Световые технологии калькулятор освещенности: Расчет освещенности помещения | Калькулятор онлайн

Содержание

Расчет освещенности помещения онлайн

Нормы уровня освещенности для разных типов помещений показаны в таблице.

Возможности программы.

Расчет необходимой освещенности помещения.
Учет коэффициента освещенности в зависимости от высоты потолков.
Световой поток одного светильника.
Расчет примерной мощности ламп накаливания, люминесцентных или светодиодных ламп.

Нормы уровня освещенности N (lk)
Освещенность жилых помещений
Жилые комнаты, гостиные, спальни 150
Кухни, кухни-столовые, кухни-ниши 150
Детские 200
Кабинеты, библиотеки 300
Внутриквартирные коридоры, холлы 50
Кладовые, подсобные 300
Гардеробные 75
Сауна, раздевалки, бассейн 100
Тренажерный зал 150
Биллиардная 300
Ванные комнаты, санузлы, душевые 50
Помещение консьержа 150
Лестницы 20
Поэтажные внеквартирные коридоры, вестибюли, лифтовые холлы
30
Колясочные, велосипедные 30
Тепловые пункты, насосные, машинные помещения лифтов 20
Основные проходы технических этажей, подвалов, чердаков 20
Шахты лифтов 5
Освещение помещений административных зданий
Кабинеты, рабочие комнаты, офисы представительства 300
Проектные залы и комнаты конструкторские, чертежные бюро 500
Машинописные бюро 400
Помещения для посетителей, помещения обслуживающего персонала
400
Читальные залы 400
Помещения записи и регистрации читателей 300
Читательские каталоги 200
Лингафонные кабинеты 300
Книгохранилища, архивы, фонды открытого доступа 75
Переплетно-брошюровочные помещения, площадью не более 30 кв. м 300
Помещения для ксерокопирования, площадью не более 30 м 300
Макетные, столярные, ремонтные мастерские 300
Помещения для работы с дисплеями и видеотерминалами 400
Конференцзалы, залы заседаний 200
Фойе и тамбуры 150
Лаборатории органической и неорганической химии 400
Аналитические лаборатории 500
Весовые, термостатные 300
Лаборатории научно-технические 400
Фотокомнаты, дистилляторные, стеклодувные 200
Архивы проб, хранение реактивов 100
Моечные 300
Освещенность образовательных учреждений
Классные комнаты, кабинеты, аудитории школ 500
Аудитории, учебные кабинеты, лаборатории 400
Кабинеты информатики и вычислительной техники 200
Учебные кабинеты технического черчения и рисования 500
Лаборантские при учебных кабинетах 400
Лаборатории органической и неорганической химии 400
Мастерские по обработке металлов и древесины 300
Инструментальная, комната мастера инструктора 300
Кабинеты обслуживающих видов труда 400
Спортивные залы 200
Хозяйственные кладовые 50
Крытые бассейны 150
Актовые залы, киноаудитории 200
Эстрады актовых залов, кабинеты и комнаты преподавателей 300
Рекреации 150
Освещенность помещений гостиниц
Бюро обслуживания, помещения обслуживающего персонала 200
Гостиные, номера 150

Какой свет для растений лучше всего подходит?

Красный, белый,

голубой синий? Выбирай себе любой!
Как растения реагируют на разный спектр света и какое освещение действительно улучшает фотосинтез и плодоношение растений. В этой статье мы разберем ключевые особенности влияния света на растения.

Фотосинтез и свет

Солнечный свет необходим для растений на любой стадии развития. Основными характеристиками света являются его спектральный состав, интенсивность, суточная и сезонная динамика. Недостаток света – сокращение продолжительности светового дня и малая интенсивность освещения – приводят к гибели растения. Свет – единственный источник энергии, обеспечивающий функции и потребности зеленого организма.

Для восполнения недостатка солнечного света применяется досветка растений. Наиболее распространенные инструменты – лампы ДНаТ и светодиодные светильники.

Фотосинтез – основа жизни растения. Энергия квантов света преобразует получаемые растением неорганические вещества в органические.

Свет разных длин волн по-разному влияет на интенсивность фотосинтеза. Первые исследования на эту тему были проведены еще в 1836 г. В. Добени. Физик пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света. Наиболее яркими лучами в то время считались желтые. Выдающийся российский ботаник и физиолог растений К.А. Тимирязев в 1871–1875 гг. установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось ранее. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым. На основании этих данных немецкий физиолог растений Т. В. Энгельман в 1883 г.

разработал бактериальный метод изучения ассимиляции углекислого газа растениями, который подтвердил, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих. Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 130 лет назад.


Рис.1 – Зависимость интенсивности фотосинтеза зеленых растений от длины световой волны

Максимальная интенсивность фотосинтеза – под красным светом, но одного красного спектра недостаточно для гармоничного развития растения. Исследования показывают, что салат, выращенный под красным светом, имеет большую зеленую массу, чем салат, выращенный под комбинированным красно-синим освещением, но в его листьях значительно меньше хлорофилла, полифенолов и антиоксидантов.

 

ФАР и ее производные

Фотосинтетически активная радиация (ФАР, PPF — Photosynthetic Photon Flux) – та часть доходящей до растений солнечной радиации, которая используется ими для фотосинтеза.

Измеряется в мкмоль/Дж. ФАР можно выражать в единицах энергии (интенсивность излучения, Ватт/м2).

Фотосинтетический фотонный поток (PPFD —  Photosynthetic Photon Flux Density) — суммарное число фотонов, излучаемых в секунду в диапазоне длин волн от 400 до 700 нм (мкмоль/с).

Значение ФАР не учитывает разницу между разными длинами волн в диапазоне 400 — 700 нм. Кроме того, используется приближение, что волны за пределами этого диапазона имеют нулевую фотосинтетическую активность.

Если известен точный спектр излучения, можно оценить усваиваемый растением поток фотонов (YPF — Yield Photon Flux), представляющий собой ФАР, взвешенную в соответствии с эффективностью фотосинтеза по каждой длине волны. YPF всегда несколько меньше PPF, но позволяет более адекватно оценивать энергетическую эффективность источника света. 

Для практических целей достаточно учесть, что зависимость почти линейна и PPF для 3000 К больше YPF примерно на 10%, а для 5000 К — на 15%.

Что означает примерно на 5% большую энергетическую ценность для растения теплого света по сравнению с холодным при равной освещенности в люксах.


Эффективность белых светодиодов

Выделенный и очищенный хлорофилл invitro поглощает только красный и синий свет. В живой же клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу.

Несколько фактов о белых светодиодах:

1.      В спектре всех белых светодиодов, даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, очень мало дальнего красного (рис. 2).

 

Рис. 2. Спектр белого светодиодного (LED 4000K Ra = 90) и натриевого света (HPS)

в сравнении со спектральными функциями восприимчивости растения к синему (B),

красному (Ar) и дальнему красному свету (Afr)

 

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» — растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, и, следовательно, урожай в дальнейшем. Под белыми светодиодами и лампами ДНаТ растение чувствует себя как под открытым солнцем и вверх не тянется.

 

2. Синий свет обеспечивает фототропизм — «слежение за солнцем» (рис. 3).


Рис. 3. Фототропизм — разворот листьев и цветов, вытягивание стеблей

на синюю компоненту белого света

В одном ватте потока белого светодиодного света 2700К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если разместить рядом с растением лампу с интенсивным холодным светом – оно развернет соцветия в сторону лампы.

3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5% может быть определена по формуле:

[эфф. мкмоль/Дж],
где η – светоотдача [Лм/Вт], 

Ra  – индекс цветопередачи, 

CCT – коррелированная цветовая температура [К]

 

Эта формула может быть использована для расчета освещенности, чтобы при заданной цветопередаче и цветовой температуре обеспечить требуемое значение YPF , например, 300 эфф.мкмоль/с/м2:


 

3000К

4000К

5000К

Ra=70

25 424

25 641

25 641

Ra=80

23 077

23 810

24 194

Ra=95

20 408

21 583

22 388

Табл. 1 – Освещенность (лк), соответствующая 300 эфф.мкмоль/с/м2

Из таблицы видно, что чем меньше цветовая температура и выше индекс цветопередачи, тем ниже необходимая освещенность. Однако, учитывая, что светоотдача светодиодов теплого света несколько ниже, ясно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

4.      Для практических целей можно использовать правило: световой поток 1000 лм соответствует PPF=15мкмоль/с, а освещенность 1000 лк соответствует PPFD=15мкмоль/с/м2.

 

Более точно рассчитать PPFD можно по формуле:

PPFD = [мкмоль/с/м2],

где k – коэффициент использования светового потока (доля светового потока от осветительной установки, падающая на листья растений)

F – световой поток [клм],

S – освещаемая площадь [м2]

 

Но k – величина неопределенная, что увеличивает неточность оценки.

Рассмотрим возможные значения для основных типов осветительных систем:

    Воспользуйтесь нашим каталогом светодиодного освещения для растений. Здесь представлен широкий ассортимент продукции собственного производства. А профессиональный и точный светорасчет вам помогут сделать наши специалисты.

СВЕТОДИОДНОЕ ОСВЕЩЕНИЕ ДЛЯ РАСТЕНИЙ

Так же вам могут быть интересны:

Точечные и линейные источники.

Освещенность, создаваемая точечным источником на локальном участке, падает обратно пропорционально квадрату расстояния между этим участком и источником. Освещенность, создаваемая линейными протяженными источниками над узкими грядками, падает обратно пропорционально расстоянию. То есть, чем больше расстояние от светильника до растения – тем больше света попадает не на листья. Поэтому экономически нецелесообразно использовать для освещения одиночных протяженных грядок светильники, расположенные на высоте более 2м. Применение линз позволяет сузить световой поток светильника и направить на растение большую долю света. Однако сильная зависимость освещенности от расстояния и неопределенность эффекта применения оптики не позволяют определить коэффициент использования k в общем случае.

· Отражающие поверхности.

При использовании закрытых объемов с идеально отражающими стенками весь световой поток попадает на растение. Однако реальный коэффициент отражения зеркальных или белых поверхностей меньше единицы. Доля светового потока, падающего на растение, зависит от отражательных свойств поверхностей и геометрии объема. Определить k в общем случае невозможно.

·  Большие массивы источников над большими посадочными площадями

Большие массивы точечных или линейных светильников над большими площадями посадок энергетически выгодны. Квант, излученный в любом направлении, в итоге попадет на какое-либо растение, коэффициент k близок к единице.


  Итак, неопределенность доли света, идущего на растения, выше разницы между PPFD и YPFD, и выше погрешности, определяемой неизвестностью цветовой температуры и цветопередачи. Следовательно, для практической оценки интенсивности ФАР целесообразно выбирать достаточно грубую методику оценки освещенности, не учитывающую эти нюансы. И при возможности замерять фактическую освещенность люксметром.

Наиболее адекватная оценка фотосинтетически активного потока белого света достигается, если измерить освещенность E с помощью люксметра и пренебречь влиянием спектральных параметров на энергетическую ценность света для растения. Таким образом, оценивать PPFD белого светодиодного света можно по формуле:

PPFD = [мкмоль/с/м2]

Оценим по приведенным выше формулам применимость офисного светодиодного светильника DS-Office 60 для выращивания салата и его PPFD.

Cветильник потребляет 60Вт, имеет цветовую температуру 5000К, цветопередачу Ra =75 и светоотдачу 110 лм/Вт. При этом его эффективность составит 

YPF = (110/100) (1,15 + (3575 − 2360)/5000) эфф. мкмоль/Дж = 1,32 эфф. мкмоль/Дж,

что при умножении на потребляемые 60 Вт составит 79,2 эфф. мкмоль/с.

Если светильник расположить на высоте 30-50см над грядкой площадью 0,6×0,6м = 0,36, плотность освещения составит 79,2 эфф. мкмоль/с / 0,36м2 = 220 эфф. мкмоль/с/м2, что на 30% ниже рекомендованного показателя в 300 эфф. мкмоль/с/м2. Значит, мощность светильника нужно увеличить на 30%.

PPFD = 15×0,110клм/Вт×60Вт/0,36м2=275 мкмоль/с/м2

 

Эффективность фитосветильника DS-FitoA 75. (75Вт, 5000К, Ra = 95, 102 лм/Вт):

YPF = (102/100)(1,15 + (3595 − 2360)/5000) эфф. мкмоль/Дж = 1,37 эфф. мкмоль/Дж, или 102,75 эфф. мкмоль/с. При аналогичном расположении над грядкой плотность освещения составит 285 эфф. мкмоль/с/м2, что близко по значению к рекомендованному уровню.

PPFD = 15×0,102клм/Вт×75Вт/0,36м2=319 мкмоль/с/м2

 

Эффективность ДНаТ

Агропромышленные комплексы консервативны в вопросах освещения теплиц и предпочитают использовать проверенные временем натриевые лампы. Эффективность ДНаТ зависит от мощности и достигает максимума при 600 Вт. YPF при этом составляет 1,5 эфф. мкмоль/Дж. (рис.4). 1000 лм светового потока соответствуют PPF = ~12 мкмоль/с, а освещенность 1000 лк — PPFD = ~12 мкмоль/с/м2, что на 20% меньше аналогичных показателей белого светодиодного света. Эти данные позволяют пересчитывать для ДНаТ люксы в мкмоль/с/м2 и пользоваться опытом освещения растений в промышленных теплицах.


Рис. 4. Спектр натриевой лампы для растений (слева). Эффективность (лм/Вт и эфф.мкмоль/Дж) серийных натриевых светильников для теплиц (справа)

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт, является достойной альтернативой лампы ДНаТ.

 

Рис. 5. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и офисного светильника.

 

Обычный светильник общего освещения при досветке растений по энергетической эффективности не уступает специализированной натриевой лампе и красно-синему светильнику. По спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

 

В настоящее время используется освещение гидропонных ферм и красно-синим, и белым светом (рис. 6-8).


Рис. 6 – Ферма Fujitsu по выращиванию зелени


Рис. 7 – Гидропонная установка Toshiba


Рис.8 – Крупнейшая вертикальная ферма Aerofarms, поставляющая свыше 1000 тонн зелени в год

Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало.

Основным направлением исследований сегодня является корректирование недостатков узкополосного красно-синего освещения добавлением белого света. Опыты японских исследователей показывают увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого.

 

Рис. 9. В каждой паре растение слева выращено под белыми светодиодами, справа — под красно-синими

(из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)

 

Проект Фитекс представил результаты эксперимента по выращиванию различных культур в одинаковых условиях, но под светом различного спектра. Эксперимент показал, что спектр влияет на параметры урожая. Сравнить растения, выросшие под белым светом, под светом ДНаТ и узкополосным розовым вы можете на рис. 10:


Рис. 10 Салат, выращенный в одинаковых условиях, но под светом различного спектра.

Изображения из видеозаписи, опубликованной проектом «Фитэкс» в материалах конференции «Технологии Агрофотоники» в марте 2018г.

 

По численным показателям первое место занял уникальный небелый спектр под коммерческим названием Rose, который по форме не сильно отличается от испытываемого теплого белого света высокой цветопередачи Ra=90. Еще меньше он отличается от спектра теплого белого света экстравысокой цветопередачи Ra=98. Основное различие в том, что у Rose небольшая доля энергии из центральной части удалена (перераспределена к краям) (рис.11):


Рис.11 – Спектральное распределение для теплого белого света экстравысокой цветопередачи и света Rose

 

Перераспределение энергии излучения из центра спектра к краям не оказывает влияния на жизненные процессы растений, но свет становится розовым.


Влияние качества света на результат

Реакция растения на свет – интенсивность газообмена, потребления питательных веществ и процессов синтеза – определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ (рис.12).

 

Рис.12 — Влияние определенных цветов солнечного спектра

на различных стадиях развития растений

 

Обычный белый светодиодный свет и специализированный красно-синий при освещении растений обладают примерно одинаковой энергетической эффективностью. Однако широкополосный белый способствует комплексному развитию растения, не ограничивающемся только стимуляцией фотосинтеза. Удаление из полного спектра зеленого для получения фиолетового из белого – не более чем маркетинговый ход.

Красно-синий, розовый светодиодный свет или желтый свет ДНаТ может быть использован в промышленных теплицах. Но если досветка растений происходит при постоянном присутствии человека, необходим белый свет, не раздражающий зрительные и нервные рецепторы.

Выбор типа светодиодного светильника или лампы ДНаТ зависит от особенностей выращивания той или иной культуры, но в любом случае необходимо учитывать:

· Фотосинтетический фотонный поток PPFD и усваиваемый поток фотонов YPF. Теперь эти показатели можно рассчитать самостоятельно, зная световой поток светильника, индекс цветопередачи и цветовую температуру.

Рекомендуемое значение YPF=300 эфф. мкмоль/с/м2

· Степень защиты корпуса светильника от проникновения пыли и влаги. При IP ниже 54 внутрь могут попадать частицы почвы, пыльца, капли воды при поливе, что приведет к выходу светильника из строя.

· Присутствие людей в помещении с работающими лампами. Розовый, фиолетовый свет утомителен для глаз и может вызывать головные боли, желтый свет искажает цвета объектов.

· Лампы ДНаТ нагреваются при работе, их необходимо подвешивать на значительной высоте, чтобы избежать ожогов и пересушивания почвы. Световой поток газоразрядных ламп снижается через 1,5-2 года использования.

Грамотно подобранный свет обеспечивает быстрое и правильное развитие растений –укрепление корневой системы, увеличение зеленой массы, обильное цветение и ускоренное созревание плодов. Технологический прогресс выводит растениеводство на новый уровень – используйте его плоды!

Световые технологии расчет количества светильников. Онлайн программа для расчета освещенности в помещении

Расчет освещенности важен для комфортных условий на работе или дома. Качественное освещение — это не только удобство, но также и здоровье людей. Причем при избытке или недостатке света страдает не только зрение. Этот фактор может вызвать также высокую утомляемость и психологический дискомфорт. Поэтому очень важно правильно подобрать освещение.

Освещенность — это количество светового потока нужного для освещения 1 кв. м помещения. Измеряют ее в Люксах. Существуют нормы освещенности для жилых и рабочих помещений. Используя их и различные вспомогательные таблицы довольно просто вычислить необходимого количество света для того или иного помещения.

Для расчета существуют специальные программы онлайн. Интерфейс таких программ довольно прост и понятен. В соответствующих полях задаются следующие параметры:

Важен световой поток и коэффициент запаса ламп. Он учитывает старение осветительных приборов и их запыление. Выбирают его исходя из норм освещения. Для ламп накаливания в нашей стране это 1.2, а для разрядных – 1.4.

Существуют исключения для помещений, где особенно пыльно. В таких случаях берется более высокий коэффициент запаса . Полученный результат обычно можно распечатать на принтере.

Существуют калькуляторы для расчета ламп накаливания и галогенных или элементов. Они помогут вычислить, сколько требуется источников освещения в том или ином помещении.

Немного о лампах

Оптимальным для человека является естественный свет. Чтобы приблизить искусственное освещение к естественному нужно тщательно подобрать источники света их мощность. Здесь учитывается много факторов, в том числе и условия в помещении.

Существует несколько видов искусственного освещения:

Чтобы сделать расчет освещенности правильно лучше воспользоваться специальной программой в интернете. С ее помощью легко подобрать оптимальный вариант для конкретной комнаты или офиса.

Виды ламп

Для расчета освещенности нужно знать разные параметры ширину и длину помещения, высоту подвеса осветительных конструкций, коэффициент запаса, световой поток. Но, прежде всего подобрать лампы, которые будут использоваться.

Основные виды осветительных элементов:

Естественно, каждый тип имеет свои особенности . Поэтому прежде чем выбрать тот или иной вариант надо учитывать условия, в которых они будут применяться, вид помещения и другие факторы. Такие, как световой поток, мощность элемента и цветопередача.

По программе нетрудно выполнить расчет освещенности определенного помещения исходя из норм. Выбирается тип лампы и мощность. Есть такой критерий, как цветопередача. В это понятие входит цветовая температура и оттенок освещения. Первая изменяется от красного к синему. Меньшее ее значение близко к красному цвету, а большее к синему.

Оттенок, как правило, у многих ламп холодный или теплый. Именно он и задает тональность светового потока. У стандартных элементов накаливания с цветопередачей все просто. Она имеет одно и то же значение, и оттенок света. У люминесцентной лампы в компактном исполнении можно выбрать теплый или холодный оттенок и цветопередачу.

Есть еще один момент. При выборе лампы, прежде всего, нужно посмотреть, на какое количество ватт рассчитан патрон. Производители обычно указывают ее на патроне или самом светильнике. Особо это важно если используются галогенные или лампы накаливания. Ведь они вырабатывают тепло. И при установке более мощной лампы, чем указано, патрон может расплавиться.

Немного о светильниках

Также не надо упускать из виду и несколько моментов связанных с осветительными конструкциями. На что в первую очередь стоит обратить внимание?

Учитывать надо и цвет мебели и обоев. Ведь темные тона свет поглощают , светлые же наоборот отражают. Поэтому если дизайн помещения выдержан в светлых оттенках, соответственно потерь в освещенности можно избежать. Когда же интерьер более темный, то и освещенность должна быть больше.

Матовый плафон для лампы мягко распределяет свет, но при этом возможна некоторая потеря освещенности по сравнению с прозрачным. Если выбрать элемент освещения более мощный, например, лампу накаливания 100 Вт она эти светопотери и компенсирует.

Что касается расположения источника света, то лампа установленная выше от пола дает больше освещенности. Например, люстра на потолке освещает большую площадь, чем бра закрепленный на стене.

Удобство вычислений

Какие преимущества дает самостоятельный расчет освещения с помощью программы?

Воспользоваться онлайн-калькулятором довольно просто. При этом результат получится точный.

Выбираем количество светильников

Поможет он выбрать нужное число осветительных конструкций для помещения. Понадобятся параметры помещения и коэффициент отражения потолка и пола. Расстояние между рабочей поверхностью и светильником. Тип ламп и их мощность. Коэффициент использования светильника его тип и мощность. Также нужно ввести нормы освещения для данного помещения.

Так можно произвести точный расчет всех необходимых светильников. И обеспечить комфортные условия на работе или дома. Например, высота потолка офиса 3,0 м, в нем светлые стены и подвесные потолки. Отсюда коэффициент использования потока 0,5. По нормативу освещенность должна быть 400 люксов.

Соответственно световой поток составит 24 000 лм. Таким образом, определяется, что при использовании лампы накаливания нужно 1,2 кВт для комнаты небольших размеров. Но специалисты по световым технологиям обычно рекомендуют использовать современные светодиодные системы. Тогда потребление энергии будет 200 Вт. Отсюда несложно вычислить количество необходимых светильников.

При этом надо обратить внимание на тип света местный или основной. То есть верхний свет, освещающий все пространство или местный, к которому относятся торшеры, бра, настольные лампы.

Если это жилая комната, то основным источником света разумнее всего сделать люстры светильники с матовым плафоном. Так свет равномерно и мягко распространяется по помещению. Если нужно осветить часть комнаты, то неплохим вариантом будет лампа , на которую нанесен слой отражательного материала. Это создаст более локальный характер освещения.

Другие функции

Позволяет программа внести параметры уже существующего помещения и используемых приборов, оределить насколько освещенность соответствует нормативам и, при необходимости, откорректировать ее. Для этого вводятся:

Обычно оптимальная мощность одного светильника для стандартного офисного помещения 20 Вт/кв. м. Также можно осуществить расчет площади, которую может осветить прибор. Или максимальную высоту для него. Как правило, в программах есть подсказки.

Светодиодное освещение

Подобные осветительные приборы способны сделать жилые и офисные помещения удобными и более современными. Кроме этого, светильники, позволяют экономить обеспечивая достаточный световой поток. Встает вопрос, какие именно светильники и сколько светодиодных ламп нужно для комфортной обстановки.

В специальных программах можно подсчитать необходимое количество светодиодных ламп с помощью ввода данных и вспомогательных материалов. Вводят мощность, число и расположение светильников. Важен здесь и коэффициент его пульсации, и другие светотехнические показатели.

В техпаспорте каждого led светильника есть данные о величине светового потока. Поэтому нужно просто взять норму СНиП которую легко найти в интернете и умножить на метраж помещения в квадратных метрах. Полученное значение делят на световой поток одной led лампы. На основе этого определяется нужное количество и мощность светодиодных осветительных приборов. Это оптимизирует энергопотребление.

Стоит учесть, что чем больше источников, тем ровнее свет. Так что если предусмотрен дизайнерский вариант освещения и несколько светильников, которые будут встроены в потолок. То рекомендуют распределить на равном расстоянии друг от друга 8 лампочек мощностью 5 Вт.

Либо же можно сконцентрировать их в необходимой зоне комнаты. Можно сделать несколько выключателей и освещать по необходимости ту или другую часть помещения. Или же включив сразу все получить яркий свет.

Несколько слов в заключение

Кстати, использование разных типов источников света в одном помещении вполне допустимо. Обычно стараются подобрать наименьшее число приборов, но так чтобы освещение было комфортным. Важно соблюдать его равномерность или зональность

Программы для расчетов это очень простые пошаговые редакторы, с которыми легко работать. Поэтому когда необходим точный результат они оптимальный вариант для расчета освещенности. Таким образом, можно не только уменьшить расходы на электроэнергию, но и достичь максимального удобства в рабочей и домашней обстановке.

Перед тем, как переходить к монтажу освещения, нужно составить схему расположения светильников и выбрать подходящую мощность лампочек. От этого в дальнейшем будет зависеть многое: начиная от уровня освещенности в комнате и заканчивая экономичностью разработанной системы. Сэкономить время и сделать все правильно нам позволяют специальные программы для расчета и проектирования освещения. В этой статье мы предоставим вам список бесплатных программных продуктов, которые являются лучшими на сегодняшний день и к тому же имеют версию на русском языке.

Простейшие светотехнические расчеты

Сначала разберем те программы, благодаря которым можно быстро рассчитать количество светильников на комнату исходя из заданного уровня освещенности и выбранной мощности ламп.

Одним из лучших для таких операций является онлайн калькулятор для расчета освещенности от компании Световые технологии. Все что вам нужно – заполнить форму на сайте и выбрать подходящий тип светильников, после чего появится кнопка «рассчитать», при нажатии на которую вы получите точный результат. Действительно бесплатная и простая в использовании программа для расчета освещения в квартире, доме либо производственном помещении. Интерфейс интуитивно понятен, что видно на картинке:

Альтернативное решение – скачать программу «Формула света», в которой также можно быстро произвести расчет освещения. Функции аналогичны, единственное – немного отличается интерфейс, но это не так уж и важно. Все равно форма для заполнения исходных данных понятная и предельно простая.


Кстати, весьма функциональным приложением на андроид для таких же целей является Lighting Calculations Pro V1.1.6. С его помощью вы сможете выполнять расчеты даже на планшете. Единственный минус – приложение на английском.

Создание сложных моделей

Если же вас интересуют более сложные программы для расчета и моделирования освещения, тогда рекомендуем использовать одну из перечисленных ниже.

Dialux. Несомненный лидер среди программ для светотехнических расчетов, а также проектирования систем внутреннего и . Этот программный продукт подойдет не только домашним электрикам, но и профессионалам в области моделирования и монтажа осветительных систем (в том числе, дизайнерам интерьера). Из основных функций Dialux хотелось бы выделить:

  1. Расчет искусственной и естественной освещенности.
  2. Проектирование комнат, уличной территории, производственных помещений, дорог, спортивных площадок (даже стадионов) и т.д.
  3. Учет множества факторов, влияющих на расчетные работы (форма и расположение мебели, погодные условия, цвет и текстура внутренней отделки помещений, геометрия и многое другое).
  4. На основании исходных данных и выбора подходящего светотехнического оборудования строятся различные графики, таблицы, 3d модели и даже видеоролики.
  5. Возможность работы с любыми файлами в формате.dwg и.dxf.

При этом всем программа Dialux для расчета освещения является абсолютно бесплатной и русифицированной. К тому же, в ней предусмотрен встроенный помощник, благодаря которому разобраться с возможностями программного продукта будет еще проще! В общем, на сегодняшний день Dialux считается лучшей и наиболее распространенной программой для светотехнических расчетов и проектирования внутренних и наружных систем освещения.

Предлагаем вам ознакомиться с интерфейсом Dialux и примерами готовых проектов:


Ландшафт

В каждом проекте по освещению требуется расчет количества светильников. Как правило, при расчете количества светильников проектировщики пользуются методом коэффициента использования светового потока. В данной заметке расскажу, как пользоваться этим методом, какие данные необходимо иметь для расчета и предложу свою программку.


Расчет светильников выполняют для каждого помещения. Для этого понадобятся следующие данные, которые берутся из планировки архитекторов:

А – длина помещения, м;

В – ширина помещения, м;

H – высота помещения, м;

h2 – расстояние между светильниками и освещаемой поверхностью.

Каждое помещение в зависимости от назначения (выполняемых работ, расположения технологического оборудования) имеет свою освещенность. Освещенность производственных помещений выбирается по разряду зрительных работ.

Е – требуемая освещенность поверхности, лк;

Имея эту информацию можно приступить непосредственно к расчету количества светильников.

2 Предварительно выбираем мощность лампы в светильнике и соответственно ее световой поток. Фл -световой поток одной лампы, лм. Например, лампа Т8 мощностью 18 Вт имеет световой поток Фл=1300лм.

3 Рассчитываем индекс помещения по следующей формуле:

F=A*B/(h2*(A+B))

4 По таблице определяем коэффициент использования (К) осветительной установки, исходя из типа светильника, коэффициентов отражения потолка, стен и пола, а также рассчитанного индекса помещения.

5 Рассчитываем требуемое количество светильников (N) для освещения по формуле:

N=E*A*B*U*КПД /(K*n*Фл )

n — количество ламп в светильнике;

КПД – коэффициент полезного действия светильника (выбирается по каталогу).

Вот мы и рассчитали количество светильников для конкретного помещения. Зная, какое количество светильников мы хотим установить в помещении, можно манипулировать мощностью и количеством ламп в одном светильнике, выбирая более мощные или менее мощные, изменяя световой поток одной лампы.

У вас может возникнуть вопрос, а где же брать все эти справочные материалы?

Требуемые уровни освещенности, коэффициенты запаса можно найти в нормативных документах, указанных в конце статьи.

Технические и эксплуатационные параметры источников света и таблицы коэффициентов использования представлены на втором и третьем листах программы для расчета количества светильников. Информация взята из каталога GVA Lighting.

Внешний вид моей программы:


Чтобы получить программу, зайдите на страницу

Перечень нормативных документов по расчету количества светильников:

1 ТКП 45-2.04-153-2009. Естественное и искусственное освещение. Строительные нормы проектирования (РБ).

2 ТКП 45-4.04-149-2009. Системы электрооборудования жилых и общественных зданий. Правила проектирования (РБ).

3 СП 31-110-2003. Свод правил по проектированию и строительству
«Проектирование и монтаж электроустановок жилых и общественных зданий» (РФ).

4 СНиП 23-05-95. Свод правил. Естественное и искусственное освещение (РФ).

Определение возможности пуска электродвигателя

Расчет стрелы провеса и усилия натяжения СИП

Как рассчитать освещение: авторитетное руководство (2020)

Наконец, давайте посмотрим, как рассчитать уровни освещения в вашем офисе и при работе за компьютером.

Расчеты здесь тоже очень элементарные.

По сути, этот метод предполагает вычисление количества ватт, необходимых для освещения используемого помещения.

Но:

Чтобы упростить задачу, вам необходимо ознакомиться со всеми доступными инструкциями и рекомендациями специалистов по освещению в отношении офисного освещения и работы за компьютером.

Обратите внимание, что, в отличие от обычных помещений, таких как жилые комнаты, офисы и компьютерные залы имеют особые потребности в освещении.

Например:

В любом офисе вам понадобится больше света, чтобы правильно читать и работать. Однако, если вы являетесь пользователем компьютера, слишком много света и воздействие на экран вашего ПК могут вызвать дискомфорт для глаз.

Итак, вам нужно найти здесь идеальный баланс.

И для этого вам понадобятся следующие рекомендации:

Шаг 1 : С помощью рулетки определите длину и ширину вашего пространства, чтобы вы могли рассчитать площадь поверхности.

Step 2 : Из рекомендаций по профессиональному освещению проверьте, какое из них лучше всего подходит для вашего офиса и типа. Эти рекомендации часто важны, потому что они предназначены для предложения оптимального количества света, которое не только способствует повышению производительности офиса, но и гарантирует, что офисные пользователи (особенно пользователи компьютеров) имеют удобное освещенное рабочее пространство.

Шаг 3 : После того, как вы найдете правильную рекомендацию по световому потоку для вашего офиса, следующим шагом будет выбор лучших мест в вашем помещении, которые можно использовать для освещения, с помощью калькулятора компоновки светодиодного освещения.Помните, что при размещении осветительных приборов необходимо обращать внимание на потребности вашего пространства в освещении и на наиболее важные части комнаты.

Step 4 : Разделите рекомендуемую яркость на количество подходящих точек освещения в вашем офисе, чтобы получить точное количество необходимых светильников.

Step 5 : Приобретите светильники, обеспечивающие желаемое количество люмен. Люкс светильника всегда указывается на его упаковке.

С учетом всего этого, вот практический пример:

Предположим, у вас есть офисное пространство 5 на 5 метров. Ваша площадь будет 25 м 2 .

Сейчас:

Специалисты по освещению рекомендуют не менее 500 люмен на квадратный метр для офисных помещений с компьютерами.

Таким образом, ваши требования к световому потоку будут равны 12,500 люмен (получено из , умноженного на 25 м 2 на 500 л / м 9007 9006)

Если ваша комната может вместить только пять источников освещения, ваши требования к световому потоку на источник будут:

12500/5 = 2500 люмен каждый.

Имея в виду эту информацию, если вы решите купить светодиоды с номинальной мощностью 100 лм / Вт, ваши требования к мощности можно рассчитать по следующей формуле:

Мощность = Требуемая мощность в люменах на светильник / эффективность

In в этом случае это будет…

2,500 / 100 = 25 Вт на прибор

Да, это так просто.

Расчет DIALux | Планирование и расчеты освещения

Программное обеспечение DIALux, разработанное Немецким институтом прикладных технологий освещения (DIAL), доступно с 1994 года.Он не только упрощает дизайн освещения, но и предоставляет компаниям платформу для профессионального маркетинга светильников и другой осветительной продукции. Хотя производители освещения платят за то, чтобы их продукты были представлены в базе данных DIALux с помощью 3D-моделей и фотометрических данных, это также является прямой выгодой для клиентов, которые могут точно увидеть, как указанные осветительные приборы и арматура выглядят в окружающей среде здания.

DIALux позволяет дизайнерам освещения планировать, рассчитывать и визуализировать проекты освещения, будь то небольшие помещения, дома, большие коммерческие здания, автостоянки, дороги или ландшафтные сады.Также можно импортировать данные САПР в DIALux из других архитектурных и инженерных программ, что делает его еще более универсальным.

Прелесть DIALux заключается в том, что наши инженеры по освещению могут работать с чертежом DWG (AutoCAD) в разных слоях, начиная с пустого пространства (комнаты или здания) или с плана квартиры архитектора. Если у клиентов нет архитектурного плана, мы можем использовать файлы изображений, даже снимки экрана, чтобы создать четкое представление о том, как будет выглядеть освещение.

Программное обеспечение упрощает вычисления и позволяет нам преобразовывать плоские экранные чертежи в трехмерные модели, а также содержит инструменты, которые позволяют нам делать все это быстро и легко.

Проемы в зданиях жизненно важны, особенно для естественного освещения, поэтому мы выбираем двери и окна и меняем их размеры, чтобы они соответствовали дизайну комнаты или здания. Затем мы размещаем мебель и другие предметы, исходя из имеющихся изображений или каталогов, чтобы конечный результат был максимально реалистичным.Затем мы кладем крышу на здание.

Установка светильников очень похожа на расстановку мебели, и бесценно иметь возможность работать с каталогами производителей, которые включены в программное обеспечение или установлены на компьютере. Затем можно включить любое освещение, подвесное, потолочное, подвесное, прямое или непрямое освещение, даже то, которое можно затемнить.

Хотя расположить светильники относительно просто, это немного сложнее, чем просто перетаскивать осветительные приборы и светильники на экранное изображение комнаты.Также очень важно правильно расположить их, чтобы они указывали там, где они требуются, и рассчитать нагрузку на освещение.

Чтобы увидеть, как выглядят визуальные эффекты внутри и снаружи, или как встроено внешнее освещение, так же просто, как включить и выключить свет. Это действительно выигрышное программное обеспечение для нас и для вас, наших клиентов.

Некоторые из основных характеристик DIALux, которые мы в Nearby Engineers New York Engineers больше всего ценим, включают:

  • Возможность рассчитывать освещение для всего здания в целом, а не для отдельных помещений.
  • Способность выполнять большие и очень сложные расчеты освещения.
  • Автоматический анализ вариаций освещения, упрощающий корректировку слишком темных или слишком ярких областей в плане освещения.
  • Использование фотонной съемки для вычислений, потому что она вычисляет содержание энергии, а также приблизительно приближается к реальному распределению света.
  • Использование контрольных групп для вычислений, что экономит время, поскольку контроль можно использовать снова и снова, с корректировками, вместо того, чтобы каждый раз воссоздавать базовые вычисления.

Если вам нужен индивидуальный энергосберегающий дизайн освещения, отвечающий всем необходимым стандартам с точки зрения законодательства и качества, сотрудники компании Nearby Engineers New York Engineers могут предложить быстрые и точные расчеты, которые точно покажут вам, что вы получаете, и многое другое.

Преобразование освещенности для люменов и люкс

люкс по сравнению с люменом

Разница между люкс и l umen заключается в том, что в люксе учитывается площадь, на которую распространяется световой поток.Поток в 1000 люмен, сконцентрированный на площади в один квадратный метр, освещает этот квадратный метр с освещенностью в 1000 люкс. Однако те же 1000 люмен на площади более десяти квадратных метров дают более диммерную освещенность всего на 100 люкс. Таким образом, вы можете рассматривать люкс (или фут-свечи) как количество полезного света, к которому чувствительны наши глаза.

В Америке мы все еще используем добротность фут-кандел, которая аналогична люксу, но составляет люмен на квадратный фут. Эта старая метрика vs.Имперская система все еще поражает систему. В любом случае существует простое соотношение, не удивительно, что преобразование квадратного фута в дюймах в квадратный метр в дюймах дает нам коэффициент 10,764. Этот коэффициент используется для преобразования из fc в люкс; 1 фк = 10,764 лк. Я думаю, что понимание этих отношений имеет большое значение для того, чтобы привыкнуть к этим терминам освещения.


Шагов:

  • Чтобы преобразовать люкс (люкс) в люмен (лм), введите значение в люксах, расстояние между источником света и рабочей поверхностью, а также угол обзора исходной лампы.Щелкните «Люкс в Люмен».
  • Для преобразования из люмен (лм) в люкс (люкс) Введите значение в люменах *, расстояние между источником света и поверхностью и угол обзора. Щелкните «Люмен в люкс».

* Интересно отметить, что множественное число люмен — это люмен, но, чтобы избежать путаницы, я решил использовать более современные «люмены».

Давайте рассмотрим:

Освещенность (люкс)

Освещенность — это общий световой поток, падающий на поверхность, который показывает интенсивность падающего света.На значение влияет длина волны излучаемого света и расстояние между источником света и освещаемой областью.

Человеческий глаз наиболее чувствителен к свету с длиной волны около 555 нм (зеленый), и поэтому зеленый источник света будет иметь больше люкс, чем синий (например) при использовании биологически взвешенной фигуры. Это называется функцией яркости.

Чем больше расстояние между источником света и освещаемой областью, тем ниже будет освещенность.Ниже мы показываем несколько примеров оптимального освещения для повседневной деятельности:

Деятельность

Освещенность рабочей поверхности (люкс)

Полнолуние в тропических широтах

1

Общественные места с темным окружением

20-50

Типичная обстановка в семейном номере

50–100

Работа в пасмурный день или краткосрочное посещение (складские помещения)

100–150

Легкие офисные работы, Аудитория

250

Тяжелая офисная работа, САПР, библиотека, магазины, лаборатории

500

Супермаркеты, Механические мастерские

750

Обычное рисование, студийная работа, контроль качества

1,000

Работа детального и прецизионного типа

1500 — 2000

Выполнение визуальных задач с низкой контрастностью и очень маленьким размером в течение длительного времени

2000–5000

Выполнение очень длительных и сложных зрительных задач

5000–10000

Выполнение особых визуальных задач с очень низкой контрастностью и малым размером

10000 — 20000


Расчет светового дизайна в здании

Как сделать расчет светового дизайна в здании — Монтаж электропроводки

В профессиональной сфере собственно проект освещения очень важен, потому что недостаточное освещение снижает эффективность задача, для которой были спроектированы светильники, и переосвещение приведет к перерасходу компании.В небольших масштабах эта разница не вызывает особого беспокойства, но в больших зданиях, заводах, фабриках и т. Д. Она становится очень значительной в современных установках электропроводки.

Простой и базовый подход для расчета требований к освещению состоит в том, чтобы разделить общую потребность помещения в освещении на световой поток (люмен), обеспечиваемый одной лампой. Хотя это основной подход для средней домашней комнаты, но на практике он не точен.

На практике есть несколько других параметров, которые необходимо учитывать при расчетах, потому что они не идеальны.Например, световой поток светильников не будет одинаковым на протяжении всего срока службы, осаждение пыли на лампах со временем также снижает их светоотдачу, что означает, что чистота также является важным параметром. Яркая окрашенная комната отражает больше света, чем темная комната, поэтому у них обоих разные требования к освещению.

Поэтому важно сначала понять несколько основных терминов, касающихся проектирования освещения , прежде чем приступать к расчетам.

Указатель комнат — Он зависит от формы и размера комнаты.Он описывает соотношение длины, ширины и высоты комнаты. Обычно это от 0,75 до 5.

Где « l » — длина комнаты,

«w» — ширина комнаты и,

h wc — высота между рабочей плоскостью, т. Е. От уступа до потолка

Эта формула для индекса комнаты применима только тогда, когда длина комнаты меньше ширины в 4 раза.

Коэффициент обслуживания :

Это соотношение светового потока лампы через определенный интервал времени по сравнению с тем, когда она была новой.Световой поток осветительной арматуры со временем уменьшается из-за старения многих ее компонентов из-за внутренних (насыщение элементов) или внешних факторов (осаждение пыли). Например, коэффициент обслуживания осветительной арматуры, используемой в прохладном, непыльном месте, будет лучше, чем у осветительной арматуры, используемой в жаркой и пыльной зоне.

Меньше или равно 1.

Типичные значения, используемые для расчета освещения:

  • 0,8 — Для офисов / учебных классов
  • 0.7 — Для чистой промышленности
  • 0,6 — Для грязной Industr

Подробнее: светоизлучающие элементы и их типы

Отражения в помещении

Считается, что помещение состоит из трех основных поверхностей:

  1. потолок
  2. Стены
  3. Пол

Эффективная отражательная способность этих трех поверхностей влияет на количество отраженного света, принимаемого рабочей плоскостью. Светлые цвета, такие как белый, желтый, будут иметь большую отражательную способность по сравнению с темными цветами, такими как синий, коричневый.

Коэффициент использования

Коэффициент использования (UF) — это отношение эффективного светового потока к общему световому потоку источников света. Это показатель эффективности схемы освещения.

Это зависит от

  • Эффективность светильника
  • Распределение светильников
  • Геометрия пространства
  • Отражение помещения
  • Полярная кривая

Подробнее: Что такое энергоэффективное освещение и методы его реализации40

904 Отношение пространства к высоте

Это отношение расстояния между соседними светильниками (от центра к центру) к их высоте над рабочей плоскостью.

Где,

  • H м = Монтажная высота
  • A = Общая площадь
  • N = Количество светильников

Не должно превышать максимальное SHR светильника, указанное производителем.

Примечание: Для нормальной гостиной требуется 20 лм / фут 2 , т. Е. 215 лм / м 2

Для учебной комнаты, то есть классной комнаты, требуется 300 лм / м 2 .

(Обратите внимание, что для разных сред и условий существуют разные стандарты.Например, компании, подобные многим многонациональным компаниям, должны поддерживать в офисах 600 лм / м 2 для людей, работающих в ночную смену)

Теперь давайте начнем с шагов. Рассмотрим следующую схему конкретного этажа Школы и проанализируем требования к освещению различных секций этажа.

Для простоты расчета все учтенные светильники и их номиналы произведены Phillips. Здесь вы можете проверить различные приспособления и их технические характеристики, предоставленные Philips.

Щелкните изображение, чтобы увеличить

Расчет дизайна освещения для класса

Площадь поперечного сечения классной комнаты = 6 × 9 = 54 м 2 , h = 3 м

Требуемых люменов = 54 × 300 = 16200 лм

Приведенная ниже таблица является справочной таблицей для расчета коэффициента использования осветительной арматуры. Он отличается от модели к модели и от производителя к модели. Чтобы просто понять концепцию, мы используем единую справочную таблицу для всех осветительных приборов.Фактическая таблица предоставляется производителем и может немного отличаться от приведенной ниже.

2,5
Отражение помещения Индекс помещения
C W F 0,75 0,75 3,00 4,00 5,00
0,70 0.50 0,20 0,43 0,49 0,55 0,60 0,66 0,71 0,75 0,80 0,83
0,42 9011 905 0,59 0,65 0,69 0,75 0,78
0,10 0,29 0,35 0,41 0.46 0,53 0,59 0,63 0,70 0,74
0,50 0,50 0,20 0,38 0,44 0,46 0,70 0,73
0,30 0,31 0,37 0,42 0,46 0,53 0,58 0,61 0.66 0,70
0,10 0,27 0,32 0,37 0,41 0,48 0,53 0,57 0,682 0,53 0,57 0,62 0,30 0,37 0,41 0,45 0,52 0,57 0,60 0,65 0,69
0,30 0.28 0,33 0,38 0,41 0,47 0,51 0,54 0,59 0,62
0,10 0,24 0,51 0,56 0,59
0,00 0,00 0,00 0,19 0,23 0,27 0,30 0.35 0,39 0,42 0,46 0,48

ТАБЛИЦА КОЭФФИЦИЕНТА УТИЛИЗАЦИИ ДЛЯ SHR Комната = 1,5

Код потолка отражения для класса = 752

% отражения 000% для класса = 752

% стены и 20% для пола (Общий стандарт для белых / светлых стен)

Для RI = 1,8 и кода отражения = 752, коэффициент использования (UF) = 0,66

Для класса / офиса коэффициент обслуживания = 0.8 (Стандарт)

Где N = Количество светильников, необходимых для данной области

  • E = Средняя яркость по горизонтальной рабочей плоскости
  • A = Площадь горизонтальной рабочей плоскости
  • n = Количество ламп в каждом светильнике
  • F = Расчетное освещение в люменах на лампу, то есть начальный световой поток голой лампы
  • UF = Коэффициент использования для горизонтальной рабочей плоскости
  • MF = Коэффициент обслуживания

Вы также можете прочитать: Нагрузки на освещение, соединенные звездой и треугольником

Если мы используем Philips Green Perform LED Batten Из 40 Вт

Люмен / Вт: 4000 лм / 40 лм

Цвет лампы: нейтральный белый 4000K

Индекс цветопередачи> 80

Срок службы L70 *: 50 000 часов

Расчет дизайна освещения для Конференц-зал

Площадь поперечного сечения конференц-зала = 6 × 9 = 54 м 2 , h = 3 м

Люмен требуется = 54 × 300 = 16200 лм

  • Для R.I. = 1,8 и код отражения = 752, коэффициент использования (U.F) = 0,66
  • M.F. = 0,8 (стандарт)

Если мы используем Philips Ultraslim Round LED Panel Light 22 Вт

Люмен / Вт: 1760 лм / 22 Вт

Расчет дизайна освещения для зала

Cross площадь сечения зала = 31 × 3 = 93 м 2 , h = 3м

Требуется люмен = 93 × 215 = 19995 ~ 20000 лм

  • Для R.I. = 1,82 и код отражения = 753, коэффициент использования (U.F) = 0,66
  • M.F. = 0,8 (стандарт)

Если мы используем Philips MASTER TL5 High Efficiency ECO 35 Вт

Люмен / Вт: 3650 лм / 35 Вт

850002 Индекс цветопередачи 9

Средний срок службы: 25000 часов

Расчет светового оформления для Электропроводка для лестничной клетки

Примечание: прочитайте больше об установке электропроводки на лестничной клетке.

Площадь поперечного сечения лестничной клетки = 6,4 × 2,7 = 17,28 м 2 , h = 3 м

Требуемых люменов = 17,28 × 215 = 3715 лм

Для RI = 1,26 и кода отражения = 752 коэффициент использования ( UF) = 0,55

MF = 0,8 (стандарт)

Если мы используем Philips MASTER TL5 HIGH EFFICIENCY ECO 35 Вт

Люмен / Вт: 3650 лм / 35 Вт

Индекс цветопередачи — 85

Средний срок службы

: 24000 часов

Расчет светового дизайна для Туалет WC
  • Площадь поперечного сечения туалета 1 и 2 = 1.425 × 1,2 = 1,71 м 2 , h = 3 м

Требуемый люмен = 1,71 × 215 = 367 лм

  • Для R.I. <0,75 таблица коэффициента использования (U.F) неприменима
  • M.F. = 0,8 (стандарт)

Если мы используем Philips TL Miniature 8 Вт

Люмен / Вт: 410 лм / 8 Вт

Средний показатель цветопередачи — 60

: 10,000 часов

  • Площадь поперечного сечения унитаза 3 и 4 = 1.5 × 1,8 = 2,7 м 2 , h = 3 м

Требуемый люмен = 2,7 × 215 = 580 лм

  • Для R.I. <0,75 таблица коэффициента использования (U.F) не применима
  • M.F. = 0,8 (стандарт)

Если мы используем Philips MASTER TL5 HIGH EFFICIENCY ECO 14 Вт

Люмен / Вт: 1350 лм / 14 Вт 9000 часов 3: 9000 часов 3

  • Таким образом, мы можем использовать одну светодиодную трубку в обеих ванных комнатах.

Расчет освещения для туалета Площадь туалета

Площадь поперечного сечения туалета = 6 × 6,6 = 40 м 2 , h = 3 м

Требуемый люмен = 49,5 × 215 = 10642 лм

  • Для RI = 1,05 и код отражения = 752, коэффициент использования (UF) = 0,49
  • MF = 0,8 (стандарт)

Если мы используем Philips Pacific LED Waterproof Batten 35 W

  • Люмен / Вт: 4200 лм / 35 Вт
  • Индекс цветопередачи — 85
  • Средний срок службы: 50000 часов

Примечание: Светильники следует размещать на одинаковом расстоянии друг от друга для равномерного распределения света в помещении.Фактическое количество светильников, используемых в классе, будет меньше, чем мы рассчитали, поскольку коэффициент использования светодиодных светильников лучше, чем то, что мы взяли в расчет, хотя шаги будут такими же.

Вы также можете прочитать:

LRC выпускает бесплатный калькулятор светильников для садоводства с открытым доступом — Urban Ag News

Исследовательский центр освещения (LRC) Политехнического института Ренсселера разработал бесплатный, простой в использовании онлайн-инструмент, который поможет производителям оценить производительность, эффективность и экономичность широкого спектра садовых светильников, обычно используемых в теплицах и теплицах. другие контролируемые сельскохозяйственные среды.Этот онлайн-инструмент, называемый калькулятором светильников для садоводства, позволяет производителям точно сравнить несколько светильников и выбрать тот, который будет наиболее эффективным для их конкретного применения.

Электрическое освещение необходимо для обеспечения дополнительного освещения во многих теплицах и является единственным источником света для сельскохозяйственных помещений внутри помещений. Эти системы освещения чрезвычайно дороги в приобретении и установке, поэтому для производителей важно выбрать систему освещения, которая обеспечит наиболее эффективное освещение для их применения при минимальных общих эксплуатационных расходах.

Калькулятор светильников для садоводства, разработанный LRC, основан на метрике, называемой плотностью потока фотосинтетических фотонов (PPFD). PPFD аналогичен фотопическому освещению рабочей поверхности в архитектурном приложении. Подобно тому, как можно сравнивать только плотности мощности альтернативных систем освещения при равных уровнях освещенности на рабочей плоскости, плотности мощности альтернативных садовых светильников следует сравнивать только тогда, когда они обеспечивают одинаковый PPFD на растительном покрове.

Фермеров легко ввести в заблуждение, рассматривая только эффективность светильников при выборе осветительной продукции для садоводства. Эффективность светильника не принимает во внимание важные факторы, такие как распределение интенсивности светильника, оптимальная компоновка светильника и количество светильников, которое потребуется для достижения критерия PPFD. Все эти факторы имеют большое значение при оценке общей рентабельности различных вариантов светильников для садоводства.

Калькулятор светильников для садоводства позволяет цветоводу определить наилучшее расположение и высоту установки каждого светильника, который они рассматривают. Используя калькулятор, производители могут определить количество светильников каждого типа, которые потребуются для освещения их помещения до желаемого уровня освещенности, и выбрать продукт, который обеспечит оптимальное освещение при минимальных затратах. Выполнение этих расчетов традиционными методами займет несколько дней. Калькулятор светильников для садоводства делает это за считанные минуты.

«Энергопотребление и стоимость жизненного цикла светодиодных систем освещения, используемых в садоводстве с контролируемой средой, сильно различаются», — сказал профессор LRC д-р Марк Ри. «В течение многих лет стандартным подходом в области архитектурного освещения и становится очевидным в садоводческом освещении, является то, что мы должны провести полный анализ энергопотребления и стоимости жизненного цикла системы, чтобы получить точную картину того, какая технология будет работать лучше всего для каждой из них. конкретное приложение. Калькулятор светильников для садоводства дает садоводам простой способ сделать это определение.”

Этот проект финансировался отделом природных ресурсов Канады и другими членами Союза осветительной энергии, включая Efficiency Vermont, Energize Connecticut, National Grid, Северо-западный альянс энергоэффективности и ComEd.

Доступ к калькулятору по адресу https://hortcalc.lrc.rpi.edu


О Исследовательском центре освещения

Исследовательский центр освещения (LRC) в Политехническом институте Ренсселера является ведущим в мире центром исследований и образования в области освещения.Основанный в 1988 г. Управлением энергетических исследований и разработок штата Нью-Йорк (NYSERDA), LRC проводит исследования в области освещения и здоровья человека, транспортного освещения и безопасности, твердотельного освещения, энергоэффективности и здоровья растений. Специалисты по освещению LRC, обладающие многопрофильным опытом в исследованиях, технологиях, дизайне и человеческих факторах, сотрудничают с глобальной сетью ведущих производителей и государственных учреждений, разрабатывая инновационные световые решения для проектов, от Boeing 787 Dreamliner до U.С. Подводные лодки ВМФ к отделениям реанимации новорожденных. В 1990 году LRC стал первым университетским исследовательским центром, предлагающим ученую степень в области освещения, а сегодня предлагает степень магистра наук. в освещении и докторскую степень. обучать будущих лидеров освещению. Узнайте больше на www.lrc.rpi.edu.

О Политехническом институте Ренсселера

Политехнический институт Ренсселера, основанный в 1824 году, является первым в Америке технологическим исследовательским университетом. Rensselaer включает в себя пять школ, 32 исследовательских центра, более 145 академических программ и динамичное сообщество, состоящее из более чем 7 900 студентов и более 100 000 ныне живущих выпускников.Среди преподавателей и выпускников Ренсселера более 145 членов Национальной академии, шесть членов Национального Зала славы изобретателей, шесть победителей Национальной медали в области технологий, пять победителей Национальной медали в области науки и лауреат Нобелевской премии по физике. Обладая почти 200-летним опытом развития научных и технологических знаний, Ренсселер по-прежнему сосредоточен на решении глобальных проблем с духом изобретательности и сотрудничества.

Термины и определения освещения — RLE Lighting

Помощь в выборе наилучшего светового решения

Коммерческое и архитектурное освещение — это впечатляющее сочетание дизайна, науки и инновационных технологий.

Используя фотометрию, науку об измерении света с точки зрения воспринимаемой яркости, производители могут точно объяснить, как будет работать конкретное коммерческое или архитектурное освещение.

Любой, кто покупает коммерческое освещение или архитектурные приспособления, должен понимать некоторые чрезвычайно важные термины и определения и уметь расшифровывать конкретные схемы.

Считывание фотометрических данных и характеристик светодиодного освещения

Окружающее освещение — Освещение всей территории, обеспечивающее общее освещение.

Балласт — Устройство, используемое с электроразрядной лампой для получения необходимых условий цепи (формы волны, напряжения и тока) для запуска и работы.

Распределение крыльев летучей мыши — Симметричное распределение света, создающее световые углы вправо и влево от наблюдателя со сравнительно небольшим прямым направленным вниз освещением, как в форме крыла летучей мыши.

Beam Spread — Максимальная мощность свечи 50%.

Кандела (кд) — Это термин, используемый для сравнения силы света.Кандела — это единица измерения, указывающая силу света (мощность свечи) источника света в определенном направлении.

Кандел / м² (кд / м²) — Качество света, выходящего на поверхность. Это измерение — это то, что может воспринимать глаз, которое предоставит больше информации о качестве и комфорте дизайна, а не только его освещенность.

Мощность свечи центрального луча (CBCP) — CBCP — максимальная мощность свечи, которую лампа может достичь в надире (угол между вертикальной осью).

Цветовая температура (цветность) — Степень теплоты или прохлады источника света, измеряемая в градусах Кельвина (K). Чем выше градус К, тем более синим или холодным выглядит лампа. Чем ниже градус К, тем более красным или теплее выглядит лампа.

Отсечка — Угол между вертикальной осью (надир) и линией визирования, когда яркость источника или его отраженного изображения больше не видна.

DLC — Консорциум DesignLights (DLC) продвигает качественное и энергоэффективное освещение для коммерческого сектора.Когда вы покупаете продукт, который находится в Списке сертифицированных продуктов DLC (QPL), вы получаете превосходное осветительное устройство.

Эффективность — Сравнение количества света, излучаемого светильником. КПД% = люмен светильника / люмен лампы

Фут-свечи (fv) — Мера качества света, попадающего на поверхность. Яркость светильника, направление поверхности, расстояние от светильника до поверхности и угол падения падающего света — все это факторы, влияющие на освещенность.Эта информация, не обнаруживаемая человеческим глазом, обычно включается и используется при разработке дизайна.

Информация о лампе — Термин, используемый для обозначения обозначения лампы и ее начального светового потока.

Люмен (лм) — Световой поток измеряется в люменах (лм), который представляет собой общее количество света, излучаемого источником без учета направления.

Расстояние между светильниками — Расстояние между светильниками = SC x Высота до освещаемой плоскости

Luminance — Индикатор яркости диафрагмы.Листы спецификаций иногда включают в себя различные направления обзора, причем направление 0 — это направление, на которое направлен свет. Яркость — это главный показатель качества и комфорта системы освещения.

Критерий расстояния (SC) — Математический расчет максимально допустимого расстояния для достижения достаточно равномерного освещения.

Номер теста — Используется для идентификации конкретной тестируемой комбинации лампы и светильника.

Агрегат LPW — Показатель общей эффективности системы.

LPW — Яркость лампы x Эффективность светильника / Мощность светильника

При просмотре спецификаций любого производителя, диаграммы и графики будут играть жизненно важную роль в описании свойств приспособлений. От диаграмм Канделы до диаграмм направленного света и диаграмм акцентов, найдите в этом списке пояснения к каждому из них.
Пример спецификации для Lumenera V2 даст лучшее представление о том, как все эти термины и диаграммы вступают в игру.

Accent — На этом рисунке показаны образцы света регулируемых акцентных светильников в зависимости от типа лампы, мощности, наклона лампы и положения освещаемой плоскости.

Направление луча — Диаграммы, позволяющие дизайнеру легко выбрать правильное расстояние от стены, чтобы разместить светильник и найти центральный луч лампы в нужном месте

Candelas — Диаграммы, которые графически иллюстрируют интенсивность света в определенных направлениях от надира.

Конус света — Используется для быстрого сравнения освещения и расчетов — конус света используется для расчета начальных уровней фут-кандел для отдельного устройства на основе методов точечного расчета.

Светильник направленного света — На этих диаграммах показаны характеристики отдельного устройства без учета взаимных отражений от поверхностей.

Данные о мытье стен — Существуют два различных типа диаграмм данных о мытье стен.

  1. Уникальная диаграмма характеристик, на которой уровни освещенности отображаются с шагом в один фут вдоль стены и вниз.
  2. Диаграммы производительности нескольких блоков показывают производительность средних блоков, вычисленную из четырех блоков.

Освещение здания — важный шаг в обновлении любого промышленного объекта или архитектурного проекта.Понимание терминологии, связанной с выбором светильников, очень важно.

Хранение этого удобного ресурса под рукой сделает жизнь любого покупателя немного проще.

В RLE Industries вы найдете широкий ассортимент осветительных приборов практически для любого коммерческого или архитектурного освещения, которое только можно вообразить. Щелкните здесь, чтобы просмотреть ассортимент продукции, или позвоните проверенному и опытному специалисту в области освещения по телефону (888) 318-0500, если у вас возникнут дополнительные вопросы об обновлении коммерческих или архитектурных осветительных приборов.

Lumileds запускает калькулятор освещения для садоводства, чтобы ускорить развитие освещения для выращивания для теплиц, вертикальных ферм и других приложений садоводства могут ускорить свое время выхода на рынок с помощью этого онлайн-калькулятора

Разработчики светильников для выращивания растений для теплиц, вертикальных ферм и других приложений для садоводства могут ускорить свое время выхода на рынок с помощью этого онлайн-калькулятора

Сан-Хосе, Калифорния Сегодня компания Lumileds представила онлайн-калькулятор, который производители осветительных приборов могут использовать для более быстрой оптимизации конструкции своих светильников для выращивания растений.Калькулятор позволяет пользователю вводить различные комбинации светодиодов и рабочие условия для генерации спектрального распределения мощности, потока фотосинтетических фотонов (PPF) и энергопотребления светильника с использованием светодиодов Lumileds LUXEON SunPlus Series. Калькулятор, разработанный таким образом, чтобы можно было легко изменять светодиоды и рабочие условия, упрощает проектирование светильников, генерируя обратную связь в реальном времени о спектральном распределении мощности. Lumileds LUXEON Серия светодиодов SunPlus — единственные светодиоды для садоводства на рынке, которые объединены PPF и длиной волны, чтобы обеспечить простоту проектирования системы и возможность настройки длины волны для максимального урожая как в теплицах, так и в условиях вертикального земледелия.

«С помощью калькулятора освещения для садоводства производители светильников могут протестировать множество сценариев освещения за короткий период времени, так что их оптимальные конструкции могут быть представлены на рынке намного быстрее и эффективнее, чем если бы каждый потенциальный светильник был построен и испытан индивидуально», объяснила Дженнифер Холланд, менеджер по продукции светодиодов серии LUXEON SunPlus и калькулятор освещения для садоводства Линия светодиодов LUXEON SunPlus 20 оптимизирована для коммерческих теплиц и использует 2,0 x 2.0 мм светодиоды в цветах Royal Blue (445-455 нм), Deep Red (655-670 нм), Far Red (720-750 нм), Lime (широкий спектр) и Cool White. Линия LUXEON SunPlus 35 оптимизирована для вертикального земледелия с использованием светодиодов Royal Blue, Lime и трех оттенков фиолетового в формате 3,5 x 3,5 мм.

Для получения дополнительной информации о новом калькуляторе освещения для садоводства Lumileds и линиях LUXEON SunPlus 20 и LUXEON SunPlus 35 см. Www.lumileds.com/horticulture/calculator.


Для получения дополнительной информации, пожалуйста, обращайтесь:

Стив Ландау
Директор по маркетинговым коммуникациям
[адрес электронной почты защищен]

О Lumileds:

Для автомобильных, мобильных, Интернет вещей и осветительных компаний, которым требуется инновационное освещение Solutions, Lumileds — мировой лидер, в котором работает более 7000 сотрудников, работающих в более чем 30 странах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *