Температурный датчик как подключить: Как подключить датчик температуры — Лучшее отопление

Содержание

Схема подключения датчика температуры охлаждающей жидкости – АвтоТоп

Собственно он стоит но толком ничего не показывает. Установлен указатель от ВАЗ, а вот датчик температуры — родной рено рапид. Сопротивление у указателя и у датчика разное — как результат указатель, грубо говоря, показывает среднюю температуру на луне. Вазовский датчик, вроде как не подходит (чисто визуально по диаметру больше + резьба под конус).

Теперь собственно, вопрос к знающим людям — какой датчик поставить вместо штатного, чтобы показания указателя были верными.

Ну и немного фото и схема подключения всего этого. Возможно будет полезно.

Белый провод и белый с черным — идут на лампочку подсветки указателя (подключил так — белый с черным — на массу, а белый — на габариты на стрекозе. Получается свет включил — указатель светится)

Зеленый — на датчик температуры, который стоит на двигателе (стоит с левой стороны за помпой ближе к салону)

Оранжевый на любой плюс от замка зажигания (напрямую на аккум не бросайте, а то он будет работать постоянно, независимо от того включено ли зажигание). К белому проводу тоже подключать не стоит — как только включите габариты — будет врать (у меня постоянно показывал температуру 120 градусов)

Так же поставил родной расширительный бачок, вместо ВАЗовской фигни.

Датчик температуры охлаждающей жидкости (ДТОЖ) – это важный элемент системы управления двигателем, который контролирует температуру ОЖ в системе охлаждения. Блок управления двигателем получает информацию от ДТОЖ и в соответствии с ней корректирует состав топливно-воздушной смеси, частоту вращения коленвала, а также угол опережения зажигания.

Устройство и принцип работы датчика температуры охлаждающей жидкости

«Прародителем» современного датчика температуры охлаждающей жидкости было термореле, которое устанавливалось на некоторые двигатели (например, в системе распределенного впрыска K-Jetronic). Контакт термореле открыт – идет прогрев двигателя, контакт закрыт – мотор работает в своей нормальной температуре.

В настоящее время основа датчика температуры охлаждающей жидкости – это термистор (резистор, который измеряет сопротивление в зависимости от температуры). Контроль за температурой ОЖ осуществляется непрерывно. Материалом для изготовления термистора служит обычно оксид никеля или кобальта. Особенность этих соединений в том, что при увеличении температуры у них увеличивается количество свободных электронов и, соответственно, уменьшается сопротивление.

Чаще всего термистор, который находится внутри ДТОЖ, имеет отрицательный температурный коэффициент. Максимальное сопротивление датчик имеет при холодном двигателе. На датчик температуры охлаждающей жидкости подается напряжение (5В), и по мере изменения сопротивления оно уменьшается. Блок управления двигателем фиксирует изменения напряжения и в соответствии с ним определяет температуру охлаждающей жидкости.

На некоторых двигателях (например, на моторах Renault) установлен датчик температуры охлаждающей жидкости с положительным температурным коэффициентом. Он устроен так же, однако при увеличении температуры сопротивление на нем не уменьшается, а увеличивается.

Где находится датчик температуры охлаждающей жидкости

Термистор находится внутри защитного теплопроводного корпуса, а на самом корпусе размещена резьба для крепления датчика, а также электрический разъем. Обычно ДТОЖ вкручивается в выпускной патрубок головки блока цилиндров. На некоторых моторах стоит сразу два датчика: один фиксирует температуру на выходе из двигателя, второй – из радиатора.

Датчик температуры охлаждающей жидкости располагается таким образом, чтобы его наконечник имел прямой контакт с охлаждающей жидкостью. Соответственно, если антифриза в системе мало, то и показатели ДТОЖ могут быть неточными.

Признаки неисправности ДТОЖ

Как и любой другой датчик, ДТОЖ может выйти из строя, вызвав сбои в работе мотора. Первые признаки, по которым можно распознать поломку датчика температуры охлаждающей жидкости:

  • проблемы с запуском двигателя в холодную погоду,
  • плохой выхлоп на холодном двигателе,
  • повышенный расход топлива и т.д.

Чаще всего при возникновении подобных симптомов замена датчика температуры охлаждающей жидкости не требуется. Скорее всего, проблема в отошедшем или поврежденном контакте, повреждении проводки или утечке охлаждающей жидкости.

Поэтому для начала следует провести визуальный осмотр датчика на предмет повреждений или коррозии.

Проверка датчика температуры охлаждающей жидкости

Если осмотр не дал результатов, необходимо измерить сопротивление и напряжение датчика при различных температурах. После запуска холодного двигателя по мере его прогрева сопротивление должно падать (или повышаться – в случае положительного температурного коэффицента датчика) в соответствии с нормальными показателями.

Проверку датчика температуры охлаждающей жидкости можно выполнить самостоятельно

Нормальные показатели сопротивления и напряжения для датчика температуры охлаждающей жидкости с отрицательным температурным коэффициентом

Температура ОЖ (°С)Сопротивление (Ом)Напряжение (В)
4800 – 66004,00 – 4,50
1040003,75-4,00
202200 – 28003,00 – 3,50
3013003,25
401000-12002,50 – 3,00
5010002,5
608002,00-2,50
80270 – 3801,00-1,30
1100,5
разрыв цепи5,0 ±0,1
замыкание на «землю»

Нормальные показатели сопротивления и напряжения для ДТОЖ с положительным температурным коэффициентом

AutoOt. ru » Ремонт авто » Где находится датчик температуры охлаждающей жидкости?

Предназначение устройства

Датчик указателя температуры охлаждающей жидкости является очень важным элементом всей системы управления двигателем. Ведь именно он контролирует состояние температуры охлаждающей жидкости в общей системе охлаждения.

К таким данным относятся:

  • качественный состав топливно-воздушной смеси;
  • частота оборотов коленчатого вала;
  • угол опережения зажигания.

Таким образом, устройство обеспечивает быстрое прогревание двигателя при его запуске, а также поддержание его оптимальной температуры во всех режимах.

Проверка ДТОЖ, видео:

Как” проверить датчик температуры охлаждающей жидкости?

Для того чтобы проверить устройство, его необходимо сначала снять.

Провести демонтаж очень просто:

  1. как правило, датчик располагается на патрубке ГБЦ и чтобы его снять, сначала нужно демонтировать воздушный фильтр ;
  2. потом снимается минусовый провод с аккумулятора;
  3. сливается охлаждающая жидкость из радиатора;
  4. от прибора отключается проводка;
  5. с помощью подходящего ключа (чаще всего 19–21) ослабляется затяжка , после чего датчик легко демонтируется.

После того как датчик сняли, его помещают в ёмкость с охлаждающей жидкостью и начинают её постепенно нагревать. Процесс сопровождается постоянным контролем над температурой и показаниями омметра, который подключён к датчику.

Существует специальная таблица соответствия температуры охлаждающей жидкости к показателям омметра.

Температура, °CСопротивление, ОмНапряжение, В
4800 — 66004,00 — 4,50
1040003,75-4,00
202200 — 28003,00 — 3,50
3013003,25
401000-12002,50 — 3,00
5010002,50
608002,00-2,50
80270 — 3801,00-1,30
1100,50
разрыв цепи5,0 + 0,1
замыкание на «землю»

Когда показания вашего устройства не сходятся с данными из таблицы, датчик необходимо заменить, так как ремонту он уже не подлежит.

В случае когда выяснилось, что датчик в рабочем состоянии, неисправность нужно искать дальше. Возможно, возникли какие-либо проблемы с термостатом.

Пример, как проверить датчик температуры охлаждающей жидкости вы можете увидеть, просмотрев данное видео:

Датчик уровня охлаждающей жидкости

Так как двигатель является самой важной и дорогой частью любого автомобиля, ему необходимо периодически уделять должное внимание.

Часто причиной поломки мотора становится его закипание . Но такую ситуацию очень легко предупредить. Достаточно постоянно следить за показаниями датчика уровня охлаждающей жидкости.

Схема устройства датчика уровня охлаждающей жидкости

Прибор представляет собой специальный герметизированный переключатель, который сделан из специального материала, обладающего ферромагнитными свойствами.

В механизме есть пружинные контакты. Если напряжение магнитного поля повышается, поля соприкасаются друг с другом, вследствие чего возникает замыкание.

Когда напряжение поля становится ниже, контакты размыкаются.

Как подключить датчик температуры охлаждающей жидкости?

Датчик устанавливается очень легко: вкручивается в посадочное гнездо, после чего подтягивается резьба и подключается проводка, ставится на своё место воздушный фильтр и соединяется колодка проводов питания ДМРВ.

Категорически запрещается использовать при этом герметик. При работе двигателя система охлаждения и металлические элементы очень сильно нагреваются, и герметик может расплавиться.

Если это случится, то герметик попадёт в тосол и система охлаждения может дать сбой.

Схема подключения датчика температуры охлаждающей жидкости:

Замена ДТОЖ, видео:

Проверка уровня охлаждающей жидкости

Многие владельцы автомобилей часто проверяют уровень охлаждающей жидкости визуально, не используя показатели специальных приборов. Необходимо просто посмотреть на расширительный бачок.

Если мотор холодный, то охлаждающее вещество должно находиться между максимальным и минимальным уровнем отметок на бачке. При прогретом моторе, уровень вещества может незначительно повышаться.

Если ваш автомобиль полностью исправен, то когда уровень антифриза снижается, датчик незамедлительно даёт об этом знать. Автомобилист видит специальный сигнал на приборной панели и доливает тосол или охлаждающую жидкость.

Также противопоказано доливать одну воду. Ведь антифриз имеет особые свойства, благодаря которым защищает головки цилиндров от коррозии.

Если проверка датчика температуры охлаждающей жидкости, не показывает температуру охлаждающей жидкости. В таком случае вам лучше обратиться в сервис технического обслуживания.

В любом автомобиле все взаимосвязано. Автомобильная система могла выйти из строя по какой-либо сопутствующей причине. К примеру, вы могли снять какую-то деталь, находящуюся с датчиком, и неправильно её поставить.

Но бывает и так, что проблема связана именно с датчиком температуры. Уровень охлаждающей жидкости может быть непостоянным или существует поломка в датчике измерения уровня охлаждающей жидкости.

В сервисе могут заменить датчик, при этом дают гарантию на качественную его замену и правильную сборку всех деталей на нужные места.

Таким образом, датчик температуры охлаждающей жидкости является очень важной составляющей вашего автомобиля, которая требует постоянного внимания и ухода.

Если ремонт этого устройства необходим, то сделайте его качественно, не жалея о потраченных средствах. После ремонта, двигатель будет работать ровно, особенно это будет заметно на низких оборотах.

>

Подключение датчика температуры ds18b20, dht, lm35, tmp36 к Arduino

В этой статье мы рассмотрим популярные датчики температуры для Arduino ds18b20, dht11, dht22, lm35, tmp36. Как правило, именно эти датчики становятся основой для инженерных проектов начального уровня для Arduino. Мы рассмотрим также основные способы измерения температуры, классификацию датчиков температуры и приведем сравнение различных датчиков в одной таблице.

Описание датчиков температуры

Температурные датчики предназначены для измерения температуры объекта или вещества с помощью свойств и характеристик измеряемой среды. Все датчики работают по-разному. По принципу измерения эти устройства можно разделить на несколько групп:

  • Термопары;
  • Термисторы;
  • Пьезоэлектрические датчики;
  • Полупроводниковые датчики;
  • Цифровые датчики;
  • Аналоговые датчики.

По области применения можно выделить датчики температуры воздуха, жидкости и другие. Они могут быть как наружные, так и внутренние.

Любой температурный датчик можно описать набором характеристик и параметров, которые позволяют сравнивать их между собой и выбирать подходящий под конкретную задачу вариант. Основными характеристиками являются:

  • Функция преобразования, т. е. зависимость выходной величины от измеряемого значения. Для датчиков температуры этот параметр измеряется в Ом/С или мВ/К.
  • Диапазон измеряемых температур.
  • Метрологические параметры – к ним относятся различные виды погрешностей.
  • Срок службы.
  • Время отклика.
  • Надежность – рассматриваются механическая устойчивость и метрологическая стойкость.
  • Эксплуатационные параметры – габариты, масса, потребляемая мощность, стойкость к агрессивному воздействию среды, стойкость к перегрузкам и другие.
  • Линейность выходных значений.

Датчики температуры по типу

  1. Термопары. Принцип действия термопар основывается на термоэлектрическом эффекте. Представляет собой замкнутый контур из двух проводников или полупроводников. В контуре возникает электрический ток, когда на месте спаев появляется разность температур. Чтобы измерить температуру, один конец термопары помещается в среду для измерения, а второй требуется для снятия значений. На спаях возникают термоЭДС E(t2) и E(t1), которые и определяются температурами t2 и t Результирующая термоЭДС в контуре будет равна разности термоЭДС на концах спаев E(t2)- E(t1). Термопары чаще всего выполняются из платины, хромеля, алюмеля и платинородия. Наибольшее распространение в России получили пары металлов ХА(хромель-алюмель), ТКХ(хромель – копель) и ТПП (платинородий-платина). Большим недостатком таких приборов является большая погрешность измерений. Из преимуществ можно выделить возможность измерения высоких температур – до 1300С.
  2. Терморезистивные датчики. Изготавливаются из материалов, обладающих высоким коэффициентом температурного сопротивления (ТКС). Принцип работы заключается в изменении сопротивления проводника в зависимости от его температуры. Такие приборы обладают высокой точностью, чувствительностью и линейностью измеренных значений. Основными характеристиками устройства являются номинальное электрическое сопротивление при температуре 25 С и ТКС. Терморезистивные датчики различаются по температурному коэффициенту сопротивления – бывают термисторы с отрицательным (NTC) и положительным (PTC, позисторы) ТКС. Для первых с ростом температуры уменьшается сопротивление, для позисторов – увеличивается. Терморезистивные датчики чаще всего применяются в электронике и машиностроении.
  3. Пьезоэлектрический датчик. Такое устройство работает на пьезоэффекте. Под воздействием электрического тока происходит изменение линейных размеров -прямой пьезоэффект. Когда подается разнофазный ток с определенной частотой, происходит колебание пьезорезонатора. Частота определяется температурой.  Зная полученную зависимость, можно определить необходимые данные о частоте и температуре. Диапазон измерения температуры широк, устройство обладает высокой точностью. Датчики чаще всего используются в научных опытах, которые требуют высокой надежности результатов.
  4. Полупроводниковый датчик. Измеряют в диапазоне от -55С до 150С. Принцип работы основан на зависимости изменения напряжения на p-n-переходе от температуры. Так как эта зависимость практически линейна, есть возможность создать датчик без сложной схемы. Но для таких приборов схема содержит одиночный p-n-переход, поэтому датчик отличается большим разбросом параметров и невысокой точностью. Исправить эти недостатки получилось в аналоговых полупроводниковых датчиках.
  5. Аналоговый датчик. Приборы стоят дешево и обладают высокой точностью измерения, что позволяет их применять в микроэлектронике. В схеме содержатся 2 чувствительных элемента (транзистора), обладающих различными характеристиками. Выходной сигнал – это разность между падениями напряжений на транзисторах. При помощи калибровки датчика внешними цепями можно увеличить точность измерения, которая находится в диапазоне от +-1С до +-3С. Датчики обладают тремя выходами, один из них используется для калибровки.
  6. Цифровой датчик. В отличие от аналогового датчика цифровой содержит дополнительные элементы – встроенный АЦП и формирователь сигнала. Подключаются по интерфейсам SPI, I2C, 1-Wire, что позволяет подключать сразу несколько датчиков к одной шине. Подобные устройства стоят немного дороже аналоговых, но при этом они значительно упрощают схемотехнику устройства.
  7. Существуют и другие датчики температуры. Например, для автоматических систем могут применяться сигнализаторы, также существуют пирометры, измеряющие энергию тела, которую оно излучает в окружающую среду. В медицине нередко используются акустические датчики – их принцип работы заключается в разности скорости звука при различных температурах. Эти датчики удобно применять в закрытых полостях и в недоступных средах. Похожие датчики – шумовые, они работают на зависимости шумовой разности потенциалов на резисторе от температуры.

Выбор датчика в первую очередь определяется температурным диапазоном измерения. Важно учитывать и точность измерения – для обучения вполне сойдет датчик с малой точностью, а для научных работ и опытов требуется высокая надежность измерения.

Датчики температуры для работы с Ардуино

При работе с микроконтроллером Ардуино наиболее часто используются следующие датчики температуры: DS18B20, DHT11, DHT22, LM35, TMP36.

Датчик температуры DS18B20

DS18B20 – цифровой 12-разрядный температурный датчик. Устройство доступно в 3 вариантах корпусов – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, чаще всего используется именно последний. Он же изготавливается во влагозащитном корпусе с тремя выходами. Датчик прост и удобен в использовании, к плате Ардуино можно подключать сразу несколько таких приборов. А так как каждое устройство обладает своим уникальным серийным номером, они не перепутаются в результате измерения. Важной особенностью датчика является возможность сохранять данные при выключении прибора. Также DS18B20 может работать в режиме паразитного питания, то есть без внешнего питания через подтягивающий резистор. Подробная статья о ds18b20.

Датчики температуры DHT

DHT11 и DHT22 – две версии датчика DHT, обладающие одинаковой распиновкой. Разливаются по своим характеристикам. Для DHT11 характерно определение температуры в диапазоне от 0С до 50С, определение влажности в диапазоне 20-80% и частота измерений 1 раз в секунду. Датчик DHT22 обладает лучшими характеристиками, он определяет влажность 0-100%, температурный диапазон увеличен – от -40С до 125С, частота опроса 1 раз за 2 секунды. Соответственно, стоимость второго датчика дороже. Оба устройства состоят из 2 основных частей – это термистор и датчик влажности. Приборы имеют 4 выхода – питание, вывод сигнала, земля и один из каналов не используется. Датчик DHT11 обычно используется в учебных целях, так как он показывает невысокую точность измерений, но при этом он очень прост в использовании. Другие технические характеристики устройства: напряжение питания от 3В до 5В, наибольший ток 2,5мА. Для подключения к ардуино между выводами питания и выводами данных нужно установить резистор. Можно купить готовый модуль DHT11 или 22 с установленными резисторами.

Датчик температуры LM35

LM35 – интегральный температурный датчик. Обладает большим диапазоном температур (от -55С до 150С), высокой точностью (+-0,25С) и калиброванным выходом. Выводов всего 3 – земля, питание и выходной мигнал. Датчик стоит дешево, его удобно подключать к цепи, так как он откалиброван уже на этапе изготовления, обладает низким сопротивлением и линейной зависимостью выходного напряжения. Важным преимуществом датчика является его калибровка по шкале Цельсия. Особенности датчика: низкая стоимость, гарантированная точность 0,5С, широкий диапазон напряжений (от 4 до 30В) ток менее 60мА, малый уровень собственного разогрева (до 0,1С), выходное сопротивление 0,1 Ом при токе 1мА. Из недостатков можно выделить ухудшение параметров при удалении на значительное расстояние. В этом случае источниками помех могут стать радиопередатчики, реле, переключатели и другие устройства. Также существует проблема, когда температура измеряемой поверхности и температура окружающей среды сильно различаются. В этом случае датчик показывает среднее значение между двумя температурами. Чтобы избавиться от этой проблемы, можно покрыть поверхность, к которой подключается термодатчик, компаундом.

Схема подключения к микроконтроллеру Ардуино достаточно проста. Желательно датчик прижимать к контролируемой поверхности, чтобы увеличить точность измерения.

Примеры применения:

  • Использование в схемах с развязкой по емкостной нагрузке.
  • В схемах с RC цепочкой.
  • Использование в качестве удаленного датчика температуры.
  • Термометр со шкалой по Цельсию.
  • Термометр со шкалой по Фаренгейту.
  • Измеритель температуры с преобразованием напряжение-частота.
  • Создание термостата.

TMP36 – аналоговый термодатчик

Датчик температуры Использует технологии твердотельной электроники для определения температуры. Устройства обладают высокой точностью, малым износом, не требуют дополнительной калибровки, просты в использовании и стоят недорого. Измеряет температуру в диапазоне от -40С до 150С. Параметры схожи с датчиком LM35, но TMP36 имеет больший диапазон чувствительности и не выдает отрицательное значение напряжения, если температура ниже нуля. Напряжение питания от 2,7В до 5,5В. Ток – 0.05мА. При использовании нескольких датчиков может возникнуть проблема, при которой полученные данные будут противоречивы. Причиной этого являются помехи от других термодатчиков. Чтобы исправить эту неполадку нужно увеличить задержку между записью измерений. Низкое выходное сопротивление и линейность результатов позволяют подключать датчик напрямую к схеме контроля температуры. TMP36 также, как и LM34 обладает малым нагревом прибора в нормальных условиях.

Сравнение характеристик датчиков температуры Ардуино

Название Температурный диапазон Точность Погрешность Вариант исполнения Библиотека
DS18B20 -55С…125С +-0.0625С +-2% Существует в 3 видах –  8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92, последний изготавливается во влагозащитном корпусе. Onewire.h
DHT11 0С…50С +-2С +-2% температура, +-5% влажность Изготавливается в виде готового прямоугольного модуля с 4 ножками, третья не используется. Также встречаются модули с тремя ножками и сразу установленным резистором на 10 кОм. DHT.h
DHT22 -40С…125С +-0,5С +-0,5% температура, от +-2 до +-5% влажность DHT. h
LM35 -55С…150С +-0.5С (при 25С) +-2% Существует несколько видов корпуса: TO-46 (для датчиков LM35H, LM35AH,

LM35CH, LM35CAH,

LM35DH)

TO-92 (для датчиков LM35CZ, LM35CAZ,

LM35DZ)

SO-8 для датчика LM35DM

TO-220 для датчика LM35DT.

TMP36 -40С…150С +-1С +-2% Изготавливается в трехвыводном корпусе TO-92, восьмивыводном SOIC и пятивыводном SOT-23.

 

Подключение датчика температуры DS18b20 / Основная / smart-MAC support

Датчик температуры DS18b20

К универсальному счетчику smart-MAC D105 можно подключить или 5 температурных датчиков DS18b20 или один датчик температуры и влажности DHT22.

DS18b20 это цифровые 1-wire датчики температуры, все подключаются на один контакт, клемма 4.

  • черный (или белый) провод всех датчиков объединить и подключить к клемме 1: GND (Земля или -5В)
  • красный провод всех датчиков объединить и подключить к клемме 6: +5В
  • желтый (или синий) провод всех датчиков объединить и подключить к клемме 4: Data 1-Wire

Схема 3х проводного подключения к smart-MAC D105

Температурные датчики типа DS18x20 можно подключать по 3-х проводной схеме (описано выше) или по 2-х проводной. Обращаем внимание, на рынке присутствует много датчиков низкого качества которые неустойчиво работают не только по 2х проводной схеме, но и по 3х проводной при подключении более одного датчика.

Датчики из нашего магазина проверенного качества и устойчиво работают по любой схеме подключения.

При подключении нескольких датчиков типа DS18x20, все они должны быть подключены одинаково,
используя 2-х или 3-х проводное подключение.

При 2-х проводном подключении, провода датчика черный и красный подключите к клемме 1 (GND).

Схема 2х проводного к smart-MAC D105

Подключайте датчики по одному, при выключенном питании.
После подключения датчика откройте настройки устройства, в разделе Счетчик, выберите

соответствующий тип датчика DS18x20 Температура и и нажмите кнопку Обновить.

Интерфейс настройки датчиков температуры.

В появившемся списке найденных датчиков присвойте новому датчику желаемый параметр данных Т1-Т5 и собственное название.

В поле Подключено вручную установите количество реально подключенных датчиков температуры.

Совет: Если устройство теряет связь с датчиком температуры, то результатом будет значение «-80».

Чтобы при этом график не искажался, измените в настройках виджета следующее:

— В в разделе Арифметическая операция» выберите f(x) и пропишите формулу:

d.T1 < -77 ? '--' : d.T1

где d.T1 — это соответствующее значение параметра температуры Т1 . . Т5 

Готово!

Как подключить терморегулятор теплого пола

Терморегуляторы, предназначенные для управления отоплением электрическими теплыми полами, имеют специальное обозначение.

Не путайте их с другими популярными моделями, которые выпускаются для работы с газовыми котлами или водяным отоплением через коллектор.

На обратной стороне устройства между двух клемм, ищите изображение в виде змейки (контакты L1 и N1).



Именно сюда подключается кабель теплого пола или электрического мата.

К концу L1 — центральная жила кабеля, к N1 – оплетка.

Выносной температурный датчик, предотвращающий перегрев теплых полов и контролирующий нагрев, заводится на колодки с изображением сенсора (NTC).



Полярность подключения проводов датчика не важна. Подсоединяйте их в любой последовательности.

Погрешность определения температуры

Обратите внимание, что температура непосредственно на выносном датчике всегда будет выше, чем температура в комнате, которую на своем табло показывает регулятор.

Это связано с глубиной залегания датчика в стяжку.

Обычно эта дельта, между t на поверхности пола и t внутри стяжки, не превышает 5-7 градусов.

На дисплеях электронных приборов можно увидеть оба параметра, а вот в механических устройствах с колесиком, зачастую по окружности даже не прописывают градусы, а указывают только цифры 1-2-3 и т.д.

При пяти цифрах одно деление соответствует примерно 8 градусам.

Градусы не указываются с определенной целью, дабы не запутать пользователя. Выставишь на корпусе термостата +25С, а комнатный градусник в квартире будет показывать всего +20С.

У большинства сразу же возникнет вопрос, почему регулятор работает с такой погрешностью? Не поломался ли он?

Нет, с ним все в порядке. В данном случае до +25С прогревается датчик в полу, а не воздух в помещении. Именно поэтому производители в механике и указывают просто цифры, дабы вы, ориентируясь только на свои ощущения, могли подобрать наиболее комфортный для себя режим.

Если же на вашем механическом термостате указаны именно градусы, это означает, что он главным образом работает и ориентируется на собственный датчик температуры воздуха, встроенный в корпус.



Тот, что подключается к нему извне и прячется в стяжку, играет только роль защиты кабеля от перегрева.

Питание 220В заводите на клеммы L и N через УЗО с током утечки не более 30мА.

Схема подключения теплого пола напрямую через терморегулятор разных производителей однотипна и выглядит следующим образом.

Схема подключения теплого пола большой мощности

При подключении обязательно проверяйте мощность, которую способен пропустить через себя термостат. Обычно он рассчитан на нагрузку не более 16А (3,7кВт при напряжении 230В).

Это именно максимальное значение. Рекомендуется использовать устройство под постоянной нагрузкой не более 70% от этой мощности.

В этом случае девайс прослужит долго и исправно. Релюшка, которая коммутирует контакт, при перегреве быстро выходит из строя. А вместе с ней придется менять и весь прибор.

При нагрузке более 3,7кВт потребуется модульный контактор.

Схема подключения в этом случае изменится на следующую.

Здесь вместо нагрузки, провода с регулятора идут на контакты включающей катушки (А1-А2), а сам кабель обогрева подключается к силовым клеммам пускателя (1-2 или 3-4).

Фазировка на терморегуляторе

Частый вопрос – есть ли разница, куда на терморегуляторе подключать фазу, а куда ноль?

Да, есть. На логику работы устройства это не влияет, а вот на безопасность еще как.

Если перепутаете фазу и ноль, то при отключении термостата разрываться будет не фазный проводник, а нулевой. Таким образом, фаза будет постоянно присутствовать на кабеле теплого пола, что естественно не безопасно.

В тех устройствах, которые на корпусе имеют отдельный выключатель, при его нажатии происходит разрыв сразу двух проводников, и фазы, и ноля. Но это в ручном режиме отключения, и то не во всех моделях.

Зачастую ноль через свою дорожку подается напрямую. Зашел на клемму и тут же ушел на теплый пол.

При этом сам переключатель отвечает лишь за разрыв подачи питания на плату управления. При автоматическом срабатывании от датчика, всегда разрывается только один провод.

Нужна ли земля?

Еще обратите внимание на то, что защитное заземление непосредственно на сам терморегулятор на заводится!

Это может быть отдельная, обособленная клемма, через которую к защитному проводнику подсоединяется экран нагревательного кабеля.

На самих терморегуляторах даже стоит значок “квадрат в квадрате”, что означает – прибор с двойной изоляцией.

Такие знаки обычно наносят на переносные инструменты, не требующие наличия заземляющего контакта на вилке шнура питания.

Отличие дорогих электронных термостатов от механических

Какие сверхзадачи решают умные терморегуляторы, начиненные электроникой и дисплеем? Казалось бы, зачем покупать дорогое изделие, если можно приобрести регулятор с механическим колесиком и точно также выставлять для себя нужную температуру?

А дело здесь в одной из принципиальных проблем комфортной работы систем отопления – инерционности.

Дело в том, что выставив на теплых полах приемлемую для себя температуру в районе 23-25С, после ее достижения, даже с отключенным отопительным прибором, система до определенного момента по инерции все равно будет продолжать набирать градусы.

То же самое касается и минимального параметра. Фактически такие колебания в помещении могут достигать от 19 до 27С.

Ни о каком поддержании комфортных условий с такими разбросами речи не идет. В умных электронных термостатах все это решается ШИМ регулированием.

Термин этот пришел из радиоэлектроники. Там ШИМ – это широтно-импульсная модуляция. В отоплении данный принцип заключается в изменении времени включения и работы греющих элементов.

Пока температура в комнате находится далеко от желаемых параметров (задано +25С, в комнате +18С), теплые полы все время включены (греют, греют и греют).

Однако по мере достижения заданной точки (+25С), тепло начинает подаваться как бы небольшими, короткими импульсами (вкл-выкл). За счет этого происходит точное поддержание температуры в районе комфортной.

Про инерционные процессы, связанные с перегревом или наоборот с чрезмерным охлаждением, в этом случае можете забыть. Ничего подобного от термостата с колесиком вы не добьетесь.

Не работает термостат — как проверить?

В то же самое время не ждите каких-то глобальных изменений при замене термостата одной модели на другую. Бытует мнение, что если теплый пол не догревает, то стоит поменять терморегулятор на более дорогой, все само собой изменится.

Тут же поднимется температура воздуха в комнате, и там, где ранее было холодно, наступит жарища. Грубо говоря, термостат – это своего рода спидометр в вашем автомобиле.

Можете на спидометре нарисовать 300-350км/ч, но если движок не способен выдать такой мощи, то и данной скорости вам не видать. Если что-то и виновато в плохой работе теплых полов, то в первую очередь смотрите на температурный датчик.

Проверить работоспособность термостата очень просто. Подаете на него питание 220В и подключаете выносной датчик.

Далее, вместо теплого пола подсоединяете к термостату обычную лампочку накаливания. Начинаете выкручивать ручку, изменяя температуру.



В определенный момент лампочка должна загореться.

Далее зажимаете в руке температурный датчик и ждете. При нагреве от вашего тела исправный термостат сработает, и лампочка потухнет.

Если датчик запрятан глубоко в стяжку, то можете прогреть это место феном и дождаться такого же эффекта. Когда лампа никак не реагирует, это говорит о неисправности устройства.

Самый быстрый способ ремонта в этом случае – перевод работы с датчика пола, на встроенный в корпус датчик воздуха.



Концы кабеля на девайсе от напольного источника температуры придется откинуть, а настройки самого прибора перезагрузить.

Работать все это будет корректно при условии установки терморегулятора непосредственно в обогреваемом помещении.

Если у вас электронный термостат с ШИМ управлением, то при вышеприведенном способе проверки, не рекомендуется слишком быстро нагревать датчик посторонним источником тепла. Чем это чревато?

Во-первых, термостат тут же зафиксирует не нормальный рост тепла и сработает раньше времени. Во-вторых, “умные мозги” девайса принудительно отключат обогрев на ближайшие 20 минут.

При этом температура уже через 5 минут на дисплее устройства будет достаточной для включения, а запуска и замыкания контактов не произойдет. Вследствие чего у вас возникнут сомнения в корректности работы терморегулятора.

Поэтому проверка с быстрым нагревом идеально подходит для механических устройств, а с электронными будьте осторожны.

Подключение температурного датчика

Еще одна ошибка возникает при замене или подключении датчика разных производителей к одному и тому же регулятору. Дело в том, что все они имеют определенное сопротивление, соответствующее той или иной температуре.

И если без изменения настроек взять и поменять температурный датчик на другой, это может привести к некорректной работе отопления. Разница по температуре между определяемой и фактической может достигать 10 градусов!

Из-за другого сопротивления, меньше чем заводское, регулятор поймет это как завышенную температуру и даст команду на раннее отключение, хотя теплые полы будут еще не достаточно прогретыми.

Для теплого пола применяются, так называемые NTC – датчики с отрицательным температурным коэффициентом. Данный термин означает, что с повышением окружающей температуры, их сопротивление уменьшается.

Еще бывает PTC – положительный t коэфф. сопротивления. С ними происходит обратный процесс.

У продвинутых девайсов (Devireg Touch) изначально в программу настроек занесено несколько разновидностей датчиков. На этапе установки просто выбирайте требуемый.

Если вы не знаете марку, придется вручную сделать замеры сопротивления мультиметром.

Полученные данные сравниваются и проверяются, соответствуют ли они выставленным заводским настройкам или нет.

Наиболее правильной системой отопления считается та, которая имеет в каждой комнате свою собственную зону регулирования. Что это означает?

При наличии в доме всего одного терморегулятора, разброс температур в разных частях здания будет достигать 5-6 градусов.

Поэтому придется покупать и устанавливать не один, а несколько термостатов.

Можно настроить отдельные регуляторы одновременно на две зоны, при этом меняя приоритет температур. То есть, установить в термостат в одной комнате, а выносной датчик от него завести в соседнее помещение.

При этом в настройках нужно будет сделать выбор на какой элемент должен реагировать терморегулятор – на встроенный в корпус или на выносной. Добиться одинаковой температуры от одного прибора у вас не получится.


Размещать терморегуляторы в мокрых зонах запрещено. Они должны иметь соответствующий уровень влагозащиты IP и монтироваться в зоне 3.

Что это за зона, читайте в отдельной статье.

Обзор многофункционального терморегулятора теплых полов

Настройка и управление электронных разновидностей термостатов происходит по заводским инструкциям. В качестве примера давайте рассмотрим популярную (тысячи заказов со всего света + положительные отзывы) и недорогую модель терморегулятора от наших китайских товарищей.

Для начала работы с прибором, первым делом подаете на него напряжение 220В.

Через какое-то время подсветка гаснет и девайс переходит в режим энергосбережения. При этом даже в случае полного исчезновения напряжения, термостат запоминает и сохраняет в памяти все ранее заданные настройки.

Поэтому один раз внесли все параметры, и далее ничего перепрограммировать не придется.

В ручном режиме, когда на экране высвечивается иконка руки, можно установить требуемую температуру в комнате.

Данный параметр выставляется путем нажатия кнопок со стрелочками (вверх – вниз).

В состоянии покоя экран показывает действующую температуру в помещении.

Чтобы перевести устройство в автоматический режим, нажимаете на кнопку с квадратиками и на дисплее тут же отображается значок часов или будильника.

В автоматике изменить ранее заданный порог температуры при помощи стрелочных кнопок не получится. Данные намертво привязаны к конкретному дню недели.

Этот день также высвечивается на экране (1-понедельник, 2-вторник и т.д).

Временной отрезок суток показывается в виде маленького домика с цифрой (чуть выше дня недели).

Через него можно запрограммировать работу отопления так, чтобы ночью полы работали на полную или наоборот с минимальной нагрузкой. Все зависит от ваших условий проживания.

Всего можно установить шесть временных периодов.

Если вы выбрали модель с WiFi, то время и день недели отображаются автоматически.

При рабочем состоянии отопления, над домиком появляется дымок.

Как только обогрев отключается, дымок исчезает.

Гораздо удобнее управление термостатом осуществлять на смартфоне. Для этого потребуется скачать и установить программку Smart Life.

Более подробно со всеми нюансами настроек данного термостата можете ознакомиться из видеоролика ниже.

Статьи по теме

Как правильно подключить датчик температуры охлаждающей жидкости

Пару недель назад поставил наконец-то дополнительный датчик температуры ОЖ Defi BF 60 мм (реплика) =)
Те кто следит за моим авто, уже известно, что ранее я уже врезал переходник Defi (реплика) на 34 мм в верхний («горячий») патрубок радиатора еще при замене охлаждающей жидкости в рамках ТО-4. Сразу скажу, что с него нужно кинуть «массу» на кузов иначе датчик ничего не покажет вам!
Так же протянул проводку от датчика в салон.
И наконец-то установил сам «будильник» =)
По фото все думаю будет понятно, но хочу сказать несколько слов про подключение (после моего видео).
Питание я тупо взял с разветвителя прикуривателя Espada E 13U =), всякие приглушения подсветки мне не по кайфу, сделал себе тупо белую подсветку — скрутив белый провод с красным и на «+» и черный соответственно на «-«. Все! Готово! =)

Сразу скажу для чего мне нужен дополнительный датчик температуры ОЖ — контроль открытия термостата, предупреждение случайного перегрева ДВС и просто эстетическое удовольствие наличия самого «будильника» на панели =).

Вот видосик работы сего девайса ⇩⇩⇩

На задней панели датчика имеется 3 разъема:

Разъем №1.
Отвечает за подачу питания на датчик, в него подключается четырехконтактный штекер питания (Рис. 2).

Чтобы дисплей датчика подсвечивался белым цветом, нужно подключить к плюсу белый провод, желтый провод следует оставить не подключенным.
Чтобы дисплей датчика подсвечивался красным цветом, нужно подключить к плюсу желтый провод.
Также можно сделать комбинированную подсветку, используя в дневное время белую подсветку, а в темное время суток (когда включены габариты) красную подсветку.
Для этого нужно белый провод подключить к плюсу, а желтый провод подключить к питанию габаритных огней и наоборот.

Разъем №2.
Управляющий, отвечает за подачу информации на датчик от сенсора.
В него подключается двухконтактный штекер (Рис. 3).

Разъем №3.
Дублирует разъем №1. В случае, если на автомобиль устанавливается больше одного прибора, то питание для последующих датчиков можно брать от разъема №3. что бы не тянуть лишних проводов.

Позицией 4 обозначена кнопка настроек.

Как, собственно, настроить прибор:

1. Отключение звуковых сигналов.
Чтобы отключить звуковой сигнал на датчике, необходимо зажать управляющую кнопку на задней панели и включить зажигание автомобиля. Удерживать кнопку пока идет тестовый режим. Кнопку необходимо отпустить после завершения звукового сигнала. Звук будет отключен. Для включения звука нужно будет проделать аналогичную операцию.

2. Установка пиковых значений.
Чтобы задать критическое значение, при котором сработает звуковое и световое оповещение (PEAK), необходимо подать питание на датчик, дождаться когда пройдет тестовый режим, зажать управляющую кнопку на задней панели и удерживать в течение 5 сек. Стрелка встанет на предустановленный критический уровень. Изменять значения можно либо короткими нажатиями на кнопку (стрелка будет двигаться по каждому делению) либо удерживанием кнопки (стрелка будет двигаться через 5 делений). Чтобы уменьшить значения (Peak) нужно довести стрелку до максимума, затем она пойдет в обратном направлении.

Для контроля работы двигателя внутреннего сгорания используются разнообразные сигнализаторы. Предлагаем рассмотреть, как работает датчик температуры охлаждающей жидкости, как производится его проверка и замена, если он неисправен.

Что это такое

Стандартный датчик охлаждающей жидкости – это устройство, которое используется для измерения антифриза, находящегося в двигателе внутреннего сгорания. Зафиксированные параметры датчика при помощи сигналов возвращаются в блок управления двигателем, который в свою очередь использует эти данные, чтобы отрегулировать нужное количество топлива и определенный угол зажигания.

В некоторых моделях автомобилей сигнализатор может применяться для переключения на элекровентиляционную систему охлаждения. Скажем, так работает датчик температуры автомобильной охлаждающей жидкости в ВАЗ-1117 (и номер 1119) Лада Калина, Лада Приора и Гранта, Ланос, Тойота Камри (Toyota).

Фото — температурный датчик

Принцип работы датчика

Блок управления автомобилем отправляет регулируемое напряжение (9-вольтовое) непосредственно в датчик указателя температуры охлаждающей жидкости. В зависимости от падения вольтажа на контактах сигнализатора, будет падать сопротивление, что сразу же зафиксирует блок управления.

В таком случае, автомобильная компьютерная или механическая система сможет вычислить температуру двигателя, а затем (используя данные других приборов) применить справочные таблицы для выполнения корректировки приводов двигателя, т.е. изменить уровень и поступления топлива или угол опережения зажигания.

Читайте также:  Как правильно постелить металлочерепицу

Видео: проверка датчика температуры двигателя

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Фото — датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

  1. Чтобы добраться к датчику, Вам нужно снять воздуховод, который охлаждает корпус воздушного фильтра и присоединяется к радиатору при помощи двух болтовых соединений и шланга подачи воздуха. Открутите болты и снимите хомут, аккуратно достаньте всю систему. Отключите от датчика электрические провода, чтобы корректно провести замеры сопротивления. Установите мультиметр на режим омметра и задайте значение в 1000 Ом. Подключите контакты устройства к положительному и отрицательному контактам. Нормальное сопротивление должно быть в пределах 2700 Ом при выключенном моторе. Для проверки датчика при включенном движке, нужно убрать тестер подальше от вращающихся частей авто; Фото — проверка датчика мультиметром
  2. Убедившись, что датчику температуры необходим ремонт, нужно отсоединить его от двигателя. Чтобы продолжить снятие, Вы должны предварительно слить антифризную жидкость из радиатора при помощи сливного клапана. После проверить еще раз радиатор и контакты датчика и открутить регулирующий болт как на фото; Фото — снятие датчика
  3. Сборка производится в обратной форме. Нужно помнить, что практически основная характеристика датчика температуры охлаждающей жидкости – это материал шайбы. Если шайба медная, то резьбу сигнализатора не нужно обрабатывать герметиком, в противном случае обязательно смажьте устройство. Фото — медный температурный датчик

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

Проверка датчика температуры является несложной процедурой, с которой может справиться даже начинающий автолюбитель. Датчик температуры охлаждающей жидкости (сокращенно — ДТОЖ) представляет собой термистор, то есть, резистор, изменяющий значение своего внутреннего сопротивления в соответствии с температурой, куда помещен его исполнительный элемент. Чаще всего для этого используют мультиметр (другое название — тестер, «цэшка»), который в состоянии измерять значение электрического сопротивления в цепи.

Как работает датчик температуры ОЖ

Перед тем как перейти к обсуждению вопроса о том, как проверить датчик температуры охлаждающей жидкости, необходимо вкратце остановиться на признаках его неисправностях и разобраться с тем, как он работает. Это поможет определиться с диагностикой. Как указывалось выше, датчик температуры охлаждающей жидкости (иногда его называют просто датчик температуры двигателя) представляет собой термистор — резистор, изменяющий свое сопротивление в зависимости от изменения температуры, в частности охлаждающей жидкости системы охлаждения двигателя. Соответствующее значение сопротивления и его изменение фиксируется электронным блоком управления двигателем (сокращенно, ЭБУ), на основании которого он выдает соответствующие команды.

По информации от датчика температуры охлаждающей жидкости ЭБУ при запуске выставляет необходимое количество шагов регулятора холостого хода (РХХ), тем самым регулируя подачу топлива. Упомянутый термистор обладает так называемый «отрицательный температурный коэффициент». Это означает, что при холодной температуре его электрическое сопротивление имеет большое значение, а при нагреве чувствительного элемента это сопротивление падает.

Управление датчиком происходит путем подачи на него электрического сигнала с постоянным напряжением 5 Вольт от электронного блока управления через резистор с постоянным сопротивлением, которое находится внутри управляющего контроллера. Соответственно, температуру охлаждающей жидкости блок управления вычисляет по падению напряжения на датчике, который, как указывалось выше, имеет переменное сопротивление. На холодном двигателе падение напряжения будет больше, соответственно, на прогретом — меньше. И на холодном двигателе напряжение на датчике будет выше, а на горячем — ниже.

Признаки выхода из строя датчика ОЖ

О необходимости выполнения проверки датчика температуры охлаждающей жидкости, будут свидетельствовать ряд признаков. Однако тут стоит отметить, что перечисленные ниже ситуации могут быть признаками и других поломок в двигателе автомобиля, поэтому для получения точного результата необходимо выполнить дополнительную диагностику. Итак, к признакам поломки датчика температуры охлаждающей жидкости относится:

  • Активизация контрольной лампы на панели Check Engine. Однако она может активироваться и при других поломках, поэтому необходимо выполнить дополнительное сканирование кода ошибки.
  • Повышение расхода топлива. Это вызвано тем, что на электронный блок управления подается некорректная информация, и соответственно, он также не в состоянии определить сколько именно топлива нужно не только создания оптимальной топливовоздушной смеси, но и для поддержания температуры двигателя в нормальном (не аварийном) диапазоне.
  • Нестабильная работа мотора. В частности, нестабильная его работа на холостых оборотах, сложности с запуском (особенно в холодное время года), самопроизвольная остановка при низких оборотах.
  • Двигатель глохнет «на горячую». То есть, он может внезапно заглохнуть при достижении критической температуры охлаждающей жидкости. Причем это не зависит от того, какая именно охлаждающая жидкость была залита в систему (в частности, фабричный антифриз или обыкновенная вода).
  • Проблемы в работе охлаждающего вентилятора на радиаторе. Это может проявляться по-разному. В одних случаях вентилятор не включается вовсе, в других — не включается в аварийных режимах, в третьих — не выключается даже при остывании двигателя. При отключении датчика температуры охлаждающей жидкости электронный блок управления воспринимает это как обрыв цепи датчика и принудительно включает вентилятор. В любом случае для получения точной картины необходимо выполнить дополнительную диагностику датчика и/или термостата.

В связи с тем, что указанный датчик имеет достаточно простое устройство и чаще всего неразборной корпус, то при выходе его из строя он подлежит замене. Это касается практически всех машин, на которых установлено данное устройство.

Расположение датчика на двигателе

Для того чтобы выполнить проверку датчика температуры ОЖ необходимо знать, где он расположен. Естественно, что данная информация будет разниться у автомобилей различных марок и моделей. Однако существует несколько типовых признаков, по которым можно найти то место, где непосредственно закреплен датчик. Так, в большинстве случаев он расположен на выпускном патрубке головки блока цилиндров. Конструктивно он имеет металлическую резьбу, с помощью которой и вкручивается в соответствующее отверстие. Основное требование в данном случае — обеспечение прямого контакта его чувствительного элемента и охлаждающей жидкости. Именно такой контакт и обеспечивает точность показаний датчика.

Обратите внимание, что на некоторых автомобилях конструкцией может быть предусмотрена установка двух датчиков температуры. В этом случае первый из них фиксирует температуру охлаждающей жидкости на выходе из двигателя (цилиндров), а второй — на выходе из радиатора. Такой подход дает возможность более точного контроля за состоянием как двигателя в целом, так и его охлаждающей системы в частности. Однако два датчика обычно устанавливают на мощные и/или дорогие машины, где этот параметр критически важен, а в ЭБУ заложены специальные программы для работы двигателя. Дополнительную информацию об устройстве конкретного автомобиля вы можете найти в соответствующем мануале или технической документации.

Причины поломки датчика температуры ОЖ

Конструктивно датчик охлаждающей жидкости достаточно прост, и соответственно, выходит из строя редко. Обычно это происходит банально из-за его старости или механического повреждения. Например, коррозия контактов и металлических деталей корпуса может возникнуть из-за того, что вместо тосола или антифриза в систему охлаждения была залита обыкновенная вода (а тем более если эта вода «жесткая», то есть, с большим содержанием солей металлов). Также причинами выхода из строя этого устройства могут быть:

  • Повреждение корпуса. Это может выражаться в различных аспектах. Зачастую при этом видны потеки охлаждающей жидкости, которая вытекает из резьбы датчика или его корпуса. Также при этом могут быть повреждены электрические контакты и/или непосредственно терморезистор, который будет выдавать некорректный сигнал.
  • Окисление контактов. Иногда возникают ситуации, когда под воздействием испарений или просто от старости окисляются контакты на датчике, поэтому электрический сигнал не проходит через них.
  • Повреждение «фишки». В некоторых случаях при механических повреждениях возможен выход из строя так называемой «фишки», то есть, группы контактов, которая подсоединяется к датчику температуры ОЖ. Проще говоря, перетираются провода у основании разъема. По статистике отзывов, найденных в интернете, это одна из самых распространенных неисправностей, которая случается с датчиком и соответствующей системой.
  • Нарушение электрического контакта внутри датчика. В этом случае, к сожалению, ремонт вряд ли возможен, поскольку обычно его корпус запаян и не дает возможности доступа к внутренностям ДТОЖ. Соответственно, в этом случае датчик нужно только менять на новый.
  • Нарушение изоляции проводов. В частности, речь идет о питающих и сигнальных проводах, которые идет на датчик от электронного блока управления и обратно. Изоляция может быть повреждена вследствие механического воздействия, перетирания или даже просто от старости, когда она «лущится» кусками. Особенно актуально это для тех машин, которые эксплуатируются в условиях большой влажности и резких перепадов температуры окружающего воздуха.

В случае, если существует возможность просто почистить корпус/резьбу/контакты датчика, то для восстановления его нормальной работы достаточно выполнить соответствующие мероприятия. Однако, если поврежден корпус, и/или выведен из строя внутренний терморезистор, то ремонт вряд ли возможен. В этом случае необходимо просто выполнить замену датчика на новый. Его цена невысока, а процесс замены несложный, и не займет много времени и усилий даже у начинающих автовладельцев.

Как проверить работоспособность датчика охлаждающей жидкости

Существует два основных метода проверки исправности датчика температуры охлаждающей жидкости. Первый — с его демонтажом, второй — прямо на посадочном месте в двигателе автомобиля. В свою очередь первый метод также можно разделить еще на два. Первый — с использованием термометра, второй — без него. Демонтаж датчика обычно можно сделать с помощью обыкновенного гаечного ключа подходящего размера, предварительно отсоединив контактные клеммы от него. Но перед тем как выполнить демонтаж датчика, необходимо убедиться, что на ДТОЖ подается питание. Обычно оно равно 5 Вольтам постоянного напряжения. Это можно легко выяснить, отсоединив от датчика его фишку, и с помощью мультиметра, переведенного в режим замера постоянного напряжения (с соответствующим диапазоном) щупами проверить значение напряжения. Если напряжение присутствует и имеет указанное значение, то можно выполнять дальнейшую проверку датчика охлаждающей жидкости.

Проверка датчика температуры на машине

Многих автолюбителей интересует вопрос о том, каким образом проверить датчик температуры охлаждающей жидкости, не снимая его с посадочного места, чтобы упростить работу и выполнить ее как можно быстрее. А делают это при помощи многофункционального тестера, измерив сопротивление между его выводными контактами, то есть, сопротивление его электрической обмотки.

Прямо на машине делают проверку ДТОЖ, отсоединив фишку от датчика, чтобы был нормальный доступ к его электрическим контактам (выводам). Обратите внимание, что если двигатель горячий, то работать нужно осторожно, чтобы не обжечься самому и не оплавить электронный мультиметр и/или его щупы! Далее с помощью мультиметра, переведенного в режим измерения сопротивления необходимо замерить это значение между его выводами. Как указывалось выше, на холодном двигателе значение будет достаточно высоко, а при горячем — ниже. В качестве примера приведем техническую информацию для автомобиля ВАЗ-2110, дающую общее понимание о значениях сопротивления. При этом необходимо понимать, что у других легковых машин (использующих датчики похожих моделей) эти значения будут очень похожими, то есть, критически не будут отличаться.

Температура воды, °С Значение сопротивления, Ом Температура воды, °С Значение сопротивления, Ом
+5 7280 +45 1188
+10 5670 +50 973
+15 4450 +60 667
+20 3520 +70 467
+25 2796 +80 332
+30 2238 +90 241
+40 1459 +100 177

Справедливости ради надо сказать, что ломаются датчики не так часто, но вместо этого встречаются ситуации, когда ДТОЖ «врет», то есть, выдает некорректную информацию. Поэтому можно сравнить показания температуры по приборной панели и сравнить их с полученным значением сопротивления. Если датчик таки выдает неверную информацию, то имеет смысл его демонтировать и провести дополнительную диагностику с помощью термометра и нагревательного прибора для воды.

Проверка с термометром

Итак, необходимо предварительно демонтировать датчик с его посадочного места на двигателе автомобиля. Обычно это не представляет больших сложностей, и выполняется с помощью гаечного ключа подходящего размера. Заодно можно выполнить профилактику его резьбы в патрубке, почистить и смазать ее, да и сам датчик тоже в случае, если он исправен и автовладелец не будет заменять его на новый.

Далее необходимо налить воду в электрический чайник или другой сосуд, но в этом случае нужно воспользоваться для нагрева воды в дальнейшем кипятильником. Также для работы вам понадобится электронный мультиметр, работающий в режиме измерения электрического сопротивления. Чувствительный элемент датчика необходимо поместить в нагреваемую воду, а к электрическим контактам обеспечить нормальный доступ с помощью щупов мультиметра. Также в воду поместить термометр (желательно электронный, поскольку он обеспечивает более высокую точность измерения и удобство получения соответствующей информации о температуре воды).

Далее нужно пошагово произвести измерения сопротивления датчика в соответствии с повышением температуры. Желательно это делать с интервалом в 5°С (например, +15°С, +20°С, +25°С и так далее). В результате у вас получится массив данных, который можно оформить в таблицу. Эти данные нужно сравнить с данными, которые имеются в технической документации конкретного автомобиля или, в крайнем случае, с таблицей, приведенной выше.

Естественно, что в процессе измерения допускаются некоторые некритические погрешности, которые будут зависеть, во-первых, от условий проведения опыта, а во-вторых, особенностей конкретного датчика, поскольку зачастую даже у датчиков одинаковой модели сопротивление будет незначительно отличаться при одинаковых условиях проведения измерений.

Проверка без термометра

Данный метод проверки датчика температуры охлаждающей жидкости мультиметром аналогичен предыдущему, однако для его проведения не нужно применять термометр. Так, необходимо довести воду до кипения и поместить в нее чувствительный элемент датчика. Далее аналогично необходимо измерить значение сопротивления на его выводных контактах. Как указывалось в приведенной выше таблице соответствующее значение должно быть приблизительно равно 177 Ом. Однако необходимо учитывать погрешность и допускать, что температура воды в момент измерения может быть на пару градусов ниже, поэтому и сопротивление чуть-чуть выше.

Как проверить датчик температуры на ВАЗ 2110

В целом, проверка датчика температуры охлаждающей жидкости на ВАЗ 2110, 2112, «Приоре», «Калине» и других аналогичных «Ладах» идентична процессам, описанным в предыдущих разделах. Как правило, на упомянутых ВАЗах используют датчики с артикулами 23.3828 и 405213, или их аналог — 423.3828. Для проверки этого датчика автовладельцам будет полезно знать его сопротивление при разных температурах:

  • сопротивление при 15°С — 4033…4838 Ом;
  • сопротивление при 128°С — 76,7…85,1 Ом;
  • выход напряжения при 15°С — 92,1…93,3%;
  • выход напряжения при 128°С — 18,1…19,7%.

Что касается демонтажа датчика для его дальнейшей проверки/замены, то это мероприятие необходимо начинать с того, что немного слить охлаждающую жидкость. Причем делать это необходимо, когда мотор холодный с тем, чтобы не получить ожог, и не повредить инструменты/детали двигателя. Для демонтажа вам понадобится гаечный ключ на 19 мм. С его помощью нужно отвернуть датчик и демонтировать его вместе с уплотнительным кольцом. Также не забывайте вовремя менять антифриз в системе охлаждения двигателем!

Измеряем сопротивления датчика с шагов в 10 градусов цельсия начиная от закипания воды в сосуде с ДТОЖ и до ее остывания к комнатной температуры. Результаты сверяем с табличными данными.

Заключение

Датчик температуры охлаждающей жидкости (или датчик температуры двигателя) — устройство несложное, и его проверка не составляет больших сложностей. Для этого необходимо лишь иметь инструменты для его демонтажа, а также электронный мультиметр, воду и нагревательный элемент. Что касается ремонта датчика, то в большинстве случаев его выполнять нецелесообразно, поскольку этот процесс не стоит потраченного времени и усилий, а цена датчика охлаждающей жидкости не такая высокая. Исключением может стать чистка его контактов от грязи и/или коррозии. В некоторых случаях это дает возможность восстановить работоспособность ДТОЖ.

«>

Подключение одного термометра сопротивления к двум различным вторичным приборам одновременно — Готовые решения — Каталог статей

Датчики термосопротивления широко применяются для измерения температуры жидкостей, газов и твердых тел благодаря своей высокой точности, надежности, простоте установки и эксплуатации. Но при попытке передать сигнал с одного датчика термосопротивления одновременно на два вторичных прибора, например, программный ПИД-регулятор и безбумажный регистратор, добиться достоверных показаний не удастся.

Датчик термосопротивления (RTD) не может быть подключен параллельно или последовательно к входам двух вторичных приборов одновременно. Это связано с тем, что любой вторичный прибор генерирует опорный ток «возбуждения» для датчика термосопротивления. Подключение одного термодатчика к двум входам одновременно приведет к «смешиванию» опорных токов и искажению показаний.

Для подключения термодатчика к двум к двум входам одновременно есть несколько способов. Но в любом случае потребуется дополнительное оборудование для размножения сигнал RTD.

Датчик термосопротивления с двойным чувствительным элементом.

Для передачи информации о значении измеренной температуры на два разных вторичных устройства можно использовать термодатчик с двумя независимыми чувствительными элементами в одном корпусе. Выход первого чувствительного элемента соединяется с входом первого вторичного прибора (например, терморегулятора), выход второго чувствительного элемента соединяется с входом второго прибора (например, самописца).

Естественно реализация данного метода потребует замены установленного датчика температуры на другой имеющий два чувствительных элемента, например, Элемер ТС-1088/8.

Ретрансляция сигнала.

Многие вторичные приборы имеют, например, аналоговый выход 4-20 мА, который может быть настроен таким образом, чтобы «повторять» значение сигнала температуры на входе прибора. То есть первый прибор, к которому подключен непосредственно датчик термосопротивления преобразует стандартизированный сигнал RTD в унифицированный выходной сигнал 4-20 мА. На вход второго вторичного прибора приходит уже сигнал 4-20 мА, который в соответствии с заданной шкалой преобразуется в значение температуры. Необходимо помнить, что для передачи сигнала 4-20 мА входа/выхода приборов должны быть соответствующего типа: пассивные или активные.

Например, работа схемы будет возможна, если выход первого прибора будет активным, а вход второго прибора пассивным. При пассивном выходе первого прибора вход второго прибора должен быть активным. Если выход первого прибора и вход второго прибора пассивные, то необходим дополнительный источник питания постоянного тока для питания этого токового контура. Подключение активного выхода к активному входу может привести к повреждению приборов.

Реализация данного метода требует наличия соответствующих входов и выходов у вторичных приборов, а также правильного задания шкалы для входного и выходного сигналов 4-20 мА.

Датчик температуры с нормирующим преобразователем 4-20 мА.

Выходной сигнал датчика термосопротивления может быть сразу преобразован из RTD в аналоговый сигнал 4-20 мА с помощью нормирующего преобразователя, в том числе встроенного непосредственно в головку самого датчика температуры. В этом случае вторичные приборы подключаются последовательно с выходом нормирующего преобразователя образуя так называемую токовую петлю. Подобное подключение, как правило, без проблем работает с высококачественными аналоговыми входами с хорошей гальванической изоляцией. В некоторых случаях при подобном подключении могут возникнуть проблемы, например, при использовании низкоомных, неизолированных аналоговых входов.

При объединении приборов в токовую петлю необходимо помнить, что в цепи должен быть только один источник напряжения, включая активный выход нормирующего преобразователя или активный вход одного из вторичных приборов.

Для преобразования сигнала RTD в унифицированный выходной сигнал можно использовать, например, нормирующие преобразователи НПТ-1, НПТ-2, НПТ-3 или НПТ-3.Ех фирмы Овен.

Сплиттер или размножитель сигнала.

Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока. Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам. Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.

В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.

Цифровой обмен данными.

Данный способ передачи сигнала от одного датчика на несколько вторичных приборов является еще одним вариантом ретрансляции сигнала с одного прибора на другие. Устройство, такое как контроллер, панельный компьютер или PLC, к которому подключен датчик термосопротивления, преобразует значение сигнала датчика в цифровой сигнал, например, Modbus, и передает его на другое устройство в цифровом виде. Используя цифровые коммуникации возможно распространять данные о температуре на большое количество устройств — от самых простых индикаторов Овен СМИ2, до других контроллеров и PLC. Этот вариант естественно требует более высоких капитальных затрат, чем предыдущие аналоговые решения. Но данный метод обеспечивает наиболее точную передачу сигнала с меньшей погрешностью, особенно если речь идет о более чем двух вторичных приборах (точках вывода информации).

подключение и установка, монтаж, как подключить терморегулятор без датчика температуры, как установить, фото и видео

Содержание:

Любая современная отопительная система для подогрева полов содержит в своей конструкции устройства для контроля и оптимизации работы всей установки. В статье речь пойдет про датчик температуры для теплого пола, позволяющий поддерживать постоянную температуру в помещении без необходимости постоянного контроля со стороны владельца.


Особенности и разновидности современных температурных датчиков

Перед тем как осуществить подключение датчика теплого пола следует ознакомиться с основными разновидностями данного устройства и подобрать оптимальный вариант для конкретной системы подогрева. Не стоит выбирать устройство исключительно по фото в специализированных интернет-магазинах.

Конкретизированный вывод по целесообразности использования определенного приспособления может дать только профессионал в данном вопросе.

К примеру, по функционалу различают следующие термодатчики:

  1. Существует вариант с подключением двух датчиков, которые в совокупности контролируют работу системы в двухстороннем режиме. Первый определяет температуру в помещении, а второй – внутри системы. Особенностью такой конструкции является повышенная экономичность и безопасность. Различные модификации позволяют настроить автоматическую систему активации подогрева, защиту от детей и т.д.
  2. У топовых производителей появилась такая возможность, как установка датчика теплого пола с сигнализацией. О любых нарушениях и неполадках в работе системы владелец узнает без задержек, что значительно ускорит процесс устранения сбоев и станет дополнительной системой защиты (подробнее: «Как выбрать и установить термодатчик для теплого пола»).
  3. Популярность набирают датчики с системой контроля предельных температур. Они настраиваются заранее на диапазон рабочих температур и активируют систему подогрева, если пол остывает ниже определенного значения, либо отключают в обратном случае. Обычно монтируются такие датчики в гофрированную трубку между линиями подачи энергоносителя в систему, что делает их защищенными от внешнего воздействия.
  4. Если монтаж датчика теплого пола производится вне системы, то устройство находится в полной безопасности. Рекомендуется устанавливать их в таких местах комнат, куда не имеют доступа активные воздушные массы, прямые солнечные лучи и т.д. Только при полной защищенности устройства от различных внешних раздражителей можно быть уверенным в точности данных, которые датчик передает система. Соответственно и четкость функционирования системы зависит от того, насколько хорошо отлажен и защищен датчик.
  5. Также существуют датчики со встроенным термостатом, как ручным, так и электронным.


Исходя из всего вышесказанного, можно сделать вывод, что наиболее простым устройством является терморегулятор теплого пола без датчика, но целесообразнее устанавливать в систему полный комплект оборудования, чтобы ее эксплуатация не доставляла неудобств владельцу, а наоборот была комфортной (подробнее: «Правильная установка терморегулятора теплого пола и условия эксплуатации»). В плохо вентилируемых помещениях вышеперечисленный список может быть дополнен еще и датчиками воздуха.

Подбор оборудования исходя из имеющегося напольного покрытия

На сегодняшний день регулятор теплого пола без датчика температуры или, наоборот, с полным комплектом различных модификаций следует выбирать исходя из того, какой материал применяется в качестве облицовки поверхности пола. Многие устройства получили определенную конструкцию именно из-за особенностей пола, в который они будут монтироваться.

К примеру, внутренние датчики температуры могут быть монтированы только под покрытие с минимальной нагрузкой на основание, а значит керамогранитная или керамическая плитка уже не могут быть использованы. Обычно датчики монтируются не в пол, а в непосредственной близости от него с последующим подключением к термостату. В таком случае устройство собирает и оперативно предоставляет информацию о нагреве воздуха на управляющую часть системы.


На сегодняшний день производители выпускают следующие виды приборов:

  1. Под легкие варианты напольных покрытий (ламинат, линолеум, ковролин и т.д.) устанавливают датчики цилиндрической формы из пластика. Закрепляются они на конце силового кабеля. Устанавливать такое устройство можно только после того, как в перекрытиях уложены любые влагосодержащие слои. Особенно это касается бетонной стяжки, которая должна досконально высохнуть прежде, чем можно будет работать с ней. Под датчик штробится отверстие, в которое закладывается гофрированная трубка с устройством внутри. С одной стороны трубка запаивается для защиты от раствора, которым заливается стяжка, а с другой датчик всегда можно будет изъять, если появится такая необходимость.
  2. Под массивные материалы (кафель, камень, древесина и т.д.) устанавливаются большие по размерам устройства с дополнительной защитной оболочкой.

Монтаж датчика теплого пола

Перед тем как установить датчик температуры теплого пола следует ознакомиться с подробной инструкцией к данной процедуре.


Выглядит она следующим образом:

  1. Если монтаж осуществляется внутренним способом, то датчик следует расположить между петлями энергокабеля на равном расстоянии от них.
  2. Зафиксировать устройство можно куском строительной ленты.
  3. Лента же должна быть закреплена с отступом от стенки в 50 сантиметров на участке между петлями кабеля, ближайшими к точке монтажа датчика
  4. Затем датчик укладывают в гофрированную трубку и герметично закрывают отверстия в ней.
  5. Один край трубки должен быть зафиксирован куском монтажной ленты, а второй подведен к регулятору температуры.

Подключение устройства

На вопрос о том, как подключить датчик теплого пола, каждый специалист даст ответ, что можно это сделать двумя способами:

  • прямое подсоединение «кабель – термостат»;
  • с использованием распаечного короба.

Подключаются датчики теплого пола обычно к отдельной электролинии щитка с использованием медных силовых проводов, сечение которых составляет примерно 2,5 кв. мм. Чтобы обезопасить систему от утечки электрического тока следует в щиток вмонтировать УЗО и автоматический выключатель.


Непосредственно в комнате, где находятся полы с подогревом, устанавливается еще один распределительный короб, к которому и подводится кабель от основного щитка. Затем от короба в пол проводятся две трубки с основным нагревательным кабелем и тому, который будет подпитывать установленный датчик.

В конечном итоге температурный регулятор и датчик фиксируется на предназначенных для них местах и полы покрываются выбранными облицовочными материалами. Преимущество такого монтажа в том, что система подогрева практически не видна на фото и при визуальном осмотре, чего нельзя сказать о водяных отопительных контурах с огромным количеством трубок и различных монтажных элементов.


Итог

В зависимости от того какой датчик температуры был выбран эффективность функционирования системы подогрева полов будет меняться. Надежнее будет довериться профессионалам, которые могут взять на себя ответственность за все этапы работ – от закупки необходимых устройств, материалов и инструментов до монтажа системы подогрева и введения ее в эксплуатацию.

Руководство по сборкам датчиков температуры для точных измерений

Точное измерение и контроль температуры требуется по нескольким причинам, включая безопасность, стабильность материала, оптимизацию выхода и качество; Фактически, температура является наиболее широко измеряемой величиной для всех процессов.

В зависимости от области применения для промышленного измерения температуры обычно используются термопары или датчики RTD, однако могут применяться и другие типы датчиков, такие как термисторы, ИК-датчики и полупроводниковые устройства.

И термопары, и датчики RTD по своей природе хрупкие устройства, чувствительные как к механическим силам, так и к электрическим помехам.

Поскольку промышленные системы управления полагаются на стабильные и точные входные сигналы, свободные от шума и внешних помех, имеет смысл защитить датчики температуры от внешних сил, присутствующих в точке измерения, таких как давление или вибрация.

Обычно датчики температуры защищаются путем помещения хрупкого чувствительного элемента в защитную оболочку и упаковки керамическим порошком.Это защищает датчик от вибраций и потенциально агрессивных технологических сред, которые могут повредить элемент.

Датчик Pt100 с оболочкой из нержавеющей стали и гибкими выводами Датчики термопары с оболочкой из нержавеющей стали и штекерными соединениями

Для завершения сборки температуры к датчику обычно присоединяется соединительная головка.Это позволяет подключать провода датчика либо к клеммной колодке, либо к датчику температуры. Доступны различные типы головок в зависимости от области применения и от того, расположен ли узел датчика температуры в опасной зоне. Если установлен датчик температуры, он также должен иметь сертификат ATEX, если он устанавливается в опасной зоне.

Выбор стандартных типов головок

Предоставлено: www.kp-as.com

Чтобы датчики могли использоваться в управлении промышленными процессами, им требуются особые материалы конструкции, технологические присоединения и размеры, специфичные для конкретных приложений.Доступен широкий выбор стандартных датчиков в сборе, которые могут быть адаптированы к точным требованиям технологического процесса.

Датчик температуры с соединительной головкой для преобразователя Датчик температуры с резьбовым присоединением к процессу Датчик температуры для пищевой промышленности
Предоставлено: www.kp-as.com

Преобразователь температуры «на головке» часто устанавливается внутри соединительной головки. Передатчик усиливает сигнал датчика низкого уровня и обеспечивает точный, стабильный сигнал, доступный для системы управления. Рекомендуются изолированные преобразователи температуры, так как они дополнительно улучшают качество сигнала за счет фильтрации шума и электромагнитных помех.

Дополнительные преимущества использования преобразователя температуры включают возможность линеаризации сигнала и возможность включения местного дисплея, например, в полевом преобразователе 7501.

В качестве альтернативы можно установить клеммную колодку на соединительную головку, а сигнал датчика направить на преобразователь температуры, установленный на DIN-рейке. В этом случае следует тщательно учитывать наведенные помехи и ухудшение сигнала датчика. Это часто наблюдается при увеличенной длине кабеля между датчиком и преобразователем температуры.

PR 5437A 2-проводный датчик температуры HART 7 для монтажа на головке PR 6337A Двухпроводный датчик температуры HART для DIN-рейки PR 7501 Датчик температуры HART, устанавливаемый на месте

Также доступны преобразователи

, которые поддерживают простую интеграцию в полевую шину и цифровые схемы, такие как HART, Foundation Fieldbus, Profibus и канал ввода-вывода.Преобразователь PR 5350, установленный на головке, и преобразователь PR 6350, установленный на DIN, поддерживают как Foundation Fieldbus, так и Profibus PA в одном устройстве, в то время как PR 5335, 5337, 5437, 6335, 6337 являются преобразователями температуры HART.

Хотя эти датчики в сборе могут использоваться напрямую, в промышленных приложениях часто требуется, чтобы датчик температуры был легко заменяемым, вставлялся в труднодоступные места или подвергался воздействию давления и скорости потока, которые могут вызвать повреждение.

Накопительные резервуары и трубопроводы, например, требуют простой замены датчика температуры без утечки технологического материала или необходимости слива воды из системы.Эту проблему можно решить с помощью защитных гильз или карманов Thermo.

Защитные гильзы используются для защиты датчиков температуры от повреждений из-за чрезмерного давления, высоких скоростей потока и коррозионного воздействия. Кроме того, они позволяют заменять датчик без опорожнения системы или процесса. Защитные гильзы, предназначенные для работы с высоким давлением, обычно изготавливаются из пруткового материала для обеспечения целостности. Защитные гильзы для использования в условиях низкого давления могут быть изготовлены из трубок с одним закрытым сварным концом.Защитная гильза обычно крепится к процессу либо резьбовым соединением, либо сваркой. Затем датчик температуры вставляется в защитную гильзу и закрепляется.

В зависимости от области применения защитная гильза должна быть выбрана так, чтобы соответствовать техническим требованиям процесса.

Защитная гильза с резьбовым присоединением к процессу Изготовленная защитная гильза с резьбовым присоединением к процессу Сварной стержень в защитной гильзе
Предоставлено: www.kp-as.com

Дополнительную информацию об ассортименте датчиков температуры и устройств формирования сигналов PR electronics можно найти здесь.

Вернуться к библиотеке знаний по связям с общественностью

Полезна ли эта информация?

Что такое датчик температуры?

Вы когда-нибудь оставляли свой смартфон в машине в жаркий день? В таком случае на вашем экране могло отображаться изображение термометра и предупреждение о том, что ваш телефон перегрелся.Это потому, что есть крошечный встроенный датчик температуры, который измеряет внутреннюю температуру вашего телефона. Как только внутри телефона достигается определенная температура (например, iPhone выключается при температуре около 113 градусов по Фаренгейту), датчик температуры отправляет электронный сигнал на встроенный компьютер. Это, в свою очередь, ограничивает доступ пользователей к каким-либо приложениям или функциям до тех пор, пока телефон не остынет, поскольку запущенные программы могут только еще больше повредить внутренние компоненты телефона.

Датчик температуры — это электронное устройство, которое измеряет температуру окружающей среды и преобразует входные данные в электронные данные для регистрации, отслеживания или сигнализации изменений температуры. Есть много разных типов датчиков температуры. Некоторые датчики температуры требуют прямого контакта с контролируемым физическим объектом (контактные датчики температуры), в то время как другие измеряют температуру объекта косвенно (бесконтактные датчики температуры).

Бесконтактные датчики температуры обычно являются инфракрасными (ИК) датчиками.Они удаленно обнаруживают инфракрасную энергию, излучаемую объектом, и отправляют сигнал на откалиброванную электронную схему, которая определяет температуру объекта.

Среди контактных датчиков температуры есть термопары и термисторы. Термопара состоит из двух проводников, каждый из которых изготовлен из металла разного типа, которые соединены на конце, образуя спай. Когда соединение подвергается нагреву, создается напряжение, которое напрямую соответствует входной температуре. Это происходит из-за явления, называемого термоэлектрическим эффектом.Термопары, как правило, недорогие, так как их конструкция и материалы просты. Другой тип контактного датчика температуры называется термистором. В термисторах сопротивление уменьшается с увеличением температуры. Существует два основных типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). Термисторы более точны, чем термопары (способны измерять в пределах 0,05–1,5 градусов Цельсия), и они сделаны из керамики или полимеров. Температурные датчики сопротивления (RTD), по сути, являются металлическим аналогом термисторов, и они являются наиболее точным и дорогим типом датчиков температуры.

Датчики температуры используются в автомобилях, медицинских устройствах, компьютерах, кухонных приборах и другом оборудовании.

Датчик температуры Pt100 — полезные сведения

Датчики температуры Pt100 — очень распространенные датчики в обрабатывающей промышленности. В этом сообщении блога обсуждается много полезных и практических вещей, которые нужно знать о датчиках Pt100. Здесь есть информация о датчиках RTD и PRT, различных механических конструкциях Pt100, соотношении температуры и сопротивления, температурных коэффициентах, классах точности и многом другом.

Некоторое время назад я писал о термопарах, поэтому я подумал, что пора написать о датчиках температуры RTD, особенно о датчике Pt100, который является очень распространенным датчиком температуры в обрабатывающей промышленности. Этот блог оказался довольно длинным, поскольку в нем есть много полезной информации о датчиках Pt100. Я надеюсь, что он вам понравится и вы чему-то научитесь. Так что давай займемся этим!

Оглавление

Поскольку этот пост стал довольно длинным, вот оглавление, которое поможет вам увидеть, что включено:

Для терминологии и «датчик» , и «зонд» слова обычно используются, в этой статье я в основном использую «сенсор».

Также люди пишут «Pt100» и «Pt-100», я буду в основном использовать формат Pt100. (Да, я знаю, что IEC / DIN 60751 использует формат Pt-100, но я так привык к формату Pt100).

Просто дайте мне эту статью в формате pdf! Щелкните ссылку ниже, чтобы загрузить pdf:

В начало ⇑

Датчики температуры RTD

Поскольку Pt100 является датчиком RTD, давайте сначала посмотрим, что такое датчик RTD.

Аббревиатура RTD происходит от « Resistance Temperature Detector». ”Итак, это датчик температуры, в котором сопротивление зависит от температуры; при изменении температуры изменяется сопротивление датчика. Таким образом, измеряя сопротивление датчика RTD, датчик RTD можно использовать для измерения температуры.

Датчики RTD обычно изготавливаются из платины, меди, никелевых сплавов или различных оксидов металлов. Pt100 — один из наиболее распространенных датчиков / зондов RTD.

Наверх ⇑

Датчики температуры PRT

Платина является наиболее распространенным материалом для датчиков RTD. Платина имеет надежную, повторяемую и линейную зависимость термостойкости. Датчики RTD, изготовленные из платины, называются PRT , « Платиновый термометр сопротивления». ”Наиболее распространенным платиновым датчиком PRT, используемым в обрабатывающей промышленности, является датчик Pt100 . Число «100» в названии означает, что он имеет сопротивление 100 Ом при температуре 0 ° C (32 ° F).Подробнее об этом позже.

В начало ⇑

Сравнение ПТС и термопары

В предыдущем сообщении в блоге мы обсуждали термопары. Термопары также используются в качестве датчиков температуры во многих промышленных приложениях. Итак, в чем разница между термопарой и датчиком PRT? Вот краткое сравнение термопар и датчиков PRT:

Термопары :

  • Может использоваться для измерения гораздо более высоких температур
  • Очень надежный
  • Недорогой
  • Автономный, не требует внешнего возбуждения
  • Не очень точно
  • Требуется компенсация холодного спая
  • Удлинительные провода должны быть из материала, подходящего для данного типа термопары, и необходимо обращать внимание на однородность температуры на всех стыках в измерительной цепи
  • Неоднородности в проводах могут вызвать непредвиденные ошибки

ПТС :

  • Более точны, линейны и стабильны, чем термопары
  • Не требует компенсации холодного спая, как это делают термопары
  • Удлинители могут быть медными
  • Дороже, чем термопары
  • известный отлично ток нагрузки подходит для типа датчика
  • Более хрупкий

Вкратце можно сказать, что термопары больше подходят для высокотемпературных приложений и ПТС для приложений, требующих более высокой точности .

Дополнительную информацию о термопарах и компенсации холодного спая можно найти в этой предыдущей публикации блога:

Компенсация холодного (эталонного) спая термопары

Вернуться к началу ⇑

Измерение датчика RTD / PRT

Поскольку сопротивление датчика RTD изменяется при изменении температуры, совершенно очевидно, что при измерении датчика RTD вам необходимо измерить сопротивление. Вы можете измерить сопротивление в Ом, а затем преобразовать его вручную в измерение температуры в соответствии с таблицей преобразования (или формулой) используемого типа RTD.

В настоящее время чаще всего используется устройство для измерения температуры или калибратор, который автоматически преобразует измеренное сопротивление в показания температуры, когда в устройстве выбран правильный тип RTD (при условии, что он поддерживает используемый тип RTD). Конечно, если в устройстве будет выбран неправильный тип датчика RTD, это приведет к неверным результатам измерения температуры.

Есть разные способы измерения сопротивления. Вы можете использовать 2-, 3- или 4-проводное соединение .Двухпроводное соединение подходит только для измерения с очень низкой точностью (в основном для поиска неисправностей), потому что любое сопротивление провода или сопротивление соединения приведет к ошибке измерения. Любое обычное измерение процесса должно выполняться с использованием 3-х или 4-х проводных измерений.

Например, стандарт IEC 60751 определяет, что любой датчик с точностью выше класса B должен измеряться с помощью 3- или 4-проводного измерения. Подробнее о классах точности позже в этой статье.

Просто не забудьте использовать 3-х или 4-х проводное измерение, и все готово.

Конечно, для некоторых высокоомных термисторов, датчиков Pt1000 или других датчиков с высоким импедансом дополнительная ошибка, вызванная 2-проводным измерением, может быть не слишком значительной.

Дополнительную информацию об измерении сопротивления 2, 3 и 4 проводов можно найти по ссылке ниже в блоге:

Измерение сопротивления; 2-х, 3-х или 4-х проводное соединение — как оно работает и что использовать?

Измерительный ток

Как более подробно объяснено в сообщении в блоге по ссылке выше, когда устройство измеряет сопротивление, оно посылает небольшой точный ток через резистор, а затем измеряет падение напряжения генерируется над ним.Затем можно рассчитать сопротивление, разделив падение напряжения на ток в соответствии с законом Ома (R = U / I).

Если вас интересует более подробная информация о законе Ома, ознакомьтесь с этим сообщением в блоге:

Закон Ома — что это такое и что о нем должны знать технические специалисты

Самонагревание

Когда измерительный ток проходит через датчик RTD, это также вызывает небольшой нагрев датчика RTD.Это явление называется самонагреванием . Чем выше ток измерения и чем дольше он включен, тем сильнее нагревается датчик. Кроме того, на самонагревание сильно влияет структура датчика и его тепловое сопротивление окружающей среде. Совершенно очевидно, что такой вид самонагрева датчика температуры вызовет небольшую погрешность измерения.

Максимальный ток измерения обычно составляет 1 мА при измерении датчика Pt100, но он может быть и ниже 100 мкА.В соответствии со стандартами (такими как IEC 60751) самонагрев не должен превышать 25% допуска датчика.

Вернуться к началу ⇑

Различные механические конструкции датчиков PRT

Датчики PRT, как правило, очень хрупкие инструменты, и, к сожалению, точность почти без исключения обратно пропорциональна механической прочности . Чтобы быть точным термометром, платиновая проволока внутри элемента должна иметь возможность сжиматься и расширяться при изменении температуры как можно более свободно, чтобы избежать деформации и деформации.Недостатком является то, что такой датчик очень чувствителен к механическим ударам и вибрации.

Стандартный платиновый термометр сопротивления (SPRT)

Более точные датчики Стандартный платиновый термометр сопротивления (SPRT) — это инструменты для реализации температурной шкалы ITS-90 между фиксированными точками. Они сделаны из очень чистой (α = 3,926 x 10 -3 ° C -1 ) платины, а опора для проволоки разработана таким образом, чтобы проволока оставалась максимально свободной от деформаций.«Руководство по реализации ITS-90», опубликованное BIPM (Bureau International des Poids et Mesures), определяет критерии, которым должен соответствовать датчик SPRT. Другие датчики не являются и не должны называться SPRT. Существуют датчики в стеклянной, кварцевой и металлической оболочке для различных применений. SPRT чрезвычайно чувствительны к любому виду ускорения, например к минимальным ударам и вибрации, что ограничивает их использование в лабораториях для проведения измерений с высочайшей точностью.

PRT с частичной опорой

PRT с частичной опорой — это компромисс между характеристиками термометра и механической надежностью.Наиболее точные из них часто называются датчиками Secondary Standard или Secondary Reference . Эти датчики могут принимать некоторые конструкции из SPRT, и класс провода может быть таким же или очень близким. Благодаря некоторой проволочной опоре они менее хрупкие, чем SPRT. При осторожном обращении их можно использовать даже в полевых условиях, при этом обеспечивая превосходную стабильность и низкий гистерезис.

Промышленные платиновые термометры сопротивления, IPRT

При увеличении опоры провода увеличивается механическая прочность, но вместе с тем увеличивается и напряжение, связанное с дрейфом и проблемами гистерезиса.Эти датчики называются промышленными платиновыми термометрами сопротивления , IPRT . Полностью поддерживаемые IPRT имеют еще большую поддержку проводов и механически очень надежны. Проволока полностью залита керамикой или стеклом, что делает ее очень невосприимчивой к вибрации и механическим ударам. Недостатком является гораздо более низкая долговременная стабильность и большой гистерезис, поскольку чувствительная платина связана с подложкой, которая имеет разные характеристики теплового расширения.

Пленка

Пленка PRT за последние годы претерпели значительные изменения, и теперь доступны лучшие.Они бывают разных форм для разных приложений. Платиновая фольга напыляется на выбранную подложку, сопротивление элемента часто подгоняется лазером до желаемого значения сопротивления и, в конечном итоге, герметизируется для защиты. В отличие от элементов из проволоки, тонкопленочные элементы намного удобнее автоматизировать производственный процесс, что часто делает их дешевле, чем элементы из проволоки. Преимущества и недостатки обычно те же, что и у полностью опертых проволочных элементов, за исключением того, что пленочные элементы часто имеют очень низкую постоянную времени, что означает, что они очень быстро реагируют на изменения температуры.Как упоминалось ранее, некоторые производители разработали методы, которые лучше сочетают в себе производительность и надежность.

В начало ⇑

Другие датчики RTD
Другие платиновые датчики

Хотя Pt100 является наиболее распространенным платиновым датчиком RTD / PRT, существует несколько других, таких как Pt25, Pt50, Pt200, Pt500 и Pt1000. Основное различие между этими датчиками довольно легко догадаться, это сопротивление при 0 ° C, которое упоминается в названии датчика.Например, датчик Pt1000 имеет сопротивление 1000 Ом при 0 ° C. Температурный коэффициент также важен, поскольку он влияет на сопротивление при других температурах. Если это Pt1000 (385), это означает, что он имеет температурный коэффициент 0,00385 ° C.

Другие датчики RTD

Хотя платиновые датчики являются наиболее распространенными датчиками RTD, существуют также датчики, изготовленные из других материалов, включая датчики из никеля, никель-железо и медь. Обычные никелевые датчики включают Ni100 и Ni120, никель-железный датчик Ni-Fe 604 Ом и медный датчик Cu10.Каждый из этих материалов имеет свои преимущества в определенных областях применения. Их общие недостатки — довольно узкие температурные диапазоны и подверженность коррозии по сравнению с платиной из благородных металлов.

Датчики RTD также могут быть изготовлены из других материалов, таких как золото, серебро, вольфрам, родий-железо или германий. Они превосходны в некоторых приложениях, но очень редко встречаются в обычных промышленных операциях.

Поскольку сопротивление датчика RTD зависит от температуры, мы также можем включить в эту категорию все стандартные датчики PTC (положительный температурный коэффициент) и NTC (отрицательный температурный коэффициент).Примерами являются термисторы и полупроводники, которые используются для измерения температуры. Типы NTC особенно часто используются для измерения температуры.

Слишком длинная статья? Хотите скачать эту статью в формате pdf, чтобы прочитать ее, когда у вас будет больше времени? Щелкните изображение ниже, чтобы загрузить pdf:

Вернуться к началу ⇑

Датчики Pt100

Температурный коэффициент

Самым распространенным датчиком RTD в обрабатывающей промышленности является датчик Pt100, сопротивление которого составляет 100 Ом при 0 ° C (32 ° F).

При том же логическом соглашении о присвоении имен датчик Pt200 имеет сопротивление 200 Ом, а Pt1000 — 1000 Ом при 0 ° C (32 ° F).

Сопротивление датчика Pt100 (и других датчиков Pt) при более высоких температурах зависит от версии датчика Pt100, поскольку существует несколько различных версий датчика Pt100, которые имеют немного разные температурные коэффициенты. В мировом масштабе наиболее распространена версия «385». Если коэффициент не указан, обычно это 385.

Температурный коэффициент (обозначенный греческим символом Alpha => α) датчика Pt100 указывается как разница сопротивлений при 100 ° C и 0 ° C, разделенная на сопротивление при 0 ° C, умноженное на 100 ° C.

Формула довольно проста, но в написании она звучит немного сложно, поэтому давайте рассмотрим ее как формулу:

Где:

α = температурный коэффициент

R100 = сопротивление при 100 ° C

R0 = сопротивление при 0 ° C

Давайте посмотрим на пример, чтобы убедиться в этом:

Pt100 имеет сопротивление 100,00 Ом при 0 ° C и 138,51 Ом при 100 ° C. . Температурный коэффициент можно рассчитать следующим образом:

Получаем результат 0.003851 / ° С.

Или, как это часто пишут: 3,851 x 10 -3 ° C -1

Часто его называют датчиком Pt100 «385».

Это также температурный коэффициент, указанный в стандарте IEC 60751: 2008.

Температурный коэффициент чувствительного элемента в основном зависит от чистоты платины, используемой для изготовления проволоки. Чем чище платина, тем выше значение альфа. В настоящее время получить очень чистый платиновый материал не проблема.Чтобы производимые датчики соответствовали кривой температуры / сопротивления IEC 60751, чистая платина должна быть легирована подходящими примесями, чтобы снизить значение альфа до 3,851 x 10 -3 ° C -1 .

Значение альфа снижается с тех времен, когда точка плавления (≈0 ° C) и точка кипения (≈100 ° C) воды использовались в качестве контрольных температурных точек, но все еще используется для определения сорта платины. провод. Поскольку точка кипения воды на самом деле является лучшим высотомером, чем эталонная температура, другим способом определения чистоты проволоки является отношение сопротивлений в точке галлия (29.7646 ° C), что является фиксированной точкой на шкале температур ITS-90. Этот коэффициент сопротивления обозначается строчной греческой буквой ρ (ро).

Типичное значение ρ для датчика «385» составляет 1,115817, а для SPRT — 1,11814. На практике старая добрая альфа во многих случаях оказывается наиболее удобной, но можно также объявить о rho.

Соотношение сопротивления температуры Pt100 (385)

На графике ниже вы можете увидеть, как сопротивление датчика Pt100 (385) зависит от температуры:

При взгляде на из них вы можете видеть, что зависимость сопротивления от температуры датчика Pt100 не является абсолютно линейной, но зависимость несколько «изогнута».”

В таблице ниже показаны числовые значения температуры Pt100 (385) в зависимости от сопротивления в нескольких точках:

Другие датчики Pt100 с другими температурными коэффициентами

Большинство датчиков были стандартизированы, но во всем мире существуют разные стандарты. То же самое и с датчиками Pt100. Со временем было определено несколько различных стандартов. В большинстве случаев разница в температурном коэффициенте сравнительно небольшая.

В качестве практического примера, стандарты, которые мы внедрили в калибраторы температуры Beamex, взяты из следующих стандартов:

  • IEC 60751
  • DIN 43760
  • ASTM E 1137
  • JIS C1604-1989 alpha 3916, JIS C 1604 -1997
  • SAMA RC21-4-1966
  • GOCT 6651-84, ГОСТ 6651-94
  • Таблица Minco 16-9
  • Кривая Эдисона № 7

Убедитесь, что ваше измерительное устройство поддерживает датчик Pt100

Стандартные зонды Pt100 хороши тем, что каждый сенсор должен соответствовать спецификациям, и вы можете просто подключить его к своему измерительному устройству (или калибратору), и он будет измерять собственную температуру с такой же точностью, как и спецификации (сенсор + измерительное устройство). определять.Кроме того, используемые в процессе датчики должны быть взаимозаменяемыми без калибровки, по крайней мере, для менее важных измерений. Тем не менее, рекомендуется проверять датчик при известной температуре перед использованием.

В любом случае, поскольку разные стандарты имеют немного разные спецификации для датчика Pt100, важно, чтобы устройство, которое вы используете для измерения вашего датчика Pt100, поддерживало правильный датчик (температурный коэффициент). Например, если ваше измерительное устройство поддерживает только Alpha 385 и вы используете датчик с Alpha 391, в измерениях будет некоторая ошибка.Эта ошибка значительна? В этом случае (385 против 391) ошибка будет примерно 1,5 ° C при 100 ° C. Так что я думаю, что это важно. Конечно, чем меньше разница температурных коэффициентов, тем меньше будет ошибка.

Итак, убедитесь, что ваше измерительное устройство RTD поддерживает используемый вами датчик Pt100. Чаще всего, если у Pt100 нет индикации температурного коэффициента, это датчик 385.

В качестве практического примера калибратор и коммуникатор Beamex MC6 поддерживает следующие датчики Pt100 (температурный коэффициент в скобках) на основе различных стандартов:

  • Pt100 (375)
  • Pt100 (385)
  • Pt100 (389)
  • Pt100 (391)
  • Pt100 (3926)
  • Pt100 (3923)

Наверх ⇑

Классы точности (допуска) Pt100

Датчики Pt100 доступны в различных классах точности.Наиболее распространенными классами точности являются AA, A, B и C , которые определены в стандарте IEC 60751. Стандарты определяют своего рода идеальный датчик Pt100, к которому должны стремиться производители. Если бы можно было построить идеальный датчик, классы допуска не имели бы значения.

Поскольку датчики Pt100 не могут быть отрегулированы для компенсации ошибок, вам следует купить датчик с подходящей точностью для конкретного применения. В некоторых измерительных приборах погрешности датчика можно исправить с помощью определенных коэффициентов, но об этом позже.

Точность различных классов точности (согласно IEC 60751: 2008):

Существуют также так называемые классы точности 1/3 DIN и 1/10 DIN Pt100 для разговорной речи. Они были стандартизированными классами, например, в стандарте DIN 43760: 1980-10, который был отменен в 1987 году, но не определены в более позднем стандарте IEC 60751 или его немецком родственнике DIN EN 60751. Допуски этих датчиков основаны на точности. датчик класса B, но исправленная часть ошибки (0.3 ° C) делится на заданное число (3 или 10). Тем не менее, эти термины — это устоявшаяся фраза, когда речь идет о Pt100, и мы также будем свободно их использовать. Классы точности этих датчиков следующие:

И, конечно же, производитель датчиков может производить датчики со своими собственными пользовательскими классами точности. Раздел 5.1.4 стандарта IEC 60751 определяет, как должны быть выражены эти специальные классы допусков.

Формулы могут быть трудными для сравнения, в приведенной ниже таблице классы точности рассчитаны при температуре (° C):

Примечательно то, что даже если «1/10 DIN» звучит привлекательно с его низким 0.Допуск на 03 ° C при 0 ° C, что на самом деле лучше, чем у класса A, только в узком диапазоне -40… + 40 ° C.

На приведенном ниже графике показана разница между этими классами точности:

Наверх ⇑

Коэффициенты

Классы точности обычно используются в промышленных датчиках RTD, но в большинстве случаев точные эталонные датчики PRT (SPRT, вторичные эталоны…), эти классы точности больше не действительны.Эти датчики были сделаны настолько хорошими, насколько это возможно, для этой цели, а не для соответствия какой-либо стандартизированной кривой. Это очень точные датчики с очень хорошей долговременной стабильностью и очень низким гистерезисом, но эти датчики индивидуальны, поэтому у каждого датчика есть несколько разное соотношение температуры / сопротивления. Эти датчики не следует использовать без использования индивидуальных коэффициентов для каждого датчика. Вы даже можете найти общие коэффициенты CvD для SPRT, но это испортит производительность, за которую вы заплатили.Если вы просто подключите вторичный датчик PRT на 100 Ом, такой как Beamex RPRT, к устройству, измеряющему стандартный датчик Pt100, вы можете получить результат, который будет на несколько градусов или, возможно, даже на десять градусов неверен. В некоторых случаях это не обязательно имеет значение, но в других случаях это может быть разница между лекарством и токсином.

Таким образом, эти датчики всегда должны использоваться с правильными коэффициентами.

Как упоминалось ранее, датчики RTD не могут быть «настроены» для правильного измерения.Таким образом, необходимо внести поправку в устройство (например, калибратор температуры), которое используется для измерения датчика RTD.

Для определения коэффициентов датчик необходимо сначала очень точно откалибровать. Затем, исходя из результатов калибровки, коэффициенты для желаемого уравнения могут быть адаптированы для представления зависимости характеристического сопротивления датчика от температуры. Использование коэффициентов исправит измерение датчика и сделает его очень точным.Существует несколько различных уравнений и коэффициентов для расчета сопротивления датчика температуре. Вероятно, это самые распространенные:

Callendar-van Dusen
  • В конце 19, и века, Каллендар ввел простое квадратное уравнение, которое описывает поведение платины в зависимости от температуры и сопротивления. Позже ван Дузен выяснил, что нужен дополнительный коэффициент ниже нуля. Оно известно как уравнение Каллендара-ван Дюзена, CvD.Для датчиков alpha 385 он часто примерно такой же, как ITS-90, особенно когда диапазон температур не очень широк. Если в вашем сертификате указаны коэффициенты R 0 , A, B, C, они являются коэффициентами для уравнения CvD стандартной формы IEC 60751. Коэффициент C используется только при температуре ниже 0 ° C, поэтому он может отсутствовать, если датчик не был откалиброван ниже 0 ° C. Коэффициенты также могут быть R 0 , α, δ и β. Они соответствуют исторически используемой форме уравнения CvD, которая используется до сих пор. Несмотря на то, что уравнение по сути является одним и тем же, их письменная форма и коэффициенты различаются.

ITS-90
  • ITS-90 — это температурная шкала, а не стандарт. Уравнение Каллендара-ван Дюзена было основой предыдущих шкал 1927, 1948 и 1968 годов, но ITS-90 принес значительно иную математику. Функции ITS-90 должны использоваться при реализации температурной шкалы с использованием SRPT, но также многие PRT с более низким альфа выигрывают от этого по сравнению с CvD, особенно при широком диапазоне температур (сотни градусов). Если в вашем сертификате указаны такие коэффициенты, как RTPW или R (0,01), a4, b4, a7, b7, c7, они являются коэффициентами для функций отклонения ITS-90.В документе ITS-90 не указываются числовые обозначения для коэффициентов или поддиапазонов. Они представлены в Технической записке NIST 1265 «Рекомендации по реализации международной температурной шкалы 1990 года» и широко используются для использования. Количество коэффициентов может меняться, поддиапазоны пронумерованы от 1 до 11.
    • RTPW, R (0,01 ° C) или R (273,16 K) — сопротивление датчика в тройной точке воды 0,01 ° C
    • a4 и b4 — коэффициенты ниже нуля, также может быть bz и b bz , что означает «ниже нуля», или просто a и b
    • a7, b7, c7 являются коэффициентами выше нуля, также могут быть az , b az и c az , что означает «выше ноль »или a, b и c

Steinhart-Hart
  • Если ваш датчик является термистором, в сертификате могут быть коэффициенты для уравнения Стейнхарта-Харта.Термисторы очень нелинейны, а уравнение логарифмическое. Уравнение Стейнхарта-Харта широко заменило более раннее бета-уравнение. Обычно это коэффициенты A, B и C, но также может быть коэффициент D или другие, в зависимости от варианта уравнения. Коэффициенты обычно публикуются производителями, но они также могут быть установлены.

Определение коэффициентов датчика

Когда датчик Pt100 отправляется в лабораторию для калибровки и настройки, точки калибровки должны быть выбраны правильно.Всегда требуется точка 0 ° C или 0,01 ° C. Само значение необходимо для подгонки, но обычно точка обледенения (0 ° C) или тройная точка водяной ячейки (0,01 ° C) также используется для контроля стабильности датчика и измеряется несколько раз во время калибровки. Минимальное количество точек калибровки равно количеству коэффициентов, которые должны быть установлены. Например, для подгонки коэффициентов a4 и b4 ITS-90 ниже нуля необходимы по крайней мере две известные отрицательные калибровочные точки для решения двух неизвестных коэффициентов.Если поведение датчика хорошо известно лаборатории, в этом случае может быть достаточно двух точек. Тем не менее рекомендуется измерять больше точек, чем это абсолютно необходимо, потому что сертификат не может определить, как датчик ведет себя между точками калибровки. Например, фитинг CvD для широкого диапазона температур может выглядеть довольно хорошо, если у вас есть только две или три точки калибровки выше нуля, но может существовать систематическая остаточная ошибка в несколько сотых долей градуса между точками калибровки, которую вы не увидите в все.Это также объясняет, почему вы можете обнаружить разные погрешности калибровки для фитингов CvD и ITS-90 для одного и того же датчика и в одинаковых точках калибровки. Погрешности измеренных точек ничем не отличаются, но к общей погрешности обычно добавляются остаточные ошибки различных фитингов.

Загрузите бесплатный информационный документ

Загрузите бесплатный информационный документ по датчикам температуры Pt100, щелкнув изображение ниже:

Наверх ⇑

Другие сообщения в блоге, связанные с температурой

Если вы заинтересованы в калибровка температуры и температуры, вы можете также заинтересовать другие сообщения в блоге:

Наверх ⇑

Продукты Beamex для калибровки температуры

Пожалуйста, ознакомьтесь с новым калибратором температуры Beamex MC6-T.Идеальный инструмент, например, для калибровки датчика Pt100 и многого другого. Щелкните изображение ниже, чтобы узнать больше:

Пожалуйста, проверьте, какие другие продукты для калибровки температуры предлагает Beamex, нажав кнопку ниже:

И наконец, спасибо, Тони!

И, наконец, особая благодарность г-ну Тони Алатало , который является руководителем нашей аккредитованной лаборатории калибровки температуры на заводе Beamex. Тони предоставил большую помощь и подробную информацию для этого сообщения в блоге.

И наконец, подписывайтесь!

Если вам нравятся эти статьи, пожалуйста, подпишитесь на этот блог , указав свой адрес электронной почты в поле «Подписаться» в правом верхнем углу. Вы будете уведомлены по электронной почте, когда появятся новые статьи.

Как использовать датчик температуры Amazon Echo

Что нужно знать

  • Чтобы использовать датчик температуры Amazon Echo, скажите: « Alexa, какая температура внутри
  • Настройка по группе устройств: в приложении Alexa коснитесь Устройства , выберите группу умного дома > Изменить .Выбрать датчик температуры > Сохранить .
  • Затем вы можете сказать: « Алекса, какая температура у (название группы)?

В этой статье объясняется, как использовать встроенный датчик температуры Amazon Echo, который есть в некоторых устройствах Amazon Echo, включая Echo (4-го поколения) и Echo Plus (2-го поколения). Только Echo и Echo Plus имеют встроенные датчики температуры.

Аналогичные функции доступны для термостатов, совместимых с Alexa, и автономных датчиков температуры.

Как использовать датчик температуры Amazon Echo

Чтобы использовать датчик температуры Amazon Echo, все, что вам нужно сделать, это сказать: «Алекса, какая температура внутри?»

Это работает, только если у вас есть совместимое устройство Echo, и оно работает только при использовании этого устройства Echo. Вы также должны использовать эту точную команду. Варианты этой команды не будут выполнены, или Алекса неверно истолкует.

Если любое другое устройство Echo ответит на ваш вопрос, даже в той же комнате, что и совместимое устройство Echo, оно не сможет определить температуру.

Как настроить датчик температуры Amazon Echo

Чтобы узнать температуру вашего совместимого Echo с других устройств Echo или приложения Alexa, вам необходимо назначить его группе устройств. После того, как вы назначили датчик группе устройств, спросите любое из ваших устройств Echo или даже приложение Alexa о температуре этой группы.

Например, если ваш совместимый Echo находится в вашей гостиной, вы спросите: «Алекса, какая температура в группе гостиной?» или «Алекса, какая температура в гостиной?»

После того, как вы назначили датчик температуры Amazon Echo группе, вы также можете использовать его в процедурах.

Вот как настроить датчик температуры Amazon Echo:

  1. Откройте приложение Alexa на своем телефоне.

  2. Коснитесь Устройства .

  3. Выберите группу Smart Home Device Group , которая включает совместимое устройство Echo.

  4. Выберите Edit .

  5. В разделе «Устройства» выберите датчик температуры и нажмите Сохранить .

  6. Датчик температуры теперь назначен соответствующей группе устройств. В будущем вы сможете получать температуру с этого датчика с любого из ваших устройств Echo или приложения Alexa, сказав: «Алекса, какая температура у (название группы)?»

Как использовать датчик температуры Amazon Echo в повседневной работе

Настройка процедуры датчика температуры Amazon Echo работает так же, как и настройка процедуры Alexa. Вы используете приложение Alexa, создаете распорядок и используете датчик температуры для запуска события в вашем умном доме.

Вот пример того, как настроить процедуру датчика температуры Amazon Echo:

  1. Откройте приложение Alexa.

  2. Нажмите Подробнее .

  3. Коснитесь Подпрограммы .

  4. Коснитесь Plus (+) .

  5. Нажмите Когда это произойдет .

  6. Коснитесь Умный дом .

  7. Коснитесь устройства Echo со встроенным датчиком температуры.

  8. Установите температуру срабатывания с помощью ползунка и коснитесь Сохранить .

    Если вы хотите срабатывать, когда температура опускается ниже определенной точки, нажмите Выше и переключите его на Ниже .

  9. Нажмите Добавить действие .

  10. Выберите действие, которое вы хотите запустить. В этом примере мы будем использовать Alexa Says .

  11. Следуйте инструкциям на экране для вашего конкретного действия и нажмите Далее .

  12. Проверьте стандартные детали и измените все, что нужно изменить.

  13. Когда вы закончите, нажмите Сохранить .

  14. Если ваше действие требует ответа от устройства Echo, выберите предпочтительное устройство.

  15. Теперь ваша рутина готова к работе.

Совместимые с Alexa термостаты и автономные датчики

Хотя только несколько устройств Echo имеют встроенные датчики температуры, есть и другие способы добавить датчики температуры с поддержкой Alexa в ваш дом.Двумя наиболее распространенными вариантами являются термостаты с поддержкой Alexa и автономные датчики температуры.

Если вы устанавливаете интеллектуальный термостат с поддержкой Alexa, вы можете использовать Alexa для определения текущей температуры на термостате в дополнение к повышению или понижению температуры кондиционера или нагрева. Чтобы узнать температуру на одном из этих термостатов, вы спрашиваете: «Алекса, какая температура внутри?» Вы также можете спросить: «Алекса, какая температура у термостата?» или «Алекса, на что установлен термостат?»

Автономные датчики температуры работают примерно так же, как датчики температуры на совместимых устройствах Echo.После подключения одного из этих датчиков к Alexa через Wi-Fi или беспроводной концентратор, вы можете назначить его группе устройств, а затем спросить: «Алекса, какая температура (группа устройств)?»

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять Руководство пользователя датчика температуры поверхности

Go Direct® — Vernier

Датчик температуры поверхности

Go Direct разработан для использования в ситуациях, когда требуется низкая тепловая масса или гибкость.Особые особенности включают открытый термистор, что обеспечивает чрезвычайно быстрое время отклика.

Типичные области применения Go Direct Surface Temperature:

  • Измерение температуры кожи
  • Исследования дыхания человека
  • Эксперименты по теплоемкости
  • Эксперименты по теплопередаче
  • Исследования трения и энергии

Примечание. Продукты Vernier предназначены для использования в образовательных целях.Наши продукты не предназначены и не рекомендуются для каких-либо промышленных, медицинских или коммерческих процессов, таких как жизнеобеспечение, диагностика пациентов, контроль производственного процесса или промышленные испытания любого рода.

Зарядка датчика

Подключите Go Direct Surface Temperature к прилагаемому кабелю Micro USB и любому устройству USB на два часа.

Вы также можете зарядить до восьми датчиков температуры поверхности Go Direct с помощью нашей зарядной станции Go Direct, которая продается отдельно (код заказа: GDX-CRG).Светодиод на каждой температуре поверхности Go Direct указывает состояние зарядки.

Зарядка

Синий светодиод горит постоянно, когда датчик подключен к зарядному кабелю или зарядной станции.

Полностью заряжена

Синий светодиод не горит, когда зарядка завершена.

Использование продукта

Подключите датчик, следуя инструкциям в разделе «Начало работы» данного руководства пользователя.

Важно: Go Direct Surface Temperature предназначен для использования только на воздухе и в воде. Для измерения температуры в более суровых условиях, когда требуется более прочный датчик, мы рекомендуем нашу Go Direct Temperature (код заказа GDX ‑ TMP).

Уход и обслуживание

Информация о батарее

Go Direct Surface Temperature содержит небольшую литий-ионную батарею в ручке. Система спроектирована так, чтобы потреблять очень мало энергии и не предъявлять высоких требований к батарее. Хотя гарантия на аккумулятор составляет один год, ожидаемый срок службы аккумулятора должен составлять несколько лет. Сменные батареи можно заказать в Vernier (код заказа: GDX-BAT-300).

Хранение и обслуживание

Чтобы сохранить температуру поверхности Go Direct в течение длительного времени, переведите устройство в спящий режим, удерживая кнопку нажатой не менее трех секунд.Красный светодиод перестанет мигать, показывая, что устройство находится в спящем режиме. Через несколько месяцев аккумулятор разрядится, но не будет поврежден. После такого хранения зарядите устройство в течение нескольких часов, и устройство будет готово к работе.

Воздействие на аккумулятор температуры выше 35 ° C (95 ° F) сокращает срок его службы. По возможности храните устройство в месте, которое не подвергается резким перепадам температур.

Водонепроницаемость

Корпус датчика температуры поверхности Go Direct не является водонепроницаемым, и его нельзя погружать в воду.

Если вода попадет в устройство, немедленно выключите его (нажмите и удерживайте кнопку питания более трех секунд). Отсоедините датчик и зарядный кабель и снимите аккумулятор. Перед повторной попыткой использования дайте устройству полностью высохнуть. Не пытайтесь сушить с помощью внешнего источника тепла.

Как работает датчик

В этом пробнике используется термистор NTC 20 кОм, который представляет собой переменный резистор.При повышении температуры сопротивление нелинейно уменьшается. Наилучшим приближением к этой нелинейной характеристике является уравнение Стейнхарта-Харта. При 25 ° C сопротивление составляет примерно 4,3% на ° C. Интерфейс измеряет значение сопротивления, R , при определенной температуре и преобразует сопротивление, используя уравнение Стейнхарта-Харта:

T = [K 0 + K 1 (ln 1000R) + K 2 (ln 1000R) 3 ] -1 — 273.15

, где T — температура (° C), R — измеренное сопротивление в кОм, K o = 1,02119 × 10 -3 , K 1 = 2,22468 × 10 -4 и K 2 = 1,33342 × 10 -7 . Наши программы выполняют это преобразование и предоставляют показания в ° C (или других единицах, если вы загружаете другую калибровку).

Информация о ремонте

Если вы выполнили действия по устранению неполадок, но проблема с датчиком температуры поверхности Go Direct не устранена, обратитесь в службу технической поддержки Vernier по адресу support @ vernier.com или позвоните 888‑837‑6437. Специалисты службы поддержки будут работать с вами, чтобы определить, нужно ли отправлять устройство в ремонт. В это время будет выдан номер разрешения на возврат товара (RMA) и даны инструкции о том, как вернуть устройство для ремонта.

Утилизация

Не утилизируйте это электронное изделие как бытовые отходы. Его утилизация регулируется правилами, которые различаются в зависимости от страны и региона. Этот предмет необходимо сдать в соответствующий пункт сбора для утилизации электрического и электронного оборудования.Обеспечивая правильную утилизацию этого продукта, вы помогаете предотвратить возможные негативные последствия для здоровья человека или окружающей среды. Переработка материалов поможет сохранить природные ресурсы. Для получения более подробной информации об утилизации этого продукта обратитесь в местную городскую администрацию или в службу утилизации.

Информацию об утилизации батарей

можно найти на сайте www.call2recycle.org

Не протыкайте аккумулятор и не подвергайте его чрезмерному нагреву или пламени.

Показанный здесь символ указывает на то, что этот продукт нельзя выбрасывать в стандартный контейнер для отходов.

Модуль датчика температуры: инсолярная опора

Модуль температуры состоит из датчика PT-100, установленного на задней стороне PV панели, и датчика Comeco. PT-100 имеет выход в мВ. Преобразователь преобразует мВ в 4-20 мА.

Аналоговые сигналы (датчики температуры) подключаются к устройству аналог-Modbus ADAM 4117 или EX9017

1.Посетите панель Inaccess SCADA. Проверьте, включен ли ADAM4117 или EX9017. Вы можете подтвердить это по светодиодам на устройствах.

2. На каждый датчик подается питание 24 В, а обратный кабель подключается к клеммным колодкам (и, следовательно, к ADAM или EX), как показано ниже. Источник питания подключается к клеммным колодкам 1, 3, 5 и т. Д. (Соединены перемычкой)


3. Посетите датчик. К клемме 4 подключен источник питания 24 В постоянного тока. К клемме 5 подключен обратный кабель.Измерьте напряжение постоянного тока между 4 и заземленной частью (не между 4 и 5). Это напряжение должно быть 24 В.

4. Отсоедините кабель от клеммы 5 и измерьте напряжение постоянного тока между 5 и заземленной частью.

Оно должно быть 22-23 Вольт. Если это 24 или 0 Вольт, датчик неисправен и нуждается в замене.

5. Снова подключите кабель к клемме 5.

6. Вернитесь в панель Inaccess SCADA.

В соответствии с файлом детального проектирования найдите, к какому каналу AI ADAM4117 / EX9017 подключен модуль

температуры.Приведем пример.

В файле детального проекта вы обнаружили, что температура модуля связана с AI1.

Отсоедините кабель от клеммной колодки 4 (это обратный кабель). Измерьте напряжение между этим кабелем и клеммой заземления. Он должен дать примерно то же значение, что и в шаге 4. Если он равен 0, значит, кабель между датчиком и стороной недоступности поврежден, и технику необходимо заменить его.

Если значение такое же, как в шаге 4, то, вероятно, проблема связана с каналом ADAM / EX.

7. Если проверки на всех вышеупомянутых шагах прошли успешно, вы можете заменить обратный кабель на запасной канал (для этого примера — запасные клеммы 8,10) и позвонить в службу поддержки, чтобы прочитать значение для нового канала.

: ответы на часто задаваемые вопросы, руководство по установке и устранение неполадок — поддержка ecobee


Эта статья применима ко всем термостатам ecobee, кроме Smart, Smart SI, EMS и EMS SI.

Часто задаваемые вопросы

Что такое комнатные датчики?

Датчик температуры помещения ecobee

и датчик SmartSensor нового поколения — единственные датчики термостата, которые определяют наличие как температуры , так и присутствия.

Они разработаны в качестве дополнения к датчикам температуры и присутствия, встроенным в термостат ecobee *, раскрывая весь потенциал вашего ecobee.

Установите эти портативные электростанции по всему дому, чтобы обеспечить комфорт в наиболее важных комнатах (спальни, детская, гостиная и т. Д.), И разместите их в комнатах, в которых слишком жарко или слишком холодно для более сбалансированной температуры во всем доме.

Доступ к их показаниям удаленно с помощью приложения ecobee или веб-портала.

Комнатные датчики

совместимы со SmartThermostat с голосовым управлением, ecobee4, ecobee3 lite и ecobee3. Если вы решите модернизировать или переключить термостаты, вы можете отсоединить датчики от старого термостата и подключить их к новому.

* ecobee3 lite не имеет встроенного датчика присутствия. Не беспокоиться! Вы можете подключить к нему комнатные датчики, чтобы воспользоваться преимуществами интеллектуальных функций ecobee, таких как Smart Home / Away и Follow Me.

Как я могу использовать их дома?

Нет неправильного способа использования комнатных датчиков.

Разместите датчик в комнате с интенсивным движением для определения присутствия людей, чтобы воспользоваться преимуществами интеллектуальных функций ecobee, таких как «Умный дом / В гостях» и «Следуй за мной». Другие места, которые отлично подходят для комнатных датчиков, включают области, которые либо теплее, либо прохладнее, чем остальная часть вашего дома. Использование комнатных датчиков с вашим ecobee может помочь вам достичь более сбалансированной температуры во всем доме за счет минимизации горячих или прохладных точек.

Каждый раз, когда вы подключаете комнатный датчик к термостату Ecobee, вас спрашивают, какие настройки комфорта (например,грамм. Home, Away и Sleep), в котором вы хотели бы участвовать. Например, если вы устанавливаете комнатный датчик в своей спальне, но не проводите там много времени, когда не спите, вы можно выбрать, чтобы комнатный датчик в спальне участвовал только в настройке комфорта сна. Это гарантирует, что в вашей спальне всю ночь будет поддерживать желаемую температуру. Не ложитесь спать слишком жарко или слишком холодно!

Для того, чтобы лучше всего определять изменения присутствия, лучше всего разместить комнатный датчик на высоте около пяти футов от земли в месте, обращенном ко всей комнате.Избегайте мест, где датчик может контактировать с любым внешним фактором, который может повлиять на его показания. Это могут быть вентиляционные отверстия, вентиляторы и прямой солнечный свет.

Технические характеристики комнатного датчика

Обнаружение присутствия и температуры

  • Определяет температуру и присутствие людей и передает эти показания на термостат.
  • При обнаружении присутствия используется инфракрасная технология для определения тепловых характеристик тела.
  • Занятость определяется постоянным присутствием человека в пределах угла обзора датчика помещения, а не просто обнаружением движения.Чем больше времени вы проводите перед определенным датчиком, тем больший вес ваш экоби придает показаниям этого датчика.

Связь

  • Комнатные датчики используют радиоволны 915 МГц, а не Wi-Fi, для безопасной и энергоэффективной связи с термостатом Ecobee.

Диапазон и угол обзора

  • Диапазон: до 45 футов от термостата (барьеры и препятствия, такие как толстые стены или разные полы, а также другие устройства, вещающие на той же частоте 915 МГц, такие как радионяня, беспроводные телефоны и т. Д., может более низкий диапазон).
  • Угол обзора: примерно 120 ° по горизонтали и 25–30 ° по вертикали.

Аккумулятор

Термостаты

ecobee могут поддерживать до 32 комнатных датчиков.

Какие термостаты совместимы с комнатными датчиками?

Комнатные датчики

совместимы со следующими термостатами:

  • SmartThermostat с голосовым управлением
  • экоби4
  • ecobee3 lite
  • ecobee3

Где я могу увидеть состояние каждого датчика помещения?

Перейдите в ГЛАВНОЕ МЕНЮ> ДАТЧИКИ на термостате, в приложении ecobee или на веб-портале и найдите следующие значки:

Датчик в настоящий момент активен / участвует (датчик залит белым)

Датчик в настоящее время неактивен / не участвует (датчик полый)

Датчик не подключен и не участвует (датчик полый, сигнальные волны отсутствуют)

Дополнительные сведения см. В разделе ниже, посвященном параметрам «Участие датчиков» и «Настройки комфорта» .


Настройка и функции

Сопряжение нового датчика

Чтобы активировать комнатный датчик, убедитесь, что ваш экоби не спит (на фото ниже), встав перед ним или прикоснувшись к экрану. Вам может потребоваться выйти из меню или сначала очистить полноэкранные предупреждения.

Когда ваш термостат находится на главном экране:

1) Осторожно потяните за пластиковый язычок на задней стороне датчика.

2) Найдите сообщение на экране вашего экоби.4-значный идентификатор должен совпадать с 4-значным кодом на задней панели датчика. Нажмите Сопряжение сейчас , чтобы подтвердить сопряжение.

3) Выберите имя датчика из списка или введите собственное имя, выбрав Enter Your Own . Когда закончите, нажмите Далее .

4) Выберите, в каких настройках комфорта (например, «Дома», «Нет дома» и «Сон») вы хотите, чтобы датчик помещения участвовал, установив или сняв флажки. Когда датчик участвует в настройке комфорта, его показания температуры используются вместе с показаниями термостата для расчета средней температуры в нескольких комнатах.

5) Нажмите Далее, , затем Готово, , когда закончите.

Советы:

  • Если вы не уверены, какие настройки хотите использовать, оставьте пока все флажки установленными. Вы всегда можете изменить настройки участия позже, перейдя в ГЛАВНОЕ МЕНЮ > ДАТЧИКИ> Прикосновение к соответствующему датчику> УЧАСТИЕ . Узнайте больше об участии сенсора в следующем разделе.
  • Если запрос на сопряжение с датчиком помещения не появляется на экране вашего ecobee, и вы уверены, что находитесь на главном экране, ознакомьтесь с разделом об устранении проблем с сопряжением.

Комнатный датчик отсоединения

Чтобы отключить датчик комнатной температуры:

1. На термостате выберите h амбургер меню ().

2. В главном меню термостата выберите Датчики .

3. Нажмите на датчик, который хотите удалить.

4. Выберите значок корзины в правом верхнем углу, затем выберите Отменить сопряжение .

Датчик участия и настройки комфорта

Расписание вашего экоби состоит из температурных профилей, которые называются «Настройки комфорта».По умолчанию у вашего экоби есть три режима комфорта: дома, вдали от дома и спать. Вы также можете создать дополнительные пользовательские настройки комфорта через веб-портал.

Comfort Settings следит за тем, чтобы в вашем доме поддерживалась правильная температура во время определенных занятий в вашем графике.

Например, когда вы дома, ваш термостат Ecobee может включить обогрев, если температура упадет ниже 70F, и включить охлаждение, если температура поднимется выше 78F. Или, когда вас нет, включайте обогрев, только если температура опускается ниже 62F, и включайте охлаждение, если температура поднимается выше 85F.

Выбирая, какие датчики участвуют в каждой настройке комфорта, вы полностью контролируете, какие датчики использует термостат Ecobee для расчета средней температуры. Имейте в виду, что в каждой настройке комфорта должен быть хотя бы один задействованный датчик.

Настройте свой комфорт, изменив настройки участия датчика

Для максимального комфорта в ночное время вы можете решить, что единственный датчик, который вы хотите включить в настройку комфорта сна, — это датчик в вашей спальне.

В самое загруженное время суток, когда активна настройка домашнего комфорта, вы можете задействовать несколько датчиков; например датчик вашей гостиной, датчик на кухне и встроенный датчик присутствия вашего термостата.

Есть два способа изменить настройки участия:

ГЛАВНОЕ МЕНЮ> ДАТЧИКИ> Коснитесь датчика, который вы хотите изменить> УЧАСТИЕ

ИЛИ

ГЛАВНОЕ МЕНЮ> НАСТРОЙКИ КОМФОРТА> Коснитесь параметра комфорта, который вы хотите изменить> Редактировать участвующие датчики

Room Sensor вопросы и ответы об участии

Как мой термостат Ecobee управляет включением датчика, когда он меняет одну настройку комфорта на другую (например,грамм. из дома в сон или из дома вдали)?

Поскольку каждая настройка комфорта может иметь совершенно разное сочетание задействованных датчиков, резкое изменение одной настройки комфорта на другую может привести к быстрому повышению или падению средней температуры. Чтобы этого избежать, ваш экоби постепенно переходит от одной настройки комфорта к другой. Обычно этот процесс занимает около 30 минут.

Как работает датчик, когда я регулирую температуру вручную?

Регулировка температуры с помощью ползунка температуры вашего экоби или в приложении активирует настройку домашнего комфорта.(Это называется удержанием вручную.)

Когда активна настройка домашнего комфорта, ваш ecobee устанавливает температуру, усредняя показания температуры от каждого датчика помещения, участвующего в этой настройке комфорта. (Чтобы возобновить запланированную настройку комфорта, нажмите значок X на главном экране вашего ecobee; используя приложение? Нажмите Отмена на главном экране термостата.)

Полезно знать: По умолчанию удержание вручную продолжается, пока вы его не отмените.Вы можете настроить этот параметр в соответствии с вашими предпочтениями, перейдя на следующий экран на термостате или в приложении: ГЛАВНОЕ МЕНЮ> НАСТРОЙКИ> ПРЕДПОЧТЕНИЯ> УДЕРЖИВАТЬ ДЕЙСТВИЕ

Когда комнатный датчик не участвует в настройке комфорта, что мой термостат Ecobee делает с его показаниями?

Когда датчик не участвует, он по-прежнему сообщает о температуре термостату, но показания не используются для определения средней температуры в доме.

Как узнать, какие датчики участвуют в текущей настройке комфорта?

Перейдите в ГЛАВНОЕ МЕНЮ> ДАТЧИКИ на термостате, в приложении ecobee или на веб-портале и найдите следующие значки:

Датчик в настоящий момент активен / участвует (датчик залит белым)

Датчик в настоящее время неактивен / не участвует (датчик полый)

Датчик не подключен и не участвует (датчик полый, сигнальные волны отсутствуют)

ПРИМЕЧАНИЕ. Smart Home / Away теперь является частью eco +.Если у вас есть eco + на вашем термостате, вам нужно будет установить его на Включено, чтобы Smart Home / Away работал.

При включенном Smart Home / Smart Away, когда ваш термостат определяет, что вы дома во время запланированного периода отсутствия или отсутствуете в течение запланированного периода дома, он автоматически переопределит ваше расписание для комфорта (Smart Home) или экономии (Smart Away). Таким образом, даже когда ваше расписание меняется, ваш экоби умеет приспосабливаться самостоятельно, помогая вам экономить энергию и оставаться комфортным.

Smart Home / Away работает независимо от правил участия датчиков, которые вы установили в своих настройках комфорта. Другими словами, он воздействует на показания присутствия всех ваших датчиков, а не только тех, которые участвуют в запланированной настройке комфорта. Умный дом и Smart Away не могут быть активированы во время запланированного периода сна.


Как это работает

Используя информацию о занятости, сообщаемую встроенным датчиком присутствия термостата вашего ecobee * и датчиками помещения, сопряженными с вашим ecobee, Smart Home / Away отслеживает приходы и уходы членов вашей семьи, чтобы установить температуру для комфорта или экономии.

Умный дом

Когда ваш экоби чувствует чей-то дом во время запланированного периода отсутствия …

И выполняются следующие условия:

  • Параметр «Нет на месте» или «Пользовательский комфорт на месте» активен более часа.
  • Умный дом не был активен как минимум два часа.

«Умный дом» интеллектуально включает настройку домашнего комфорта для максимального комфорта.

Как долго работает Умный дом?

Когда он активен, Умный дом будет действовать до a) пройдет два часа без обнаружения присутствия; б) аннулировано; или c) начало следующей запланированной настройки комфорта.

Какие уставки температуры действуют во время работы Умного дома?

«Умный дом» использует заданные значения температуры и холода в Настройках домашнего комфорта.

Smart Away

Когда ваш экоби чувствует, что никого нет дома во время запланированного домашнего периода…

А:

  • В течение двух часов подряд во время запланированного периода «Дом» или во время работы «Умного дома» занятость не обнаружена.

Smart Away интеллектуально отменяет ваш обычный график, помогая вам сэкономить на счетах за электроэнергию.

Как долго работает Smart Away?

Smart Away работает до тех пор, пока не обнаружит присутствие или до начала следующего запланированного периода отсутствия.

Какие уставки температуры действуют при работе Smart Away?

Поскольку ваш термостат Ecobee знает, что ему придется восстановить разницу температур, если вы вернетесь, он устанавливает температуру, при которой он может быстро вернуть ваш дом к заданным значениям домашнего комфорта, сохраняя при этом энергию.(Обычно на 1–4 ° по Фаренгейту ниже, чем заданное вами домашнее значение. *)

* Фактическое число основано на текущем анализе вашей ecobee способности вашего оборудования HVAC восстанавливать температурный разрыв.

Как включить Умный дом / В гостях

На экране термостата или в приложении перейдите в: ГЛАВНОЕ МЕНЮ> ДАТЧИКИ> SMART HOME / AWAY> установите значение Включено

Как узнать, когда активен Smart Home или Smart Away

Обратите внимание на следующие индикаторы на вашем термостате:

Умный дом:

Smart Away:

Работая рука об руку с вашими настройками комфорта, режим Follow Me позволяет вам достичь комфорта там, где это наиболее важно.При включенном Follow Me ваши комнатные датчики определяют, в каких комнатах вы и ваша семья находитесь, а ваш ecobee устанавливает температуру в вашем доме, чтобы обеспечить комфорт в этих комнатах.

Когда включен режим Follow Me, ваш термостат:

  1. Снимает показания температуры и присутствия с каждого датчика, участвующего в запланированной настройке комфорта.
  2. Распределяет их в соответствии с тем, где вы проводите больше всего времени.
  3. На основе рейтинга вычисляет оптимальную температуру в доме для активной настройки комфорта.

Как включить режим Follow Me

Перейдите в ГЛАВНОЕ МЕНЮ> ДАТЧИКИ> СЛЕДУЙТЕ ЗА МНЕ> установите значение «Включено» на экране термостата или в приложении.

Вопросы и ответы в режиме «Следуй за мной»

Что произойдет, если ни один из датчиков, участвующих в активной настройке комфорта, не сообщит о движении?

Если ни один из участвующих датчиков не сообщает о движении в течение 30 минут, ваш экоби будет устанавливать температуру на основе среднего значения всех участвующих датчиков (даже при настройке комфорта сна).

В этот вечер я провожу большую часть своего времени в гостиной, и я просто прошел мимо комнатного датчика на своей кухне. Я не хочу, чтобы одно показание датчика на кухне определяло температуру в моем доме. Какой вес мой ecobee присваивает одному показанию в режиме Follow Me по сравнению со многими показаниями датчика в гостиной?

Если вы проходите мимо датчика, который определяет присутствие человека, вес, который ваш экоби назначает этому единственному показанию при расчете температуры в доме, будет низким.В этом сценарии большая часть веса будет отдана показаниям датчика присутствия в вашей гостиной. Другими словами, чем больше времени вы проводите перед определенным датчиком, тем больший вес ваш экоби придает показаниям этого датчика.

Когда я выйду из комнаты, сколько времени пройдет, пока показания этого комнатного датчика не перестанут влиять на расчет усреднения температуры моего экоби?

Follow Me включает в себя задействованные датчики, обнаружившие присутствие в течение последних 30 минут.

Если вы покидаете комнату, и его датчик перестает определять движение, показания температуры этого датчика будут постепенно (а не сразу) удалены из расчета заданного значения вашего ecobee в течение 30-минутного периода.

Если прошло 30 минут, а присутствие не было обнаружено, показания этого датчика будут исключены до тех пор, пока занятость не будет обнаружена снова.

Что произойдет в режиме Follow Me, если я вручную регулирую температуру во время его работы?

Регулировка температуры на термостате или в приложении с помощью ползунка температуры (т.е.е. установка ручного удержания) активирует настройку домашнего комфорта. Когда «Дом» активен, датчики, участвующие в этой настройке комфорта, участвуют в режиме «Следуй за мной».

Чтобы отменить удержание вручную и возобновить запланированную настройку комфорта, коснитесь значка X на главном экране вашего ecobee. Используете приложение? Нажмите Отмена на главном экране термостата.

Устранение неисправностей комнатных датчиков

Комнатный датчик не подключается

Если у вас возникли проблемы с подключением комнатного датчика:

  1. Убедитесь, что на вашем термостате ecobee установлена ​​последняя версия микропрограммы, перейдя в ГЛАВНОЕ МЕНЮ> О на термостате и ища номер, указанный в версии .

    Если ваша версия прошивки устарела, обратитесь в службу поддержки ecobee по телефону 1-877-932-6233 или через Live Chat, чтобы запросить обновление прошивки. Подготовьте серийный номер вашего экоби (находится в ГЛАВНОМ МЕНЮ > О ) или зарегистрированный адрес электронной почты вашего экоби.

  2. Убедитесь, что батарея вашего датчика температуры не разряжена. Если вы не уверены, попробуйте заменить батарею на всякий случай.

После того, как вы подтвердите вышеизложенное, выполните следующие действия для сопряжения комнатного датчика:

  1. Снимите заднюю крышку с датчика и извлеките аккумулятор.
  2. Выключите и включите термостат ecobee, сняв его со стены и оставив выключенным примерно на две минуты.
  3. Верните термостат Ecobee на стену и подождите, пока он включится.
  4. Снова вставьте батарею в датчик помещения и поднесите его к экоби.

Вы должны увидеть запрос на сопряжение датчика помещения на экране вашего экоби. Если запрос не появляется, обратитесь в нашу службу поддержки по телефону 1-877-932-6233 или через чат для получения дополнительной помощи.

Комнатный датчик считывает Н / Д — Отключение и повторное сопряжение

Когда датчик теряет связь с термостатом Ecobee, он отображается в разделе ГЛАВНОЕ МЕНЮ> ДАТЧИКИ на вашем термостате и в приложении в виде полого датчика без волн сигнала и с надписью «N / A» внизу:

Датчик может потерять соединение с термостатом Ecobee, если:

  • Батарея разряжена.
  • Это слишком далеко от вашего экоби (более 45 футов).
  • Имеются помехи от факторов окружающей среды (стены или другие устройства, передающие на той же частоте 915 МГц, такие как радионяня, беспроводной телефон и т. Д.)

Отключение и повторное сопряжение комнатного датчика
  1. Отключите соответствующий датчик от термостата ecobee, зайдя в ГЛАВНОЕ МЕНЮ> ДАТЧИКИ , выбрав датчик, затем нажав значок корзины и следуя подсказкам.
  2. Снимите заднюю крышку с датчика и извлеките аккумулятор.
  3. Выключите и включите термостат ecobee, сняв его со стены и оставив выключенным примерно на две минуты.
  4. Верните термостат Ecobee на стену и подождите, пока он включится.
  5. Вставьте аккумулятор обратно в датчик, а крышку аккумулятора или подставку датчика в отсек для аккумулятора.
  6. Теперь на экране вашего экоби должен появиться запрос на сопряжение датчика.

Если этот метод сопряжения оказался неудачным, попробуйте заменить батарею в датчике.Низкий заряд батареи приведет к частым отключениям и может помешать повторному сопряжению датчика.

Совет: Датчик, расположенный слишком далеко от термостата Ecobee, и / или помехи от других электронных устройств также могут быть источником частых отключений. Чтобы проверить, так ли это, попробуйте оставить датчик рядом с экоби на 24 часа; Если датчик остается подключенным в течение этих 24 часов, можно с уверенностью предположить, что вы изначально разместили датчик слишком далеко от экоби или что в других частях вашего дома могут быть устройства, которые мешают передаче сигнала.

Замена батареи датчика комнатной температуры включает в себя аккуратное снятие крышки батарейного отсека, извлечение батареи и ее замену новой плоской батареей CR-2032, вставленной положительной стороной вверх. В комнатных датчиках

ecobee используются 3-вольтовые батареи CR-2032, которые можно приобрести здесь.

Если ваш датчик использует подставку для датчика:

  1. Поместите большой и указательный пальцы на узкую часть подставки для датчика, а другую руку — на переднюю часть датчика.
  2. Осторожно потяните вверх, чтобы освободить датчик.
  3. Извлеките аккумулятор, осторожно вынув его из аккумуляторного отсека тонким инструментом, например ручкой, пластиковой картой или отверткой.

Если в вашем датчике используется круглая крышка аккумуляторного отсека:

  1. Используя тонкий инструмент, например ручку, пластиковую карточку или отвертку, вставьте инструмент в один из углов крышки батарейного отсека.
  2. Осторожно подденьте крышку аккумуляторного отсека.
  3. Используя тот же инструмент, осторожно извлеките аккумулятор из аккумуляторного отсека.

Установка новой батареи:

Убедитесь, что аккумулятор вставлен положительной (+) стороной вверх, как показано здесь. Вам нужно будет осторожно надавить на батарею, чтобы металлические выступы удерживали ее на месте.

Повторное сопряжение комнатного датчика

  1. Снимите крышку аккумуляторного отсека или подставку для датчика с задней стороны датчика.
  2. Извлеките аккумулятор, осторожно вынув его из аккумуляторного отсека тонким инструментом, например ручкой, пластиковой картой или отверткой.
  3. Осторожно поднимите выступы в середине отсека для батареи указательным ногтем.
  4. Вставьте аккумулятор обратно в отсек для аккумулятора так, чтобы положительный полюс (+) был направлен на вниз на на две минуты.
  5. Извлеките аккумулятор и вставьте его обратно положительной стороной вверх.
  6. Установите крышку аккумуляторного отсека или подставку для датчика в отсек для аккумулятора.

    На экране термостата должно появиться сообщение с просьбой подключить комнатный датчик к термостату.Следуйте подсказкам.

Постоянное сообщение о сопряжении на термостате

Если ваш термостат Ecobee пытается выполнить сопряжение с датчиком помещения, это означает, что имеется несопряженный датчик помещения с батареей, вставленной в пределах диапазона обнаружения (45 футов) термостата.

Рассмотрим следующее:

  • Когда на вашем ecobee отображается сообщение о сопряжении датчиков, обратите внимание на 4-значный идентификатор в верхней части сообщения. Этот идентификатор соответствует идентификатору на задней панели датчика помещения.Убедитесь, что это не соответствует ни одному из ваших датчиков.
  • Если вы живете в густонаселенном районе, где у соседа есть экоби, возможно, термостат вашего экоби обнаруживает их непарный датчик. В этом случае выполните следующие действия, чтобы добавить ненужный датчик помещения в список игнорируемых датчиков.

Как добавить комнатный датчик в список игнорируемых датчиков:

1) Убедитесь, что ваша прошивка ecobee обновлена, перейдя в ГЛАВНОЕ МЕНЮ> О на термостате и ища номер, указанный под Версия .

Если ваша версия прошивки устарела, обратитесь в службу поддержки ecobee по телефону 1-877-932-6233 или через Live Chat, чтобы запросить обновление прошивки. Пожалуйста, имейте под рукой серийный номер вашего экоби (находится в ГЛАВНОЕ МЕНЮ> О ) или зарегистрированный адрес электронной почты вашего экоби.

2) Когда на вашем термостате появится сообщение о сопряжении дистанционного датчика, нажмите Нет, больше не спрашивать , а затем Да, игнорировать .

Это добавит датчик в список игнорируемых датчиков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *