Анод и катод — что это и как правильно определить? Куда течет ток или где же этот чертов катод
Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.
Условное обозначение
диода на схеме
На рисунке показано условное обозначение диода на схеме . Буквами А и К соответственно обозначены анод диода и катод диода . Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен.
Как проверить диод мультиметром
Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода.
m.katod-anod.ru
Назначение диода, анод диода, катод диода, как проверить диод мультиметром
Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.
На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает.
Как проверить диод мультиметром
Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен.
katod-anod.ru
Определяем полярность светодиода. Где плюс и минус у LED
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
svetodiodinfo.ru
Обозначение светодиодов и других диодов на схеме
Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.
Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.
Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.
УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.
Диоды, какие они бывают?
Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.
Обозначение диодного мостаНапример, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.
Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.
Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.
Специфичные диоды
Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.
Обозначение стабилитрона (диод Зенера)
Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.
Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.
Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.
Варикап — обозначение на схеме и внешний видДинистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.
Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.
Обозначение динистораСветодиоды и оптоэлектроника
Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.
В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.
Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.
Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:
Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.
Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:
Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.
В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.
Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.
Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.
Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.
Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!
svetodiodinfo.ru
Как проверить диод мультиметром — Практическая электроника
В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.
На фото ниже у нас простой диод и светодиод.
Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.
Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.
Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.
Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.
Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.
А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.
Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.
Меняем щупы местами. Светодиодик не загорелся.
Выносим вердикт — вполне работоспособный светодиод!
А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.
www.ruselectronic.com
Маркировка диодов: таблица обозначений
Содержание:- Маркировка импортных диодов
- Маркировка диодов анод катод
Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.
Характеристики и параметры диодов
В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.
В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.
Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.
Обозначения и цветовая маркировка диодов
Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.
Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.
Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.
Маркировка импортных диодов
В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.
Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.
По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.
Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.
Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.
Маркировка диодов анод катод
Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.
Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:
- Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
- Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.
electric-220.ru
Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок: На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода: В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу. |
Анод — это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод — это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.
Самые популярные аноды
В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.
В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.
В вакуумных электронных приборах анод — это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, — катодом.
Знак анода и катода
В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод — это электрод, на котором протекает процесс восстановления, а анод — это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.
При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.
Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны — наоборот.
Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.
Инструкция
1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.
2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.
3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.
4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.
5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.
6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.
Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .
Инструкция
1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.
2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.
3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.
4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.
5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.
Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.
Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.
Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»
А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.
Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.
Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.
Теперь, когда мы отпугнули слабых, продолжаем…
Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.
Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.
Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.
Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.
Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:
простейшие способы определить плюс и минус. Что такое диод и как его проверить
Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.
Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.
Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:
* Низкое электропотребления – в 10 раз экономичней лампочек
* Долгий срок службы – до 11 лет непрерывной работы
* Высокий ресурс прочности – не боятся вибраций и ударов
* Большое разнообразие цветов
* Способность работать при низких напряжениях
* Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.
Маркировка светодиодов
Рис. 1. Конструкция индикаторных 5 мм светодиодов
В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.
Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.
Рис. 2. Виды корпусов светодиодов
Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…
Таблица 1. Маркировка светодиодов
Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.
Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.
При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.
Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.
Напряжение питания
Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.
Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).
Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.
Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:
R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.
Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:
P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.
Расчет токогораничивающего резистора и его мощности для одного светодиода
Типичные характеристики светодиодов
Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.
Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.
Таблица падения напряжений светодиодов в зависимости от цвета
По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.
Последовательное и параллельное включение светодиодов
При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:
При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.
Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой
* Nmax – максимально допустимое количество светодиодов в гирлянде
* Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
* Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
* При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.
При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.
Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =
Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.
Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.
Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.
Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.
Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).
А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.
Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.
Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).
Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.
Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.
Как запитать светодиод от сети 220 В.
Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.
Еще один вариант подключения светодиода к электросети 220в:
Или же поставить два светодиода встречно-параллельно.
Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.
Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).
Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.
Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.
На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.
2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).
3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.
4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.
5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.
6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.
Мигающие светодиоды
Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.
Отличительные качества мигающих сеетодиодое:
- Малые размеры
Компактное устройство световой сигнализации
Широкий диапазон питающего напряжения (вплоть до 14 вольт)
Различный цвет излучения.
В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.
Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.
Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.
Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.
Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.
Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.
Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.
Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.
Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.
В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Несоблюдение полярности и неправильное включение может привести к поломке светодиода
Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Определение полярности светодиода по внешнему виду
Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Определение полярности светодиода при помощи мультиметра
Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Определение полярности светодиода методом подачи напряжения
Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Применение светодиодов в декорировании улицы
Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Светодиоды отличаются тем, что способны пропускать ток только в одном направлении. Это накладывает определенные особенности на подключение устройств при составлении разных схем. Если полярность не учитывать, то возможно неправильное размещение, что не позволит светодиоду зажечься.
На схеме полярность светодиода определяется легко. Он изображается треугольником, в вершине которого нанесен отрезок, параллельный основанию. Последнее на схеме является «плюсом» прибора, вершина треугольника с отрезком – «минусом».
В реальности расположение анода и катода у светодиода определяют несколькими методами. Это можно сделать, например, визуально. У новых приборов ножки разной длины: более длинная – это анод («плюс»), короткая – катод («минус»).
Если разность длин ножек не выражена сильно, то нужно посмотреть на кристаллик в прозрачном корпусе. Можно заметить, что он расположен на подставке, похожей на небольшую чашечку. Вывод, который идет от этой подставки является «минусом» прибора или катодом. Со стороны, откуда выходит катод, у корпуса светодиода присутствует небольшой срез.
Кроме перечисленных особенностей, по которым можно определить катод и анод в приборе, есть и особые метки на них. Правда, не на всех. Некоторые из производителей светодиодов наносят на корпус значки «-» и «+» у соответствующих выходов. Есть приборы, у которых катод помечен точкой, линией зеленого цвета.
Если же все описанное не позволило определиться с выходами светодиода, то переходят к его электрическому тестированию. Самый эффективный способ – подсоединить прибор к батарее, у которой напряжение не превышает допустимое для него.
Для реализации способа подходит самодельный тестер, в котором есть обыкновенная батарейка и резистор. Последний необходим из-за того, что если светодиод будет подсоединен обратно, то он может перегореть, а может изменить характеристики, в частности, сможет работать гораздо меньше времени.
Определиться с полярностью светодиода можно с помощью прибора-мультиметра. В нем нужно установить режим измерения сопротивления, после чего прикоснуться щупами к выходам светодиода. Касание должно быть непродолжительным.
Процедура занимает по времени секунды. Если плюс совмещен с плюсом, а минус с минусом, то на шкале прибора появится значение примерно 1,7 кОм. При обратном подключении значение сопротивления будет нулевым.
Если мультиметр включить в режим проверки диода, то прямое подключение будет сопровождаться свечением светодиода. Правда этот режим можно использовать только для приборов, которые горят красным или зеленым светом. Синий светодиод, работа которого обеспечивается напряжением, превышающим 3 В, может не загораться в обоих положениях.
Область использования светодиодов обширна. Любой элемент в своей конструкции имеет 2 выхода – катод и анод. Подключать его следует правильно, поэтому необходимо знать полярность светодиода.
Чтобы диод светился, ток должен в нем двигаться по прямой, а это невозможно, если прибор будет установлен без учета катода и анода. Светодиод относится к полупроводниковым оптическим приборам, пропускающим ток только в прямом направлении.
Как определить, где плюс и минус
Практически невозможно выявить полярность диода визуально. Если ошибиться, то схема не будет работать. Расположение полюсов у диода может определяться такими способами:
- визуально;
- с помощью мультиметра;
- по технической документации;
- путем монтажа по простой схеме.
Посмотреть эту публикацию в Instagram
Определяем зрительно
Чтобы точно отличать катод от анода, производитель диодных лампочек стал делать катодный контакт короче анодного. Также возле катода имеется маленькая буква «к». Но понять, где что, по длине проволочек возможно только в новых диодах, в старых, уже использованных, деталях проволочки могут быть обломаны. Некоторые производители возле катода ставят точку. Если пустить ток обратно, произойдет пробой и аппарат придется выбросить.
У диодов в корпусе SMD также можно определить расположение катода и анода. У них имеется скос угла, значит, расположенный выход является минусовым.
Удобно определять полярность у диодов цилиндрической формы. Это можно сделать по таким признакам. В корпусе имеются электроды с разной площадью. У катода величина электрода намного больше, чем у анода. Выход с большим электродом минусовой.
Легче всего полярность определяется у мощных диодов. Они большие и на их корпус легко можно нанести плюс и минус.
Используем мультиметр
Более надежный способ – провести тест с помощью мультиметра. В приборе выбирается режим работы «омметр». Теперь мультиметр может измерять уровень сопротивления. Прибор имеет 2 ножки, их необходимо поднести к плюсу и минусу. Черный соприкасается с минусом, красный – с плюсом.
Если контакты диода определены правильно, то прибор покажет 1,7 кОм. При ошибке прибор выдаст показатель намного выше. Если сопротивление будет меньше, чем 1,7, то диод испорчен и его необходимо заменить. В некоторых таксировщиках есть специальный режим, позволяющий проверять светодиоды. Данный способ проверки срабатывает только с красными и зелеными диодами.
Синие и белые отреагируют, только если подать на них напряжение в 3 вольта. Тестировать эти лампочки можно только с помощью специальных мультиметров типа DT830 .
Интересное видео по теме:
Путем подачи питания
В тех случаях, когда у вас отсутствует мультиметр, плюс и минус у светодиода выявляют простым, но не менее действенным способом. Для теста нужны батарейка и резистор. Батарейку можно заменить аккумулятором. Резистор в данном случае будет защищать элемент от пробоя. Некоторые умельцы используют специальную панельку, ее предназначение состоит в том, чтобы проверять исправность транзисторов.
В ситуации, когда ни на глаз, ни мультиметром нельзя определить анод и катод диода, прибегают к еще одному методу. Диод подключают кратковременно в электрическую схему. Затем все просто. Если лампочка загорелась, то выходы определены правильно, если нет – все останется без изменений.
По технической документации
На многих схемах рисуют как кружок с треугольником внутри, причем катод отображается как минус, анод обозначают плюсом. В схемах обязательно обозначаются все выводы для того, чтобы тот, кто будет собирать данную схему, знал, как диод подключать к цепи.
Определение полярности светодиода по техническим документам всегда просто, но не всегда на руках они есть. Особенно когда данные изделия приобретаются пользователями через магазины. Но есть еще один способ, для этого необходимо знать номер светодиода. В интернете много информации не только по устройству диодов. Там имеются подробные схемы и чертежи с обозначением всех параметров. В этих схемах будет обязательно указано расположение диодов.
Что еще важно знать
Некоторые диодные лампочки подвержены влиянию статического электричества. Все они нуждаются в защите. Тестирование изделия должно происходить быстро, при касании мультиметром выходов в течение продолжительного времени произойдет пробой.
Если все правильно делать и соблюдать правила обращения со светодиодом, можно продлить время службы детали.
В заключение
Каждый из методов тестирования светодиодов имеет свои достоинства и недостатки. Тот, кто решил заниматься радиодеталями, должен уметь определять полярность всеми способами. На практике выбор того или иного способа тестирования зависит от условий и возможностей радиолюбителя. Главное – быть осторожным.
Светодиод — это разновидность диода, поэтому при подключении он требует не только ограничения тока, но и соблюдения полярности. Но в явном виде она на корпусе детали нигде не указана, и её придётся определять по косвенным признакам. Автор Instructables под ником Nikus знает целых пять таких признаков. Теперь их узнаете и вы.
Как и электроды обычного диода, электроды светодиода называются анодом и катодом. Первый из них соответствует плюсу, второй — минусу. При прямой полярности светодиод действует как стабистор: открывается при небольшом напряжении, зависящем от цвета (чем меньше длина волны, тем оно больше). Только в отличие от стабистора, он при этом светится. При обратной же полярности он ведёт себя как стабилитрон, открываясь при значительно большем напряжении. Но этот режим для светодиода — нештатный: производитель не гарантирует, что изделие не выйдет из строя, даже если ток ограничить, да и света вы никакого не получите.
Если светодиод вами ниоткуда не выпаян, а куплен новым, один вывод у него длиннее другого. Думаете, это результат не очень аккуратного изготовления? Nikus другого мнения. Тот вывод, который длиннее, соответствует плюсу, т.е., аноду. Вот и весь секрет!
Но самодельщики не очень часто используют новые светодиоды. Что ж, есть и такой признак, который при впайке, укорачивании выводов и последующей выпайке детали не исчезает. Непосвящённым и он кажется небольшим производственным дефектом. Нет, он тоже неспроста: небольшой плоский участок на цилиндническом корпусе, как будто надфилем случайно сточили. Оказывается, не случайно. Эта метка расположена рядом с отрицательным выводом — катодом.
Также Nikus советует заглянуть внутрь светодиода. Сломать? Вовсе нет. Матовые светодиоды практически исчезли с рынка, остались прозрачные, позволяющие разглядеть сбоку внутреннюю структуру. С выводами соединены две плоские пластины, и они тоже разных размеров. Большая держит чашечку с кристаллом, маленькая — волосок, соединённый с кристаллом сверху. Чашечка — минус, волосок — плюс.
Редкий самодельщик обходится без приборов-помощников, вот и Nikus купил себе недорогой мультиметр.
Среди прочих режимов, у него есть режим проверки диодов.
При подключении обычного диода в правильной полярности прибор показывает в этом режиме прямое падение напряжения. У светодиода это падение всегда больше одного вольта, поэтому даже при правильном подключении показания дисплея не изменятся. Зато светодиод слегка засветится. Если щупы подключены к мультиметру правильно, то есть, чёрный — в гнездо COM, а красный — в гнездо VΩmA, красному щупу будет соответствовать плюс.
Со стрелочными тестерами сложнее. Те из них, которые питаются от одной 1,5-вольтовой батарейки, для проверки светодиодов не годятся. Те же, у которых напряжение питания составляет от 3 до 12 В, подходят, но у них в режиме омметра полярность напряжения на щупах часто обратная. Проверить её можно другим прибором, работающим в режиме вольтметра. Только и на том и на другом подключите щупы правильно!
Nikus пишет, что носит с собой мультиметр повсюду, кроме бассейна. Вы же, скорее всего, так не делаете, а необходимость узнать полярность светодиода может возникнуть внезапно. На помощь придёт распространённая трёхвольтовая батарейка типоразмера 2016, 2025 или 2032. У новой батарейки напряжение без нагрузки может достигать 3,7 В, поэтому лучше взять слегка разряженную, примерно для 2,8 В, так лучше для светодиода.
Как определить где анод а где катод. Смотреть что такое «Анод» в других словарях
Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.
Условное обозначение
диода на схеме
На рисунке показано условное обозначение диода на схеме . Буквами А и К соответственно обозначены анод диода и катод диода . Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.
Как проверить диод мультиметром
Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на
m.katod-anod.ru
Назначение диода, анод диода, катод диода, как проверить диод мультиметром
Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.
Условное обозначениедиода на схемеНа рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.
Как проверить диод мультиметром
Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.
katod-anod.ru
Определяем полярность светодиода. Где плюс и минус у LED
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
svetodiodinfo.ru
Обозначение светодиодов и других диодов на схеме
Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.
Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.
Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.
УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.
Диоды, какие они бывают?
Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.
Обозначение диодного мостаНапример, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.
Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.
Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.
Специфичные диоды
Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.
Обозначение стабилитрона (диод Зенера)
Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.
Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.
Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.
Варикап — обозначение на схеме и внешний видДинистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.
Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.
Обозначение динистораСветодиоды и оптоэлектроника
Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.
В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.
Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.
Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:
Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.
Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:
Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.
В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.
Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.
Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.
Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.
Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!
svetodiodinfo.ru
Как проверить диод мультиметром — Практическая электроника
В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.
На фото ниже у нас простой диод и светодиод.
Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.
Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.
Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.
Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.
Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.
А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.
Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.
Меняем щупы местами. Светодиодик не загорелся.
Выносим вердикт — вполне работоспособный светодиод!
А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.
www.ruselectronic.com
Маркировка диодов: таблица обозначений
Содержание:- Маркировка импортных диодов
- Маркировка диодов анод катод
Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.
Характеристики и параметры диодов
В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.
В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.
Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.
Обозначения и цветовая маркировка диодов
Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.
Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.
Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.
Маркировка импортных диодов
В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.
Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.
По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.
Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.
Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.
Маркировка диодов анод катод
Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.
Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:
- Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
- Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.
electric-220.ru
Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок: На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода: В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу. |
Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.
Инструкция
1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.
2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.
3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.
4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.
5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.
6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.
Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .
Инструкция
1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.
2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.
3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.
4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.
5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.
Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.
Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.
Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»
А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.
Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.
Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.
Теперь, когда мы отпугнули слабых, продолжаем…
Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.
Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.
Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.
Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.
Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:
Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.
Электрохимия и гальваника
В электрохимии есть два основных раздела:
- Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
- Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.
Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?
- Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
- Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .
Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .
Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.
В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.
Внимание: ток всегда втекает в анод!
Или то же самое на схеме:
Процесс электролиза или зарядки аккумулятора
Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.
В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!
Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.
Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.
Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.
Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.
Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.
В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.
В электронике
Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:
Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.
У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.
Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:
У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.
С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.
Заключение
Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:
Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.
Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.
Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы
Вконтакте
Одноклассники
Google+
| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Оборудование / / Полупроводниковые и пр. электронные компоненты и радиодетали. Кодировки, обозначения, маркировки. Сопротивления, емкости (кондесаторы), индуктивности (катушки) / / Диоды, светодиоды (LED), обозначение выходов (анод, катод). Длина волны и падение напряжения на светодиоде в зависимости от цвета. «Texas Instruments Analog Engineer’s Pocket Reference» Поделиться:
| ||||||
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста. | |||||||
Коды баннеров проекта DPVA.ru Начинка: KJR Publisiers Консультации и техническая | Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator |
Anode Cathode Led China Trade, Покупайте Китай напрямую на заводах по производству анодных катодных светодиодов на Alibaba.com
Красный и чистый зеленый общий катод / анод 3 ножки Двухцветный светодиодный диод 10 мм Технические характеристики: Красный и чистый зеленый общий катод / анод 3 ножки 10 мм двухцветный светодиодный диод 1. Материал чипа: InGaN / Gaasp 2. Форма: круглый светодиод, овальные светодиоды, соломенные шляпы, шлемы, квадратные светодиоды, плоские светодиоды, пули, вогнутые светодиоды, прямоугольные светодиоды 3.Доступный размер: 3 мм, 5 мм, 8 мм, 10 мм 4. Тип линзы: вода прозрачная, цвет прозрачный, цветной диффузный 5. Излучаемый цвет: красный, белый, желтый, оранжевый, желто-зеленый, зеленый, синий 6. Доступны разные углы наклона 7. Низкое энергопотребление, высокая интенсивность, равномерное освещение 8. Твердотельный корпус, высокая ударопрочность и устойчивость к вибрации 9. Значительное снижение затрат на электроэнергию 10. Отсутствие радиочастотных помех 11. Не требует обслуживания, простая установка 12. Длительный срок службы более 100 000 часов 13. Превосходное электростатическое напряжение защита: энергосберегающая лампа светодиодный диодный чип 3 мм / 5 мм / 8 мм / 10 мм материал обломока InGaN / GaAsp круглый светодиод, овальный светодиод, соломенная шляпа, светодиодный шлем, квадратный светодиод, светодиод с плоским верхом, светодиодный индикатор, вогнутый светодиод, прямоугольный светодиод, другое цвета красный, зеленый, желтый, синий, белый, теплый белый, холодный белый, двухцветный, rgb и т. д. Доступный угол 60, 90, 120, 140, 160, 175 градусов, доступные размеры 3 мм, 5 мм, 8 мм, 10 мм, нанесение знаков адервитизации, монтажная плата, компьютер, монитор, портативный оборудование, строительство проекта, индикатор состояния, телефон, светофоры и автомобили, освещение букв канала преимущество нашей компании опыт технического персонала, профессиональное производство светодиодов, быстрая доставка, международное одобрение, превосходная защита SED и т. д. Преимущество нашего продукта: сырье высшего качества, низкое энергопотребление, отличные характеристики, хорошее обслуживание, небольшой заказ, предложение большого заказа для бесплатной доставки экспресс-почтой чип Epistar, Cree, Bridgelux, Epiled, Huga, Genesis Photonics Фото продукта Фотографии показывают: Рабочий процесс: Применение Применение: уличный фонарь, фонари, автомобильный экстерьер, боковые вывески, декоративные, освещение бухты, рекламные вывески, печатная плата, компьютер , монитор, портативное оборудование, строительство проекта, индикатор состояния, телефон, светофоры и автомобильные, буквенное освещение каналов и т. д. Сертификат: Упаковка и доставка наши рынки и оплата и упаковка: Наша компания: Как сделать заказКонтакт
Как запитать светодиод
Хотя это очень простой вопрос, как запитать светодиод, вероятно, это один из наиболее часто задаваемых вопросов.Вот несколько простых шагов, чтобы начать работу со светодиодами на макетной плате. Математика выбора токоограничивающего резистора также рассматривается в этом руководстве.
Несколько соображений:
• Несмотря на то, что существуют специальные наборы микросхем светодиодных драйверов, мы собираемся оставить это для основных компонентов.
• Мы будем использовать светодиоды с низким энергопотреблением. Для сверхъярких светодиодов могут потребоваться другие компоненты.
Как это работает:
Светодиод (светоизлучающий диод) — это основной полупроводник, который излучает свет при включении.Как и диод, они работают как односторонняя дверь для электричества. Не вдаваясь в физику этого явления, скажу, что когда энергия проходит через светодиод, свет излучается этим диодом посредством электролюминесценции. Светодиоды очень эффективны по сравнению с лампами накаливания и нашли свое применение практически во всех элементах электроники — так что хорошо знать, как их использовать!
Необходимых деталей:
Схема
Эта удобная маленькая диаграмма показывает, где находится каждая из частей.Не волнуйтесь, если это покажется вам слишком сложным, мы рассмотрим это шаг за шагом!
Светодиод
Как упоминалось выше, светодиод — это диод, излучающий свет. Диоды работают как односторонняя дверь для электричества и пропускают ток только в одном направлении. Хотя это не самая сложная проблема для решения, приятно знать, как подключить светодиод, чтобы он заработал с первого раза, особенно когда они впаяны в цепь! Стандартные светодиоды, которые мы используем в этом руководстве (и носим с собой в магазине), всегда будут иметь более длинный вывод и более короткий вывод.Более длинный вывод — это анод, и он всегда будет подключен к положительной стороне вашей цепи. Более короткий вывод известен как катод и всегда идет к заземлению / отрицательной стороне вашей цепи. Помните об этом, вставляя его в макетную плату. На макетной схеме над анодом изображен штырь с изгибом прямо под светодиодом.
Токоограничивающий резистор
Светодиодыимеют номинальное прямое напряжение и номинальный ток. Простое подключение светодиода к нашему аккумуляторному блоку, скорее всего, приведет к его сильному нагреву и, в конечном итоге, отказу.Причина, по которой он нагревается и выходит из строя, заключается в том, что аккумулятор имеет более высокое напряжение, чем требует светодиод. Ток, протекающий через светодиод, экспоненциально зависит от напряжения на светодиоде, поэтому даже небольшое увеличение напряжения по сравнению с прямым напряжением светодиода приведет к огромному увеличению тока (а также к яркой вспышке, небольшому нагреву и мертвый светодиод). Вот почему нам нужно использовать токоограничивающий резистор.
К сожалению, здесь требуется небольшая математика, поскольку требуемый резистор будет меняться в зависимости от входного напряжения, светодиода и количества последовательно соединенных светодиодов.Мы займемся этим в следующем разделе.
Расчет необходимого резистора
Формула, с которой мы будем работать, довольно проста — нам просто нужно подставить несколько значений.
- Прямое напряжение светодиода — обычно находится в техническом описании светодиодов (или на нашей странице продукта)
- Светодиодный ток — также можно найти в техническом описании светодиодов (или на нашей странице продукта)
- Входное напряжение — это напряжение нашего источника питания (в данном случае батарей)
Чтобы рассчитать сопротивление в омах, мы просто вычтем прямое напряжение светодиода из входного напряжения и разделим его на ток светодиода (в амперах, а не в миллиамперах!).
Итак, с нашим зеленым светодиодом: если наше входное напряжение составляет 6,0 В (4 батарейки АА по 1,5 В каждая), прямое напряжение светодиода составляет 2,1 В (указано на странице продукта), а ток светодиодов составляет 20 мА (указано на страницу товара), то это будет выглядеть так:
6,0 В - 2,1 В = 3,9 В // Напряжение аккумулятора минус прямое напряжение светодиода. 3,9 В / 0,02 А = 195 Ом // Результирующее напряжение, деленное на ток светодиода (не забудьте преобразовать ваши 20 мА в значение в амперах)
Наш идеальный резистор был бы 195 Ом.Поскольку резистор на 195 Ом не очень распространен, мы перейдем к следующему по величине общему значению, которое представляет собой резистор 220 Ом. Если у вас нет ни одного лежащего рядом, то, как правило, подъем немного выше никому не повредит.
Теперь давайте разберемся с красным светодиодом; Вход 6,0 В, прямое напряжение светодиода составляет 1,85 В, а ток светодиода — 20 мА, поэтому:
6,0 В - 1,85 В = 4,15 В 4,15 В / 0,02 А = 207,5 Ом
Опять же, резистор 207,5 Ом не совсем обычный, поэтому мы перейдем к следующему наибольшему общему значению резистора, которое составляет 220 Ом.
Расчет необходимого резистора — Часть 2
Итак, мы определили значение сопротивления резистора, который нам понадобится, но есть еще одна вещь, которую мы должны учитывать с резисторами: их тепловые характеристики (сколько мощности они могут рассеять, прежде чем они станут слишком горячими!) — это измеряется в ваттах. Наиболее распространенные резисторы рассчитаны на 1/4 Вт, и это обычно подходит для большинства приложений, но давайте сделаем математику, чтобы быть уверенным.
Нам нужно посчитать, сколько Вт резистор должен «сгореть».Для этого нам нужно немного больше математики; так что давайте снова начнем с зеленого светодиода:
Сначала нам нужно знать, какой ток будет потреблять светодиод — наш идеальный резистор на 195 Ом означал бы, что мы потребляем ровно 20 мА, но поскольку мы не используем этот резистор, светодиод фактически потребляет немного меньше. Чтобы понять это, мы просто обратим уравнение, которое мы использовали выше. Наши известные значения:
- резистор на 220 Ом
- Входное напряжение от аккумуляторов на 6.0V
- светодиодное прямое напряжение, которое составляет 2,1 В
Итак, когда мы изменим уравнение для получения прямого тока светодиода, он будет выглядеть так:
6,0 В - 2,1 В = 3,9 В // Напряжение аккумулятора минус прямое напряжение светодиода 3,9 В / 220 Ом = 0,01772 А (или 17,7 мА) // Результирующее напряжение, деленное на резистор, мы будем использовать
Таким образом, общий ток, протекающий через цепь, составит 17,7 мА — хорошо знать, что такой ток должен пройти через резистор — но это не совсем то, что мы ищем.Нам нужно выяснить, сколько ватт. Для этого нам нужно умножить общий ток на напряжение. Поскольку светодиод «потребляет» 2,1 В из 6,0 В, с которых мы начали, резистор работает только с остальным, в данном случае 3,9 В. Математика будет выглядеть так:
6,0 В - 2,1 В = 3,9 В // Напряжение аккумулятора минус прямое напряжение светодиода 3,9 В * 17,7 мА = 69,03 мВт или 0,06903 Вт. // Результирующее напряжение, умноженное на общий потребляемый ток
Поскольку наш резистор рассчитан на 250 мВт (1/4 Вт), а в нашей схеме используется только 69.03 мВт — будет работать! Математика для нашего красного светодиода будет выглядеть так:
6,0 В - 1,85 В = 4,15 В 4,15 В / 220 Ом = 0,01886 А (или 18,9 мА) 6,0 В - 1,85 В = 4,15 В 4,15 В * 18,9 мА = 78,28 мВт или 0,07828 Вт.
Так что бы тоже работало! Самый простой способ подумать об этом: по мере увеличения разницы напряжений между входом и прямым напряжением светодиода или увеличения тока светодиода потребность в резисторе большего размера станет проблемой.
Итак, куда идет этот резистор?
Хорошо, теперь, когда вся математика не мешает, давайте поговорим о чем-то более простом: как связать все это вместе! Единственное, что действительно имеет значение, это то, что анод светодиода подключен к плюсу (питание), а катод светодиода подключен к минусу (заземление). Поскольку этот резистор используется только для ограничения тока в цепи, он может располагаться с любой стороны светодиода. Размещение резистора на положительной (анодной) стороне резистора не будет иметь никакого эффекта, чем размещение резистора на отрицательной (катодной) стороне светодиода.Так что не переживайте, просто выберите сторону!
Мы соединили зеленый светодиод с резистором на катоде, а красный светодиод подключили к резистору на анодной стороне схемы. Красный провод подает питание, серый провод соединяет его с землей, просто обратите внимание на резисторы на каждой стороне светодиода!
[info] Есть вопросы?
Если у вас есть какие-либо вопросы или вам нужны дополнительные разъяснения, оставьте их в разделе комментариев ниже; так будущие пользователи этого руководства смогут увидеть вопросы и ответы!
[/ info]
— обзор
4.4 Бактериальная целлюлозная мембрана в форме биокомпозитного полимера на OLEDS
OLED продемонстрировала большой потенциал благодаря его активному использованию в различных целях, а также простоте производственного процесса [111]. В качестве элемента новых оптоэлектронных и фотонных устройств OLED собираются, как правило, между тремя или более составами органических молекул материалов, где такая конфигурация состоит из слоя инжекции электронов, излучающего слоя и HIL [112–114]. В этом отношении относительно слабая природа силы Ван-дер-Ваальса играет роль в системе соединения органических устройств, в которой небольшие молекулы OLED с вакуумным напылением изготавливаются на подложках из пленки-клеветы, то есть на полиэтилентерефталате (ПЭТ) и поликарбонате (ПК). [115,116].Этот уникальный процесс изготовления может позволить развить гибкость, увеличивая количество приложений, от электронной бумаги (e-paper) до медицинских датчиков. Одно из возможных и недавних применений гибких органических светоизлучающих диодов (FOLED) состоит в их использовании для фотодинамической терапии (PDT) для лечения рака кожи и других кожных заболеваний. Богатый в природе БК, продуцируемый грамотрицательными уксуснокислыми бактериями G. xylinus , имеет гибкий субстрат с биосовместимыми свойствами [117–120].Методы щелочной обработки также использовались для обработки мембраны BC для увеличения ее прочности на разрыв, снижения скорости передачи кислорода и улучшения цвета [117,118].
Чтобы получить подложку OLED, пленки ITO с высокой проводимостью при комнатной температуре были нанесены на высушенный BC под воздействием 30 Вт r.f. магнетронное распыление, давление 8 МПа в атмосфере аргона при 30 Вт r.f. мощность с прослойкой SiO и без нее. Нановолокна ультратонкой сетки, называемые «наноцеллюлозы», получают из культуры с трехмерной структурой.Функционализированные субстраты были структурно, оптически и электрически охарактеризованы, а затем использованы для изготовления низкомолекулярных ВОЛЭ с соединением Alq3 в качестве излучающего слоя [121]. На разных подложках были изготовлены три OLED, чтобы продемонстрировать возможность создания устройств на основе мембран BC; Среди них первый — это промышленный ITO на стекле со ссылкой на эталон, второй — тонкопленочный промежуточный слой между BC мембраной с SiO, а третий — просто ITO, нанесенный непосредственно на BC мембрану.
Для оптоэлектронных устройств изготавливаются низкомолекулярные OLED с мембраной BC под напряжением прямого смещения, с положительным электродом ITO и отрицательным электродом AL в окружающей атмосфере без герметизации устройства [122]. Спектры электролюминесценции были измерены в результате различных напряжений смещения от ВС мембраны FOLED, как показано на рис. 10.14. Хотя форма полосы и длина волны аналогичны устройству для эталонного стекла подложки, электрические характеристики отличаются из-за более хрупкого электрического поведения подложки BC.Рис. 10.15–10.17 показаны характеристические кривые зависимости плотности тока от напряжения (J от V) для мембранного устройства ITO / SiO BC и эталонного устройства, а также зависимости тока от напряжения, соответственно. Устройство с подложкой BC показало меньшее напряжение включения по сравнению с эталоном на стекле. OLED с мембраной BC, наблюдаемое соотношение яркости OLED было 1: 0,5: 0,25, соответственно, с 2400 кд / м 2 в качестве значения для эталонного OLED. Наблюдалось пропускание видимого света около 40%. Сопротивление, подвижность и концентрация носителей заряда нанесенных пленок ITO составляли 4.90 × 10 −4 Ом / см (для толщины 185 нм), 8,08 см 2 / В · с и -1,5 × 10 соответственно, что сопоставимо с коммерческими подложками ITO.
Рисунок 10.14. Интенсивность излучения OLED на основе BC мембраны в зависимости от напряжения смещения.
Такие же характеристики наблюдались для всех подложек. На вставке изображен OLED на основе BC мембраны [122].
Copyright 2010. Воспроизведено с разрешения John Wiley & amp; Сыновья.Рисунок 10.15. Характеристики плотности тока (Дж) и мощности в зависимости от приложенного напряжения (В) для устройства с подложкой BC.
На вставке показана схематическая диаграмма OLED на основе BC мембраны [122].
Copyright 2010. Воспроизведено с разрешения John Wiley & amp; Сыновья.Рисунок 10.16. Плотность тока (Дж) и мощность в зависимости от приложенного напряжения (В) для эталонного OLED [122].
Copyright 2010. Воспроизведено с разрешения John Wiley & amp; Сыновья.Рисунок 10.17. Органические светодиоды (OLED) на нанокомпозите BC.
Он мог излучать свет, когда был плоским (A) и изогнутым (B) [95].
Copyright 2012. Воспроизведено с разрешения Elsevier Ltd.Гибкий электронный материал призван сделать нашу жизнь проще и удобнее. Благодаря этим гибким материалам появляется много новых концепций, позволяющих оценить наши потребности. Молния на зданиях и украшениях, умный текстиль предлагает более модную жизнь. Греффрой и др. [123] привлекли внимание к использованию OLED, который был изготовлен на стеклянной подложке, которая во многих работах была заменена полимерной гибкой подложкой [124–127].Предлагаемый CTE был ограничен до 20 ppm / K, чтобы функциональные материалы OLED-схемы не разрушались при колебаниях температуры.
Чтобы найти способ преодолеть ограничение CTE, Juntaro et al. [128] и Wu et al. [129] сосредоточены на использовании нанокомпозита наноразмерной целлюлозы и полимерных матриц. Ранее (Накагайто и Яно) было показано, что наноразмерный СУ имеет очень низкий КТР (0,1 ppm / K) при типичной толщине (ширина 10 и 50 нм) [130]. Обладая этими преимуществами, в некоторых работах [131, 132] использовалась оптически прозрачная подложка OLED с любым элементом, который имеет длину волны в пределах одной десятой длины волны видимого света.Hsieh et al. [133] обнаружили, что модуль Юнга одной фибриллы составляет 114 ГПа, что делает этот усиливающий агент более подходящим для создания нанокомпозитов. Czaja et al. [134] обнаружили его степень кристалличности около 89%, Watanabe et al. [135] измерили его степень полимеризации, которая составляет 14 400. Кроме того, Ким и др. [136] получили высокую удельную площадь (37 м 2 / г). Все эти особенности делают его более привлекательным для исследователей.
Итак, для OLED-дисплея теперь требуется прозрачная и гибкая нанокомпозитная пленка.В качестве подложки используется лист BC с SiO 2 . Okahisa et al. [126] использовали акриловую смолу и нановолокно ацетилированной целлюлозы, полученные из древесного порошка, для изготовления своей подложки, тогда как OLED был изготовлен методом центрифугирования, напыления, вакуумного осаждения и химического осаждения из паровой фазы.
Подложки из акриловой смолы и пленки BC были использованы Yano et al. [137], а также Nogi et al. [138], а также Ивамото и др. [139] впервые использовали субстрат, состоящий из акриловой смолы и крафт-целлюлозы.Okahisa et al. [88] следовали Juntaro et al. [128] с использованием BC и Sain et al. [140] с использованием целлюлозной биомассы для разработки гибкой подложки OLED. The Hagen et al. и другие группы [71,72,101] успешно использовали ДНК в процессе устройства OLED. Чтобы соответствовать концепции Грина, нанокомпозит был разработан многими работами. Этот процесс был направлен на минимизацию использования и образования опасных материалов. Изготовленный нанокомпозит стал хорошим кандидатом для гибкого OLED-дисплея из-за его хороших оптических, термических и стабильных свойств [141–143].Метод термического напыления оценивал характеристики изготовленного OLED по соотношению между напряжением и яркостью, приложенным плотностью тока, где эффективность мощности оценивалась как функция яркости [48].
Подробную информацию о получении нанокомпозита BC и характеристиках можно найти у Ummartyotin et al. [95]. Они успешно составили прозрачный и гибкий нанокомпозит со смолой на основе БЦ и полиуретана в качестве подложки. Они утверждали, что получили 80% светопропускания и стабильность размеров 18 ppm / K с точки зрения КТР, что хорошо соответствовало критериям подложки OLED.И они обнаружили удивительные характеристики этой подложки, например, она может излучать свет при изгибе, что является доказательством того, что нанокомпозит BC является очень многообещающим кандидатом в качестве подложки, и для расширения его применения необходимо еще много работ.
Гладкая поверхность нанокомпозита BC также влияет на прозрачность пленки, поскольку дифракция света на поверхности будет равномерной. Напротив, относительно более грубая поверхность листа BC заставляет свет преломляться более случайным образом.На рис. 10.18 показаны изображения АСМ листа BC (рис. 10.18A) и нанокомпозита BC (рис. 10.18B), полученные в режиме бокового контакта. Шероховатость листа уменьшается с 2,711 мкм до 33,33 нм, поскольку поры микронного размера в листе BC заполняются смолой.
Рисунок 10.18. АСМ-исследования (А) листа BC и (B) нанокомпозита BC [95].
Copyright 2012. Воспроизведено с разрешения Elsevier Ltd.светоизлучающих диодов (светодиодов)
светоизлучающих диодов (светодиодов) Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой Цвета | Размеры и формы |
Номинал резистора | Светодиоды последовательно |
Светодиодные данные |
Мигает | Количество дисплеев
Пример: Обозначение цепи:
Функция
Светодиоды излучают свет, когда через них проходит электрический ток.Подключение и пайка
Светодиоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или — для катода (да, это действительно k, а не c, для катода!). Катод — это короткий вывод, и на корпусе может быть небольшое сглаживание. круглых светодиодов. Если вы видите внутри светодиода, катод — это электрод большего размера (но это не официальный метод идентификации). Светодиоды могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными.При пайке большинства светодиодов особых мер предосторожности не требуется.
Тестирование светодиода
Никогда не подключайте светодиод напрямую к батарее или источнику питания!Он будет уничтожен почти мгновенно, потому что пройдет слишком много тока. насквозь и сжечь.
Светодиоды должны иметь последовательно включенный резистор для ограничения тока до безопасного значения для быстрого в целях тестирования 1к резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше. Не забудьте правильно подключить светодиод!
Точное значение см. В разделе «Расчет номинала резистора светодиода» ниже.
Цвета светодиодов
Доступны светодиоды красного, оранжевого, желтого, желтого, зеленого, синего и белого цветов. Синие и белые светодиоды намного дороже других цветов. Цвет светодиода определяется полупроводниковым материалом, а не его окраской.
«упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде.
упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»).
Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.
Трехцветные светодиоды
Самый популярный тип трехцветного светодиода имеет красный и зеленый светодиоды, объединенные в один. пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды. На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные
длины трех выводов. Центральный вывод (k) является общим катодом для
оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет
каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.
Двухцветные светодиоды
Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад). объединены в один корпус с двумя выводами.Одновременно может гореть только один из светодиодов и они менее полезны, чем трехцветные светодиоды, описанные выше.Размеры, формы и углы обзора светодиодов
Светодиоды доступны в самых разных размерах и формах. «Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно, лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.Часто используются светодиоды круглого сечения, и их очень легко установить на коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать светодиод, если необходимо.Также доступны зажимы для светодиодов, чтобы закрепить светодиоды в отверстиях. Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.
Помимо разнообразия цветов, размеров и форм, светодиоды также различаются по углу обзора. Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзорный угол 60 °, но другие имеют узкий луч 30 ° или меньше.
Склад Rapid Electronics
широкий выбор светодиодов и их каталог является хорошим ориентиром для имеющегося ассортимента.
Расчет номинала резистора светодиода
Светодиод должен иметь резистор, подключенный последовательно для ограничения тока через светодиод, иначе он перегорит практически мгновенно.Величина резистора R определяется по формуле:
V S = напряжение питания
В L = напряжение светодиода (обычно 2 В, но 4 В для синих и белых светодиодов)
I = ток светодиода (например, 20 мА), он должен быть меньше максимально допустимого.
Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора. что на больше , так что ток будет немного меньше, чем вы выбрали.На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток. (например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.
Например,
Если напряжение питания V S = 9V, а у вас красный светодиод (V L = 2V), требующий тока I = 20 мА = 0,020 А,R = (9В — 2В) / 0,02А = 350, так что выберите 390 (ближайшее стандартное значение, которое больше).
Расчет формулы светодиодного резистора по закону Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:V = напряжение на резисторе (в данном случае = V S — V L )
I = ток через резистор
Итак, R = (V S — V L ) / I
Для получения дополнительной информации о расчетах см.
Страница закона Ома.
Подключение светодиодов серии
Если вы хотите, чтобы одновременно горели несколько светодиодов, их можно подключить. последовательно. Это продлевает срок службы батареи за счет включения нескольких светодиодов таким же током, как и всего один светодиод.Все светодиоды, соединенные последовательно, пропускают один и тот же ток , поэтому лучше, если они все того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода. (4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .
Пример расчетов:
Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее
3 × 2 В + 2 В = 8 В, поэтому батарея на 9 В подойдет идеально.
В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0.015A,
Резистор R = (V S — V L ) / I = (9-6) / 0,015 = 3 / 0,015 =
200,
, поэтому выберите R = 220
(ближайшее стандартное значение, которое больше).
Избегайте параллельного подключения светодиодов!
Параллельное подключение нескольких светодиодов с использованием только одного резистора, общего между ними. вообще не очень хорошая идея. Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он
может быть разрушен более сильным током, протекающим через него.Хотя идентичные светодиоды могут быть
успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу
потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов.
индивидуально.
Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.
Чтение таблицы технических данных для светодиодов
Каталоги поставщиков обычно включают таблицы технических данных для таких компонентов, как светодиоды. Эти таблицы содержат много полезной информации в компактной форме, но они могут быть трудным для понимания, если вы не знакомы с используемыми сокращениями.В таблице ниже приведены типичные технические характеристики некоторых круглых светодиодов диаметром 5 мм. с диффузными корпусами (пластиковые корпуса). Важны только три столбца, и они выделены жирным шрифтом. Пожалуйста, смотрите ниже объяснения количеств.
Тип | Цвет | I F макс. | V F тип. | V F макс. | V R макс. | Световой Интенсивность | Угол обзора | Длина волны |
Стандартный | Красный | 30 мА | 1,7 В | 2,1 В | 5В | 5 мкд при 10 мА | 60 ° | 660 нм |
Стандартный | Ярко-красный | 30 мА | 2.0В | 2,5 В | 5В | 80 мкд при 10 мА | 60 ° | 625 нм |
Стандартный | Желтый | 30 мА | 2,1 В | 2,5 В | 5В | 32 мкд при 10 мА | 60 ° | 590 нм |
Стандартный | зеленый | 25 мА | 2.2В | 2,5 В | 5В | 32 мкд при 10 мА | 60 ° | 565 нм |
Высокая интенсивность | Синий | 30 мА | 4,5 В | 5,5 В | 5В | 60 мкд при 20 мА | 50 ° | 430 нм |
Супер яркий | Красный | 30 мА | 1.85 В | 2,5 В | 5В | 500 мкд при 20 мА | 60 ° | 660 нм |
Низкий ток | Красный | 30 мА | 1,7 В | 2,0 В | 5В | 5 мкд при 2 мА | 60 ° | 625 нм |
I F макс. | Максимальный прямой ток, прямой означает только при правильном подключении светодиода. |
V F тип. | Типичное прямое напряжение, В L в расчете резистора светодиода. Это около 2В, за исключением синих и белых светодиодов, для которых это около 4В. |
V F макс. | Максимальное прямое напряжение. |
V R макс. | Максимальное обратное напряжение Вы можете игнорировать это, если светодиоды подключены правильно. |
Сила света | Яркость светодиода при заданном токе, мкд = милликандела. |
Угол обзора | Стандартные светодиоды имеют угол обзора 60 °, другие излучают более узкий луч около 30 °. |
Длина волны | Пиковая длина волны излучаемого света, определяет цвет светодиода. нм = нанометр. |
Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, но содержат интегральную схему (ИС). а также сам светодиод. Микросхема мигает светодиодом на низкой частоте, обычно 3 Гц. (3 вспышки в секунду). Они предназначены для прямого подключения к источнику питания, обычно 9 — 12 В, и никакого последовательного резистора не требуется. Их частота вспышек составляет исправлено, поэтому их использование ограничено, и вы можете предпочесть создать свою собственную схему для прошивки обычный светодиод, например наш мигающий светодиод проект, в котором используется нестабильная схема 555.Светодиодные экраны
Светодиодные дисплеи представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме. является 7-сегментным дисплеем для отображения чисел (цифры 0–9). Картинки ниже проиллюстрируем некоторые из популярных дизайнов:Разъемы выводов светодиодных дисплеев
Существует много типов светодиодных дисплеев, и для получения информации о них следует обращаться к каталогу поставщика. штыревые соединения. На диаграмме справа показан пример из Быстрая электроника каталог.Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях: Общий анод (SA) со всеми анодами светодиодов, соединенными вместе, и общий катод (SC) со всеми катодами, соединенными вместе. Буквы a-g относятся к 7 сегментам, A / C является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты нет (NP), но их позиция все еще пронумерована. См. Также: Драйверы дисплея.
Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой
© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.
выводов светодиодов — 2, 3, 4 и более контактов
Большинство светодиодов представляют собой простое одиночное устройство с двумя выводами, но обычно используются корпуса с двумя или более светодиодами, и используются различные схемы расположения выводов светодиодов.
Простая схема тестирования светодиодов
Простая схема тестирования светодиодов. «LUT» означает «тестируемый светодиод»!Большинство светодиодов загораются при напряжении ниже 5 В и могут выдерживать обратное напряжение 5 В.Питание 5 В доступно от источника питания USB или, например, Arduino. Вы можете использовать более высокое напряжение, например батарею 9 В, и удвоить значение R1, но вы можете повредить чувствительные устройства при обратном напряжении.
Дополнительные сведения по этой теме см. В разделе «Тестирование неизвестных светодиодов».
Обратите внимание, что светодиоды обычно не имеют двух выводов одинаковой длины. На это есть две причины:
- Помогает идентифицировать контакты.
- Это помогает при сборке, так как штифты можно вставлять по одному, от самого длинного до самого короткого, без необходимости выравнивать все штифты одновременно.
Самым распространенным типом светодиодов является 2-контактный, 5-миллиметровый, с круглой линзой. Обычно это один светодиод. Полярность обозначается длинным выводом (+ / анод) или плоской стороной на одной стороне основания (- / катод).
Типичный двухконтактный светодиод. Двухконтактный корпус может содержать один или два встречных светодиода.Имейте в виду, что в этой упаковке также продаются двухцветные светодиоды. Некоторые из них двухцветные, поэтому при прохождении тока через них меняется цвет. Другие могут иметь оба светодиода одного цвета, и это может быть полезно в приложениях переменного тока, поскольку оно может работать в обоих циклах сети и устраняет необходимость в выпрямителе.
В техническом описании двухцветного светодиода будет указано, с какой стороны подключаться, чтобы обеспечить правильный цвет.
3-контактный светодиод.Трехконтактный светодиод обычно представляет собой пару светодиодов разного цвета с общим анодом или общим катодом. Любой из светодиодов может быть включен независимо или смешан, чтобы создать комбинацию.
Двухцветный 3-контактный светодиод с общим катодом. Популярный 4-контактный светодиодный RGB-индикатор позволяет воспроизводить цвета в видимом спектре.4-контактный корпус чаще всего встречается на светодиодах RGB (красный-зеленый-синий).Доступны версии с общим катодом и общим анодом.
Светодиод RGB в 4-контактном корпусе. Обратите внимание, что у этого есть общий катод. RGB с индивидуальными выводами позволяет использовать общий анод, общую конфигурацию катода, а также последовательное соединение светодиодов.Когда количество выводов достигает шести, возможны всевозможные странные вариации. Один из разумных — вывести каждый светодиодный анод и катод на отдельные выводы. Это позволяет использовать одну деталь для конфигураций с общим анодом, общим катодом и последовательными светодиодами.
Немного странный 6-контактный светодиод RB-GB имеет два отдельных 3-контактных светодиода в одном корпусе.
Этот пакет состоит из пары красно-синих и зелено-синих в одной упаковке. Обратите внимание на два независимых общих катода. Kingbright LF5WAEMBGMBW, 6-контактный, светодиод RB-GB имеет два 3-контактных светодиода в одном корпусе. Оба имеют синий светодиод. Обратите внимание на подсказку по ориентации длины штифта. Учебное пособие по: Как на макетной плате LED
Слышали о макетной плате? Конечно, знаете, но некоторые из вас не очень хорошо понимают, на что способна эта маленькая деталь. Прежде чем приступить к проектам, мы начнем с некоторых основ макетов.Макетные платы — один из основных элементов, когда вы начинаете учиться строить схемы. Макетные платы являются предпочтительной платформой для начала построения схем, потому что они не требуют пайки, что дает вам возможность пробовать, тестировать и изменять схему в любой момент. Они позволяют создавать быстрые схемы, проверять идеи и создавать прототипы до изготовления постоянной печатной платы. Они недорогие, многоразовые и легко доступны в любом магазине электроники.
Макетная плата — это не что иное, как пластиковая основа с множеством отверстий, куда вы можете вставить свои компоненты и провода для сборки вашей схемы.Вы не можете видеть, что происходит внутри макета, но внутри ничего, кроме множества металлических полос, которые соединяют строки и столбцы вместе. Эти металлические полоски упругие, поэтому, когда вы вставляете провод или деталь в отверстие, зажимы цепляются за них.
Макетные платы используются как для простейших схем, так и для очень сложных схем. Если одна макетная плата не вмещает вашу схему, вы можете соединить несколько макетов вместе, чтобы получилась большая макетная плата. Вы можете использовать макетную плату для тестирования и выяснения работы интегральных схем (ИС).
Если вы обратитесь к описанию на изображении выше, вы увидите, как дорожки соединяются внутри макета. Обратитесь к линиям Vcc и Gnd на изображении выше, вы можете видеть, что эти две линии проходят по границам, что позволяет нам использовать эти линии для распределения питания, но есть разрыв в дорожках Vcc и Gnd, как показано выше (упомянуто «Not Connected»), которые необходимо соединить перемычками для распределения питания.Центральные отверстия соединены столбцами, как показано на рисунке, и между теми же столбцами есть зазор, что позволяет нам вписать IC в зазор. Чтобы прояснить ситуацию, мы добавили изображение макета в разобранном виде, обратитесь к следующей диаграмме, чтобы лучше понять внутренние соединения.
Изображение, показанное выше, является макетной платой половинного размера, поэтому не запутайтесь, сравнивая его с предыдущими изображениями. Надеюсь, что на этом этапе все ясно, и вы хорошо поняли макетную плату, теперь мы пойдем дальше и посмотрим, как начать создавать базовые схемы на этой макетной плате.Мы собираемся начать со светодиодной схемы, которая является общей для всех устройств, мы собираемся построить схему для светодиодной индикации питания, то есть всякий раз, когда в цепи есть питание, этот светодиод будет сообщать нам об этом.
Если вы обратите внимание на изображение выше, вы увидите ножки светодиода, упомянутые с анодом и катодом, и, чтобы понять, как различать анодные и катодные контакты, мы предоставили подсказки на изображении, на нем нет ничего, кроме одной отметки (означает, что светодиод не полностью круглая с нижней стороны), что указывает на то, что ножка под ним является катодным (-ve) штифтом, и, если мы видели размер ножек, анодный (+ ve) штифт немного длиннее.Но в большинстве случаев вам нужно обрезать ножки светодиода, когда вы используете эти светодиоды в любой цепи, что делает анодные и катодные выводы неразличимыми с точки зрения размера ножек.
Важность анодных и катодных выводов в светодиодах заключается в том, что светодиод будет светиться только в том случае, если вы подадите источник питания + ve на анодный вывод и — ve на вывод катода. Но подождите, вы не можете сразу подключить светодиод к источнику питания, потому что есть вероятность, что через светодиод будет проходить больше тока, и это приведет к повреждению светодиода, чтобы избежать этой ситуации, настоятельно рекомендуется использовать резистор вместе со светодиодом. .
Схема будет примерно такой, как показано выше. Но действительно важно использовать в цепи резистор правильного номинала для ограничения тока. Мы покажем вам, как выбрать правильное значение резистора для каждой цепи. Для этого вам необходимо понимать два необходимых параметра светодиода, а именно: LED Current и LED Прямое напряжение , подробное описание см. В разделе ниже:
Светодиодный ток:
В качестве примера мы будем ссылаться на техническое описание на базовый красный 5-миллиметровый светодиод.Начиная сверху и спускаясь вниз, первое, с чем мы сталкиваемся, — это таблица абсолютных максимальных рейтингов:
.Запутались? Возникают вопросы, что все это значит? Правильно ?
Итак, первая строка в таблице показывает, какой ток ваш светодиод сможет выдерживать непрерывно. В этом случае вы можете дать ему 20 мА или меньше, и он будет светить наиболее ярко при 20 мА . Вторая строка сообщает нам, каким должен быть максимальный пиковый ток для коротких импульсов.Этот светодиод может обрабатывать короткие удары до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Эта таблица данных достаточно полезна, чтобы предложить стабильный диапазон тока (в третьей строке сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.
Следующие несколько строк менее важны для целей данного руководства. Обратное напряжение — это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность — это количество энергии в милливаттах, которое светодиод может использовать до того, как получит повреждение.Это должно работать само по себе, пока вы держите светодиод в пределах предполагаемых номинальных значений напряжения и тока.
Светодиод прямое напряжение
Теперь, когда вы еще раз проверите таблицу, вы натолкнетесь на следующую таблицу, показанную ниже:
А вот и полезный столик! Первая строка сообщает нам, каким будет падение прямого напряжения на светодиоде. Прямое напряжение — это термин, который часто используется при работе со светодиодами. Это число поможет вам решить, какое напряжение вашей цепи потребуется для подачи на светодиод.Вам нужно следовать следующей формуле каждый раз, когда вы создаете схемы со светодиодами, см. Раздел ниже:
Основной закон Ома гласит:
В = I x R или R = V / Iгде,
В = напряжение питания
I = ток через светодиод
R = Цепной резистор
Таким образом, применив этот закон для схемы светодиода, получим следующую формулу:
Где,
В S = Напряжение источника (обычно напряжение батареи или источника питания)
В F = прямое напряжение светодиода
I F = Требуемый ток, который проходит через него.
Например, предположим, что в этом примере у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА (или 0,010 А), а не до 20 мА, используйте последовательный резистор примерно 720 Ом.
Теперь, если мы собираемся построить схему индикатора источника питания для системы 5 В, наш расчет резистора будет примерно таким:
R = (5-1,8) В ÷ 0,010A
R = 3.2 В ÷ 0,010 А
R = 320 В / А
R = 320 Ом
R = 330 Ом Приблизительно (ближайшее стандартное значение резистора)
Таким образом, если вы заметили в схеме, показанной выше, вы увидите, что мы использовали резистор 330 Ом в схеме, но подождите, вы можете быть сбиты с толку с тем, как резистор, показанный выше, равен 330 Ом, снова вам нужно следить за цветами колец на поверхность резистора. См. Изображение ниже для лучшего представления:
Если вы заметили на изображении, это хорошо документировано, как рассчитывается значение 330 Ом.Обратитесь к формуле, показанной на изображении, которая поможет вам узнать значение сопротивления резистора, вам просто нужно подставить значение A, B, C и D в формулу, основанную на цветном кольце.
В нашем случае цвета резистора последовательно оранжевые, оранжевые, коричневые и золотые, поэтому, если мы подставим соответствующие значения цветов в формулу, мы получим: 33 x 10, что является не чем иным, как 330 с допуском 5%, толерантность позволит узнать, насколько хорош резистор?
В данном случае его 5% означает: значение сопротивления ограничено в широком диапазоне [ 270 — (5% от 270) ] и [ 270 + (5% от 270) ], что составляет не хорошо, чем меньше диапазон, тем ближе сопротивление к желаемому значению сопротивления.
Давайте начнем сборку схемы на макетной плате, см. Изображение ниже для лучшего представления:
Теперь вы можете видеть, как мы использовали столбцы макета, которые закорочены внутри, для соединения анодного вывода светодиода с резистором, аналогично мы использовали перемычки для соединения вывода катода светодиода и другого конца резистора. Теперь, если вы запитаете показанную выше схему, то есть красный провод с напряжением 5 В и черный с заземлением, вы увидите, что ваш светодиод будет безопасно светиться.
Примечание. У нас было подключено питание 5 В и заземление от платы Arduino на следующем изображении, вы можете использовать Raspberry Pi или любые другие платы, которые у вас есть, для подачи 5 В и заземления с платы. Если у вас есть наш стартовый комплект для электроники Raspberry Pi, вы можете использовать RasPiO Portplus, который мы предоставили с комплектом, чтобы найти контакты 5v и GND на Raspberry Pi и использовать перемычку между мужчинами и женщинами, которую мы предоставили в комплекте для поставки. питание светодиода на макете.
Теперь мы хотим, чтобы вы построили одну схему самостоятельно с несколькими последовательно включенными светодиодами, но перед этим мы хотим прояснить некоторые основы, связанные с построением таких схем.Когда вы прошли через раздел прямого напряжения светодиода выше, вы видели таблицу с прямым напряжением светодиода, вы должны использовать это значение, чтобы узнать, сколько светодиодов вы можете использовать в своей схеме. При последовательном подключении нескольких светодиодов всегда помните, что прямое напряжение всех ваших светодиодов, сложенных вместе, не может превышать напряжение вашей системы. Это связано с тем, что каждый компонент в вашей схеме должен на совместно использовать напряжения, а количество напряжения, которое каждая часть использует вместе, всегда будет равняться доступной величине.Это называется законом напряжения Кирхгофа. Таким образом, если у вас есть источник питания 9 В и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, то вы не сможете запитать более трех одновременно.
Законы Кирхгофа также пригодятся, когда вы хотите приблизительно определить напряжение в данной части на основе прямого напряжения других частей. Например, в примере, который мы только что упомянули, есть источник питания 9 В и 3 светодиода с прямым падением напряжения 2,4 В каждый. Конечно, мы бы хотели добавить резистор, ограничивающий ток, не так ли? Как узнать напряжение на резисторе? Это просто:
9 (напряжение системы) = 2.4 (светодиод 1) + 2,4 (светодиод 2) + 2,4 (светодиод 3) + резистор
9 = 7,2 + резистор
Резистор = 9-7,2
Резистор = 1,8
Значит, на резисторе 1,8 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, он дает вам представление о том, почему , падение напряжения в прямом направлении, так важно. Используя число напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент, используя закон Ома. Короче говоря, вы хотите, чтобы напряжение вашей системы было равным ожидаемому прямому напряжению компонентов вашей комбинированной схемы.
Надеюсь, теперь все стало для вас более ясным, и это конец ваших первых основных шагов на пути к работе с электроникой. Обратитесь к следующему руководству для более сложных проектов.
общих анодов и катодов — маргинально умные роботы
Общие аноды и катоды — это распространенный метод, используемый для управления большим количеством светодиодов с небольшим количеством выводов микроконтроллера. Я собираюсь поговорить о том, почему аноды и / или катоды используются совместно. Затем я покажу пример общих анодов, пример общих катодов и, наконец, объединю их для получения более впечатляющих результатов.
Почему аноды и катоды используются совместно?
Очень хорошо масштабируется. Если общих анодов и катодов нет, то для независимого управления количеством ламп N необходимо как минимум N + 1 анодов и катодов. Если есть общие аноды и катоды, вам понадобятся аноды A * катоды B для работы N светодиодов. Итак, для…
… 16 ламп нужно 4 анода и 4 катода.
… 25 ламп нужно 5 анодов и 5 катодов.
… 256 ламп нужно 8 анодов и 8 катодов.
… 512 ламп нужно 8 анодов и 16 катодов. (или 16 и 8, это ваш звонок.)
… 17 ламп нужно 4 анода и 5 катодов. Будет несколько комбинаций анода / катода, результаты которых я не могу предсказать.
Соединение общих анодов и катодов вместе
Мне приходит в голову, что на видео я ставил резисторы на аноды. Это не имеет значения. Пока они нужны для обеспечения безопасности светодиодов, не имеет значения, находятся ли они до или после светодиодов.
Также обратите внимание на потенциометр в нижнем левом углу схемы. Я собираюсь использовать значение этого потенциометра, чтобы изменить поведение скетча Arduino.
Код
Я включил два эскиза в проект github с общими анодами и катодами.
SharedAnodesAndCathodesA.ino будет работать либо (а) с четырьмя светодиодами с общими анодами, либо (б) с четырьмя светодиодами с общими катодами. Код такой же, эффект ровно противоположный .
SharedAnodesAndCathodesB.ino будет работать с 16 светодиодами с четырьмя общими анодами и четырьмя общими катодами, как описано на схеме подключения выше и видео ниже. Кстати…
Видео
Печатная плата
Я разработал экран для Arduino, который очищает всю проводку в демонстрации с 16 светодиодами. Если вы хотите оставить один (или несколько!) Комментариев ниже, мы сделаем так.
Заключительные мысли
СветодиодыRGB имеют четыре ножки.Обычно катодом является длинная ножка, а тремя более короткими ножками — красный, зеленый и синий аноды. очень быстрое переключение между тремя анодами создаст много разных оттенков.
Это идеальный случай для использования сдвигового регистра. Попробуй сам!
Разверните эту идею достаточно далеко, и вы сможете создавать большие дисплеи.