Таймер на ne555 – Микросхема 555 практическое применение — Схемы радиолюбителей

Содержание

Легендарный таймер NE555 – описание и применение микросхемы

Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он  до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.

Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.

555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.

Интегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе  комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)

Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.

Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.

Основные характеристики интегрального таймера NE555

  • Максимальная частота более чем 500 кГц.
  • Длина одного импульса от 1 мсек до часа.
  • Может работать в режиме моностабильного мультвибратора.
  • Высокий выходной ток (до 200 мА)
  • Регулируемая скважность импульса (отношение периода импульса к его длительности).
  • Совместимость с TTL уровнями.
  • Температурная стабильность 0,005% на 1 градус Цельсия.

Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.

В следующей таблице перечислены основные свойства NE555

Назначение выводов таймера NE555

№2 — Запуск (триггер)

Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.

№4 – Сброс

Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.

№5 — Контроль

Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.

№6 — Стоп (компаратор)

Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.

№7 — Разряд

Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.

№3 – Выход

Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.

Таймер NE555 — схема включения

Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.

Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.

Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.

Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в индуктивности в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.

Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.

Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.

Скачать калькулятор и datasheet для таймера NE555 (скачено: 3 916)

Микросхемы UA741, LM324, LM393, LM339, NE555, LM358

Таймер на NE555P своими руками


Привет всем любителям самоделок. В данной статье я расскажу, как сделать простой таймер на микросхеме NE 555P, в сборке которой нам поможет кит-набор, заказать который можно по ссылочке в конце статьи. На основе данного кит-набора можно сделать, например, мигалку или периодическое включение какого-либо устройства.

Данный кит-набор подойдет для начинающих радиолюбителей, чтобы освоить работу с паяльником, так как не требует особых навыков.

Перед тем, как перейти к прочтению статьи, предлагаю посмотреть видео с полным процессом сборки, а также проверки готового кит-набора.

Для того, чтобы сделать таймер на NE 555P, понадобится:
* Кит-набор
* Паяльник, припой, флюс
* Бокорезы
* Приспособление для пайки «третья рука»
* Отвертка с плоским шлицем
* Блок питания для проверки готового устройства

Шаг первый.
Для начала рассмотрим комплект поставки радиоконструктора.

В комплекте у нас есть печатная плата, выполнена она довольно неплохо и имеет контакты с двух сторон со всеми подписанными компонентами, чтобы не ошибиться, так как инструкции к радиоконструктору нет.



В основе таймера лежит микросхема NE 555P, также в кит-наборе есть два переменных резистора для подстройки времени срабатывания таймера.


На своей плате таймер имеет разъемы, при помощи которых переставляя перемычку будет изменяться конденсаторы разной емкости, что повлияет на время срабатывания таймера.

Шаг второй.
Первым делом устанавливаем плату в специальный зажим для пайки «третья рука».

Зачинаем расставлять компоненты. В комплекте у нас всего один резистор, поэтому измерять его номинальное сопротивление не нужно.

При необходимости сопротивление можно измерить при помощи мультиметра или же цветовой маркировке на корпусе.
Шаг третий.
Устанавливаем неполярные керамические конденсаторы, на их корпусе присутствует номер, также они указаны и на плате.

Вставляем компоненты и загинаем их выводы, чтобы при пайки они не выпали.

Далее вставляем полярные конденсаторы, их у нас в схеме три и имеют разную емкость. На их корпусе нанесена белая полоска, напротив нее находится минусовой вывод, плюс конденсатора это длиная ножка. На плате минус обозначен штриховкой, вставляем конденсаторы согласно номиналам на корпусе и плате.

Шаг четвертый.
Теперь установим сердце таймера, а именно микросхему NE 555P, устанавливаем ее согласно ключу на корпусе, выполненный в виде круглой выемки, которая повторяется на маркировке печатной платы.

Ставим красный светодиод на свое место, его длиная ножка это плюс, короткая минус. На плате черточка это минусовой контакт, треугольник- плюсовой. Далее вставляем два переменных резистора и выводы для подключения питания и перемычки для смены времени срабатывания таймера.

Шаг пятый.
Все компоненты на плате установлены. Наносим флюс для лучшей пайки и припаиваем выводы к контактам платы.


После пайки удаляем остатки выводов при помощи бокорезов. При откусывании выводов бокорезами будьте аккуратны, так как нечаянно можно удалить и дорожку с платы.

Шаг шестой.
Пришло время протестировать таймер. Подключаем блок питания к контактам на плате и устанавливаем перемычку в любое из четырех положений. Светодиод мигает, а значит кит-набор рабочий, время срабатывания можно изменить при помощи отвертки, вращая винт переменных резисторов, а также переставляя перемычку в другое положение, тем самым переключая емкость в зависимости от подключенного конденсатора.


На этом у меня все, всем спасибо за внимание и творческих успехов.

Купить Kit-набор на Aliexpress

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

ПРОСТОЙ ТАЙМЕР НА МИКРОСХЕМЕ NE555

Этот  очень простой хозяйственный таймер имеет 6 фиксированных выдержек времени: 1, 2, 5, 10, 15 и 30 минут (в зависимости от ваших потребностей, вы можете легко увеличить или уменьшить число выдержек времени). Этот таймер может пригодиться как в домашнем хозяйстве так и в промышленных условиях.

Схему таймера можно условно разделить на две части: блок питания и собственно таймер.  Блок питания содержит понижающий сетевой трансформатор X1, диодный мостик BR1, электролитический конденсатор большой емкости C1, сглаживающий пульсации выпрямленного напряжения, и 12-вольтовый регулятор напряжения типа LM7812

Принципиальная схема простого таймера на NE555

В случае необходимости схема может работать от батареи напряжением 12 вольт. Эта батарея показана на схеме (BATT.1). Переключателем S2 можно выбрать источник питания для таймера — батарея или выпрямитель. если питание от батареи не требуется, элементы BATT.1 и S2 не нужны.

Для начала процесса отработки времени служит кнопка «START» (S1). При нажатии на эту кнопку сработает электромагнитное реле RL1 и подключит нагрузку к сети 220в. По истечении заданного промежутка времени реле отпустит и разомкнет цепь питания нагрузки.

Работа схемы очень проста. Конденсатор С1 заражается через резистор ил цепочку резисторов R1 — R6. В момент нажатия на кнопку «START» (S3) таймер включается и на его выходе (3) появляется высокий уровень напряжения. Высокий уровень  напряжения на выходе микросхемы остается таким в течение времени, которое выбирается переключателем S1. Высокий уровень напряжения на выходе микросхемы 555 открывает транзистор Т1, в цепь коллектора которого включена обмотка электромагнитного реле RL1. Реле срабатывает, его контакты замыкаются и включают нагрузку в сеть 220 вольт.

Электромагнитное реле должно быть рассчитано на напряжение 12 вольт. а его контакты должны быть способны коммутировать ток, потребляемый предполагаемой нагрузкой.

Простой ШИМ регулятор на NE555

С аналоговым интегральным таймером SE555/NE555 (КР1006), выпускаемым компанией Signetics Corporation с далекого 1971 года прекрасно знакомо большинство советских и зарубежных радиолюбителей. Трудно перечислить, для каких только целей не использовалась эта недорогая, но многофункциональная микросхема за почти полувековой период своего существования. Однако, даже несмотря на быстрое развитие электронной промышленности в последние годы, она по-прежнему продолжает пользоваться популярностью и выпускается в значительных объемах.
Предлагаемая Jericho Uno простенькая схемка автомобильного ШИМ-регулятора – не профессиональная, полностью отлаженная разработка, отличающаяся своей безопасностью и надежностью. Это всего лишь небольшой дешевый эксперимент, собранный на доступных бюджетных деталях и вполне удовлетворяющий минимальным требованиям. Поэтому его разработчик не берет на себя ответственности за все то, что может произойти с вашим оборудованием при эксплуатации смоделированной схемы.

Схема ШИМ регулятор на NE555


Простой ШИМ регулятор на NE555
Для создания ШИМ-устройства вам понадобится:
  • электропаяльник;
  • микросхема NE555;
  • переменный резистор на 100 кОм;
  • резисторы на 47 Ом и 1 кОм по 0,5W;
  • конденсатор на 0,1 мкФ;
  • два диода 1N4148 (КД522Б).

Пошаговая сборка аналоговой схемы


Построение цепи начинаем с установки перемычек на микросхему. Используя паяльник, замыкаем между собой следующие контакты таймера: 2 и 6, 4 и 8.
Простой ШИМ регулятор на NE555
Дальше, руководствуясь направлением движения электронов, распаиваем на переменном резисторе «плечи» диодного моста (проход тока в одну сторону). Номиналы диодов подобраны из имеющихся в наличие, недорогих. Можно заменить их любыми другими – это практически не повлияет на работу схемы.
Простой ШИМ регулятор на NE555
Во избежание короткого замыкания и перегорания микросхемы при выкручивании переменного резистора в крайнее положение, ставим по питанию шунтирующее сопротивление в 1 кОм (контакты 7-8).
Простой ШИМ регулятор на NE555
Поскольку NE555 выступает в роли генератора пилы, для получения схемы с заданной частотой, длительностью импульса и паузой, осталось подобрать резистор и конденсатор. Неслышных 18 кГц нам даст конденсатор 4,7 нФ, но такое малое значение емкости вызовет перекос плеч при работе микросхемы. Ставим оптимальную в 0,1 мкФ (контакты 1-2).
Простой ШИМ регулятор на NE555
Избежать противного «пищания» схемы и подтянуть выход к высокому уровню можно чем-то низкоомным, например резистором 47-51 Ом.
Простой ШИМ регулятор на NE555
Осталось подключить питание и нагрузку. Схема рассчитана на входное напряжение бортовой сети автомобиля 12V постоянного тока, но для наглядной демонстрации вполне запустится и от 9V батареи. Подключаем ее на вход микросхемы, соблюдая полярность (плюс на 8 ножку, минус на 1 ножку).
Простой ШИМ регулятор на NE555
Осталось разобраться с нагрузкой. Как видно из графика, при понижении переменным резистором выходного напряжения до 6V пила на выходе (ножки 1-3) сохранилась, то есть NE555 в данной схеме и генератор пилы и компаратор одновременно. Ваш таймер работает в а-стабильном режиме и имеет коэффициент заполнения меньше 50%.
Простой ШИМ регулятор на NE555
Модуль выдерживает 6-9 А проходного постоянного тока, так что при минимальных потерях можно подключить к нему как светодиодную полосу в автомобиле, так и маломощный двигатель, который и дым развеет и лицо в жару обдует. Примерно так:
Простой ШИМ регулятор на NE555
Простой ШИМ регулятор на NE555
Или так:
Простой ШИМ регулятор на NE555
Простой ШИМ регулятор на NE555

Принцип работы ШИМ регулятора


Работа ШИМ регулятора достаточно проста. Таймер NE555 отслеживает напряжение на емкости С. При ее заряде до достижения максимума (полный заряд) происходит открывание внутреннего транзистора и появлению логического нуля на выходе. Далее емкость разряжается, что приводит к закрытию транзистора и приходу к выходу логической единицы. При полном разряде емкости происходит переключение системы и все повторяется. В момент заряда ток идет по одному плечу, а при разряде – по-другому. Переменным резистором мы меняем соотношение сопротивления плеч, автоматически понижая либо увеличивая напряжение на выходе. В схеме наблюдается частичное отклонение частоты, но в слышимый диапазон она не попадает.

Смотирте видео работы ШИМ регулятора


Понимание микросхемы IC 555 таймера.

555 Таймер IC является одним из наиболее часто используемых ИМС среди студентов и любителей. Есть много применений этой микросхемы, в основном используется в качестве вибраторов, АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР, МОНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР и БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА. В данной статье попробуем охватить различные аспекты таймера 555 IC и объяснить его работу в деталях. Так что давайте сначала определим понятия, что такое нестабильные, одностабильные и бистабильные вибраторы.

 АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР

Это означает, что не будет никакого стабильного уровня на выходе. Так что на выходе будет, колебания между высоким и низким уровнем. Эти параметры нестабильного выхода используется как часы для прямоугольной формы выхода для многих приложений.

ОДНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР

Это означает, что будет одно устойчивое состояние и одно неустойчивое состояние. В устойчивом состоянии может быть выбран высокий или низкий уровень самим пользователем. Если стабилизированный выход выбирается высокой, то Таймер всегда пытается поставить высокий уровень на выходе. Поэтому, с низким состоянием уровня Таймер выключается на короткое время и это состояние называют неустойчивым в течении этого времени. Если в стабильное состояние выбирается минимальное значение, и прерывание выхода переходит в состояние высокого на короткое время до прихода низкого значения.

[Узнать больше о одностабильный мультивибратор: 555 Таймер Одностабильный Мультивибратор схема]

 БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА

Это означает выходное состояние стабильно. С каждым прерыванием выход изменяется и остается как есть. Например выход считается высоким сейчас с перерывом она снижается и остается низким. В следующий перерыв он идет высоким.

[Узнать больше о бистабильного мультивибратора: 555 Таймер IC Бистабильного Мультивибратора цепи]

 Важные характеристики Таймера IC 555

NE555 IC и 8 пин устройства. Важные электрические характеристики Таймер заключаются в том, что он не должен включаться выше 15В, это означает, что источник напряжения не может быть выше 15В. Во-вторых, мы не можем сделать больше, чем 100мА с чипа. Если не будете следовать этим, микросхема будет сожжена или повреждена.

 Объяснение работы 

Таймер в основном состоит из двух основных конструкционных элементов, и они являются:

1.Компараторов (два) или два ОУ

2.Один SR мультивибратор (выбор сброса триггера)

555 интегральная схема

Как показано выше есть только два важных компонента в Таймере, это два компаратора и триггер. Необходимо понять что такое компаратор и триггер.

Компараторы: это просто устройство, которое сравнивает напряжение на входных клеммах (инвертирующий (-VE) и неинвертирующий (+VE)). Поэтому в зависимости от разницы в положительной клеммой и отрицательной клеммой на входе в порт, определяется выход компаратора .

Для примера рассмотрим, положительная входная клемма напряжения будет +5В и отрицательной входной клемме будет напряжение +3В. Разница в том, 5-3=+2В. Поскольку разница положительная, мы получаем положительный выброс напряжения на выходе компаратора.

Другой пример: если положительная клемма напряжения +3В, а на отрицательной входной клемме будет напряжение +5В. Разница +3-+5=-2В, так как разница входного напряжения отрицательна. Выход компаратора будет отрицательным пиком напряжения.

 Компаратор

Если для примера рассмотрим положительный входной терминал качестве входных и отрицательного входного разъема в качестве эталона, как показано на рисунке выше. Так что разница напряжения между входным и другим крупным положительным получим положительный выход компаратора. Если разница отрицательная, то мы получим отрицательный или землей на выход компаратора.

SR мультивибратор: эта ячейка памяти может хранить один бит данных. На рисунке мы видим таблицу истинности.

Существует четыре состояния мульвибратора для двух входов; однако мы должны понимать, что только два состояния триггера для этого случая.

SRQQ’ (Q штрих)
0101
1010

Теперь как показано в таблице, для входов сброса и установки мы получаем соответствующие результаты. Если есть импульс на набор PIN-кода и низкий уровень у сброса, то триггер сохраняет значение одного и влияет на высокую логику в Q терминалов. Это состояние продолжается до сброса, PIN получает импульс во время набора и имеет низкую логику. Это приведет к сбросу триггера поэтому выход Q выключается и это состояние продолжается до тех пор, пока триггер устанавливается снова.

Таким образом триггер хранит один бит данных. Вот другое дело, Q и Q-штрих всегда напротив.

В таймере, компаратор и триггер объединены.

Рассмотрим 9В подается на Таймер, из-за делителя напряжения, образованного резисторами внутри таймера, как показано в блок-схеме; там будет напряжение на  контактах компаратора. Так из-за делителя напряжения сети у нас будет +6В на отрицательной клемме первого компаратора. И +3В на плюсовую клемму второго компаратора.

Первый и другой контакт -это один выход компаратора подключен к сбросу контакта мультивибратора,  поэтому если у компаратора, один выход переходит из низкий, то триггер будет сброшен. А с другой стороны второй выход компаратора соединен с мультивибратором, так что если второй выход компаратора переходит из низкого значения мультивибратор хранит по одному.

555 интегральная схема 2

На напряжение не менее +3В на контакт триггера (отрицательный вход второго компаратора), выход компаратора переходит из низкого в высокий, как обсуждалось ранее. Этот импульс определяет мультивибратор и сохраняет одно значение.

Теперь, если мы применяем напряжение выше чем +6В на контакте порога (плюсовой вход одного компаратора) , выход компаратора переходит от низкого к высоким. Этот импульс сбрасывает RS и RS запоминает ноль.

Другое дело происходит во время сброса триггера, когда он сбрасывает разряда получается контакт подключен к земле под именем получает включен Q1 . Транзистор T1 включается, поскольку элементы Q штрих находится на высокой отметке сброса и подключен к базе T1.

В нестабильной конфигурации подключенная емкость сюда сбрасывает в этот момент и поэтому на выходе таймера будет низким в течение этого времени. В нестабильной конфигурации время в течении заряда конденсатора на контакт триггера напряжение будет меньше, чем +3V и поэтому триггер сохраняет одно значение и на выходе будет высоким.

555 нестабильная схема

В нестабильной конфигурации, как показано на рисунке,

Частота выходного сигнала зависит от RA, RB резисторов и конденсатора C. уравнения дается в виде,

Частота(F) = 1/(период времени) = 1.44/((RA+RB*2)*C).

Здесь RA, RB являются значения сопротивлений и C значение емкости. Поставив сопротивление и емкость значения в вышеприведенное уравнение, мы получим частоты выходной квадратной волны.

Высокий уровень логики времени установленно как, TH= 0.693*(RA+RB)*C

Низкий уровень логики времени установленно как, TL= 0.693*RB*C

Скважностью импульсов выходного прямоугольного сигнала заданной как, Скважность= (RA+RB)/(RA+2*RB).

555 Таймер схема и описания

555 контакты

Контакт 1. Земля: этот вывод должен быть подключен к земле.

Контакт 8. Мощности или напряжения питания vcc: этот вывод также не имеет никакой специальной функции. Он подключен к положительному напряжению. На Таймере, чтобы функция сработала, этот вывод должен быть подключен к положительному напряжению в диапазоне +3,6 в до +15в.

Контакт 4. Сброс: как обсуждалось ранее, есть переключатель макросхемы. Выход триггера управляет микросхемой, выход подключен на контакт 3 напрямую.

«Сброс» вывод непосредственно подключен к MR (общий сброс) триггера. При исследовании мы можем наблюдать небольшой цикл на триггере. Когда SR (общий сброс) контакт активным является низкий уровень триггера. Это означает, что для триггера, чтобы сбросить контакт SR напряжение должно идти от высокого к низкому. Этот шаг вниз логики в триггере происходит с трудом уход к низкому уровню. Поэтому выход идет слабо, независимо от каких-либо выводов.

Этот контакт связан с vcc для триггера, чтобы остановить с жесткого сброса.

Контакт 3. Выход: этот вывод также не имеет никакой специальной функции. Этот контакт имеет конфигурацию тяни-толкай (PUSH-PULL), образованной транзисторами.

Данная конфигурация показана на рисунке. Базы двух транзисторов соединены с выходом триггера. Поэтому, когда высокий логический уровень появляется на выходе триггера, то транзистор NPN включается и появляется на выходе +V1. Когда логика появившийся на выходе триггера становится низким, транзистор PNP получает включение и выход подключается к земле или –V1 появляется на выходе.

Таким образом, как конфигурация используется, чтобы получить прямоугольный сигнал на выходе по логике управления с триггера. Основное назначение этой конфигурации — получить загрузку триггера обратно. Но триггер не может выпустить 100мА на выходе.

Ну до сих пор мы обсуждали контакты, которые не изменяют состояние выходов в любом состоянии. Оставшиеся четыре контакта специальные, потому что они определяют состояние выхода таймера микросхемы.

Контакт 5. Контрольной контакт: управляющий вывод соединен с отрицательным входным контактом первого компаратора.

Рассмотрим для случая напряжение между vcc и Землей составляет 9В. Из-за делителя напряжения в микросхеме, напряжение на управляющий вывод будет только vcc*2/3 (для напряжения питания vcc = 9, напряжение на контакте = 9*2/3=6В ).

Эта функция дает пользователю непосредственно контроль за первым компаратором. Как показано в вышеуказанной схемы на выход первого компаратора подается на сброс триггера. На этот вывод мы можем поставить различные напряжения, скажем, если мы подключаем его к +8В. Сейчас происходит то, что порог контактного напряжение должно достигать +8В до сброса триггера и тащить на выход вниз.

Для нормальной случая, к V-Out будет идти минимальное то конденсатор получает заряд до 2/3VCC (+6V для 9В питания). Теперь, поскольку мы выставили разные напряжения на управляющий вывод (первый компаратор отрицательный или компаратор сброса).

Конденсатор следует зарядить до достижения напряжения управляющего вывода. Сила заряда конденсатора влияет на время включения и выключения изменения сигнала. Поэтому выходной сигнал испытывает различные включения интервала.

Обычно этот вывод заведен вниз с конденсатором. Во избежание нежелательных шумов и помех в работе.

Контакт 2. Триггер: подключен ко входу второго компаратора. Выход второго компаратора  подключен к контакту SET триггера. С выхода второго компаратора мы получаем высокое напряжение на выходе таймера. Так что можно сказать контакт триггера управляет выходом Таймера.

Сейчас вот что стоит соблюдать, низкое напряжение в триггере форсирует выход высокого напряжения, так как на инвертирующий вход второг

Применение микросхемы ne555 схемы — Морской флот

Микросхемы 555 применяются довольно часто в радиолюбительской практике – они практичны, многофункциональны и очень просты в использовании. На таких микросхемах можно реализовать любую конструкцию – как простейшие триггеры Шмитта с парочкой дополнительных элементов, так и многоступенчатые кодовые замки.

NE555 была разработана уже довольно давно, даже в советских журналах «Радио», «Моделист-конструктор», на аналогах этой микросхемы можно было встретить немало самоделок. На сегодняшний день эта микросхема активно применяется в конструкциях со светодиодами.

Описание микросхемы

Это разработка компании из США Signetics. Именно ее специалисты смогли реализовать на практике работы Камензинда Ганса. Это, можно сказать, отец интегральной микросхемы – в тяжелых условиях высокой конкуренции инженерам удалось сделать продукт, который вышел на мировой рынок и завоевал широкую популярность.

Применение микросхемы ne555 схемы

В те годы у микросхемы 555 серии не было в мире аналогов – очень высокая плотность монтажа элементов в устройстве и крайне низкая себестоимость. Именно благодаря этим параметрам она заслужила высокую популярность среди конструкторов.

Отечественные аналоги

После началось массовое копирование этого радиоэлемента – советский аналог микросхемы носил название КР1006ВИ1. Между прочим, она во всех отношениях является уникальной разработкой, даже несмотря на то, что у нее много аналогов. Только у отечественных микросхем вход остановки приоритетнее, чем вход запуска. Ни в одной из зарубежных конструкций нет такой особенности. Но эту особенность обязательно нужно учитывать при проектировании схем, в которых оба входа активно используются.

Где применяется?

Но нужно заметить, что приоритеты входов не очень сильно влияют на работоспособность микросхемы. Это только мелкий нюанс, который нужно учитывать в редких случаях. Для снижения потребляемой мощности в середине 70-х был налажен выпуск КМОП-элементов. В СССР микросхемы на полевиках носили название КР1441ВИ1.

Применение микросхемы ne555 схемы

Генераторы на микросхеме 555 очень часто используются в конструкциях радиолюбителей. Несложно реализовать на этой микросхеме и реле времени, причем задержку можно установить от нескольких миллисекунд до часов. Существуют и более сложные элементы, в основе которых находится 555 схема – они содержат в себе устройства по предотвращению дребезжания контактов, ШИМ-контроллеры, восстановления сигнала цифрового типа.

Преимущества и недостатки микросхемы

Внутри таймера имеется встроенный делитель напряжения – именно он позволяет задать строго фиксированный нижний и верхний порог, при котором происходит срабатывание компараторов. Именно отсюда можно сделать вывод о главном недостатке – пороговыми значениями невозможно управлять, а из конструкции исключить делитель тоже нельзя, существенно сужается область практического применения микросхемы 555. Схемы мультивибраторов и одновибраторов построить можно, но более сложные конструкции не получится.

Применение микросхемы ne555 схемы

При изготовлении таймеров на биполярных транзисторах выскакивает один большой недостаток – выходной каскад переходит в противоположное состояние. И при каждом переключении появляется сквозной паразитный ток, пиковое значение его может быть около 400 мА. При этом существенно увеличиваются потери на тепло.

Как избавиться от недостатков?

Но избавиться от такой проблемы можно, достаточно установить полярный конденсатор не более 0,1 мкФ между управляющим выводом и минусом питания.

Применение микросхемы ne555 схемы

А чтобы существенно повысить помехоустойчивость, в цепи питания устанавливается неполярный конденсатор емкостью 1 мкФ. При практическом применении микросхем 555 важно учитывать, влияют ли на их работу пассивные элементы — резисторы и конденсаторы. Но нужно заметить одну особенность – при использовании таймеров на КМОП-элементах эти все недостатки просто уходят, нет необходимости применять дополнительные конденсаторы.

Основные параметры микросхем

Если вы решите изготовить таймер на микросхеме 555, то нужно знать ее основные особенности. Всего в приборе имеется пять узлов, их можно разглядеть на диаграмме. По входу находится делитель напряжение резистивного типа. С его помощью происходит формирование двух опорных напряжений, необходимых для работы компараторов. Выходы компараторов соединяются с RS-триггером и внешним контактом для сброса. И только после этого на усилительное устройство, где увеличивается значение сигнала.

Питание микросхем

В окончании находится транзистор, у которого коллектор открыт – он выполняет ряд функций, зависит все от того, какая конкретно задача перед ним стоит. Рекомендуется на интегральные микросхемы NE, SA, NA подавать напряжение питания в диапазоне 4,5-16 В. Только для в случае применения микросхем 555 с аббревиатурой SE допускается увеличение до 18 В.

Применение микросхемы ne555 схемы

Максимальный ток потребления при напряжении 4,5 В может достигать 10-15 мА, минимальное значение – 2-5 мА. Существуют микросхемы КМОП, у которых ток потребления не превышает 1 мА. У отечественных ИМС типа КР1006ВИ1 ток потребления не превышает 100 мА. Подробное описание микросхемы 555 и ее отечественных аналогов можно найти в даташитах.

Эксплуатация микросхемы

Условия эксплуатации зависят напрямую от того, какая фирма производит микросхему. В качестве примера можно привести два аналога – NE555 и SE555. У первой диапазон температур, в котором она нормально будет работать, находится в интервале 0-70 градусов. У второй же он намного шире – от -55 до +125 градусов. Поэтому такие параметры всегда нужно учитывать при проектировании устройств. Желательно ознакомиться со всеми типовыми значениями напряжений и токов на выводах Reset, TRIG, THRES, CONT. Для этого можно воспользоваться даташитом к конкретной модели – в ней вы найдете исчерпывающую информацию.

Применение микросхемы ne555 схемы

От этого зависит и практическое применение схемы. Радиолюбителями микросхема 555 используется довольно часто – в системах управления даже существуют задающие генераторы для радиопередатчиков на этом элементе. Преимущество его перед любым транзисторным или ламповым вариантом – невероятно высокая стабильность частоты. И нет надобности подбирать элементы с высокой стабильностью, устанавливать дополнительные устройства для выравнивания напряжения. Достаточно установить простую микросхему и усилить сигнал, который будет вырабатываться на выходе.

Назначение выводов ИМС

На микросхемах 555 серии присутствует всего восемь выводов, тип корпуса PDIP8, SOIC, TSSOP. Но во всех случаях назначение выводов одинаковое. УГО элемента – это прямоугольник, подписанный «G1» в случае генератора одиночных импульсов и «GN» для мультивибратора. Назначение выводов:

  1. GND – общий, по порядку он первый (если считать от ключа-метки). На этот вывод подается минус от источника питания.
  2. TRIG – вход запуска. Именно на этот вывод подается низкоуровневый импульс и он поступает на второй компаратор. В результате происходит запуск ИМС и появляется на выходе сигнал с высоким уровнем. Причем длительность сигнала зависит от значений С и R.
  3. OUT – выход, на котором появляется сигнал высокого и низкого уровней. Переключение между ними занимает не более 0,1 мкс.
  4. RESET – сброс. Этот вход обладает наивысшим приоритетом, он управляет таймером, причем не зависит это от того, есть ли напряжение на остальных ножках микросхемы. Чтобы разрешить запуск, нужно наличие напряжения свыше 0,7В. В том случае, если импульс меньше 0,7В, то работа микросхемы 555 запрещается.
  5. CTRL – контрольный вход, который соединяется с делителем напряжения. И если нет никаких внешних факторов, которые могут повлиять на работу, выдается на этом выходе напряжение 2/3 от питающего. При подаче управляющего сигнала на этот вход на выходе образуется модулированный импульс. В случае с простыми схемами этот выход соединяется к конденсатору.
  6. THR – остановка. Это вход 1-го компаратора, в случае появления на нем напряжения 2/3 от питающего происходит остановка работы триггера и таймер переводится в пониженный уровень. Но обязательное условие – на ножке TRIG не должно быть сигнала запуска (так как у него приоритет).
  7. DIS – разряд. Он соединяется непосредственно с транзистором, расположенным внутри микросхемы 555. У него коллектор общий. В цепи эмиттер-коллектор устанавливается конденсатор, который необходим для того чтобы задать время.
  8. VCC – подключение к плюсу источника питания.

Режим одновибратора

Всего существует три работы режима микросхемы NE555, один из них – одновибратор. Чтобы осуществить формирование импульсов, приходится применять конденсатор полярного типа и резистор.

Применение микросхемы ne555 схемы

Работа схемы происходит таким образом:

  1. Ко входу таймера прикладывается напряжение – низкоуровневый импульс.
  2. Происходит переключение режима работы микросхемы.
  3. На выводе «3» появляется сигнал с высоким уровнем.

Рассчитать время, в течение которого проходит сигнал, можно по простой формуле:

По прошествии этого времени на выходе произойдет формирование низкоуровневого сигнала. В режиме мультивибратора выводы «4» и «8» соединяются. При разработке схем на основе одновибратора нужно учитывать такие нюансы:

  1. Напряжение питания не может влиять на время импульса. При увеличении напряжения скорость зарядки конденсатора, который задает время, больше. Следовательно, увеличивается амплитуда сигнала на выходе.
  2. Если произвести подачу дополнительного импульса на вход (уже после основного), то он не повлияет на работоспособность таймера до окончания времени t.

Чтобы повлиять на функционирование генератора, можно воспользоваться одним из способов:

  1. На вывод RESET подать низкоуровневый сигнал. При этом таймер вернется в состояние по умолчанию.
  2. Если на вход «2» идет низкоуровневый сигнал, то на выходе всегда будет высокий импульс.

При помощи одиночных импульсов, подаваемых на вход, и изменения параметров времязадающих компонентов, можно на выходе получить прямоугольный сигнал нужной длительности.

Схема мультивибратора

Изготовить металлоискатель на микросхеме 555 сможет любой начинающий радиолюбитель, но для этого нужно изучить особенности работы этого прибора. Мультивибратор – это специальный генератор, который вырабатывает с определенной периодичностью прямоугольные импульсы. Причем строго задается амплитуда, длительность и частота – зависят значения от того, какая задача стоит перед устройством.

Применение микросхемы ne555 схемы

Для формирования повторяющихся сигналов применяются резисторы и конденсаторы. Длительность сигнала t1, паузы t2, частоту f, и период T можно найти по следующим формулам:

Исходя из этих выражений, можно увидеть, что пауза по длительности не должна быть больше времени сигнала. Другими словами, скважность не будет никогда больше 2. От этого напрямую зависит практическое применение микросхемы 555. Схемы различных устройств и конструкций строятся по даташитам — инструкциям. В них даны все возможные рекомендации для сборки приборов. Скважность можно найти по формуле S=T/t1. Чтобы увеличить этот показатель, необходимо добавить в схему полупроводниковый диод. Его катод соединяется с шестой ножкой, а анод с седьмой.

Применение микросхемы ne555 схемы

Если посмотреть в даташит, то в нем указывается обратная величина скважности – ее можно посчитать по формуле D=1/S. Измеряется она в процентах. Работу схемы мультивибратора можно описать следующим образом:

  1. При подаче питания конденсатор полностью разряжен.
  2. Таймер переводится в высокоуровневое состояние.
  3. Конденсатор накапливает заряд и на нем напряжение достигает максимума – 2/3 от питающего.
  4. Происходит переключение микросхемы и на выходе появляется низкоуровневый сигнал.
  5. Конденсатор разряжается в течение t1 до уровня 1/3 от питающего напряжения.
  6. Микросхема 555 переключается снова и на выходе образуется опять высокоуровневый сигнал.

Такой режим работы называется автоколебательным. На выходе постоянно изменяется величина сигнала, микросхема-таймер 555 равные промежутки времени находится в различных режимах.

Прецизионный триггер Шмитта

Применение микросхемы ne555 схемы

В таймерах типа NE555 и аналогичных имеется встроенный компаратор с двумя порогами – нижним и верхним. Кроме того, в нем присутствует специальный RS-триггер. Именно это позволяет реализовать конструкцию прецизионного триггера Шмитта. Напряжение, поступающее на вход, делится при помощи компаратора на три равные части. И как только достигает уровень значения порога, происходит переключение режима работы микросхемы. Гистерезис при этом увеличивается, его величина достигает значения 1/3 от напряжения питания. Используется прецизионный триггер в конструкциях систем с автоматическим регулированием.

Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.

Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.

555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.

Применение микросхемы ne555 схемыИнтегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)

Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.

Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.

Основные характеристики интегрального таймера NE555

  • Максимальная частота более чем 500 кГц.
  • Длина одного импульса от 1 мсек до часа.
  • Может работать в режиме моностабильного мультвибратора.
  • Высокий выходной ток (до 200 мА)
  • Регулируемая скважность импульса (отношение периода импульса к его длительности).
  • Совместимость с TTL уровнями.
  • Температурная стабильность 0,005% на 1 градус Цельсия.

Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.

Применение микросхемы ne555 схемы

В следующей таблице перечислены основные свойства NE555

Применение микросхемы ne555 схемы

Назначение выводов таймера NE555

Применение микросхемы ne555 схемы

№2 — Запуск (триггер)

Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.

№4 – Сброс

Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.

№5 — Контроль

Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.

№6 — Стоп (компаратор)

Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.

№7 — Разряд

Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.

№3 – Выход

Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.

Таймер NE555 — схема включения

Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.

Применение микросхемы ne555 схемы

Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.

Применение микросхемы ne555 схемы

Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.

Применение микросхемы ne555 схемы

Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в индуктивности в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.

Применение микросхемы ne555 схемы

Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.

Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.

Часть первая. Теоретическая.

Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.

За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.

Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.

1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?!) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?

Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.

Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C, где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.

Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой.

Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.

Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.

Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться.

Короче говоря, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.

Расчёт параметров таймера NE555

Подробности
Категория: Разное

Таймер NE555 может работать как моностабильный мультивибратор, а также как  генератор прямоугольных импульсов c выходным током 200 мА(max).
I потребления = I вых + 3 мА(maх).
Напряжение питания от 4,5B(min) до 16B(max).
Точность параметров таймера — не более 1% от расчетного значения и  не зависит от напряжения питания.

Блок схема таймера NE555.

1

Земля.

Подключается  к минусу питания схемы.

8

Питание.

Напряжение питания таймера NE 555 постоянное и может быть в интервале  от 4,5B(min) до 16B(max).

2

Запуск.

При подаче на этот вход импульса лог. «0», происходит запуск таймера и на выводе №3 появляется напряжение лог. «1» на время, которое задается внешним сопротивлением R1+R2 и конденсатором С.  Данный режим работы называется моностабильным.

7

Разряд.

Вывод соединен с  коллектором транзистора эмиттер которого соединен с общим проводом.  При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер. Транзистор закрыт, когда на выходе таймера лог. «1» и открыт, когда на выходе лог. «0».

3

Выход. 

 

Логическая 1 равена Uпит — 1,7В. Логический ноль равен 0,25В. Время переключения 100 нс.

6

Стоп.

При подаче на этот вывод импульса лог. «1» (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается  напряжение лог. «0».

4

Сброс.

При подаче на этот вывод напряжения лог. «0» (не более 0,7в) произойдет  сброс таймера и на выходе его установится напряжение  лог. «0». Если в схеме нет необходимости в режиме сброса, то вывод «сброс» необходимо подключить к плюсу питания.

5

Контроль.

Применение вывода расширяет функциональность таймера. Изменением напряжения от 45% до 90% на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от  RC времязадающей цепочки.

 

 


Введите значения R1, R2 и С и нажмите «Расчет»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *