Термопары типа к – Выбор градуировки термопары в зависимости от условий применения — Элементы автоматики — Каталог статей

Содержание

Термопары. Типы термопар, рекомендации по выбору. Заметка

ПРОДУКЦИЯ


 

Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

Вам понравилась эта статья?! Добавьте ее в свои закладки.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

(800) 200-52-75
(495) 366-00-24
(495) 504-95-54
e-mail: [email protected]

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Хром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Рений

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Заметка «Термопары. Типы термопар, рекомендации по выбору» содержит обзор существующих типов термопар, диапазоны измеряемых температур, условия эксплуатации. Рассматриваются различные материалы для их изготовления: никелевые и медно-никелевые сплавы — алюмель, хромель, копель, константан; медь, железо, вольфраморениевые сплавы — ВР5/ВР20; платина, платинородий.
1. Тип К (хромель-алюмель)
  • Используется для измерения температур в диапазоне от -200 °С до +1000 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).
  • В диапазоне температур от 200 до 500 °С может возникнуть эффект гистерезиса, когда показания при нагревании и охлаждении могут различаться. В некоторых случаях разница достигает 5 °С.
  • Работает в нейтральной атмосфере или атмосфере с избытком кислорода.
  • После термического старения показания снижаются.
  • Может произойти изменение термо-ЭДС при использовании в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция). При этом термопара показывает заниженную температуру.
  • Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.
2. Тип L (хромель-копель)
  • Используется для измерения температур в диапазоне от -200 °С до +800 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).
3. Тип Е (хромель-константан)
  • Используется для измерения температур в диапазоне от -40 °С до +900 °С.
  • Обладает высокой чувствительностью, что является плюсом.
  • Материалы электродов обладают термоэлектрической однородностью.
4. Тип Т (медь-константан)
  • Используется для измерения температур в диапазоне от -250 °С до +300 °С.
  • Может работать в атмосфере с небольшим избытком или недостатком кислорода.
  • Не рекомендуется использование термопар данного типа при температурах выше 400 °С.
  • Не чувствительна к повышенной влажности.
  • Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.
5. Тип J (железо-константан)
  • На железном выводе может образоваться ржавчина из-за конденсации влаги.
  • Хорошо работает в разряженной атмосфере.
  • Максимальная температура применения — 500 °С, т.к выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.
  • Показания повышаются после термического старения.
  • Невысокая стоимость, т.к. в состав термопары входит железо.
6. Железо-копель
  • Используется для измерения температур в диапазоне от 0 до 760 °C.
7. Тип А (вольфраморениевый сплав ВР — вольфраморениевый сплав ВР)
  • Используется для измерения высоких температур от 0 до 2500 °C в инертной среде.
8. Тип N (нихросил-нисил)
  • Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
  • Рекомендуемая рабочая температура до 1200 °С (зависит от диаметра проволоки), возможна кратковременная работа при 1250 °С.
  • Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К).
  • Считается самой точной термопарой из неблагородных металлов.
1. Тип В (платинородий-платинородиевая)
  • Максимальная температура, при которой может работать термопара, составляет 1500 °С (зависит от диаметра проволоки).
  • Кратковременное использование возможно до 1750 °С.
  • Присутствует эффект загрязнения водородом, кремнием, парами меди и железа при температурах выше 900 °С. Но данный эффект меньше, чем для термопар типа S и R.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Может работать в окислительной среде.
  • Не рекомендуется применение при температуре ниже 600 °С, где термо-ЭДС очень мала и нелинейна.
2. Тип S (платинородий-платиновая)
  • Максимальная температура, при которой может работать термопара, составляет 1350 °С.
  • Кратковременное использование возможно до 1600 °С.
  • Присутствует эффект загрязнения водородом, углеродом, парами меди и железа при температурах выше 900 °С. При содержании в платиновом электроде 0,1% железа, тером-ЭДС изменяется более, чем на 1 мВ (100°С) при 1200 °С и 1,5 мВ (160 °С) при 1600 °С. Такая же картина наблюдается при загрязнении медью. Вывод: термопары данного типа нельзя армировать стальной трубкой или следует изолировать электроды от трубки газонепроницаемой керамикой.
  • Может работать в окислительной атмосфере.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Не рекомендуется применение ниже 400 °С, т.к термо-ЭДС в этой области мала и крайне нелинейна.
3. Тип R (платинородий-платиновая)
  • Обладает такими же свойствами, что и термопары типа S.

Типы термопар: ТЕРМОЭЛЕМЕНТ

Типы термопарТермопары зависимо от сферы применения, величины измеряемых температур и своего состава делятся на разные типы.

Хромель-алюмель тип К

Это один из самых применяемых типов термопар. На протяжении долгого времени измеряет температуры до 1100 0С, в коротком – до 1300 0С. Измерение пониженных температур возможно до -200 0С. Отлично функционирует в условиях окислительной атмосферы и инертности. Возможно применение в сухом водороде, и недолго в вакууме. Чувствительность – 40 мкВ/ 0С. Это самый стойкий тип термопары способный работать в реактивных условиях.

Минусами является высокая деформация электродов и нестабильная ЭДС.

Хромель-алюмель или термопара типа К не применяется в среде с содержанием О2 более чем 3%. При большем содержании кислорода хром окисляется и снижается термическая ЭДС. Тип К с защитным чехлом можно использовать в переменной окислительно-восстановительной атмосфере.

Для защиты термопары ХА применяется оболочка из фарфорового, асбестового, стекловолоконного, кварцевого, эмалевого материала или высокоогнеупорных окислов.

Чаще всего хромель-алюмель выходит из строя из-за разрушения алюмелевого электрода. Происходит это после нагревания электрода до 650 градусов в серной среде. Предотвратить коррозию алюмели можно лишь исключив попадание серы в рабочую среду термопары.

Хром портится из-за внутреннего окисления, когда в атмосфере содержится водяной пар или повышенная кислотность. Защитой является применение вентилируемой защиты.

Хромель-копель тип L

Это также часто применяемая термопара позволяющая измерять в инертной и окислительной среде. Длительное измерение до 800 0С, короткое – 1100 0С. Нижний предел -253 0С. Длительная работа до 600С. Это самая чувствительная термопара из всех измерительных устройств промышленного типа. Обладает линейной градуировкой. При температуре 600 градусов выделяется термоэлектрической стабильностью. Недостатком является повышенная предрасположенность электродов к деформациям.

Положительным электродом у термопары типа L является хромель, а отрицательным – копель. Рабочая среда – окислительная или с инертно газовой составляющей. Возможно применение в вакууме при повышенной температуре короткое время. Используя хорошую газоплотную защиту ТХК можно использовать в серосодержащей и окислительной среде. В хлорной или фторсодержащей атмосфере возможна эксплуатация, но только до 200 градусов.

Железо-константан тип J

Используется в восстановительной, окислительной, инертной и вакуумной среде. Измерение положительных сред до 1100 0С, отрицательных – до -203 0С. Именно тип J рекомендуется применять в положительной среде с переходом в условия отрицательной температуры. Только в отрицательной среде ТЖК использовать не рекомендуется. На протяжении длительного времени измеряет температуры до 750 0С, в коротком интервале 1100 0С. Минусы: высокочувствительна — 50-65 мкВ/ 0С, поддается деформациям, низкая коррозийная стойкость электрода содержащего железо.

Положительным электродом у термопары типа J есть технически чистое железо, а отрицательным – медно-никелевый сплав константан.

ТЖК устойчива к окислительной и восстановительной среде. Железо при температурах от 770 0С поддается магнитным и ↔- превращениям, влияющим на термоэлектрические свойства. Нахождение термопары в условиях больше 760 0С не способно далее в точности измерять показатели температуры нижеуказанных цифр. В данном случае ее показания не соответствуют градуировочной таблице.

Скоки эксплуатации зависят от поперечного сечения электродов. Диаметр должен соответствовать измеряемым показателям.

В условиях температур выше 500С с содержанием серы в атмосфере рекомендуется применять защитный газоплотный чехол.

Вольфрам-рений тип А-1, А-2, А-3

Отлично измеряет температуры до 1800 градусов. В промышленности используется для измерения показателей около 3000 0С. Нижний предел ограничивается – 1300 0С. Можно эксплуатировать в аргоновой, азотной, гелиевой, сухой водородной и вакуумной средах.

Термо-ЭДС при 2500 0С — 34 мВ для измерительных устройств из сплавов ВР5/20 и ВАР5 /ВР20 и 22 мВ, для термопар из сплава ВР10/20, чувствительность – 7-10 и 4-7 мкВ/ 0С.

ТВР характеризуется механической устойчивостью даже в условиях высокой температуры, справляется со знакопеременными нагрузками и резкими тепловыми сменами. Удобна в установке и практически не теряет свойств при загрязнении.

Минусы: низкая производимость термо-ЭДС; при облучениях нестабильная термо-ЭДС ; падение чувствительности при 2400 0С и более.

Более точные результаты у сплавов ВАР5/ВР20 наблюдаются при длительном измерении, что не так характерно для сплавов ВР5/20.

В ТВР электроды изготавливаются из сплавов ВР5 – положительный и ВР20 – отрицательный; ВАР5 – положительный и ВР20 – отрицательный или ВР10 – положительный и ВР20 – отрицательный электрод.

Незначительное наличие О2 способно вывести термопару вольфрам-рений из строя. В окислительной среде используются лишь в быстротекущем процессе. В условиях сильного окисления моментально выходит из строя.

Иногда эта термопара может использоваться в работе высокотемпературной печи совместно с графитовым нагревательным элементом.

В качестве электродных изоляторов применяют керамику. Оксид бериллия можно применять, как изолятор в том случае, когда воздействующая на него температура не превышает температур плавления. При измерении значений меньше 1600 0С электроды защищают чистым оксидом алюминия или магния. Керамический изолятор должен быть прокален для возможности очистки разных примесей. В условиях повышенного окисления используются чехлы из металла и сплавов Mo- Re, W-Re с покрытиями. Измерительный прибор с защитой из иридия можно кратковременно использовать на воздухе.

Вольфрам-молибден

Эксплуатируется в инертной, водородной и вакуумной сфере. Температуры измерений – 1400 0С -1800 0С, пределы рабочих показателей — 2400 0С. Чувствительность — 6,5 мкВ/ 0С. Обладает высокой механической прочностью. Не нуждается в химической чистоте.

Минусы: низкая термо-ЭДС; инверсия полярности, повышение хрупкости при повышенных температурах.

Рекомендуется применять в водородной, инертногазовой и вакуумной среде. Окисление на воздухе происходит при 400 градусах. При повышении термической подачи окисление ускоряется. ТВМ не вступает в реакцию с Н и инертным газом до температур плавления. Данный тип термопары лучше не использовать без изоляторов, так как она при повышении температуры может вступать в реакцию с окислами. При наличии керамического изолятора возможно кратковременное применение в окислительной среде.

Для измерения термической составляющей жидкого металла изолируется обычно глиноземистой керамикой с применением кварцевого наконечника.

Платинородий-платина типы R, S

Самые распространенные типы термопары для температур до 1600 0С. К данным устройствам относятся платина со сплавом платины и родия 10%-ти или 13%-ным составом. Применяются в инертной и окислительной среде. Длительное использование при 1400С, кратковременное — 1600С. Обладают линейной термоэлектрической особенностью в диапазоне 600-1600 0С. Показатель чувствительности — 10-12 мкВ/ 0С (10% Rh) и 11-14 мкВ/С (13% Rh). Производят высокоточное измерение, обладают высокой воспроизводимостью и стабильностью термо-ЭДС.

Минусы: нестабильность в облучаемой среде, повышенная чувствительность к загрязнениям.

ТПП с хорошим изолятором может применяться в восстановительной среде, и в условиях содержащих мышьяковые пары, серу, свинец, цинк и фосфор.

Практически не используются для измерения отрицательных температур по причине снижения чувствительности. Но, в отдельной сборке возможно измерение значений до -50 градусов. Для значений 300-600 0С применяются в качестве сравнительных показателей. Краткое применение – до 1600 0С, длительное – 1400 0С. С наличие защиты можно длительно эксплуатировать при 1500 0С.

Изоляторами в условиях температуры до 1200 0С применяются кварцевые и фарфоровые материалы или муллит и силлиманит. Образцовые термопары изолируют плавленым кварцем.

При использовании с вырабатываемой температурой в 1400 0С в качестве изолятора лучше применять керамику с окислю Al2O3. При слабоокислительной и восстановительной среде около 1200 0С.

В слабоокислительных и восстановительных условиях с температурой выше 1200 и независимо от условий с температурами выше 1400 0С необходимо в качестве изолятора использовать керамический высокочистый оксид алюминия. В восстановительной среде возможно применение оксида магния.

Обычно внутренний чехол для термопары состоит из того же материала из которого выполнен изолятор. Данные материалы должны быть газоплотными. В условиях разового измерения температур жидкой стали, чтобы защитить рабочий спай измерителя используются кварцевые наконечники.

Вся рабочая длина электродов должна быть заизолирована трубкой из керамики двухканального типа. Места стыка трубки и чехла, электрода и трубки должны иметь зазоры для вентиляции. Электроды должны тщательно очищаться от смазки перед установкой в изолятор. В свою очередь металлический чехол тоже должен быть сухим и чистым. Перед установкой на объект все компоненты термопары должны пройти отжиг. Термоэлектроды не должны выполнять опорную функцию для изолятора. Особенно это важно для вертикальных термопар.

Платинородий-платинородий тип В

Используется в окислительных и нейтральных условиях. Возможна эксплуатация в вакуумной среде. Максимальная температура измерений длительного потока 1600 0С, кратковременная — 1800С. Чувствительность — 10,5-11,5 мкВ/ 0С. Выделяется хорошей стабильностью термического ЭДС. Возможно применение без удлинительных проводов из-за низкой чувствительности в температурном диапазоне от 0 до 100 0С.

Изготавливается из сплава платины и родия ПР30 и ПР6.

В атмосфере восстановительного типа и паров металлического и неметаллического состава необходима надежная защита. В качестве изолятора используется керамическое сырье из чистого Al2O3.

Характеристики эксплуатации и прочностные данные соответствуют термопарам типов R, S. Но, выходят они из строя намного реже по причине низкой подверженности химзагрязнениям и росту зерен.


Термопара — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Схема термопари. При температурі спаю ніхрому і алюміній-нікелю 300 °C термо-ЕРС становить 12,2 мВ. Фото термопари

Термопа́ра — чутливий елемент термоелектричного перетворювача у вигляді двох ізольованих провідників із різнорідних матеріалів, з’єднаних на одному кінці, принцип дії якого ґрунтується на використанні термоелектричного ефекту для вимірювання температури[1].

Використовується в устаткуванні для вимірювання температури, а також для прямого перетворення енергії тепла в електричну енергію у тих випадках, коли доцільно уникнути рухомих деталей (наприклад, у космосі). Поглинання тепла при проходженні електричного струму через контакт використовується в холодильниках тощо.

Термопару використовують як чутливий елемент (первинний вимірювальний перетворювач) у засобах контролю температури в печах. Термопара являє собою металевий провід з особливих сплавів, дві жили якого спаяні між собою, і спай розміщений в контрольовану зону печі.[2] Вільні кінці проводу виведені за межі нагрівальної зони та з’єднані з приладом, що показує перетворений сигнал одержаний від спаю термопари. Термопара, що перебуває в печі, захована у вогнестійкий чохол, що захищає її від агресивного середовища печі.[2]

Принцип дії термопари базується на термоелектричних явищах. Термопара складається з двох провідників, сполучених кінцями так, що вони утворюють два контакти. Контакти поміщають в середовища з різною температурою. Технічні вимоги до термопар визначаються ДСТУ 2857-94[3] та ДСТУ IEC 60584[4][5][6]

Основні типи термопар та їх характеристики[3]
Тип термопари за МЕК*Тип термопари за ДСТУ (ГОСТ)Температурний діапазон °C (довготривало)Температурний діапазон °C (короткотривало)
KТХА (хромель-алюмелеві)0 до +1100−180 до +1300
JТЖК (залізо-константанові)0 до +700−180 дo +800
NТНН (ніхросил-нісилові)0 до +1100−270 дo +1300
RТПП 13 (платинородій-платинові)0 до +1600−50 дo +1700
SТПП 10 (платинородій-платинові)0 до 1600−50 до +1750
BТПР (платинородій-платинородієві)+200 до +17000 до +1820
TТМКн (мідь-константанові)−185 до +300−250 до +400
EТХКн (хромель-константанові)0 до +800−40 до +900

* Міжнародна електротехнічна комісія

Пари металів, що використовуються для основних термопар (МЕК)[ред. | ред. код]

  • платинородій-платинові – Тип R
  • платинородій-платинові – Тип S
  • платинородій-платинородієві – Тип B
  • залізо-константанові (залізо-мідьнікелеві) – Тип J
  • мідь-константанові (мідь-мідьнікелеві) – Тип Т
  • ніхросил-нісилові (нікельхромнікель-нікелькремнієві) – Тип N.
  • хромель-алюмелеві – Тип K
  • хромель-константанові – Тип E
  • хромель-копелеві – Тип L
  • мідь-копелеві – Тип М
  • сильх-силінові – Тип I
  • вольфрам і реній – вольфрам-ренієві – Тип А-1, А-2, А-3.

Термометр[ред. | ред. код]

Принцип дії термопари заснований на ефекті Зеєбека, інакше термо-ЕРС. Коли кінці провідника піддати різним температурам, між ними виникає різниця потенціалів, пропорційна різниці температур, коефіцієнт пропорційності називають коефіцієнт термо-ЕРС. У різних металів коефіцієнт термо-ЕРС різний, і відповідно різниця потенціалів, що виникає між кінцями різних провідників, буде різна. Помістивши спай з металів з відмінними коефіцієнтами термо-ЕРС в середовище з температурою T1{\displaystyle T_{1}}, ми отримаємо напругу між протилежними контактами, що піддані іншій температурі T2{\displaystyle T_{2}}, яка буде пропорційна різниці температур T1{\displaystyle T_{1}} і T2{\displaystyle T_{2}}.

Джерело живлення[ред. | ред. код]

Електрорушійна сила, що виникає в термопарі, між нагрітим і холодним кінцем, може використовуватися як джерело живлення. Ефективність такого джерела невисока, але в певних умовах, наприклад, в космосі, далеко від Сонця, таке джерело незамінне, зважаючи на відсутність рухомих частин. Для нагрівання гарячого кінця термопари в космічних апаратах використовують тепло від радіоактивного розпаду.

Нагрівач або холодильник[ред. | ред. код]

Термопари застосовують також у нагрівачах та холодильниках, використовуючи ефект Пельтьє. При проходженні електричного струму через контакти термопари один із них нагрівається, а другий охолоджується.

  1. ↑ ДСТУ 3518-97 Термометрія. Терміни та визначення.
  2. а б Захаров А. И. Основы технологии керамики: Учебное пособие / РХТУ им.Менделеева; М., 1999. 79 с. ISBN 5-7234-0184-3 (с.: 13)
  3. а б ДСТУ 2857-94 (ГОСТ 6616-94) Перетворювачі термоелектричні. Загальні технічні умови.
  4. ↑ ДСТУ IEC 60584-1:2007 Перетворювачі термоелектричні. Частина 1. Градуювальні таблиці (IEC 60584-1:1995, IDT)
  5. ↑ ДСТУ IEC 60584-2:2007 Перетворювачі термоелектричні. Частина 2. Допуски (IEC 60584-2:1982, IDT)
  6. ↑ ДСТУ IEC 60584-3:2007 Перетворювачі термоелектричні. Частина 3. Подовжувальні та компенсаційні проводи. Допуски та системи ідентифікації (IEC 60584-3:1989, IDT)

Термопара — это… Что такое Термопара?

Схема термопары. При температуре спая нихрома и алюминий-никеля равной 300 °C термоэдс составляет 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Question book-4.svgВ этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 31 июля 2012.

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920х—30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
  • Большой температурный диапазон измерения: от −200 °C до 2500 °C
  • Простота
  • Дешевизна
  • Надежность

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.


Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ [2].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Тип термопары МЭКТемпературный диапазон °C (длительно)Температурный диапазон °C (кратковременно)Класс точности 1 (°C)Класс точности 2 (°C)IEC Цветовая маркировка
K0 до +1100−180 до +1300±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
J0 до +700−180 to +800±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 750 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 750 °C
N0 до +1100−270 to +1300±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 1000 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 1200 °C
R0 до +1600−50 to +1700±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
S0 до 1600−50 до +1750±1.0 от 0 °C до 1100 °C
±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C
±1.5 от 0 °C до 600 °C
±0.0025×T от 600 °C до 1600 °C
B+200 до +17000 до +1820±0.0025×T от 600 °C до 1700 °C
T−185 до +300−250 до +400±0.5 от −40 °C до 125 °C
±0.004×T от 125 °C до 350 °C
±1.0 от −40 °C до 133 °C
±0.0075×T от 133 °C до 350 °C
E0 до +800−40 до +900±1.5 от −40 °C до 375 °C
±0.004×T от 375 °C до 800 °C
±2.5 от −40 °C до 333 °C
±0.0075×T от 333 °C до 900 °C

См. также

Примечания

Ссылки

Высокотемпературные датчики температуры. Статья

ПРОДУКЦИЯ


 

Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

Вам понравилась эта статья?! Добавьте ее в свои закладки.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

(800) 200-52-75
(495) 366-00-24
(495) 504-95-54
e-mail: [email protected]

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Хром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Рений

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрамрениевые термопары и высокотемпературные датчики на их основе являются единственными на сегодня контактными средствами измерения температур свыше 2000°С.

Высокотемпературные датчики температуры

Высокотемпературные датчики применяются в различных областях науки и техники с середины XX века для контактного измерения температур рабочей среды от 1300 до 1700-2000 °С и выше. Диапазон измеряемых датчиками температур зависит непосредственно от химического состава измерительного элемента. Основным измерительным элементом таких датчиков является отрезок термоэлектродной проволоки, последовательно спаянной из двух разнородных электропроводящих металлов, который называют «термопара». В соответствии с предназначением и конструкцией, термопара может быть погруженной или поверхностной, герметичной или негерметичной (в оболочке или без нее), ударопрочной, стационарной, переносной и т.д.

Принцип работы термопары

Действие термопары основано на «эффекте Зеебека», названного по фамилии немецкого физика Томаса Иоганна Зеебека в 1821 году открывшего явление “термоэлектричества”, а именно, на термоэлектрическом явлении, которое происходит в замкнутой электрической цепи из последовательно соединенных разнородных проводников, при условии, что их контакты имеют различную температуру, возникает электродвижущая сила (ЭДС). Для измерения температуры рабочей среды термопара погружается одним концом в нее, а другой конец подключается к прибору (измерителю-регулятору) который фиксируют величину ЭДС. Значение ЭДС непосредственно зависит от разности температур погруженной (горячей) и наружной (холодной) части термопары.

Устройство и принцип работы высокотемпературного датчика

Чтобы максимально точно вычислить температуру рабочей среды, необходимо знать температуру «холодной» части термопары, для чего рядом с присоединительным клеммником в приборе устанавливается полупроводниковый диод, который и определяет температуру «холодной» части. Измерение температуры с помощью диода возможно благодаря следующему явлению. При постоянном значении тока, протекающего в прямом направлении, например, через переход диода, напряжение на переходе практически линейно изменяется с изменением температуры. Термоэлектрод подключается к прибору посредством компенсационных проводов с соблюдением полярности. Данные провода изготовлены из тех же самых металлов, что и термопара, или близких к ним по физико-химическим характеристикам. Для того, чтобы на измерительную часть прибора не влияли посторонние помехи, способные стать причиной искажения получаемых данных, участок компенсационного провода, соединяющий термопару с датчиком, экранируют.

Рисунки

Рисунок 1. А — термопара открытого типа; Б — термопара закрытого типа.

  • Положительный термоэлетрод
  • Отрицательный термоэлетрод
  • Спай
  • Керамический изолятор
  • Внешняя оболочка (металлическая)

Типы термопар

Сегодня наиболее широкое применение нашли термопары двух видов: платинородиевая ТПР 30/6 и вольфрамрениевая ТВР 5/20. Цифры указанные после названия через дробь, означают процент родия в первом случае, и рения во втором, в химическом составе противоположных электродов термопары, положительного и отрицательного соответственно. Платинородиевая термопара ТПР 30/6 используется при измерении температур до 1700°С, отличается технологичностью, устойчивостью в аргоне, нейтральностью к СО и СO2. Критическим недостатком платинородиевой термопары является сильная чувствительность сплава к загрязнениям снижающим ЭДС и высокая стоимость драгоценных металлов. Вольфрамрениевая термопара ТВР 5/20 является наиболее высокотемпературной из всех существующих на сегодня контактных средств измерения температуры и обладает широким спектром преимуществ, поэтому в России и СНГ она внесена в государственный стандарт.

Термопарная проволока ВР 5/20

Термопарная вольфрамрениевая проволока ВР 5/20 состоит из двух химических элементов, вольфрама и рения — одного из самых тяжелых и тугоплавких металлов таблицы Менделеева, плотность которого равна 21,01 г/см3. Сплав вольфрама и рения в сочетании ВР5/ВР20 был запатентован в СССР в 1957 году как приоритетный для создания термопар. Присутствие 5% рения в положительном термоэлектроде термопары позволило увеличить степень пластичности проволоки за счет повышения температуры рекристаллизации вольфрама.

В отрицательном термоэлектроде (ВР20) процент содержания рения был увеличен в четыре раза, чтобы термопарная проволока имела максимально возможную ЭДС, хотя дальнейшее повышение содержания рения могло бы увеличить точность измерений. Ограничиться 20-ю процентами рения отечественным ученым пришлось потому, что при высоких концентрациях этого металла сделать сплав однородным и стабильным очень сложно. При высоких температурах «избыточный» рений начал бы испаряться, искажая данные измерений. Таким образом, в России сегодня стандартом является термопарная проволока с индексом ВР 5/20, а в США с чуть более высоким содержанием рения в отрицательном термоэлектроде — 25-26 процентов.

Особенности термопарной проволоки ВР 5/20

Стандартная зависимость ЭДС термопарной проволоки от температуры в терминологии Госстандарта называется НСХ (номинальная статическая характеристика), в соответствии с которыми она градуируется. Для термопары ВР 5/20 предусмотрены три градуировки: А-1, А-2 и А-3. Рабочий диапазон основной градуировки А-1 соответствует начальной температуре среды от 1000 °С с пределом измеряемой температуры равным 2200 °С. При кратковременных измерениях, предел измеряемой температуры для термоэлектрода этого типа может достигать 2500 °С. Рабочий диапазон измеряемых температур для термопарной проволоки ВР 5/20 с номинальными статистическими характеристиками А-2 и А-3 составляет от 0 до 1800 °С. При работе в диапазоне температур от 1000 до 1800 °С, термоэлектрод ВР 5/20 обладает чувствительностью 15,5- 11,4 мкВ/К, при этом пределы допускаемых отклонений от НСХ составляют 0,005-0,007 °С.

Применение высокотемпературных датчиков

Высокотемпературные датчики температуры широко применяются в научных исследованиях связанных с изучением самых высоких температур, их влияния на различные химические и физические процессы, на изменение сред и т.д. Без них не смогли бы существовать многие современные отрасли промышленности, такие как авиастроение и металлургия, атомная промышленность, энергетика и многие другие. Датчики с термоэлектродами в герметичной защитной оболочке в виде наружных чехлов из лейкосапфира или углеродного композита, защищающей от воздействия щелочной среды, отлично показали себя в атмосфере стекловаренной печи. Датчики используют для измерения температур в вакуумных и водородных электропечах, температуры пламени двигателей ракетоносителей и других экстремальных средах.

Высокотемпературные датчики в сталеплавильных печах

Одной из таких экстремальных сред, где используются датчики на базе термопары ВР 5/20 являются сталеплавильные электропечи металлургических предприятий. Термоэлектрод в герметичной оболочке заполненный сухим инертным газом для увеличения его рабочего ресурса погружается непосредственно в расплавленный металл. Вычислительное устройство, к которому подключена термопара, рассчитывает параметры нагрева и с учетом погрешностей вычисляет истинную температуру жидкого металла. Использование высокотемпературных датчиков на основе термопары ВР5/20 на подобного рода сверхсложных объектах, служит убедительным подтверждением тому, что они являются на сегодня единственным надежным и достоверным средством измерения температур до 2500 °С.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *