и покрытая слоем пыли. Иногда пользователи всё же задумываются о блоке питания, интересуясь исключительно мощностью в ваттах (несмотря на то, что не существует практических методов проверки этой мощности) и, упуская из виду важнейшие моменты, а именно: стабильна ли подача энергии либо напряжение отличается, шумом, скачкообразным выбросом и перебоями.

Блок питания крайне важен, так как подаёт электроэнергию каждому компоненту системы. Кроме того, он же является из самых ненадёжных компьютерных устройств, так как по статистике именно блоки питания чаще всего выходят из строя. Не в последнюю очередь это связано с тем, что многие производители устанавливают самые дешёвые блоки питания, которые только можно найти. Неисправный блок питания может не только помешать стабильной работе системы, но и физически повредить её компоненты неустойчивым электрическим напряжением.

1. Техническое описание.

1.1. Описания принципа работы источника питания АТХ.

При подаче напряжения на источник питания от сети, в нём происходит выпрямление переменного напряжения сети, затем преобразование постоянного напряжения в импульсное. Благодаря тому, что источник питания имеет импульсный трансформатор значительно стало легче контролировать выходные напряжения. После того как импульсное напряжение выпрямляется получается постоянное напряжение. Постоянное напряжение подаётся к потребителям т. е. к модулям памяти, материнскую плату, процессору, жёсткому диску, CD ROM, флопику и т.д.

Главное назначение блоков питания – преобразование электрической энергии, поступающей из электрической сети переменного тока, в энергию пригодную для питания узлов компьютера. Блок питания преобразует сетевое переменное напряжение 220 В., 50 Гц (120 В, 60 Гц) в постоянные напряжения +5 и 12 В. Как правило, для питания цифровых схем (системной платы, плат адаптеров и дисковых носителей) используется напряжение +3,3 или +5 В, а для двигателей (дисководов и различных вентиляторов) — +12 В. Компьютер работает надёжно в тех случае, если значения напряжения в этих цепях не выходят за установленные пределы.

Общие сведения. Источник питания АТХ состоит из следующих элементов:

Выпрямителя напряжения сети;

Элементов цепи запуска преобразователя, стабилиза ции и защиты;

Формирователя сигнала Р.G.;

Выпрямителей импульсного напряженя.

Источник питания функционально содржит элементы цепей формрования вспомогательного сигнала Р.G., цепь управления дистанционным включением РS ON, в составе имеются вспомогательный автогенератор с выходным выпрямителем +5В SB,дополнительный выпрямитель +3,3 В, а также другие элементы присущие источнику питания АТХ. 1.2 Описание структурной схемы.

Для понимания функционирования и структуры источника питания системного модуля приводятся структурная схема источника формата ATХ, и поясняется его работа.

В источнике питания формата ATХ напряжение питания через внешний размыкатель сети, распложенный в корпусе системного блока, поступает сетевой фильтр и низкочастотный выпрямитель. Далее выпрямленное напряжение, величиной порядка 300 В., полумостовым преобразователем преобразуется в импульсное. Развязка между первичной сетью и потребителями осуществляется импульсным трансформатором. Вторичные обмотки импульсного трансформатора подключены к высокочастотным выпрямителям ±12 В. и ±5 В. и соответствующим сглаживающим фильтрам.

Сигнал Power Good (питание в норме), подаваемый на системную плату через 0,1…0,5 с после появления питающих напряжений +5 В., выполняет начальную установку процессора. Выход из строя силовой части источника питания предотвращается узлом защиты и блокировки. При отсутствии аварийных режимов работы эти цепи формируют сигналы, разрешающие функционирование ШИМ-контроллера, который управляет полумостовым преобразователем посредством согласующего каскада. В аварийных режимах работы осуществляется сброс сигнала Power Good.

Длительность открытого состояния ключей преобразователя определяет величину напряжения выходных источников. Поддержание выходных напряжений постоянному значению в контроллере обеспечивается системой управления с обратной связью, при этом в качестве ошибки используется отклонение выходного напряжения от источника +5 В.

Входной фильтр .

Интенсивность помех существенно зависит от быстродействия транзисторов и диодов силовой части, а также длины выводов и элементов и ёмкости монтажа. Наличие помех оказывает неблагоприятное действие и на работу самого блока питания, проявляющееся в ухудшении характеристик стабилизации источника.

При анализе схемотехнике импульсных источников питания принято различать синфазную и дифференциальную составляющие помехи. Синфазное напряжение измеряется относительно корпуса устройства с каждым из полюсов шин питания источника. Дифференциальная составляющая, измеряющая между полюсами шин питания (первичной, нагрузочной), ещё её определяют как разность синфазных составляющих помехи между шинами соответствующей цепи. Наилучшим средством снижения уровня помех считается устранение их в местах возникновения, следовательно, место включения фильтра строго определено – на входе источника питания. При разработки фильтра источников питания наибольшее внимание уделяют подавлению именно синфазной и дифференциальной составляющих помех в сети.

Низкочастотный выпрямитель, сглаживающий

Питание преобразователя блока питания осуществляется постоянным напряжением, которое вырабатывается низкочастотным выпрямителем. Схема низкочастотного выпрямителя собрана по мостовой схеме и обеспечивает необходимое качество выпрямленного напряжения. Последующее сглаживание пульсаций выпрямленного напряжения осуществляется фильтром. Возможность питания от сети с напряжением 115 В. реализуется введением схем выпрямителя переключателя питающего напряжения. Замкнутые состояния переключателя соответствует низкому напряжению питающей сети (~115 В.) . В этом случае выпрямитель работает по схеме удвоения напряжения. Одной из функции выпрямителя является ограничение тока зарядки входного конденсатора низкочастотного фильтра, выполненного элементами, входящими в состав выпрямительного устройства блока питания. Необходимость их применения вызвана тем, что режим запуска преобразователя близок к режиму короткого замыкания. Зарядный ток конденсаторов при этом может достигать 10-100 ампер. Здесь существует две опасности, одна из которых – выход из строя диодов низкочастотного фильтра, а вторая износ электролитических конденсаторов, при прохождении через них больших зарядных токов.

Статья написана на основе книги А.В.Головкова и В.Б Любицкого»БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT» Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на:
выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
двухконтактный разъем JP1, ответная часть которого находится на плате.
С разъема JP1 переменное напряжение сети поступает на:
мостовую схему выпрямления BR1 через терморезистор THR1;
первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО — сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4.

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы.

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к «корпусу». Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора.

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами («мертвыми зонами»). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое — конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).
Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя.

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В.

Средняя точка обмотки II заземлена.

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов.

Выходное напряжение +12В в данном ИБП не стабилизируется.

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя:

Ограничивающую схему контроля ширины управляющих импульсов;
полную схему защиты от КЗ в нагрузках;
неполную схему контроля выходного перенапряжения (только на шине +5В).

Рассмотрим каждую из этих схем.

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения.

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3.

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В — R17- D11 — шина +56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ.

В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom — R39 — R36 -б-э Q4 — «корпус».

Открывание выходного транзистора компаратора 1 подключает резистор R39 к «корпусу», и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к «корпусу». Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref — э-6 Q6 — R30 — к-э Q5 -«корпус».

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 — к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон «пробивается», и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим.

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3.

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom — R39 — R30 — С20 — «корпус».
Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom — R33 — R34 — 6-э Q3 — «корпус».
Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 — R61 — D14 — к-э выходного транзистора компаратора 3 — «корпус».

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера.

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

Все своими руками Автоматическое управление вентилятором

Опубликовал admin | Дата 22 января, 2016

     Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.


     Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
     Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
     Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.


     

В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.

Просмотров:11 500


Последовательность действий при ремонте блоков питания.

Последовательность действий при ремонте блоков питания.

 

Ремонт блока питания всегда должен производиться после проведения предварительной диагностики, как отдельных элементов, так и всего источника питания в целом. Такая диагностика необходима с целью оценки возможных повреждений, определения неисправных элементов, исключения повторных отказов и возникновения помех при включении источника питания после проведения ремонтных работ.

Любой специалист при проведении ремонтных работ должен придерживаться определенных правил, которые позволят уменьшить вероятность ошибок и повторных отказов при ремонте блока питания.

1. Перед выполнением основных работ по ремонту источника необходимо убедиться в наличии питающего напряжения в сети, исправность шнура питания. Такая проверка выполняется с помощью обычного тестера.

2. Диагностику блока питания необходимо начинать с визуального осмотра деталей и состояния его печатной платы. На этом этапе диагностики обычно выявляются все имеющиеся видимые внешние дефекты радиоэлементов. Обычно таким образом определяются неисправности плавкого предохранителя, варистора, терморезистора, многих резисторов, транзисторов, конденсаторов, состояния дросселей и трансформаторов.
Неисправность предохранителя со стеклянным корпусом определяется визуально по отсутствию проводящего жала, по металлическому налету на стекле, по разрушению стеклянного корпуса, иногда он обтянут термоусадочным кембриком, в этом случае его исправность проверяется по сопротивлению омметром. Вышедший из строя предохранитель косвенно может свидетельствовать о неисправности входных варисторов, диодов входного выпрямителя, ключевых транзисторов или дежурного источника.
Варисторы, терморезисторы, а также конденсаторы в входных цепях источниках питания при выходе из строя зачастую имеют механические повреждения корпуса. Они оказываются расколотыми, видны трещины, облетает покрытие, на корпусе можно наблюдать копоть.

Электролитические конденсаторы при выходе из строя оказываются вздутыми или также имеют повреждения корпуса, при котором электролит может разбрызгиваться на соседние радиодетали. 
При сгорании резисторов изменяется цвет корпуса, могут появляться следы копоти. В некоторых случаях на корпусе резистора могут появляться трещины и сколы защитной краски.

При пробое силового транзистора чаще других наблюдается разрушение его корпуса, появляются трещины и сколы, в некоторых случаях на соседних радиоэлементах присутствует копоть.
Не лишним на этом этапе будет произвести визуальный осмотр платы источника питания, оценить целостность и качество печатного монтажа, исправность токопроводящих дорожек и мест пайки радиоэлементов, определить деформацию платы вследствие ее неправильной установки или неправильного температурного режима работы.

Одним словом, на уровне визуальной проверки необходимо самым тщательным образом осмотреть все части блока питания, обращая внимание на нарушения целостности корпуса, изменение цвета радиоэлементов, следы копоти, наличие посторонних предметов, на малейшие повреждения печатных проводников и места с подозрительным качеством пайки.

3. Следующий этап диагностики — это определение типа блока питания, схемы построения силового преобразователя, схемы дежурного источника, определение схемотехнических решений и назначение каких-либо иных схем источника питания. На этом этапе также необходимо определить элементную базу и тип применяемых микросхем, транзисторов, подготовить принципиальную схему блока питания, иденти фицировать радиоэлементы, проверить ревизию платы источника и сравнить с имеющейся схемой.

4. После всех предыдущих этапов можно начать поиск неисправных элементов. Он начинаются с проверки плавкого предохранителя на входе источника питания. В случае его перегорания обязательной проверке подлежат диоды выпрямительного моста, терморезистор, варистор, конденсатор выходного фильтра, силовые ключевые транзисторы, токовый резистор, первичная обмотка силового трансформатора, силовой транзистор дежурного источника, цепь питания управляющей микросхемы дежурного источника, первичная обмотка и сам силовой трансформатор дежурного источника. Этой проверкой мы выявляем короткое замыкание на входе блока питания, если оно присутствует.

Обязательным пунктом на этом этапе является проверка исправности управляющей микросхемы (ШИМ-контроллера) блока питания. Для этого необходимо иметь техническую документацию на микросхему, назначение ножек, карту сопротивлений на выводах. В обязательном порядке необходимо прозвонить управляющий выход микросхемы (DRV) для силового ключа, если он выполнен на внешнем корпусе, и сопротивление микросхемы по питанию, вывод Vcc. В обоих случаях сопротивление должно быть очень большим. Так как управляющая микросхема дежурного блока питания включена в первичную цепь питания, то на первоначальном этапе работы блока питания она запитывается с шины питания +310 В через резистивный делитель напряжения, а в рабочем режиме питание микросхемы осуществляется с дополнительной обмотки силового трансформатора. По этой причине не лишним будет омметром прозвонить цепи питания микросхемы: измерить сопротивление резистивного делителя; прозвонить дополнительную обмотку, проверить исправность выпрямительного диода с дополнительной обмотки и сглаживающего конденсатора по питанию для микросхемы.

В качестве силового ключа в блоке питания могут применяться биполярные или полевые транзисторы. Они также должны быть проверены на пробой, так как это одна из самых распространенных неисправностей блока питания.

Биполярный транзистор можно проверить мультиметром на падение напряжения переходов «база-коллектор» и «база-эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды, но необходимо помнить, что некоторые биполярные транзисторы могут в своем составе иметь встроенные диод между коллектором и эмиттером и резистор в цепях «база-эмиттер», которые будут при «прозвонке» звониться.

При проверке полевого транзистора его необходимо для достоверной проверки выпаять. Например, для диагностики полевых транзисторов N-канального вида мультиметр необходимо перевести в режим проверки диодов, затем черный щуп ставим на сток (D) транзистора, а красный — на вывод истока (S), мультиметр должен показать падение напряжения на внутреннем диоде — 502 мВ, т.е. транзистор — закрыт. Далее, не снимая черного щупа, касаемся красным щупом вывода затвора (G) и опять возвращаем его на исток (S). Тестер показывает 0 мВ, следовательно, полевой транзистор открылся. Если черным щупом коснуться снова вывода затвора (G), не отпуская красного щупа, и вернуть его на сток (D), то полевой транзистор закроется, и мультиметр снова будет показывать падение напряжения около 500 мВ. 
При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку»: диоды, низкоомные резисторы, электролитические конденсаторы в цепи базы и первичную обмотку силового трансформатора.

Термисторы / Измерение температуры с помощью термисторов NTC Технические советы

Автор: Филип Кейн.

Термисторы (терморезисторы) — это переменные резисторы, зависящие от температуры. Существует два типа термисторов: положительный температурный коэффициент (PTC) и отрицательный температурный коэффициент (NTC). При повышении температуры сопротивление термистора PTC увеличивается, а сопротивление термистора NTC уменьшается. Они показывают противоположную реакцию при понижении температуры.

Оба типа термисторов используются во множестве областей применения.Однако здесь основное внимание будет уделено использованию термисторов NTC для измерения температуры в приложениях на основе микроконтроллеров.

Технические характеристики термистора
Следующие параметры термистора NTC можно найти в паспорте производителя.

  • Сопротивление
    Это сопротивление термистора при температуре, указанной производителем, часто 25 ° C.

  • Допуск
    Указывает, насколько сопротивление может отличаться от заданного значения.Обычно выражается в процентах (например, 1%, 10% и т. Д.). Например, если указанное сопротивление при 25 ° C для термистора с допуском 10% составляет 10000 Ом, то измеренное сопротивление при этой температуре может находиться в диапазоне от 9000 Ом до 11000 Ом.

  • Константа B (или бета)
    Значение, которое представляет соотношение между сопротивлением и температурой в заданном диапазоне температур. Например, «3380 25/50» означает постоянную бета 3380 в диапазоне температур от 25 ° C до 50 ° C.

  • Допуск на бета-константу
    Допуск на бета-константу в процентах.

  • Диапазон рабочих температур
    Минимальная и максимальная рабочая температура термистора.

  • Тепловая постоянная времени
    При изменении температуры время, необходимое для достижения 63% разницы между старой и новой температурами.

  • Постоянная теплового рассеяния
    Термисторы подвержены самонагреву при прохождении тока. Это количество энергии, необходимое для повышения температуры термистора на 1 ° C.Он указывается в милливаттах на градус Цельсия (мВт / ° C). Обычно рассеиваемая мощность должна быть низкой, чтобы предотвратить самонагрев.

  • Максимально допустимая мощность
    Максимальная рассеиваемая мощность. Он указывается в ваттах (Вт). Превышение этой спецификации приведет к повреждению термистора.

  • Таблица температур сопротивления
    Таблица значений сопротивления и соответствующих температур в диапазоне рабочих температур термистора. Термисторы работают в относительно ограниченном диапазоне температур, обычно от -50 до 300 ° C в зависимости от типа конструкции и покрытия.

Реакция термистора на температуру

Как и в случае с любым резистором, вы можете использовать настройку омметра на мультиметре для измерения сопротивления термистора. Значение сопротивления, отображаемое на вашем мультиметре, должно соответствовать температуре окружающей среды рядом с термистором. Сопротивление изменится в ответ на изменение температуры.

Список деталей Полный комплект с Arduino

Список деталей без Arduino

Рис. 1. Сопротивление термистора изменяется в зависимости от температуры.

На рис. 2 показан отклик термистора NTC в диапазоне от -40 ° C до 60 ° C. Из рисунка видно, что термисторы обладают высокой чувствительностью. Небольшое изменение температуры вызывает большое изменение сопротивления. Также обратите внимание, что реакция этого термистора не линейна. То есть изменение сопротивления при заданном изменении температуры не является постоянным в диапазоне температур термистора.

Рисунок 2: Кривая температурного сопротивления термистора от -40 ° C до 60 ° C

Лист технических данных производителя включает список значений сопротивления термистора и соответствующих температур в его диапазоне.Одно из решений, позволяющих справиться с этой нелинейной реакцией, — это включить в код справочную таблицу, содержащую эти данные о термостойкости. После вычисления сопротивления (будет описано позже) ваш код ищет в таблице соответствующую температуру.

Линеаризирующий отклик термистора

На аппаратной стороне вы можете линеаризовать отклик термистора, разместив постоянный резистор параллельно или последовательно с ним. Это улучшение будет происходить за счет некоторой точности.Сопротивление резистора должно быть равно сопротивлению термистора в середине интересующего температурного диапазона.

Термистор — комбинация параллельных резисторов

На Рисунке 3 показана S-образная кривая температурного сопротивления, полученная путем размещения резистора 10 кОм параллельно с термистором, сопротивление которого составляет 10 кОм при 25 ° C. Это делает область кривой между 0 ° C и 50 ° C довольно линейной. Обратите внимание, что максимальная линейность составляет около средней точки, которая находится при 25 ° C.

Рис. 3. Кривая температурного сопротивления комбинации термистора и параллельного резистора.

Термистор — комбинация последовательных резисторов (делитель напряжения)

Обычно микроконтроллеры собирают аналоговые данные через аналого-цифровой преобразователь (АЦП). Вы не можете напрямую прочитать сопротивление термистора с помощью АЦП. Последовательная комбинация термистора и резистора, показанная на рисунке 4, представляет собой простое решение в виде делителя напряжения.

Рисунок 4: Термисторный делитель напряжения.

Для расчета выходного напряжения делителя напряжения используется следующая формула:

Vo = Vs * (R0 / (Rt + R0))

Линеаризованная кривая температура-напряжение на рисунке 5 показывает изменение выходного напряжения Vo делителя напряжения в ответ на изменение температуры. Напряжение источника Vs составляет 5 вольт, сопротивление термистора Rt составляет 10 кОм при 25 ° C, а сопротивление последовательного резистора R0 составляет 10 кОм. Подобно комбинации параллельного резистора и термистора, описанной выше, эта комбинация имеет максимальную линейность около средней точки кривой, которая находится при 25 ° C.

Рисунок 5: График зависимости температуры от напряжения.

Обратите внимание, что, поскольку Vs и R0 постоянны, выходное напряжение определяется Rt. Другими словами, делитель напряжения преобразует сопротивление термистора (и, следовательно, температуру) в напряжение. Идеально подходит для ввода в АЦП микроконтроллера.

Преобразование данных АЦП в температуру путем определения сначала сопротивления термистора

Чтобы преобразовать данные АЦП в температуру, сначала найдите сопротивление термистора, а затем используйте его для определения температуры.

Вы можете изменить приведенное выше уравнение делителя напряжения, чтобы найти сопротивление термистора Rt:

Rt = R0 * ((Vs / Vo) — 1)

Если опорное напряжение АЦП (Vref) и напряжение источника делителя напряжения (Vs) одинаковы, то верно следующее:

adcMax / adcVal = Vs / Vo

То есть отношение входного напряжения делителя напряжения к выходному напряжению такое же, как отношение значения полного диапазона АЦП (adcMax) к значению, возвращаемому АЦП (adcVal).Если вы используете 10-битный АЦП, тогда adcMax равно 1023.

Рисунок 6: Схема делителя напряжения и АЦП с общим опорным напряжением.

Теперь вы можете заменить соотношение напряжений соотношением значений АЦП в уравнении, которое необходимо решить для Rt:

Rt = R0 * ((adcMax / adcVal) — 1)

Например, предположим, что термистор с сопротивлением 10 кОм при 25 ° C, 10-битный АЦП и adcVal = 366.

Rt = 10,000 * ((1023/366) — 1)
= 10,000 * (2,03)
= 17,951 Ом

После вычисления значения Rt вы можете использовать справочную таблицу, содержащую данные температурного сопротивления для вашего термистора, чтобы найти соответствующую температуру.Расчетное сопротивление термистора в приведенном выше примере соответствует температуре приблизительно 10 ° C.

9 18,670
10 17,926
11 17,214

Лист технических данных производителя может не включать все значения температурного сопротивления для термистора, или у вас может не хватить памяти для включения всех значений в справочную таблицу. В любом случае вам нужно будет включить код для интерполяции между перечисленными значениями.

Прямое вычисление температуры

В качестве альтернативы для расчета температуры можно использовать уравнение, которое аппроксимирует кривую температурной характеристики термистора.3

Производитель может или не может предоставить значения для коэффициентов A, B и C. В противном случае они могут быть получены с использованием данных измерения сопротивления температуры. Однако это выходит за рамки данной статьи. Вместо этого мы будем использовать более простое уравнение параметра бета (или B), показанное ниже. Хотя оно не так точно, как уравнение Стейнхарта-Харта, оно все же дает хорошие результаты в более узком температурном диапазоне.

1 / T = 1 / T0 + 1 / B * ln (R / R0)

Переменная T — это температура окружающей среды в Кельвинах, T0 — обычно комнатная температура, также в Кельвинах (25 ° C = 298.15K), B — бета-постоянная, R — сопротивление термистора при температуре окружающей среды (такое же, как Rt выше), а R0 — сопротивление термистора при температуре T0. Значения T0, B и R0 можно найти в паспорте производителя. Вы можете рассчитать значение R, как описано ранее для Rt.

Если напряжение источника делителя напряжения и Vref одинаковы, вам не нужно знать R0 или находить R для расчета температуры. Помните, что вы можете записать уравнение для сопротивления термистора через отношение значений АЦП:

R = R0 * ((adcMax / adcVal) — 1)

, тогда:

1 / T = 1 / T0 + 1 / B * ln (R0 * ((adcMax / adcVal) — 1) / R0)

R0 отменяется, что оставляет:

1 / T = 1 / T0 + 1 / B * ln ((adcMax / adcVal) — 1)

Возьмите результат, обратный результату, чтобы получить температуру в Кельвинах.

Например, предположим, что цепь термисторного делителя напряжения подключена к 10-битному АЦП. Константа бета для термистора составляет 3380, сопротивление термистора (R0) при 25 ° C составляет 10 кОм, а АЦП возвращает значение 366.

1 / T = 1 / 298,15 + 1/3380 * ln ((1023/366) — 1)
1 / T = 0,003527
T = 283,52K — 273,15K = 10,37 ° C

Пример: простой регистратор температуры на базе Arduino

На рисунке 7 показан простой регистратор температуры, состоящий из Arduino Uno SBC и термисторного делителя напряжения (справа).Выход делителя напряжения подключен к внутреннему 10-битному АЦП Arduino через один из аналоговых выводов. Arduino получает значение АЦП, вычисляет температуру и отправляет ее на последовательный монитор для отображения.

Рисунок 7: Схема регистратора температуры Arduino.

В следующем эскизе Arduino используется уравнение параметра B для расчета температуры. Функция getTemp выполняет большую часть работы. Он считывает аналоговый вывод несколько раз и усредняет значения АЦП. Затем он вычисляет температуру в градусах Кельвина, преобразует ее в градусы Цельсия и Фаренгейта и возвращает все три значения в основной цикл.Основной цикл многократно вызывает getTemp с двухсекундной задержкой между вызовами. Он отправляет значения температуры, возвращаемые getTemp, на последовательный монитор.

Рисунок 8: Снимок экрана с выходными данными регистратора температуры.

Загрузите пример кода здесь.

недействительным getTemp (float * t)
{

    // Преобразует входной сигнал термисторного делителя напряжения в значение температуры.
    // Делитель напряжения состоит из термистора Rt и последовательного резистора R0.
    // Значение R0 равно сопротивлению термистора при T0.// Вы должны установить следующие константы:
    // adcMax (значение полного диапазона АЦП)
    // analogPin (аналоговый входной контакт Arduino)
    // invBeta (инверсия значения бета термистора, предоставленного производителем).
    // Используйте с этим модулем опорное напряжение Arduino по умолчанию (5 В или 3,3 В).
    //

  const int analogPin = 0; // заменяем 0 аналоговым выводом
  const float invBeta = 1.00 / 3380.00; // заменяем "Beta" на beta термистора

  const float adcMax = 1023.00;
  const float invT0 = 1,00 / 298,15; // комнатная температура в Кельвинах

  int adcVal, i, numSamples = 5;
  поплавок K, C, F;

  adcVal = 0;
  для (i = 0; i
  Ошибка измерения и разрешение АЦП  

Существует ряд факторов, которые могут способствовать ошибке измерения. Например, термистор и последовательные резисторы могут отличаться от своих номинальных значений (в указанных пределах допуска), или может быть ошибка из-за самонагрева термистора, или шумная электрическая среда может привести к колебаниям на входе АЦП [6].

Ниже приведены несколько предложений по уменьшению погрешности измерения. Это предполагает, что вы используете уравнение параметра B.

Разрешение АЦП

В лучшем случае температура в приведенном выше примере является точной с точностью до 0,1 ° C. Это связано с ограничением из-за разрешения АЦП.

АЦП не чувствителен к изменениям напряжения между шагами. Для 10-битного АЦП наименьшее изменение напряжения, которое можно измерить, составляет Vref / 1023. Это разрешение АЦП по напряжению.Если Vref составляет 5 В, разрешение по напряжению составляет 4,89 мВ. Предполагая, что T0 составляет 25 ° C, наименьшее изменение температуры, которое может быть обнаружено при 25 ° C, составляет ± 0,1 ° C. Это температурное разрешение при 25 ° C. Это означает, что изменение младшего бита вызовет скачок отображаемой температуры на 0,1 ° C. Этот скачок связан с разрешением АЦП, а не с ошибкой измерения.

АЦП Выход Температура
511
512
513
0111111111
1000000000
1000000001
24.95 ° C
25,05 ° C
25,15 ° C

Если вам нужно лучшее разрешение, существуют методы (например, передискретизация [1]), которые вы можете использовать для увеличения эффективного разрешения АЦП вашего микроконтроллера, или вы можете использовать внешний АЦП. с более высоким разрешением.

Ссылки

  1. AVR121: Повышение разрешения АЦП за счет передискретизации
    http://www.atmel.com/Images/doc8003.pdf
  2. Как найти выражение для бета-версии
    http://www.zen22142.zen.co.uk / ronj / tyf.html
  3. Измерение температуры с помощью термистора и Arduino
    http://web.cecs.pdx.edu/~eas199/B/howto/thermistorArduino/thermistorArduino.pdf
  4. Термистор
    https://en.wikipedia.org/wiki/Термистор
  5. Учебное пособие по термистору

  6. http://www.radio-electronics.com/info/data/resistor/thermistor/thermistor.php
  7. Понимание и минимизация ошибок преобразования АЦП
    http://www.st.com/content/ccc/resource/technical/document/application_note/9d/56/66/74/4e/97/48/93/CD00004444.pdf / files / CD00004444.pdf / jcr: content / translations / en.CD00004444.pdf

Если у вас есть история об электронике, которой вы хотите поделиться, отправьте ее по адресу [адрес электронной почты защищен].
Почти два десятилетия Фил Кейн был техническим писателем в индустрии программного обеспечения и иногда писал статьи для журналов для любителей электроники. Он имеет степень бакалавра электронных технологий и информатику. Фил всю жизнь интересовался наукой, электроникой и исследованием космоса.Ему нравится конструировать и конструировать электронные устройства, и он очень хотел бы однажды увидеть хотя бы одно из этих устройств на пути к Луне или Марсу.

  • Легко прикрепите термисторный датчик температуры к Windows ≥ XP Sp3.
  • InstruNet также подключается напрямую к .
  • i60x это крошечное автономное USB-устройство с 8 каналами; тогда как более крупный i555 включает от 8 до 256 каналов каркас для карт с дополнительным фильтр сглаживания.
  • i601 — это самая маленькая и самая точная система сбора данных с электрическая изоляция, которая подключается непосредственно к датчикам.
  • Включает бесплатно InstruNet World программное обеспечение самописца ленточных диаграмм; или купить мощный Версия PLUS.
  • Совместимость с программным обеспечением LabVIEW, DASYLab, MATLAB, Origin, C и Visual BASIC.
  • Оцифруйте любую комбинацию каналов со скоростью 166 000 выборок в секунду.

Для подключения Термистор в InstruNet выполните следующие действия:

  1. Установите оборудование и программное обеспечение InstruNet версии ≥ 3.7, как описано здесь.
  2. Запустите программу InstruNet World.
  3. Во избежание необратимого повреждения оборудования InstruNet:
    i60x: Отключите USB-кабель от устройства i60x во время подключения датчиков
    и при подключении к разъему i60x Hd44
    i4xx / i555: Отключите питание 110/220 В переменного тока от источника питания i312.8 при подключении датчиков
    а также при подключении монтажной коробки i51x к разъему Hd44
  4. Нажмите синюю кнопку быстрой настройки для канала, который вы хотите настроить (требуется ≥ v3.7). Выберите Термистор в меню Стимул и выберите свой тип термистора. в меню «Термистор Ом @ 25C» (например, # 44004, 2252 Ом при 25 ° C). Диалог быстрой настройки поддерживает только термисторы серии Ysi-Omega 4xxxx / 4xx. Ниже приведен пример настройки.
  5. Введите ожидаемую минимальную и максимальную ожидаемую температуру (например,грамм. От 0 до 100 ° C).
  6. Физически прикрепите датчик в соответствии со схемой подключения в диалоговом окне (которая будет соответствовать вашему датчику). Пример показан ниже. Подключите прецизионный шунтирующий резистор (например, 10 кОм, 0,05%, ≤5 ppm / ° C), как показано на диаграмме, и обновите поле Shunt Resistor, указав его значение.
  7. Поле «Интеграция» определяет, как долго сигнал усредняется, прежде чем InstruNet вернет одно число (то есть одну «точку» в оцифрованной форме волны). Будьте осторожны, это усреднение полностью потребляет контроллер InstruNet и, следовательно, снижает максимально возможную частоту дискретизации. как отмечено здесь. Время интегрирования 0,0001 или 0,001 секунды часто очень полезно для снижения шума и повышения точности.Если вы оцифровываете медленно (например, медленнее, чем 10 выборок в секунду на канал), установите для параметра «Интегрирование» значение «0,016666» секунды (или 0,02 секунды, если мощность составляет 50 Гц). Это будет в среднем для каждой точки на 110/220 В переменного тока. цикл линии электропередачи и резко снизить уровень шума. Чтобы увидеть максимальную частоту дискретизации при вашей настройке, щелкните здесь.
  8. При работе с картой i423 настройте аналоговый фильтр нижних частот по мере необходимости (например, 6 Гц или 4 КГц). При работе с i500 фильтр сглаживания, нажмите здесь.
  9. Если вы хотите большей точности, рассмотрите Калибровка.
  10. Просмотрите измеренное значение в нижнем левом углу диалогового окна быстрой настройки или страницы сети. Приложите стимул к датчику. Значение выглядит правильным? Если нет, рассмотрите следующие шаги:
  11. Чтобы включить канал на страницу InstruNet World RECORD: установите для поля Enable Digitize значение ON (что происходит автоматически при первом входе в диалоговое окно Quick Setup) или щелкните красный прямоугольник канала на странице NETWORK.Этот прямоугольник находится справа от синей кнопки быстрой настройки, как показано выше.
  12. Несколько кнопок в нижней части диалогового окна помогают с настройкой. Щелкните Несколько каналов , чтобы скопировать свой настройка на любое количество последующих каналов, щелкните Record Page , чтобы перейти на страницу записи, щелкните Channel Setup , чтобы открыть Настройка канала и нажмите Сбросить параметры , чтобы сбросить все видимые параметры.
  13. В правом нижнем углу диалогового окна быстрой настройки предоставляется доступ к основным параметрам временной развертки. Эти числа являются общими (одинаковыми) для всех каналов, отображаемых на странице ЗАПИСЬ. Samples-Per-Second-Per-Channel — это количество точек, которые оцифровываются каждую секунду для каждого канала. Сканирование — это буфер в памяти RAM, а Points-Per-Scan — это количество точек в этом буфере для каждого канала. Number-Of-Scans — это количество раз, когда вы заполняете этот буфер RAM.Попробуйте установить количество точек на сканирование на 100, количество сканирований на 1 и выборок в секунду на канал на 10. Нажмите кнопку Digitize в нижнем левом углу, чтобы закрыть диалоговое окно быстрой настройки, выберите ЗАПИСАТЬ страницу и начать оцифровку. На странице записи можно нажать СТАРТ, чтобы начать оцифровку, и СТОП, чтобы остановить. Чтобы переключаться между страницами ЗАПИСЬ и СЕТЬ, щелкните вкладку внизу окна. Для получения более подробной информации о оцифровке, кликните сюда.
  14. Сохраните настройки в файле.prf, нажав кнопку СОХРАНИТЬ на странице СЕТЬ (не на странице записи). Чтобы вернуть их, нажмите «ОТКРЫТЬ» на странице «Сеть».
  15. Чтобы узнать, как использовать InstruNet, щелкните Учебник по программному обеспечению. Чтобы узнать о продуктах InstruNet, щелкните здесь.

Дополнительная литература



Применение термистора NTC в батарее и материнской плате

2019.28.02 / четверг

Применение термистора NTC в батарее и Материнская плата


История развития термисторов NTC можно проследить до 200 лет назад.

В последние годы NTC термисторы быстро развивались, и мы можем обнаружить, что в окружающей среде вокруг нас.

Автомобили, бытовая техника, сотовые телефоны, индустриализация и др.

Тогда мы узнаем статус разработки Термисторы NTC с нескольких сторон.

Применение термистора NTC в батарее схема

От аккумуляторов сотовых телефонов до автомобильных аккумуляторов, Термисторы NTC незаменимы.

Это потому, что термистор NTC может эффективно определять, является ли ток в батарее чрезмерным, и аккумулятор перегревается, чтобы своевременно отрегулировать ток зарядки.

Весь процесс выглядит следующим образом:

Когда точка начинает заряжаться, ток будет относительно большим, что может обеспечить быструю зарядку с большим током в относительно короткие сроки.

Когда ток достигает критической точки или критическая температура, термистор NTC будет контролировать скорость зарядки, чтобы чтобы снизить температуру и не повредить машину.

Применение NTC в материнской плате

Материнская плата может показаться странной, но наша ежедневный контакт с компьютером, ноутбуком, телевизором и прочим основным их материнская плата.

Среди них материнская плата компьютера очень чувствителен к температуре.

Однако из-за необходимости продукта сборки материнская плата часто очень близко к цепи питания.

Увеличение частоты процессора не только увеличивает скорость ЦП, но также заставляет ЦП работать на более высокой температура.

В это время поверхностная инкапсуляция Термистор типа NTC может быстро реагировать на открытую защиту от перегрева ЦП, и теперь есть новый тип термистора NTC типа герметизации, он сочетает в себе Специальная форма полосковой линии, может положить термочувствительный элемент на особенная чувствительность, может сузить идеальное тело, облегчая его устанавливается в любом положении.

Термисторный датчик температуры в источниках питания слежения |

Аннотация: В этой статье представлено простое и интуитивно понятное руководство по термисторам с отрицательным температурным коэффициентом (NTC) и по их базовому использованию в целом и, в частности, в регуляторах питания. Хорошим примером применения является их использование для устранения влияния температуры на контрастность ЖК-дисплея. Показаны два простых метода линеаризации термистора NTC, а процедуры проектирования регуляторов и примеры демонстрируют их применение.Каждый пример включает схему и сравнивает измеренное выходное напряжение с заданной температурой. Регуляторы источника питания

по определению предназначены для обеспечения стабильного выходного напряжения, несмотря на колебания линии (входного напряжения), нагрузки и температуры. В то время как для большинства приложений целью является стабильный выходной сигнал, в некоторых случаях полезно обеспечить выходное напряжение, зависящее от температуры. В этой статье представлены учебное пособие, процедура проектирования и примеры схем, в которых используются термисторы с отрицательным температурным коэффициентом (NTC) в источниках питания с отслеживанием температуры.

Безусловно, наиболее распространенное применение для регулирования в зависимости от температуры — это источники смещения ЖК-дисплея, где контрастность дисплея будет изменяться в зависимости от температуры окружающей среды. Путем приложения напряжения смещения, зависящего от температуры, температурные эффекты ЖК-дисплея могут быть автоматически отменены для поддержания постоянной контрастности в широком диапазоне температур. Примеры в этой статье предназначены для решения проблемы смещения ЖК-дисплеев; тем не менее, обучающие программы и уравнения проектирования просты и могут быть легко применены в различных схемах.

Почему термистор NTC?

Термистор NTC обеспечивает почти оптимальное решение для регулирования в зависимости от температуры. Он недорогой, легко доступен у множества поставщиков (Murata, Panasonic и т. Д.) И доступен в небольших упаковках для поверхностного монтажа от 0402 до 1206. Более того, имея только базовое понимание, термистор NTC легко применить к вашей схеме.

NTC Характеристика

Как следует из названия, термистор — это просто резистор, зависящий от температуры.К сожалению, эта зависимость очень нелинейна (см. , рис. 1, ) и сама по себе не очень полезна для большинства приложений. К счастью, есть два простых метода линеаризации поведения термистора.


Рисунок 1. Сопротивление термистора NTC чрезвычайно нелинейно зависит от температуры. Это затрудняет использование термистора без его применения в цепи линеаризации. (R 25C = 10 кОм, β = 3965 К).

Стандартная формула для сопротивления термистора NTC в зависимости от температуры:

, где R 25C — номинальное сопротивление термистора при комнатной температуре, β (бета) — постоянная материала термистора в градусах K , а T — фактическая температура термистора в градусах Цельсия.

Это уравнение очень близко аппроксимирует фактическую температурную характеристику, как можно увидеть на Рис. 2 . Обратите внимание на использование логарифмической шкалы для оси Y.


Рисунок 2. Сопротивление термистора в зависимости от температуры почти линейно на полулогарифмическом графике. Фактическое измеренное сопротивление термистора соответствует формуле Бета с довольно высокой степенью точности. (R 25C = 10 кОм, β = 3965 К).

R 25C и β обычно публикуются в технических данных производителя.Типичные значения R 25C находятся в диапазоне от 22 Ом до 500 кОм. Типичные значения β составляют от 2500 до 5000 К.

Как видно из рис. 3 , более высокие значения β обеспечивают повышенную температурную зависимость и полезны, когда требуется более высокое разрешение в более узком температурном диапазоне. И наоборот, более низкие значения β обеспечивают менее наклонную температурную зависимость и более желательны при работе в более широком диапазоне температур.


Рисунок 3.Термистор NTC определяется его сопротивлением комнатной температуре (R 25C ) и постоянной материала β (Beta). Бета — это мера наклона температурной зависимости. (R 25C = 10 кОм, β в К).

Самонагревание
Термистор — это резистор, и, как и любой другой резистор, он вырабатывает тепловую энергию всякий раз, когда через него проходит ток. Тепловая энергия вызывает снижение сопротивления термистора NTC, что затем указывает на температуру немного выше температуры окружающей среды.В технических паспортах производителя и примечаниях к применению обычно есть таблицы, формулы и текст, подробно описывающие это явление. Однако их можно в значительной степени игнорировать, если ток через термистор поддерживается относительно низким, так что ошибка самонагрева мала по сравнению с требуемой точностью измерения, как в примерах конструкции в этой статье.

Линеаризация

Термистор NTC проще всего использовать в цепи линеаризации. Есть два простых метода линеаризации: режим сопротивления и режим напряжения.

Режим сопротивления

В режиме линеаризации резистивного режима нормальный резистор устанавливается параллельно термистору NTC, что приводит к линеаризации сопротивления комбинированной цепи. Если значение резистора выбрано равным сопротивлению термистора при комнатной температуре (R 25C ), то область относительно линейного сопротивления будет симметричной относительно комнатной температуры (как показано на , рис. 4, ).


Рис. 4. Линеаризация режима сопротивления легко достигается путем размещения нормального резистора параллельно термистору.Если нормальный резистор имеет то же значение, что и R 25C , то область почти линейного сопротивления в зависимости от температуры будет симметричной около + 25 ° C. (R 25C = 10 кОм, β в К).

Обратите внимание, что более низкие значения β дают линейные результаты в более широком диапазоне температур, тогда как более высокие значения β дают повышенную чувствительность в более узком диапазоне температур. Эквивалентное сопротивление варьируется от примерно 90% R 25C на холоде (-20 ° C) до 50% R 25C при комнатной температуре (+ 25 ° C) до примерно 15% от R 25C в горячем ( + 70 ° С).

Режим напряжения

В режиме линеаризации напряжения термистор NTC соединен последовательно с обычным резистором, образуя цепь делителя напряжения. Схема делителя смещается от стабилизированного источника питания или опорного напряжения V REF . В результате получается выходное напряжение, линейное по температуре. Если значение резистора выбрано равным сопротивлению термистора при комнатной температуре (R 25C ), то область линейного напряжения будет симметричной относительно комнатной температуры (как показано на , рис. 5, ).


Рис. 5. Линеаризацию в режиме напряжения легко выполнить, если подключить нормальный резистор последовательно с термистором и смещать результирующий резистивный делитель напряжения с источником постоянного напряжения. Если нормальный резистор имеет то же значение, что и R 25C , то область почти линейного выходного напряжения в зависимости от температуры будет симметричной около + 25 ° C. (R 25C = 10 кОм, β в К).

Опять же, обратите внимание, что более низкие значения β дают линейные результаты в более широком диапазоне температур, в то время как более высокие значения β дают повышенную чувствительность в более узком диапазоне температур.Выходное напряжение варьируется от почти нуля вольт в холодном состоянии (-20 ° C) до V REF /2 в комнате (+ 25 ° C) до почти V REF в горячем состоянии (+ 70 ° C).

Процедура проектирования

Для создания регулируемого выходного напряжения, которое изменяется линейно с температурой, к цепи обратной связи регулятора применяется схема линеаризованного термистора.

Режим сопротивления

Схема с резистивным режимом является самым простым решением для создания регулируемого выходного напряжения в зависимости от температуры, поскольку цепи обратной связи регулятора почти всегда состоят из резистивного делителя напряжения.Как видно на рис. 6 , цепь линеаризованного термистора включена последовательно с одним из резисторов обратной связи. В этом случае линеаризованная схема включается последовательно с верхним резистором цепи делителя обратной связи для создания выходного напряжения с отрицательным температурным коэффициентом на Vout, как это обычно требуется в решениях смещения ЖК-дисплея. (Для создания выходного сигнала с положительным температурным коэффициентом схема линеаризации должна быть включена последовательно с нижним резистором R2 делителя обратной связи.)


Рисунок 6. Схема линеаризованного термистора, работающего в режиме сопротивления, подключена к цепи обратной связи регулятора напряжения. По сути, он заменяет часть одного из обычных резисторов обратной связи — эта часть зависит от требуемого температурного коэффициента на выходе регулятора.

Процедура проектирования относительно проста. Сначала найдите соответствующий ток смещения цепи обратной связи, i2, в паспорте регулятора. Обычно он находится в диапазоне от 10 до 100 мкА, и его точное значение имеет некоторую широту.Затем рассчитайте значение термистора NTC как:

, где T C — отрицательный температурный коэффициент Vout в% / ° C. Значение i2 следует регулировать до тех пор, пока R 25C не станет легко доступным значением термистора NTC.

Для упрощенного расчета конструкции выберите R2 и R1 как:

, где Vfb — номинальное напряжение обратной связи, указанное в паспорте регулятора.

Для более точного расчета конструкции окончательное значение i2 будет немного изменено, чтобы привести термистор β в соответствие с желаемым T C .Поэтому рассчитайте сопротивление термистора при 0 ° C и + 50 ° C. Стандартная формула для сопротивления термистора NTC в зависимости от температуры:

Затем рассчитайте линеаризованное сопротивление при двух температурах как:

Рассчитайте значение R2 и i2 как:

И, наконец, рассчитайте значение R1 как:

Пример расчета режима сопротивления

Напряжение смещения ЖК-дисплея необходимо в системе, работающей на одноэлементной перезаряжаемой батарее Li +.Требуемое напряжение смещения составляет Vout = 20 В при комнатной температуре с T C = -0,05% / ° C. Под эту задачу подбирается регулятор MAX1605. Приведенные выше расчетные формулы используются для расчета требуемых компонентов следующим образом:

Согласно таблице данных, i2 должен быть больше 10 мкА для ошибки выхода менее 1%; поэтому выберите i2 примерно в пять раз больше для меньшей ошибки:

Термистор NTC выбран с R 25C = 20 кОм и β = 3965K и линеаризован с помощью параллельного резистора 20 кОм.MAX1605 имеет номинальное напряжение обратной связи Vfb = 1,25 В. В соответствии с упрощенными расчетными формулами R2 и R1 затем рассчитываются как:

При более точном расчетном проектировании сопротивление термистора при 0 ° C и + 50 ° C будет:

Линеаризованное сопротивление при 0 ° C и + 50 ° C будут:

Значения для R2, ​​i2 и R1 затем вычисляются как:

В этом случае эти более точные значения существенно не отличаются от значений, полученных с использованием упрощенного расчеты.Окончательную схему можно увидеть на Рисунок 7 .


Рис. 7. Термистор NTC используется с повышающим преобразователем MAX1605 для реализации примера конструкции с резистивным режимом, как описано в тексте.

Выходное напряжение схемы на Рисунке 7 демонстрирует почти идеальную температурную зависимость, как это видно на Рисунке 8 .


Рисунок 8. Фактическая температурная зависимость схемы на Рисунке 7 очень близка к целевому температурному коэффициенту -0.05% / ° C в большей части расширенного диапазона температур потребителя.

Режим напряжения

Хотя схема режима напряжения более сложна, чем схема режима сопротивления, она имеет некоторые уникальные преимущества. Во-первых, схема режима напряжения обеспечивает аналоговое напряжение, зависящее от температуры, которое может быть легко преобразовано в цифровую форму с помощью аналого-цифрового преобразователя (АЦП) для передачи информации о температуре микропроцессору системы. Кроме того, температурный коэффициент выходного напряжения регулятора можно легко отрегулировать, изменив номинал только одного резистора.Это преимущество позволяет использовать простой метод проб и ошибок в лаборатории, а также может быть очень ценным для размещения термисторов или ЖК-панелей из разных источников в производстве.

Как видно из рис. 9 , цепь линеаризованного термистора смещена опорным напряжением для генерирования зависящего от температуры напряжения, V TEMP . Затем V TEMP суммируется в узле обратной связи через резистор R3, который устанавливает коэффициент усиления температурной зависимости. Чтобы V TEMP не требовал буферизации, номинальное сопротивление термистора должно быть намного ниже, чем R3.Как показано на рисунке 9, регулятор показывает выходное напряжение с отрицательным температурным коэффициентом на уровне Vout, что обычно требуется в решениях с жидкокристаллическим дисплеем. (Для создания выходного сигнала с положительным температурным коэффициентом положение R и Rt следует поменять местами.)


Рисунок 9. Схема линеаризованного термистора, работающего по напряжению, подается на цепь обратной связи регулятора напряжения. По сути, он добавляет ток i3 в узел обратной связи, так что i1 = i2 + i3. Если Vref вдвое больше Vfb, то i3 равен нулю при 25 ° C, R1 и R2 рассчитываются, как обычно, как описано в паспорте регулятора, а температурную зависимость можно отрегулировать простым масштабированием R3.Кроме того, Vtemp может быть получен главной системой через аналого-цифровой преобразователь.

Хотя это и не обязательно, простейшая реализация на рисунке 9 — это когда Vref = 2xVfb. (Удобно, что многие регуляторы имеют Vfb = 1,25 В, многие источники опорного напряжения имеют Vref = 2,5 В, а многие АЦП имеют диапазон входного напряжения от 0 до 2,5 В.) Когда Vref = 2xVfb, V TEMP будет равно Vfb при + 25 ° C и i3 будут равны нулю. Это позволяет R1 и R2 устанавливать номинальное выходное напряжение на уровне + 25 ° C независимо от R3 и термистора.Выберите R2 в соответствии с рекомендациями в паспорте регулятора. Затем рассчитайте R1 и i2 как:

Затем рассчитайте приблизительное значение R3 как:

, где T C — отрицательный температурный коэффициент Vout в% / ° C. (Это значение R3 будет достаточно для упрощенного расчета конструкции и может быть позже отрегулировано экспериментально в лаборатории.) Затем, чтобы избежать необходимости в буферном усилителе между V TEMP и R3, выберите номинальное значение термистора:

Для более точного расчета окончательное значение R3 будет немного изменено, чтобы согласовать β термистора с желаемым T C .Для этого сначала рассчитайте сопротивление термистора при 0 ° C и + 50 ° C. Стандартная формула для сопротивления термистора NTC в зависимости от температуры:

Затем рассчитайте линеаризованное напряжение V TEMP при двух температурах как:

Наконец, дается более точное значение R3. как:

Пример расчета режима напряжения

Напряжение смещения ЖК-дисплея необходимо в системе, работающей от Li + батареи. Требуемое напряжение смещения составляет Vout = 20 В при комнатной температуре с T C = -0.05% / ° С. Стабилизатор MAX629 выбран для этой задачи, потому что он имеет выход опорного напряжения, который может использоваться для смещения цепи линеаризации термистора. Расчетные формулы для режима напряжения используются для расчета требуемых компонентов следующим образом:

Согласно таблице данных, R2 должно быть в диапазоне от 10 кОм до 200 кОм и Vfb = 1,25 В; следовательно:

Приблизительное значение R3 будет:

Номинальное сопротивление термистора должно быть меньше 46,9 кОм.Следовательно, термистор NTC выбран с R 25C = 20 кОм и β = 3965K и линеаризован последовательным резистором 20 кОм и смещением Vref = 2,5 В.

Согласно более точному расчету конструкции, сопротивление термистора при 0 ° C и + 50 ° C будет:

Линеаризованное напряжение при 0 ° C и + 50 ° C будет:

Новое значение для R3 затем вычисляется:

В этом случае более точное значение R3 существенно не отличается от значения, полученного с помощью упрощенных вычислений, и следует выбрать ближайшее стандартное значение резистора.

Пример конструкции, когда Vref ≠ 2xVfb

В приведенном выше примере конструкции с режимом напряжения, если в системе еще нет источника питания Vref = 2,5 В, его добавление может оказаться непомерно дорогостоящим. К счастью, любого регулируемого напряжения хватит. В этом примере используется вывод REF MAX629 и Vref ‘= 1,25 В. По сравнению с приведенным выше примером, V TEMP теперь будет варьироваться более чем вдвое меньше диапазона; следовательно, R3 необходимо уменьшить вдвое до R3 ‘= 475 кОм, чтобы поддерживать тот же температурный коэффициент выходного напряжения T C = -0.05% / ° С. Также рекомендуется уменьшить номинал термистора и резистора линеаризации до R = R 25C = 10 кОм. Кроме того, поскольку V TEMP ниже, чем Vfb при 25 ° C, i3 будет отличным от нуля, а выходное напряжение регулятора будет немного выше желаемого на:

Чтобы устранить это, уменьшите R1 с 375 кОм до:

Окончательную схему можно увидеть на Рисунок 10 .


Рис. 10. Термистор NTC используется с повышающим преобразователем MAX629 для реализации примера расчета режима напряжения с Vref ≠ 2xVfb, как описано в тексте.MAX629 был выбран потому, что его вывод REF может использоваться для смещения цепи линеаризации термистора.

Выходное напряжение схемы на Рисунке 10 демонстрирует почти идеальную температурную зависимость, как видно на Рисунке 11 .


Рисунок 11. Фактическая температурная зависимость контура на Рисунке 10 очень близка к целевому температурному коэффициенту -0,05% / ° C в большей части расширенного диапазона температур потребителя.

Аналогичная версия этой статьи появилась в номере журнала EDN от 1 августа 2001 года.

Термисторы, датчик термистора NTC и PTC, термистор 10 кОм

Обеспечивая точное и чувствительное измерение и контроль температуры, выберите обширный каталог долговечных термисторов Allied Electronics и создайте эффективные схемы с контролем температуры.

Все термисторы, представленные в нашем ассортименте, изготовлены из материалов высочайшего качества известными поставщиками термисторов, такими как Vishay Dale, Honeywell и Amphenol Advanced Sensors. В нашем ассортименте есть бесчисленное количество типов, таких как токоограничивающие, высокочувствительные, суровые условия, а также герметичные термисторы, поэтому, независимо от вашего проекта или области применения, мы можем помочь.

У нас есть много различных типов термисторов, поэтому используйте функции поиска, чтобы ограничить поиск компонентов по характеристикам, производителю, типу и т. Д. Если вам нужна дополнительная информация о температурных термисторах, их функциях и использовании, прокрутите вниз. Хотите узнать больше? Свяжитесь с нами или посетите наш экспертный центр, чтобы получить ответы на все ваши вопросы.

Что такое термистор?

Термочувствительные резисторы, термисторы — это компоненты, которые, обнаружив изменение температуры, сопротивляются протекающему через них току, пропорциональному изменению температуры.

Обычно они используются для измерения изменений температуры. Когда температура вокруг термистора изменяется, полупроводниковые материалы внутри них изменяют напряжение, протекающее через компонент. Это считывается контроллером температуры, а генерируемые данные используются для информирования о функциях других компонентов в цепи.

Как работают разные термисторные датчики температуры?

Термисторные датчики температуры работают в соответствии с материалами, из которых они изготовлены — они изменяют масштаб сопротивления пропорционально изменению температуры.Каждый термистор изготовлен из полупроводниковых оксидов металлов, спрессованных в форму (например, бусинки, цилиндра или диска), которые покрыты водонепроницаемым материалом, обычно стеклом или эпоксидной смолой.

По мере нагревания этих оксидов их электрическое сопротивление увеличивается или уменьшается. Это зависит от различных типов термисторов, в которых они используются, а их два:

Термисторы NTC — Термисторы с отрицательным температурным коэффициентом (NTC) уменьшают свое электрическое сопротивление по мере увеличения измеряемой температуры и наоборот.Они часто используются для измерения температуры, будь то в системах отопления, автомобильных датчиках температуры или для ограничения токов в цепях питания до безопасных уровней.

Термисторы PTC — Сопротивление термисторов с положительным температурным коэффициентом (PTC) увеличивается с увеличением температуры. Они часто используются в саморегулирующихся нагревателях — при понижении температуры к нагревательному элементу прикладывается больший ток, что увеличивает температуру окружающей среды. Они также могут защищать от сверхтоков, действуя как самовосстанавливающийся предохранитель, который останавливает ток, пока температура корпуса термистора не упадет до безопасного уровня.

В чем разница между термистором и резистивным датчиком температуры (RTD)?

Хотя они похожи на датчики температуры, между термисторами и RTD есть некоторые ключевые различия, которые определяют их правильное использование.

Термисторные датчики температуры менее дороги, более долговечны, обычно обеспечивают более точный диапазон измерения температуры и могут гораздо быстрее изменять свое сопротивление в соответствии с колебаниями температуры, чем датчики RTD.

Однако их диапазоны измерения температуры намного ниже, чем у RTD, и корреляция их сопротивления изменению температуры нелинейна. Решение этой проблемы может быть сложным, но необходимо учитывать, чтобы точно считывать данные термистора. Компоненты термистора также могут выделять тепло, что может привести к ошибочным показаниям.

RTD, с другой стороны, сделаны из металла, что означает, что они могут работать в гораздо более высоких температурных диапазонах, чем термисторы, и их сопротивление температурной корреляции является линейным.Однако они больше и дороже, а также менее чувствительны, изменяя сопротивление на меньшее количество Ом на градус, чем термисторы.

Какие области применения термисторов?

Термисторные датчики температуры, используемые во многих промышленных, производственных или электронных приложениях, где необходимо измерять или реагировать на температуру газа, жидкости или поверхности, являются чрезвычайно распространенными компонентами.

Они используются в производстве пищевых продуктов, где необходимо контролировать температуру, чтобы смягчить состояние пищевых продуктов или санитарную среду.В химическом и нефтехимическом производстве некоррозионные термисторы играют большую роль в безопасном производстве различных жидкостей. В аэрокосмической отрасли, связи, электронике и медицине они приносят пользу как точному производству оборудования, так и обеспечивают возможность измерения температуры в самих продуктах.

И в повседневной жизни они гарантируют, что духовки, системы отопления, кондиционеры и пожарная сигнализация могут работать правильно, а температуру в двигателях транспортных средств можно контролировать.

Почему стоит доверять Allied Electronics как дистрибьютору термисторов?

Приобретая термисторы у Allied Electronics, вы получаете почти столетний опыт в области распределения электрических компонентов.

Мы являемся одним из крупнейших авторизованных дистрибьюторов в Северной Америке и имеем тесные партнерские отношения с широким спектром поставщиков компонентов, такими как Omron Automation, EPCOS, AVX и Sensata. Это означает, что у нас почти наверняка есть термистор, необходимый для решения поставленной задачи.

Выполните поиск в нашем ассортименте по сопротивлению — просмотрите термисторы NTC, термисторы PTC или компоненты ICL и PPTC — и просмотрите их по допускам, типу заделки и многому другому. Просто используйте меню слева, чтобы сузить выбор.

Если у нас нет необходимых терморезисторов, свяжитесь с нашими специалистами, и они будут рады помочь. Посетите наш экспертный центр, чтобы узнать больше.

NexSens TS210 Строка термистора

Доставка, доставка, обработка заказа и наличие продукта

Fondriest пользуется услугами лучших перевозчиков, чтобы заказы приходили к вам вовремя.Узнайте больше о сроках доставки, способах, стоимости и перевозчиках.

Срок поставки

Мы держим вас в курсе. Вскоре после того, как вы разместите свой заказ, вы получите электронное письмо с подтверждением заказа, чтобы подтвердить детали вашего заказа, включая доставку и смету доставки. Как только ваш заказ будет подготовлен к отправке и отправке, вы получите электронное письмо с уведомлением об отправке с информацией о перевозчике и отслеживании.

Стоимость отгрузки и доставки

Срок отправки — это примерное время доставки товара с нашего склада.Все товары будут отправлены за один раз, если вы специально не запросите частичную доставку. В этом случае товары из вашего заказа будут отправлены по мере их поступления. Срок доставки — это примерное время, когда товар будет доставлен на ваш адрес доставки после его отправки. Расчетное время доставки зависит от способа доставки, который вы выбираете при оформлении заказа. Все оценки основаны на рабочих днях.

Варианты доставки

Fondriest предлагает несколько удобных вариантов доставки.

Стандартная доставка: Товары, отправленные стандартным сервисом, обычно доставляются в течение пяти рабочих дней после отправки.
Доставка в течение 2 дней: За дополнительную плату Fondriest предлагает этот вариант ускоренной доставки для большинства продуктов. Товары отправляются через двухдневную службу до 16:00. EST обычно доставляется до 16:30. по местному времени через два рабочих дня после отгрузки.
Ночная доставка: За дополнительную плату Fondriest предлагает этот вариант ускоренной доставки для большинства товаров. Товары отправлены до 16:00. EST через ночную службу обычно доставляется до 16:00. по местному времени через один рабочий день после отгрузки. Свяжитесь с Fondriest для получения информации о более ранней доставке в ночное время.
Ваш счет: Fondriest предлагает бесплатную доставку на ваш счет наиболее популярным перевозчикам.

Помните, что эти оценки относятся только к времени в пути и не применяются, пока продукт не покинет склад Fondriest. Поскольку доставка вашего заказа находится вне контроля Fondriest после того, как ваш заказ покидает склад Fondriest, мы не можем нести ответственность за просрочку доставки, независимо от указанного вами способа доставки.

Подпись требуется для большинства доставок

Большинство посылок Fondriest содержат ценное оборудование.Если вы не будете по адресу доставки, чтобы принять доставку вашего продукта, рассмотрите возможность отправки товара по адресу, где кто-то, кому вы доверяете, будет доступен, чтобы подписать вашу посылку, или примите вашу посылку, если подпись не требуется для доставки. После того, как ваш заказ подготовлен к отправке или отправлен, мы не сможем изменить адрес доставки. Право собственности и риск потери всех продуктов переходят к вам при доставке. Если вы готовы взять на себя риск доставки вашего заказа без подписи, вы можете уполномочить Fondriest организовать доставку, которая не требует присутствия кого-либо по адресу доставки.

Недоставленных пакетов

Иногда посылки возвращаются в Fondriest как недоставленные. Когда перевозчик возвращает в Fondriest посылку, которую невозможно доставить, свяжитесь с нами, чтобы договориться о пересылке.

Неудачные попытки доставки

Большинство перевозчиков Fondriest делают три попытки доставить посылку. После трех попыток доставки курьер вернет посылку в Fondriest.

Обработка заказов

Предполагаемая дата отгрузки вашего заказа зависит от наличия продукта, времени обработки платежа и времени обработки на складе и не включает время доставки.Мы не начинаем обработку платежей до тех пор, пока Fondriest не получит всю необходимую информацию, а также полную оплату или полную авторизацию в случае кредитной карты или заказов на аренду.

Fondriest начнет обработку платежей по заказам, размещенным в выходные или праздничные дни, на следующий рабочий день. Рабочие дни с понедельника по пятницу, кроме государственных праздников.

Ваш заказ на товары, имеющиеся в наличии, которые могут быть отправлены в тот же день, должен быть получен до 14:00 по местному времени.м. в ожидании обработки платежа, чтобы в течение дня оставалось достаточно времени для отправки вашего заказа.

Наличие товара

Fondriest прилагает все усилия, чтобы доставить ваш продукт в соответствии с предполагаемыми сроками поставки. Расчетное время выполнения заказа указано в рабочих днях (с понедельника по пятницу, кроме государственных праздников).

Хотя Fondriest прилагает все усилия для доставки вашего заказа в соответствии с указанным сроком поставки, даты доставки могут измениться из-за изменений в поставках.Если время выполнения заказа изменится, Fondriest свяжется с вами по электронной почте и предоставит пересмотренную смету доставки.

Fondriest прилагает все усилия для поставки заказанных вами продуктов, но могут быть случаи, когда Fondriest подтверждает заказы, а позже узнает, что не может поставить продукты ни вообще, ни в заказанном количестве. Эти редкие случаи могут включать, когда Fondriest узнает, что продукты больше не производятся или становятся недоступными по иным причинам, когда Fondriest не может получить компоненты для заказанной вами конфигурации или когда в интернет-магазине Fondriest произошла ошибка ценообразования.

В таких обстоятельствах Fondriest проинформирует вас и, если вы заинтересованы, Fondriest может предложить альтернативные продукты, которые могут удовлетворить ваши потребности. Если вы не хотите заказывать альтернативные продукты, Fondriest отменит ваш заказ на продукты, которые не могут быть поставлены, и на любые другие продукты, которые вы больше не хотите заказывать в результате, и вернет вам покупную цену.

Недорогие настенные датчики с термопарой, RTD или термистором

Серия EWS

Недорогие настенные датчики с термопарами, RTD или термисторами

Описание

Новые недорогие датчики OMEGA для настенного крепления для окружающей среды — это идеальное решение, позволяющее сохранить великолепный вид вашего офиса, компьютерного зала или лаборатории по доступной цене.Эти миниатюрные устройства представлены 6 моделями, которые будут напрямую взаимодействовать с большинством измерителей процесса, контроллеров, регистраторов, регистраторов данных и систем сбора данных. Модели термопар, RTD и термисторов поставляются со стандартными выводами 914 мм (36 дюймов). Блоки измерения температуры, температуры / влажности и давления поставляются с выбираемым пользователем стандартным промышленным выходом 4–20 мА или 1–5 В постоянного тока.

Примечание. Серия EWS предназначена только для внутреннего применения. Они не предназначены для воздействия дождя, снега или других экстремальных погодных условий.

Все суммы указаны в долларах США
Примечание. Модели -TC, -RTD и -TH поставляются со стандартным проводом 914 мм (36 дюймов). Проконсультируйтесь с отделом продаж, чтобы узнать о наличии кабеля нестандартной длины.
Пример заказа: (1) EWS-MB Кронштейн / настенная пластина, 21,50 долларов США плюс (1) EWS-TX Датчик температуры, 100,00 долларов США плюс (1) PSR-24S Источник питания, 88,00 долларов США плюс (1) TX4-100 Кабель передатчика, 46,00 долларов США , 21,50 долларов США + 100,00 + 88.00 + 46.00 = USD 255,50

Руководства по продуктам:

Скачать Серия EWS-TX — экономичные датчики для настенного монтажа Скачать EWS-RH — Датчик относительной влажности / температуры Скачать EWS-BP-A — датчик атмосферного давления Скачать Серия EWS — экономичные датчики для настенного монтажа .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *