Термометр сопротивления принцип действия – Термопреобразователи сопротивления. Виды, устройство, монтаж, подключение термопреобразователей сопротивления.

Содержание

принцип действия, схемы и т.д.

Термометры сопротивления — электрический температурный датчик, использующий изменения сопротивления, которое противодействует протеканию тока, который является основой для измерений температуры. В английском языке термометр сопротивления обозначается тремя буквами RTD.

Стандартный термометр сопротивленияСтандартный термометр сопротивления
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Основным электрическим компонентом термометра сопротивления является резистор, который часто представляет собой провод, обмотанный вокруг керамического изолятора в виде стержня Резистор и является температурным чувствительным элементом термометра сопротивления. Для защиты чувствительного элемента от физического воздействия и изоляции электрической цепи от технологической жидкости во избежание короткого замыкания резистор обычно заключается в корпус из нержавеющей стали. Два провода подсоединяются к электрической цепи внутри корпуса посредством герметичного уплотнения.

Схема термометра сопротивления
Схема термометра сопротивления

Принцип действия термометра сопротивления

Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.

Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.

Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.

Мостовая схема термометра сопротивления с батареейМостовая схема термометра сопротивления с батареей

Мостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.

В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.

Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.

Протекание тока через уравновешенный мост
Протекание тока через уравновешенный мост

Мостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.

Мостовая схема с термометром сопротивленияМостовая схема с термометром сопротивления

Ток, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.

Мостовая схема с термометром сопротивления и измерительным приборомМостовая схема с термометром сопротивления и измерительным прибором

Когда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.

Электрические термометры сопротивления. Устройство. Принцип действия. Требования к установке.

Термометр сопротивления – это средство измерения температуры, действие которого основано на использовании зависимости электрического сопротивления чувствительного элемента от температуры.

Термометр сопротивления состоит из термопреобразователя сопротивления, вторичного прибора (уравновешенного, неуравновешенного моста или логометра), соединительной линии, прокладываемой изолированными проводами или кабелями с медными жилами.

Термопреобразователи сопротивления

Измерение температуры по электрическому сопротивлению металлов основывается на зависимости их сопротивления от температуры. Для изготовления проволочных термопреобразователей применяют медь, платину, никель, железо. Лучшим материалом, несмотря на дороговизну, является платина. Она инертна и длительное время сохраняет свои свойства в широком диапазоне температур от —260 до 1100°С.

Недостатком меди является невысокое удельное сопротивление и интенсивное окисление ее в воздухе при температурах >200°С.

Никель устойчив против окисления на воздухе до 400°С, однако применяется для измерения температур лишь до + 180°С из-за значительной нелинейности характеристики при более высоких температурах.

Термопреобразователи изготавливаются из металла одинаковой чистоты, что проверяется измерением соотношения

R0 и R100 (сопротивлений при температуре 0 и 100 °С соответственно). При поверке термопреобразователей сопротивлений достаточно измерить эти два сопротивления, чтобы быть уверенным в правильности их градуировки (номинальной статической характеристики) на всем рабочем диапазоне температур.

Определение температуры по сопротивлению производится с помощью градуировочных таблиц (приложение 5).

Поверка термопреобразователей сопротивления, находящихся в эксплуатации, производится в соответствии с ГОСТ 8.461-82 (СТ СЭВ 1058-78). Порядок поверки следующий:

  • внешний осмотр, выявление видимых повреждений защитной арматуры и чувствительного элемента, удаленного из защитной арматуры;

  • измерение сопротивления изоляции при помощи мегометра на 500 В;

  • поверка отношения путем сравнения показаний поверяемого термопреобразователя с контрольным.

  1. Требования, предъявляемые к материалам термометров сопротивления.

  1. Стабильность статической хар-ки

  2. Чистота металла при 0 °С и при 100°С

  3. Высокий температурный коэффициент

  4. Химическая инертность

  5. Большое удельное сопротивление

  1. Полупроводниковые термометры сопротивления (терморезисторы).

Терморези́стор — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от еготемпературы

[1].

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году[2].

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидовнекоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

Конструкция и разновидности терморезисторов

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (термисторы или NTC-термисторы, от слов «Negative temperature coefficient») и положительным (позисторы или PTC-термисторы, от слов «Positive temperature coefficient»)температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для термисторов — увеличении температуры приводит к падению их сопротивления.

Терморезисторы с ТКС (термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. Представляют интерес терморезисторы изготовленные из твёрдых растворов на основе BaTiO3, имеющие положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор сгальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора.

Режим работы терморезисторов и их применение

Вольт-амперная характеристика позистора

Зависимость сопротивления терморезистора от температуры: 1 — ТКС < 0; 2 — ТКС > 0

Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристики (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.

Терморезисторы с рабочей точкой выставленной на линейном участке ВАХ используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших в следствии изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электро­магнит­ного излучения насверхвысоких частотах (или СВЧ), системах системы теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.

Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от −2,4 до −8,4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 106 Ом).

Так же существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (или ТКС) (от 0,5 до 0,7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различныхрадиоэлектронных системах.

что это и где они применяются?

05.10.2018

Термометр сопротивления — это измерительный прибор, который изготавливается из металлической проволоки или пленки, намотанной на жесткий каркас, выполненный из кварца, фарфора или слюды, и заключенной в защитную оболочку (металлическую, кварцевую или стеклянную).
Используется такой термометр для измерения температуры в жидких и газообразных средах, в нагревательной технике, климатической и холодильной, а также в машиностроении, печестроении и т.п., поскольку имеет прямую зависимость электрического сопротивления от температуры.
Иными словами такие термометры еще называют терморезисторами, а также термисторами, так как основным чувствительным компонентом такого термометра является именно резистор, который изготовляется из различных материалов, что позволяет определить техпараметры термометра сопротивления, к примеру, область применения прибора или диапазон его рабочих температур.

Принцип действия такого агрегата заключается в изменении электрического сопротивления сплавов, чистых металлов (т.е. без примесей) и полупроводников с температурой.

Самыми распространенными термометрами сопротивления являются те, у которых установлены резисторы из платины. Это объясняется рядом преимуществ, которыми владеет этот материал. Во-первых, плюсом есть высокий температурный коэффициент сопротивления, что значительно облегчает работу с таким термометром. Во-вторых, преимуществом платинового резистора является высокая стойкость платины к окислению, что обеспечивает долгий срок службы прибора.

Платиновые терморезисторы отличаются минимальной погрешностью, именно поэтому такие агрегаты часто используют как инструмент для проверки. Эталонные термометры сопротивления изготавливаются из платины максимальной чистоты с коэффициентом температуры не менее 0,003925. Модельный ряд таких приборов достаточно широкий: существуют как модели различных размеров, так и модификации увеличенных температурных диапазонов. Кроме этого, для использования такого термистора на промышленных объектах, они производятся во взрывозащитном исполнении.

Термометры сопротивления, изготовлены на основе напыленной пленки на подложку отличаются особой повышенной вибропрочностью и меньшим диапазоном рабочих измеряемых температур. Так, максимальный диапазон воспринимаемых температур для пленочных чувствительных элементов платиновых термисторов составляет 600 °C, а проволочных — 660 °C.

Применение термометров сопротивления

Термометры сопротивления используются, как правило, для измерения температуры в среде в диапазоне от -263 °C до +1000 °C. Важно, чтобы конструкция такого термистора была чувствительной и стабильной, чего будет достаточно для проведения замеров необходимой точности в определенном диапазоне температур при определенных условиях использования термометра (к примеру, благоприятные условия или неблагоприятные, такие как вибрации, агрессивные среды и т.п.).

Как правило, терморезисторы работают вместе с логометрами, потенциометрами и измерительными мостами. От точности работы этих вспомогательных приборов зависит точность показаний термометра сопротивления. Существуют также и различные виды таких термометров: поверхностные, ввинчивающиеся, вставные, с присоединительными проводами и байонетными соединениями.

Возникли вопросы?

Заполните форму обратной связи, наши менеджеры свяжутся с вами!

1. Принцип работы термопреобразователя сопротивления

Работы 4,5

Термопреобразователи сопротивления. Контроль температуры

Принцип действия термопреобразователя сопротивления основан на свойстве проводников и полупроводников изменять свое электрическое сопротивление при изменении их температуры.

Металлические термометры сопротивления платиновые (ТСП) градуировки гр. 20 используются при длительных измерениях в пределах от 0 до 650 °С, а термометры градуировок гр. 21 и гр. 22 — с другими номинальными сопротивлениями при температуре — от —200 до +500 °С. Термометры сопротивления медные (ТСМ) изготав­ливаются градуировок гр. 23 и гр. 24 для измерения температур от —50 до + 180°С [1].

Величину , характеризующую изменение электросопротивления металлов при изменении температуры, называют температурным коэф­фициентом сопротивления. Если Rt электрическое сопротивление при некоторой температуре t, a Rо электрическое сопротивление при 0°С, то температурный коэффициент сопротивления можно определить по формуле

Для изготовления термометров сопротивления используются металлы: Pt, Cu, Ni, Fe.

Медь (Cu). К достоинствам меди следует отнести дешевизну, лег­кость получения ее в чистом виде, сравнительно высокий темпе­ратурный коэффициент  и линейную зависимость сопротивления от темпе­ратуры.

Недостатки: малое удельное сопротивление (р = 0,017 ом·мм2/м) и легкая окисляемость при температуре выше 100° С.

Никель и железо (Ni и Fe). Эти металлы обладают сравнительно высоким температурным коэффициентом  и относи­тельно большим удельным сопротивлением.

Однако этим металлам присущи и недостатки. Никель и железо трудно получить в чистом виде, что препятствует изготовлению взаимозаменяемых термометров сопротивления. Зависимости сопротивления железа и, особенно, никеля от температуры выра­жаются кривыми, которые не могут быть представлены в виде простых эмпирических формул. Никель и, особенно, железо легко окисляются даже при сравнительно низких температурах. Эти недостатки ограничивают применение никеля и железа для изго­товления термометров сопротивления.

Полупроводниковые термометры сопротивления (термисторы) изготавли­ваются из окислов различных металлов с добавками. Наибольшее распростра­нение имеют термометры сопротивления кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ), использумые для измерения температур в пределах от —90 до +180 °С. Используемые материалы: оксиды Ti, Fe, Mn, Co, Ni, Cu, Ge.

2. Устройство платиновых и медных термопреобразователей сопротивления. Диапазон измеряемых температур для каждого типа термопреобразователя сопротивления

Платиновые термометры сопротивления (ТСП) выпускаются серийно для температур от –200 до +6500С соответственно градуировки согласно ГОСТ 6651-94:

 50П — электрическое сопротивление от 40 до 90 Ом.

 100П (Pt 100)- электрическое сопротивление от 80 до 180 Ом.

Медные термометры сопротивления (ТСМ) выпускаются серийно для контроля температур от –500С до +1800С, соответственно градуировки:

 50М — электрическое сопротивление от 40 до 150 Ом.

 100М — электрическое сопротивление от 80 до 300 Ом.

В

Рис. 1. Чувствительный элемент платинового термометра сопротивления:

1-слюдяная пластина с зубчатыми краями;

2-платиновая проволока; 3-серебряные выводы;

4-слюдяные накладки; 5-серебряная лента

стандартном платиновом термометре сопротивления (рис.1) платиновая проволока диамет­ром 0,07 мм и длиной около 2 м бифилярно намотана на слюдяную пластинку с зубчатыми краями и с обеих сторон прикрыта двумя слю­дяными прямоугольными накладками для обес­печения ее изоляции и придания механической прочности. Все три слюдяные пластинки скреп­лены в пакет серебряной лентой. К концам пла­тиновой проволоки припаяны выводы из серебря­ных проволочек диаметром 1 мм, изолированных фарфоровыми бусами. Элемент сопротивления помещен в алюминиевую защитную трубку, сво­бодное сечение которой заполнено по всей длине чувствительной части термометра алюминиевым вкладышем. Собранный элемент термометра со­противления помещается еще в одну наружную защитную

трубку с заваренным дном, имеющую штуцерную гайку и алюминиевую головку [1].

Стандартный медный термометр сопротивления (рис.2) отечественного производства выполнен из медной эмалированной проволоки диаметром 0,1 мм, многослойно намотанной на цилиндрический пластмассовый стержень. Проволока покрыта сверху слоем лака. К концам медной проволоки припаяны выводы также из медной проволоки диаметром 1,0—1,5 мм. Собранный термометр сопротивления помещен в защитную стальную трубку.

Чувствительный элемент всех медных термометров сопротивления представляет собой бескаркасную безындукционную намотку из медной проволоки диаметром 0,08 мм, покрытую фторопластовой пленкой. К намотке припаяны два вывода. С целью обеспечения виброустойчивости чувствительный элемент помещается в тонкостенную металлическую гильзу, засыпается керамическим порошком и герметизируется.

Термометр сопротивления — это… Что такое Термометр сопротивления?

Условное графическое обозначение термометра сопротивления

Термо́метр сопротивле́ния — электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры[1]. В последнем случае называется термосопротивле́нием, терморези́стором или термистором[2].

Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления — платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °C (класс АА при 0 °C). Термометры сопротивления на основе напыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °C (класс С), для плёночных 600 °C (класс С).

Термисторы

Термистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления , простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

Зависимость сопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в международном стандарте МЭК 60751:

Здесь, сопротивление при T °C, сопротивление при 0 °C, и константы (для платинового сопротивления) —

Поскольку коэффициенты B и C относительно малы, сопротивление растёт почти линейно по мере роста температуры.

Для термометров повышенной точности выполняется градуировка в ряде температурных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.[3]

Существуют полупроводниковые термометры сопротивления — при увеличении температуры, сопротивление этих датчиков уменьшается. Применяются обычно на транспорте. Для подключения используют обычно 2-х проводную схему подключения.

Существует 3 схемы включения датчика в измерительную цепь:

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности, так как сопротивление выводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.

  • 3-х проводная обеспечивает значительно более точные измерения, за счёт того, что появляется возможность измерить отдельно сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления.
  • 4-х проводная — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов. Недостаток — увеличение объёма используемого материала, стоимости и габаритов сборки. Невозможно использовать в четырехплечем мосте Уинстона.

В промышленности наиболее распространенной является трёхпроводная схема. Для точных, эталонных измерений используется только четырёхпроводная схема.

Преимущества термометров сопротивления

  • Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,13м °C(0,00013).
  • Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • Практически линейная характеристика

Недостатки термометров сопротивления

  • Малый диапазон измерений (по сравнению с термопарами)
  • Более дорогой (по сравнению с термопарами), если это платиновый термометр сопротивления типа ТСП
  • Требуется дополнительный источник питания для определения температуры

Таблица сопротивлений некоторых термометров сопротивления

Сопротивление в Омах (Ω)
Температура
в °C
Pt100 Pt1000 нем. PTC нем. NTC NTC NTC NTC NTC
Typ: 404 Typ: 501 Typ: 201 Typ: 101 Typ: 102 Typ: 103 Typ: 104 Typ: 105
−50 80,31 803,1 1032
−45 82,29 822,9 1084
−40 84,27 842,7 1135 50475
−35 86,25 862,5 1191 36405
−30 88,22 882,2 1246 26550
−25 90,19 901,9 1306 26083 19560
−20 92,16 921,6 1366 19414 14560
−15 94,12 941,2 1430 14596 10943
−10 96,09 960,9 1493 11066 8299
−5 98,04 980,4 1561 31389 8466
0 100,00 1000,0 1628 23868 6536
5 101,95 1019,5 1700 18299 5078
10 103,90 1039,0 1771 14130 3986
15 105,85 1058,5 1847 10998
20 107,79 1077,9 1922 8618
25 109,73 1097,3 2000 6800 15000
30 111,67 1116,7 2080 5401 11933
35 113,61 1136,1 2162 4317 9522
40 115,54 1155,4 2244 3471 7657
45 117,47 1174,7 2330 6194
50 119,40 1194,0 2415 5039
55 121,32 1213,2 2505 4299 27475
60 123,24 1232,4 2595 3756 22590
65 125,16 1251,6 2689 18668
70 127,07 1270,7 2782 15052
75 128,98 1289,8 2880 12932
80 130,89 1308,9 2977 10837
85 132,80 1328,0 3079 9121
90 134,70 1347,0 3180 7708
95 136,60 1366,0 3285 6539
100 138,50 1385,0 3390
105 140,39 1403,9
110 142,29 1422,9
150 157,31 1573,1
200 175,84 1758,4

Функция получения значения температуры (C++)

Приведённый ниже код позволяет получить значение температуры датчика Pt100 или Pt1000 из его текущего сопротивления.

float GetPt100Temperature(float r)
{
    float const Pt100[] = {     80.31,   82.29,  84.27,  86.25,  88.22,  90.19,  92.16,  94.12,  96.09,  98.04,
                                100,    101.95, 103.9,  105.85, 107.79, 109.73, 111.67, 113.61, 115.54, 117.47,
                                119.4,  121.32, 123.24, 125.16, 127.07, 128.98, 130.89, 132.8,  134.7,  136.6,
                                138.5,  140.39, 142.29, 157.31, 175.84, 195.84};
    int t = -50, i, dt = 0;
    if (r > Pt100[i = 0])
      while (250 > t) {
        dt = (t < 110) ? 5 : (t > 150) ? 50 : 40;
        if (r < Pt100[++i])
          return t + (r - Pt100[i-1]) * dt / (Pt100[i] - Pt100[i-1]);
        t += dt;
      };
 
    return t;
}
 
float GetPt1000Temperature(float r)
{
    return GetPt100Temperature(r / 10);
}

Примечания

См. также

Термометр сопротивления-полное описание, принцип действия

Методы термометрии основаны на измерении различных физических величин, которые имеют сильную зависимость от температуры. К одним из них относится изменение электрического сопротивления в материалах.
Это один из самых эффективных и простых методов измерения, который позволяет получить точность измерения вплоть до десятитысячных значений градуса. В качестве рабочего вещества используются чистые металлы, сопротивление которых изменяется пропорционально изменению температуры.

Принцип действия

Термометр сопротивления относится к вторичным датчикам температуры и требует проведения тщательной калибровки.

Термометр сопротивления

Для этого используют несколько реперных точек, температура которых известна и имеет высокую точность. Это могут быть, например, температура замерзания или кипения воды, жидкого азота, гелия или водорода, а также точки начала фазовых переходов в чистых металлах.

В каждой реперной точке измеряют сопротивление, а затем по полученным данным строят временную зависимость от сопротивления.

Термометр при этом должен приобрести температуру измеряемой среды, о чём свидетельствует достижение постоянного значения измеряемой величины.

Скорость выхода на линейную зависимость определяется временем релаксации датчика. Чем быстрее он реагирует на изменения внешней среды, тем он качественнее и в зависимости от предъявляемых требований может быть применён для конкретных условий измерений.

Данные для каждой реперной точки после выхода на линейную зависимость усредняются, а затем строится градуировочная кривая, которая и является основной характеристикой конкретного термометра, а также его способности измерять температуру.

Места с линейной зависимостью относятся к рабочим зонам термометра, а остальные зоны оказываются непригодными для измерений, так как несут большую погрешность из-за нелинейности.

Обычно рабочая зона термометров сопротивления оказывается достаточно узкой, при сравнении с другими типами датчиков. Это существенно сужает область применения таких термометров.

На качество измерения оказывают влияние не только примеси в материалах, но и дефекты. За счёт создания неоднородной структуры изменяется сопротивление, а также скорость выхода на стационарное значение для конкретной температуры.

Поэтому при изготовлении термометров важным параметром является создание высокочистых материалов или соединений.

Чтобы правильно измерять температуру необходимо обеспечивать надёжный тепловой контакт с объектом. Размеры датчика сопротивления должны быть минимально необходимыми, так как массивность повысит время измерений и не позволит зафиксировать быстроизменяющиеся процессы.

Виды термометров сопротивления

Металлический.

Предназначен для измерений в широком интервале температур в зависимости от применяемого типа металла. Обычно он составляет от значений выше температуры кипения воды до -2600С.Конструктивное его исполнение может быть различным в зависимости от условий измеряемой среды. Чаще всего он представляет собой тонкую проволоку с диаметром до 0.1 мм, которая надёжно закреплена в изолирующем корпусе. Длина проволоки выбирается из расчёта необходимой величины сопротивления.

Полупроводниковый.

Обладает высокой точностью измерения, стабильностью и чувствительностью. Способен регистрировать быстропротекающие процессы. Для измерений не требуется пропускание больших измерительных токов, что способствует проведению низкотемпературных измерений. Конструктивно представляет собой чувствительный полупроводниковый элемент, размещённый в герметичном медном корпусе. Обеспечивает работоспособность вплоть до -2720С.

Угольный.

Имеет характеристики, сходные с полупроводниковым типом термометров сопротивления. Их получают путём спекания мелких частиц угля при высоких давлениях промышленным способом. Это делает их наиболее доступными и дешевыми, так как технология изготовления достаточно проста. Однако они обладают низкой стабильностью. Поэтому для проведения точных измерений температуры ихнужно калибровать либо проводить плановые проверки стабильности. Другой проблемой является установление температурного равновесия в самом термометре.

Сверхпроводящий.

Используется для низкотемпературной термометрии и основан на резком изменении сопротивления в металлах при сверхпроводящем переходе. В состав температурных датчиков к чистым металлам добавляют некоторые сорта фосфористой бронзы. Они позволяют расширить переход из нормального состояния в сверхпроводящее, увеличивая при этом точность измерений. Применяется для измерений температур от -2650С до – 2720С. Термометры обладают высокой стабильностью и точностью, поэтому их используют для калибровки других датчиков при температурах сверхпроводящего перехода.

Заключение

Термометры сопротивления являются весьма надёжными датчиками температуры, которые по своим характеристикам и различным конструктивным исполнениям существенно превосходят другие их типы.

Поэтому их подобрать под конкретные условия измерений достаточно просто. Однако они требуют тщательной калибровки, без которых их использование становится невозможным.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Термометр сопротивления, термопреобразователь сопротивления | Блог инженера теплоэнергетика

     Термометром сопротивления называют измерительный прибор, работающий в широком температурном диапазоне в различных промышленных условиях. Дополнительные названия устройства – термопреобразователь сопротивления и терморезистор.

     Основными достоинствами термометра сопротивления являются повышенная стабильность, близость характеристики к линейной зависимости и высокая взаимозаменяемость.

Среди его недостатков можно отметить необходимость применения трехпроводной или четырехпроводной схемы включения для точности измеряемых показателей.

Принцип действия измерительного устройства

     Действие термопреобразователя основывается на свойстве различных материалов изменять свое электрическое сопротивление при разных температурных условиях – этот параметр называется температурным коэффициентом электрического сопротивления.

     Измененная температура влечет за собой смену теплового колебания кристаллической решетки металла и изменение электрического сопротивления сенсора. Таким образом, чем выше температура чувствительного сенсора, тем значительнее колебания кристаллической решетки, и тем выше уровень электрического сопротивления.

     Как вторичный температурный датчик, термоперобразователь нуждается в тщательной калибровке перед началом измерительного процесса. Это выполняется с помощью замеров сопротивления в реперных точках и последующем выстраивании временной зависимости от сопротивления. Сам термопреобразователь, при этом, должен приобрести температурный показатель, аналогичный среде измерения.

     На точность показателей могут повлиять наличие примеси в металлах сенсора и возможные дефекты конструкции. Их неоднородная структура способна изменить сопротивление и скорость выхода на стационарные показатели для определенной температуры.

     Для правильного измерения температур важно обеспечить грамотный тепловой контакт с измеряемым объектом.

Габариты сенсора должны находиться на минимально необходимом уровне, что исключит вероятность увеличения срока замера и позволит зафиксировать быстроизменяющиеся процессы.

Устройство термопреобразователя

     Конструкция данного прибора состоит термочувствительного элемента (одного или нескольких) и внутренних соединительных проводов, которые находятся в защитном корпусе герметичного типа, и дополненных внешними выводами для подключения к прибору измерения.

     Чувствительным элементом устройства является резистор, изготовленный из металлической проволоки или пленки, и имеющий выводы для подключения соединительных проводов.

Виды термопреобразователей сопротивления

Термопреобразователи разделяются на несколько видов:

• Металлические.

• Полупроводниковые.

• Угольные.

• Сверхпроводящие.

Металлический тип термопреобразователей

     Эти устройства предназначены для проведения замеров в широком температурном интервале (конкретный диапазон зависит от вида металла). Чаще всего этот прибор представляет собой расположенную в изолированном корпусе проволоку сечением до 0,1мм определенной длины. Среди этих термометров сопротивления наиболее часто встречаются устройства из платины, никеля и меди.

     Для платиновых термопреобразователей характерна высокая стабильность и точность показаний. Этот прибор демонстрирует высокое удельное сопротивление и способен проводить замеры в самом широком диапазоне температур. Платиновый термопреобразователь получил наибольшую распространенность в промышленных областях разных стран мира.

     Измерительный прибор из никеля имеет самый высокий коэффициент температуры и самый большой выходной сигнал сопротивления. Минус устройства – при превышении точки Кюри (352°С) возможно возникновение непредсказуемого гистерезиса характеристик. Некоторое время назад практиковалась установка подобных терморезисторов в кораблестроении совместно с самописцами. Сейчас данный тип приборов распространен, но все же меньше, чем платиновые устройства.

     Медные термопреобразователи обладают наиболее линейной характеристикой при ограниченном температурном диапазоне. За счет низкого удельного сопротивления в этом типе устройств необходимо устанавливать проволоку увеличенной длины. Сфера применения данных приборов: электростанции, электрогенераторы и т.д.

Полупроводниковые термометры

     Стабильные, чувствительные, с высокой точностью измерения, полупроводниковые термопреобразователи сопротивления способны фиксировать даже быстропротекающие процессы. Проводить замеры с их помощью можно и при низком температурном режиме благодаря отсутствию необходимости пропускания больших измерительных токов. Конструкция такого термометра представляет собой полупроводник, помещенный в герметичный корпус из меди.

Угольные термометры

     Большинство характеристик данного устройства схожи со свойствами полупроводниковых термометров. В основе изготовления угольных термометров лежит принцип спекания крошечных частиц угля промышленным способом при высоких показателях давления. Подобная технология и низкая себестоимость материалов делают угольные термометры доступными по цене. Тем не менее, главный недостаток приборов – низкая стабильность – обуславливает необходимость их постоянной калибровки или проведения регулярных проверок стабильности. Также к минусам прибора можно отнести установку температурного равновесия в самом устройстве.

Сверхпроводящие термопреобразователи

     Эта разновидность термометров применяется при замерах в низком температурном режиме: от -265°С до -272°С. Особенностью конструкции прибора можно назвать добавление к чистым металлам на сенсорных датчиках ряда сортов фосфористой бронзы. Это позволяет расширить переход из состояния нормы в сверхпроводящее состояние при увеличении точности изменений.

Платиновые термометры сопротивления

     Среди всех разновидностей терморезисторов самыми востребованными считаются платиновые устройства. Во-первых, из-за высокого температурного коэффициента сопротивления, делающим эксплуатацию данных приборов предельно простой. Во-вторых, из-за низкой окисляемости металла, обеспечивающей длительный срок службы сенсоров.

     Кроме того, погрешность в показаниях именно у платиновых резисторах минимальна, что сделало их оптимальным вариантом для проверки других типов датчиков. Однако на практике эталонные термометры (используемые для калибровки) приходится изготавливать из платины максимальной чистоты и с определенным коэффициентом температуры, за счет чего стоимость эталонных приборов в десятки раз превышает стоимость промышленных платиновых термометров сопротивления. Также эталонные термометры крайне чувствительны к механическим воздействиям, тряске, вибрациям и могут выйти из строя при тепловом ударе.

     Разновидности платиновых терморезисторов зависят от использованного в устройстве типа чувствительного элемента.

Типы чувствительных элементов в платиновых термопреобразователях

     На сегодняшний день выделяют следующие разновидности чувствительных элементов:

1. В виде «свободной от напряжения спирали».

2. В виде «полой конструкции».

3. Устройство из пленки.

4. Устройство из платины со стеклянной оболочкой.

     Самым распространенным и надежным видом является «свободная от напряжения спираль», чаще всего его можно встретить у российских производителей. Внешне этот элемент может выглядеть по-разному – в зависимости от использованных материалов и величины отдельных деталей.

     «Полая конструкция» – тип устройства, внедренный сравнительно недавно. Чаще всего он востребован на промышленных предприятиях, связанных с особым производством (например, в атомной промышленности). Тип конструкции данного сенсора обуславливает его значительную точность, надежность и стабильность в эксплуатации. Повышенная себестоимость материалов сборки делает эту деталь весьма дорогостоящей.

     К числу чувствительных элементов, широко применяемых за рубежом, относится пленочный тип, при котором на керамическую подложку нанесен тонкий платиновый слой. Данная разновидность имеет массу преимуществ: невысокую стоимость, практичность, небольшие габариты и малый вес. Минусом устройства называют низкую стабильность, однако в последнее время проводятся постоянные разработки и исследования, направленные на устранение этого недостатка.

     Устройство, представляющее собой платиновую проволоку с покрытием из стекла, можно назвать одной из наиболее функциональных за счет полной герметизации и устойчивости к высокой влажности. Тем не менее, использовать этот прибор можно лишь при определенном температурном режиме. Стоимость этого типа элемента относится к сегменту выше среднего.

Область применения термопреобразователей сопротивления

     Данные приборы применяются в промышленной сфере для измерения показателей температуры в разнообразных рабочих средах (жидких, сыпучих, газообразных), в сфере автомобилестроения, печестроения, в нагревательной, холодильной и климатической электротехнике – везде, где требуется определение прямой зависимости электрического сопротивления от температуры.

     Диапазон измерения температур устройств составляет от -272°С до +1000°С, в зависимости от типа терморезистора. Для точности полученных сенсором данных конструкция терморезистора должна быть стабильной и чувствительной, способной на проведение замеров в особых условиях (например, при наличии агрессивной среды, тряски, вибраций и т.д.).

     Чаще всего при проведении замеров терморезистором дополнительно используется такие устройства, как потенциометры, логометры и измерительные мосты. Они помогают настроить высокую точность термопреобразователя.

     Современные термопреобразователи сопротивления – это надежные и функциональные устройства, обеспечивающие проведение замеров на уровне, недоступном для других датчиков. Для оптимального результата измерений важно выбрать тип терморезистора с характеристиками, подходящими для работы в конкретных условиях и определенном температурном режиме.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *