6.3. Работа и мощность тока. Тепловое действие тока. Законы Джоуля — Ленца
2)вопреки электронной теории электронный газ не обладает теплоемкостью;
3)с позиции классической электронной теории необъяснимо состояние сверхпроводимости, возникающее у некоторых металлов при температуре, близкой к абсолютному нулю.
Перечисленные трудности классической электронной теории были сняты применением квантовых представлений.
Вопросы для самостоятельного рассмотрения
1.В чем заключается явление сверхпроводимости и как можно использовать его в технике?
2.Принцип работы термометра сопротивления.
3.Запишите закон Ома для неоднородного участка цепи электрического
тока.
4.Как рассчитать сопротивление при последовательном и параллельном соединении одинаковых по сопротивлению проводников?
5.Проанализируйте зависимость количества теплоты от сопротивления при различных способах соединения проводников.
Практическое занятие 6 ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ И ВЕЩЕСТВЕ
Основные законы и формулы
1. Закон Кулона
F = | 1 |
|
| q1 |
|
|
| q2 |
| , или F = | k |
|
| q1 |
|
|
| q2 |
|
| , |
|
|
|
|
|
|
|
|
| |||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
4πεε0 |
|
| r2 | ε |
|
|
| r2 | |||||||||||||
|
|
|
|
|
|
|
|
где ε0 — электрическая постоянная, ε0 ≈ 8,85·10–12 Кл2 /Н·м2; ε — относительная диэлектрическая проницаемость среды; k ≈
≈9·109 Н·м2/ Кл2.
2.Напряженность электростатического поля
E = F . q0
3. Поток вектора напряженности электростатического поля сквозь замкнутую поверхность S
ϕЕ = ∫ EdS = ∫ EndS.
S S
Тепловое действие тока: закон Джоуля-Ленца, примеры
Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.
Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.
Формула расчета и ее элементы
Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.
Формула для расчета в этом случае следующая: A=U*I*t.
Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I2*R*t, что и было сформулировано в законе Джоуля-Ленца.
Закон теплового действия тока — закон Джоуля-Ленца
Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.
Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.
Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:
- Обычную лампочку.
- Нагревательные приборы.
- Предохранитель в квартире.
- Электрическую дугу.
Лампочка накаливания
Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.
Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.
Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.
Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.
Устройство обогревательных приборов
Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.
Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.
Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.
Квартирные предохранители
Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.
Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.
Электрическая дуга
Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.
В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.
Вопрос №2. Работа и мощность электрического тока. Закон Джоуля-Ленца (15 мин.)
Способность тела производить работу называется
Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.
Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.
Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах:
1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.
Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.
Кратными единицами измерения мощности являются киловатт или мегаватт:
1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.
В табл. 1 приведена мощность ряда устройств.
Таблица 1
Название устройства | Мощность устройства, кВт |
Лампа карманного фонаря | 0,001 |
Холодильник домашний | 0,11 − 0,16 |
Лампы осветительные (бытовые) | 0,015 − 0,2 |
Электрический утюг | 0,3 − 1 |
Стиральная машина | 0,35 − 0,6 |
Электрическая плита | 0,6; 0,8; 1; 1,25 |
Электропылесос | до 0,6 |
Лампы в звездах башен Кремля | 5 |
Двигатель электровоза ВЛ10 | 650 |
Электродвигатель прокатного стана | 6000 − 9000 |
Гидрогенератор Братской ГЭС | 250 000 |
Турбогенератор | 50 000 − 1 200 000 |
Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.
P U
I R










R·I
Рис. 1
Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется
где Wи– электрическая энергия источника.
Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника:
Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:
Это выражение представляет собой баланс мощностей.
Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:
где Р1 или Рист – мощность, отдаваемая источником энергии во внешнюю цепь;
Р2 – мощность, получаемая извне или потребляемая мощность;
∆P или Р0 (Рвн) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.
Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.
В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.
Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:
где Q– количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.
Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).
§ 34. Тепловое действие тока. Закон Джоуля
Вы уже хорошо знаете, что при прохождении электрического тока нить лампы накаливания нагревается настолько сильно, что начинает излучать видимый свет. Благодаря действию электрического тока нагреваются утюг и электрическая плита. А вот вентилятор и пылесос нагреваются незначительно, не становятся очень горячими (конечно, если все в порядке) и подводящие провода. От чего же зависит тепловое действие тока?
Рассуждаем о тепловом действии тока
Прохождение электрического тока всегда сопровождается выделением теплоты, и этот факт нетрудно объяснить.
Когда в проводнике идет ток, то свободные заряженные частицы, двигаясь под действием электрического поля, сталкиваются с другими частицами и передают им часть своей энергии. Электроны в металлах сталкиваются с ионами, расположенными в узлах кристаллической решетки, ионы в электролитах — с другими ионами, атомами или молекулами. В результате средняя скорость хаотичного (теплового) движения частиц вещества увеличивается — проводник нагревается. По закону сохранения энергии кинетическая энергия, приобретенная свободными заряженными частицами в результате действия электрического поля, преобразуется во внутреннюю энергию проводника.
Очевидно: чем чаще сталкиваются частицы, то есть чем больше сопротивление проводника, тем больше энергии передается проводнику и тем сильнее он нагревается. Таким образом, при неизменной силе тока количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника.
Кроме того, с увеличением в проводнике силы тока количество выделяемой теплоты тоже увеличивается. Ведь чем больше частиц проходит через поперечное сечение проводника за единицу времени, тем больше столкновений частиц происходит.
|2 Открываем закон Джоуля — Ленца
Тепловое действие тока изучали на опытах английский ученый Дж. Джоуль(рис. 34.1) и российский ученый немецкого происхождения
Э. Х. Ленц(рис. 34.2). Независимо друг от друга они пришли к одинаковому выводу, который позже получил название закон Джоуля — Ленца:
Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:
На рис. 34.3 изображена схема опыта, доказывающего справедливость закона Джоуля — Ленца. Попробуйте описать этот опыт.
Закон Джоуля — Ленца был установлен экспериментально. Теперь же, зная формулу для расчета работы тока (A = UIt), данный закон можно вывести с помощью простых математических выкладок.
Если на участке цепи, в котором течет ток, не выполняется механическая работа и не происходят химические реакции, результатом работы тока будет только нагревание проводника. Нагретый проводник путем теплопередачи отдает полученную энергию окружающим телам. Следовательно, в данном случае согласно закону сохранения энергии количество выделенной теплоты Q будет равно работе A тока: Q = A.
Обращаем внимание на некоторые особенности вычисления количества теплоты
Для получения математического выражения закона Джоуля — Ленца мы воспользовались некоторыми предположениями. Исследования показали, что в любом случае количество теплоты, выделяющееся в участке цепи в результате прохождения тока, можно вычислить по формуле Q = 12Rt.
Возникает вопрос: что делать, если сила тока неизвестна, а известно напряжение на концах участка цепи? Казалось бы, можно воспользоваться законом Ома. Действительно,
После сокращения на R получим:
Однако этой формулой, впрочем как и формулой Q = UIt, можно воспользоваться только в том случае, когда вся электрическая энергия расходуется на нагревание.
Если же на участке цепи есть потребители энергии, в которых выполняется механическая
Тепловой закон Джоуля-Ленца | У электрика.ру
Передача электричества во время движения тока в другую энергию происходит на молекулярном уровне. Во время подобного процесса температура проводника повышается на определенную величину. Тепловой закон Джоуля-Ленца описывает данное явление взаимодействия атомов и ионов токопроводника с электронами тока.
Свойства электроэнергии
Во время движения по проводнику из металла наблюдается сталкивание электронов с множеством хаотично расположенных посторонних частиц. Периодически в результате соприкосновения из нейтральной молекулы выделяются новые электроны. Происходит образование из молекулы положительного иона, а в электроне пропадает кинетическая энергия. Иногда встречается и второй вариант – образование молекулы нейтрального вида благодаря соединению положительного иона и электрона.
Все эти процессы сопровождаются расходованием определенного количества энергии, превращающейся далее в тепло. Преодоление сопротивления в ходе всех этих движений определяет затраты энергии и превращение работы, необходимой для этого, в тепло.
Параметры R идентичны показателям стандартного сопротивления. В той или иной степени в тепло преобразуется какой-то объем энергии при прохождении тока через любой проводник. Именно такое превращение рассматривается законом Джоуля-Ленца.
Формула и ее составляющие
Переход во внутреннюю энергию проводника результатов работы тока подтвержден многочисленными опытами. После накопления критического объема выполняется отдача избытка энергии окружающим телам с нагреванием проводника.
Классическая формула расчетов для данного явления:
A=U*I*t
Берем Q для обозначения количества выделяемой теплоты и подставляем его вместо А. Теперь в получившемся выражении Q= U*I*t заменяем U=IR и выводим классическую формулу Джоуля-Ленца:
В схемах с последовательным соединением для расчетов использование этой основной формулы будет самым удобным методом. В этом случае во всех проводниках сила тока всегда остается одинаковой. Выделенный объем тепла пропорционален сопротивлению каждого из имеющихся проводников.
А вот при параллельном подключении одинаковым будет напряжение на концах, а номинальное значение электротока в каждом элементе существенно отличается. Можно утверждать, что имеется обратная пропорциональность между количеством теплоты и проводимостью отдельно взятого проводника. Здесь более уместной становится формула:
Q = (U2/R)t
Практические примеры явления теплового действия тока
Многие исследователи и ученые занимались изучением особенностей протекания электричества. Но наиболее впечатляющие результаты получили российский ученый Эмилий Христианович Ленц и англичанин Джеймс Джоуль. Независимо друг от друга был сформулирован закон, с помощью которого производилась оценка получаемого в процессе действия электричества на проводник тепла. Итоговое выражение получило название в честь его авторов.
На нескольких примерах можно уяснить природу и характеристики теплового воздействия тока.
Обогревательные приборы
Функцию нагревания в конструкции подобных устройств выполняет металлическая спираль. При необходимости нагрева воды важно соблюсти баланс между параметрами сетевой энергии и тепловым обменом. Установка спирали выполняется изолировано.
Различными способами решаются задачи по минимизации потерь энергии. Один из вариантов – повышение напряжение, но он чреват снижением уровня эксплуатационной безопасности линий.
Применяется и методика подбора проводов, потери тепла в которых зависят от свойств различных металлов и сплавов. Изготовление спиралей выполняется из предназначенных для работы с высокими нагрузками материалов.
Лампа накаливания
Открытие закона Джоуля-Ленца способствовало быстрому прогрессу электротехники. Особенно показательным остается пример его использования для осветительных элементов.
Внутри подобной лампочки протягивается нить из вольфрама. Весь процесс основан на высоком удельном сопротивлении и тугоплавкости этого металла.
Трансформация энергии в тепловую вызывает эффект нагревания и свечения спирали. Минусом всегда остается расходование основного объема энергии на нагревание, а само свечение выполняется за счет ее небольшой части.
Для более точного понимания данного процесса вводится такое понятие, как коэффициент полезного действия, с помощью которого определяется эффективность рабочего процесса.
Электрическая дуга
В этом случае мы говорим о мощном источнике света и способе сваривания конструкций из металла.
Принцип протекания подобного процесса – подключение к паре угольных стержней источника тока большой мощности и минимального напряжения с последующим контактом этих элементов.
Бытовые предохранители
Для обеспечения безопасности при использовании электроцепей применяются специальные устройства. Главным элементом в таких предохранителях будет легкоплавкая проволока. Она вкручена в фарфоровом корпусе, который вставляется в патрон.
Являясь частью общей цепи, такой проводник при резком возрастании выделения тепла плавится и размыкает сеть.
Физика 8 класс: закон Джоуля-Ленца
Подробное изучение прохождения электричества по проводнику и происходящего при этом нагревания изложено в школьной программе. На практических примерах показаны все нюансы, влияющие на величину теплового действия тока.
План проведения учебного занятия обычно строится по следующей схеме:
- Необходимые, для демонстрации зависимости объема тепла от сопротивления и силы тока, опыты.
- Детальное изучение закона Джоуля-Ленца, его основной формулы и значения всех ее составляющих.
- Исторические факты, исключающие вероятность плагиата со стороны обоих авторов.
- Подведение общих итогов урока.
- Практическое применение для выполнения расчетов.
- Решение задач на основе полученной информации.
Закрепление материала происходит во время выполнения домашних заданий по оценке количества тепла, выделяемого в ходе протекания тока по проводнику с обозначенными параметрами.
Поделиться ссылкой:
Похожее
19.Работа и мощность тока. Закон Джоуля-Ленца. Тепловое действие тока и его применение.
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время At через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока
dA=Udq=IUdt. (99.1)
Если сопротивление проводника R, то, используя закон Ома (98.1), получим
dA=I2Rdt=(U2/r)dt. (99.2)
Из (99.1) и (99.2) следует, что мощность тока
P=dA/dt=UI=I2R=U2/R. (99.3)
Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт•ч) и киловатт-час (кВт•ч). 1 Вт•ч — работа тока мощностью в 1 Вт в течение 1 ч: 1 Вт•ч = 3600 Вт•с = 3,6•103 Дж; 1 кВт•ч=103 Вт•ч = 3,6•106 Дж.
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,
dQ=dA. (99.4)
Таким образом, используя выражения (99.4), (99.1) и (99.2), получим
Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.
Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилиндра совпадает с направлением тока),
сопротивление которого R= (dl/dS). По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью
тока. Она равна
w=j2. (99.6)
Используя дифференциальную форму закона Ома (j =E) и соотношение =1/, получим
w =jE =E2. (99.7)
Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля — Ленца в дифференциальной форме, пригодным для любого проводника.
Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании, проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761 — 1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.
20.Вывод законов Ома и Джоуля-Ленца в дифференциальной форме.
R=l/S. (98.2) I=U/R, (98.1)
Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим
I/S=(1/)(U/l) (98.3)
где величина
обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника. Ее единица— сименс на метр (См/м). Учитывая, что U/l=E—напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (98.3) можно записать в виде
j=E. (98.4)
Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде
j=E. (98.5)
Выражение (98.5) — закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.
Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилиндра совпадает с направлением тока),
сопротивление которого R= (dl/dS). По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью
тока. Она равна
w=j2. (99.6)
Используя дифференциальную форму закона Ома (j =E) и соотношение =1/, получим
w =jE =E2. (99.7)
Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля — Ленца в дифференциальной форме, пригодным для любого проводника.
Физика Тепловое действие тока. Закон Джоуля–Ленца
Описание видеоурока
Мы уже знаем, что электрический ток нагревает проводник. Попробуем разобраться как это происходит?
Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетки они передают ионам свою энергию. В результате энергия хаотического движения ионов около положения равновесия возрастает. Это и означает увеличение внутренней энергии проводника. Температура проводника повышается, и он начинает передавать теплоту окружающим телам.
Спустя некоторое время после замыкания цепи процесс устанавливается, и температура перестает изменяться со временем. К проводнику непрерывно поступает энергия за счет работы электрического поля. Но его внутренняя энергия остается неизменной, так как проводник отдает окружающим телам количество теплоты, равное работе тока. Это будет справедливо тогда, когда работа полностью расходуется на увеличение внутренней энергии.
Закон Джоуля – Ленца.
Английский физик Джеймс Пре́скотт Джо́уль и русский физик Эмилий Христианович Ленц независимо друг от друга установили закон, по которому можно определить количество теплоты, выделяемое в проводнике при прохождении по нему тока.
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени прохождения тока.
Попробуем вывести данную формулу. Количество теплоты будет равно работе электрического тока.
Q = A А= IUt, значит Q = IUt, так как U= RI, значит Q=I RI t
или Q = I2Rt Q = I∙U∙t
Первая формула определяет количество теплоты в общем случае, когда известны сила тока, напряжение и время.
Вторая формула чаще используется при рассмотрении количества теплоты, выделяемое в последовательно соединенных сопротивлениях, когда сила тока одинакова.
Проведем опыт. Соберем электрическую цепь с источником (6В), двумя последовательно соединенными сопротивлениями
(2 Ома и 4 Ома), амперметром о вольтметром. Включим на 1 минуту цепь. Произведем замеры.
Сила тока при последовательном соединении на всех участках одинакова.
I1 = I2 = I =1 A;
Напряжение U1= 2 B; U2= 4B;
время t = 60 c
Вычислим потери теплоты на первом и втором сопротивлениях.
Q1=I1U1t =1A*2B*60c = 120 Дж
Q2= I2U2t = 1A*4B*60c = 240 Дж
Делаем вывод: при последовательном соединении сопротивлений больше тепла выделяется в большем сопротивлении.
Проведем опыт. Соберем электрическую цепь с такими же элементами, как и в предыдущем опыте, но соединим сопротивления параллельно. Силы тока в параллельных ветвях измеряем амперметрами.
Произведем замеры. При параллельном соединении напряжение на участках одинаковое.
U1=U2=U=6B
Сила тока I1=3A; I2=2,5A, время t=60c
Вычислим потери теплоты на первом сопротивлении и на втором.
Q1=I1U1t=3A∙6B∙60c =1080 Дж
Q2=I2U2t= 2,5A∙6B∙60c=900 Дж
Делаем вывод: при параллельном соединении сопротивлений больше тепла выделяется в меньшем сопротивлении.