Светодиодная лампа устройство: Светодиодные лампы:устройство, принцип работы,принципиальная схема,виды,характеристики

Содержание

устройство, принцип работы, виды, характеристики

Среди владельцев частных домов, дач и квартир все чаще и чаще в обиходе используется светодиодная лампа. Это самые новые виды осветительных приборов, которые привнесли принципиально новые варианты эксплуатации электрооборудования. Они относятся к категории энергосберегающих лампочек, но помимо этого обладают и другими весомыми преимуществами. Далее мы более детально разберемся в устройстве и принципах работы светодиодных ламп.

Устройство и принцип работы

Чтобы разобраться в принципиальных отличиях светодиодной лампы, как электрического оборудования, в сравнении с другими приборами, следует детально рассмотреть ее конструктивные особенности и назначение каждого из элементов.

Конструкция светодиодной лампыРис. 1. Конструкция светодиодной лампы

Конструктивно led лампочка состоит из:

  • Светодиодов – в старых моделях присутствовал только один кристалл, излучавший свет, однако эта технология имела ряд сложностей, поэтому современные модели включают несколько единиц или целую матрицу.
  • Колбы или рассеивателя  — может изготавливаться из стекла или полимера. Предназначен для боле плавного перераспределения светового потока от точечных источников в окружающее пространство.
  • Стабилизатора тока или драйвера – предназначен для преобразования поступающей на контакты диодной лампочки электрической величины, не зависимо от уровня напряжения и мощности, в строго установленную величину электротока.
  • Цоколя – предназначен для соединения светодиодных ламп с электрической сетью. Чаще всего используются стандартные цоколя E и G, реже бывают другие конструкции.

Дополнительно лампа содержит полимерный или металлический корпус. Однако в led светильниках может быть встроенная матрица, и она монтируется в светодиодный прожектор напрямую.

Принцип действия светодиодной лампы заключается в такой последовательности передачи электрической энергии:

  • При помещении электролампы в патрон и подаче на нее переменного напряжения сети светодиодный источник получает питание.
Принцип действия светодиодной лампыРисунок 2. Принцип действия светодиодной лампы
  • Как видите на рисунке 2, переменное напряжение сети в светодиодной лампе изначально поступает на выпрямительный мост, где преобразуется в выпрямленное. Конденсатор, установленный после моста дополнительно сглаживает пульсации.
  • Выпрямленное напряжение переходит далее от выпрямительного устройства на микроконтроллер, контролирующий величину вырабатываемого электротока.
  • Затем питание поступает на импульсный трансформатор, который и выдает электрическое напряжение непосредственно к источнику освещения.
  • При достижении нужного уровня электротока происходит свечение светодиодов.

В данном примере приведен принцип действия и конструкция светодиодной лампы с гальванической развязкой. Это более дорогой, но и более надежный способ предохранить человека от поражения электротоком. На практике случаются и более дешевые светодиодные лампы, их продукция использует более дешевые платы драйвера или способы преобразования, которые не обеспечивают должного уровня безопасности и продолжительности эксплуатации.

Виды

На сегодняшний день производители светодиодных ламп предоставляют потребителям довольно широкий выбор разнообразных моделей, призванных удовлетворить потребности даже самых требовательных покупателей. Поэтому выделяют несколько параметров, по которым и различают виды светодиодных ламп:

  • тип цоколя;
  • форма колбы и самой лампы;
  • напряжение питания;
  • тип светодиодов и способ их размещения;
  • световое излучение – мощность и теплота.

У светодиодных ламп часто встречается цоколь для патронов E27 – стандартный вариант, используемый в люстрах для освещения помещения и т.д. Также часто встречаются модели  E14 с диаметром цоколя 14мм, их еще называют миньонами. В некоторых вариантах встречаются штырьковые цоколи G13, G5, GU10, MR – это варианты под современные софиты и специализированные плафоны в люстрах.

Типы цоколейРис. 3. Типы цоколей

Значительно реже встречаются светодиодные лампочки с цоколем B или H, как специализированные варианты для узкопрофильного оборудования.

Если рассматривать вопрос о форме, то можно выделить такие виды:

  • грушеобразная – классический вариант, может использовать как матовый рассеиватель, так и прозрачную колбу, в некоторых моделях совмещается полупрозрачный и непрозрачный корпус;
  • грибовидная – используется в точечных светильниках, так как поверхность, излучающая световой поток сравнивается с корпусом софита;
  • кукуруза – длинная модель с цилиндрическим расположением светодоидов, прекрасно подходит для горизонтального расположения в плафонах, прожекторах уличного освещения и т.д.;
  • свеча – декоративная светодиодная лампа, устанавливаемая в настольные лампы, ночники или подсветки.

Как частные варианты вы можете встретить и другие формы, однако здесь мы рассмотрели наиболее популярные из них.

Форма светодиодных лампРис. 4. Форма светодиодных ламп

По напряжению питания светодиодные лампы подразделяются на те, которые подключаются к бытовой сети 220В, и те, которым требуется низкое напряжение постоянного тока – 24В, 12В.

В зависимости от типа светодиодов, выделяют лампочки с монокристаллическими панелями, где обеспечивается точечное освещение за счет единственного кристалла. Но такие варианты сегодня редко встречаются, чаще используются 8 – 10 и более небольших кристаллов, которые могут отличаться габаритами для разных моделей. Особенно хорошо их видно на светодиодных лентах или лампах с прозрачным стеклом. Но некоторые энергосберегающие технологии используют светодиодные нити в газовой смеси.

По типу светодиодовРис. 5. По типу светодиодов

Яркость свечения определяется мощностью светодиодной лампы, чем выше мощность, тем более ярко она будет светить. Для бытовых помещений подойдут модели от 3 до 10Вт, производственным потребуется уже около 20Вт, в уличные светильники устанавливают от 30 до 100Вт. Температуру свечения можно выбрать любую, в зависимости от поставленных задач – от теплой до холодной.

Рис. 6. Температура свеченияТемпература свечения

Преимущества и недостатки

Как мы уже отмечали ранее, такой тип осветительных приборов стал популярным за счет значительных преимуществ перед их ближайшими конкурентами. К преимуществам светодиодных ламп относят:

  • Продолжительный срок эксплуатации – от 10 до 100 тысяч часов, в сравнении с лампочкой накаливания, которая может обеспечить только 1 тысячу часов.
  • Куда более эффективная светоотдача – от 90 до 120Лм/Вт, лампы накаливания могут похвастаться лишь 5 – 8Лм/Вт, а  люминесцентные светильники 25 – 50Лм/Вт.
  • Обладает широкой гаммой цветовых температур, что делает их использование комфортным для любых помещений и нужд, а RGB светодиодные ленты могут выдавать несколько вариантов цвета свечения.
  • Не боятся разгерметизации и нарушения целостности колбы, в отличии от устройств с нитью накаливания, галогенных ламп и других газосодержащих, будет с тем же успехом светить даже без наружного рассеивателя.
  • Широкий диапазон рабочих температур – светодиодные аналоги не теряют своих характеристик в промежутке от – 60 до + 60°С.
  • Устойчивы к незначительным отклонениям рабочего напряжения от номинального значения.
  • Не выделяют вредных веществ, в отличии от люминесцентных ламп, которые содержат ртуть.

К недостаткам светодиодных ламп следует отнести их относительно высокую себестоимость, но она с лихвой окупается рабочими параметрами и сроком эксплуатации. Также существуют ситуации, когда лампочки накаливания нельзя или нецелесообразно менять на светодиодные модели.

Технические характеристики

Перед выбором конкретного осветительного устройства необходимо определиться с его основными параметрами. Из всего многообразия, которое вам следует учитывать, мы выделим:

  • Мощность – определяет, сколько электрической энергии будет потребляться из сети при работе прибора. Показатель мощности важен как в части расчета за потребленную электроэнергию, так и в части количества получаемого света.
  • Спектр излучения – теплый в пределах 2700 – 3300 К, дневной от 3500 до 6000К, холодный – от 6000К. Этот параметр указывается на упаковке светодиодной лампы.
  • Коэффициент цветопередачи – на изделии маркируется буквами CRI или Ra. Показатель 100 является максимальным – это  уровень естественного дневного света, чуть хуже – от 100 до 90 для рабочих зон, лабораторий и т.д. В пределах 90 – 80 обычные жилые помещения, менее 80 подойдут для коридоров, подвалов и некоторых складов.
  • Угол рассеивания и тип потока
    – могут характеризоваться направленным световым потоком или рассеянным.
  • Уровень светоотдачи – определяет эффективность каждого ватта переработанной электроэнергии по отношению к выработанному световому потоку.

Область применения

Если еще десять – двадцать лет тому назад светодиодные лампы были настоящей диковинкой, то сегодня они стали полноправными фаворитами рынка. Их можно встретить в самых различных сферах человеческой деятельности:

  • В освещении открытых территорий, площадок, парков;
  • Для освещения бытовых и производственных помещений;
  • Создания декоративной подсветки и украшения, как помещений, так и элементов ландшафта;
  • В пожароопасных зонах и особо влажных помещениях;
  • В автомобилях и механизации транспортных средств;
  • Для работы устройств сигнализации, телемеханики и управления.

Но и этот список не является окончательным, за счет развития и совершенствования технологий, светодиодные лампы продолжают расширять область применения.

как работает, из чего состоит

Благодаря устройству и принципу работы светодиодной лампы на 220 вольт она потребляет значительно меньше энергии, если сравнивать с лампочкой накаливания и прослужит в несколько раз дольше. На LED-лампу при покупке можно получить гарантию, поэтому не стоит спешить выкидывать чек и упаковку.

Светодиодная лампочка спроектирована таким образом, чтобы на выходе напряжение с помощью драйвера понижалось до требуемых показателей. Обычно они не превышают 2-4 Вольта. Единственный недостаток этих устройств – это цена. Но, стоимость лампы окупается быстро благодаря срокам службы.

СодержаниеПоказать

Принцип работы светодиодных ламп

Несмотря на разный внешний вид светодиодных ламп, принцип работы для каждой из них остаётся неизменным. Свет подаётся через диоды, их количество бывает разным в зависимости от мощности осветительного прибора. Цветовой спектр задаётся специальным составом, который является составляющей каждого из кристалликов.

Принцип работы лампочки Led.

LED-лампа, это полупроводниковый элемент, в составе которого есть несколько слоёв, отвечающих за преобразование поставляемого тока в свет. Для обеспечения достаточных показателей рассеивания и во избежание контакта диодов с посторонними элементами устанавливается специальная колба (защитное рассеивающее стекло). Благодаря этому, изделие напоминает обычную лампу накаливания.

Какие светодиоды используются

Один из главных элементов, который входит в состав светодиодной лампы, это диод. Им называют полупроводниковый кристалл, состоящий из нескольких слоёв. Именно он служит для преображения подаваемого в лампу электричества в свет. Производят диод на основе чипа, это кристалл с площадкой, к которому будут подключены проводники питания.

Советуем посмотреть видео: Разъяснение по светодиодным лампам, разборка LED лампы, принцип работы.

Чтобы получить белое свечение, чип необходимо покрыть желтым люминофором. При смешивании синего и желтого цвета образуется белый. Существует 4 типа светодиодов:

  • COB. При данной технологии производства чип монтируют в плату. Благодаря этой схеме, контакт получает надёжную защиту от окисления и чрезмерного нагрева. Также это положительно отразится на характеристиках свечения. Если такой чип выйдет из строя, отремонтировать схему не выйдет, это единственный недостаток этой технологии;
  • DIP. Схема состоит из кристалла, двух присоединённых проводников, а линза расположена сверху. Такие осветительные приборы в большинстве случаев используют в качестве подсветки на рекламных табло и световых украшениях;
  • Диод-SMD. Устанавливается такой элемент на плоской поверхности, что позволяет изготовить устройства разных форм. Также осветительный прибор будет отличаться улучшенными характеристиками теплоотвода. Такие лампы можно использовать для любых источников света;
  • «Пиранья». Конструкция похожа на схему DIP. Но, здесь имеется 4 вывода. Это обеспечивает улучшение отвода образующегося тепла и делает технологию более надёжной. Широкое распространение «пиранья» получила в автомобильной промышленности.

Светодиод «пиранья».

Как устроены такие лампы

Чтобы понять устройство Led лампы не нужно быть профессионалом и долго разбираться в строении осветительных приборов. Все они спроектированы по достаточно простой схеме. В составе классической светодиодной лампочки присутствуют следующие элементы:

  • цоколь и несущий корпус;
  • блок питания;
  • рассеивающая линза из пластика;
  • драйвер;
  • чипы;
  • радиатор для отвода тепла;
  • печатная плата.

Конструкция светодиодной лампы.

Форма может быть стандартной, то есть округлой или цилиндрической. Для системы общего пользования рекомендуется выбирать светильники, чья цветовая температура находится на уровне 2700К, 3500 К Касательно градации спектра, допустимы любые значения. Подобные изделия часто используют как предмет для подчеркивания элементов интерьера или рекламными агентствами, чтобы подсветить баннер.

Схема светодиодного драйвера

На рисунке ниже изображена упрощённая схема дайвера, который используется в лампах 220 В.

Схема драйвера.

Данная схема подразумевает использование только основных деталей. Здесь имеются 2 резистора – R1 и R2. К ним по встречно-параллельному принципу подключены диоды HL1 и HL2. Такое устройство обеспечивает схеме защиту от обратного выброса напряжения. При включении, сигнал, поступающий на лампу, возрастёт до 100 Гц. Напряжение 220 В подаётся через С1 (ограничительный конденсатор). Отсюда оно поступит на выпрямительный мост и на чипы.

Виды сборки

Существует 2 основных разновидности сборки светодиодных ламп на 220 вольт, а именно:

  • с диодным мостом. В Схему включены 4 диода. Мост получит возможность трансформировать поступающий ток (220В) в пульсирующий. В момент прохода по двум из чипов, синусоидальные волны изменятся, что спровоцирует потерю полярности. В процессе сборки, перед мостом к выходу нежно подключить конденсатор. Перед клеммой (минусовой) – 100 Ом сопротивление. Чтобы сгладить возможные перепады, ещё один конденсатор монтируют за мостом;
  • с резисторным сопротивлением. Данная сборка поддаётся даже неопытным мастерам. Для работы следует подготовить 2 резистора 12k, а также цепочки с одинаковым количеством чипов, установленных последовательно учитывая полярность. Со стороны первого резистора полоса присоединяется катодом, а для второго – анодом. При этой схеме светильник будет иметь мягкий свет за счет поочередного включения чипов. Такие устройства часто используются в качестве настольных ламп.

Также будет полезно видео: Комплект для сборки светодиодной лампы.Собираем самостоятельно.

Схема сборки конструкции

То, как будет работать светодиодная лампа напрямую зависит от производителя и цены изделия. Отличия можно заметить, если снять рассеиватель. В первую очередь стоит обратить внимание на качество пайки чипов, а также соединительных проводов. Дешевые лампочки служат меньше, чем качественные и дорогие.

Низкокачественные китайские лампочки

Приобретая лампочку не более чем за 3 доллара, не стоит рассчитывать на симметрическое расположение светодиодов на плате. Это говорит о том, что пайка выполнялась вручную и на скорую руку. Говоря о проводах, они подбираются с минимальным сечением. Надёжного драйвера здесь также не будет. Вместо реализована бестрансформаторная схема с выпрямителем и конденсатором.

При включении дешевой китайской лампы, напряжение сначала снизится металлопленочным конденсатором (неполярным), выпрямится, а после повысится до нужных показателей. Ток будет ограничен стандартным резистором SMD. Он установлен на печатную плату вместе с чипами.

Схема китайской лампочки.

Если приходится проводить диагностику и после ремонтировать лампы подобного типа, следует обязательно придерживаться особой техники безопасности. Каждый элемент, который является составляющей одной цепи, может находиться под напряжением, опасным для здоровья человека. Если случайно дотронутся до одной из токоведущих частей, можно получить электрический удар. То же самое может произойти, если щуп мультиметра случайно соскользнёт и спровоцирует короткое замыкание.

Фирменные светодиодные лампы

Дорогие и качественные лампочки имеют приятный внешний вид, но это далеко не все преимущества. Качество элементной базы будет значительно выше, чем у китайского аналога, приобретённого по низкой цене. Установленный драйвер отличается сложным устройством. Один из способов его сборки подразумевает установку импульсного трансформатора, а также преобразователя тока, который в дальнейшем стабилизирует полученную нагрузку.

Качественная лампа LED.

Также может применятся другой способ, при котором трансформатор не устанавливается. Основная нагрузка будет направлена на микросхему. Другими словами, её называют «сердцем драйвера». Её преимущество состоит в том, что она способна стабилизировать входящее напряжение, а также:

  1. Имеет систему отрицательной обратно связи.
  2. Есть возможность диммирования.
  3. Может поддерживать ток с заданной шириной импульса.

Схема без трансформатора.

Выбирая качественную светодиодную лампочку на 220В с токовым драйвером, покупатель получает защищенное от помех и скачков в сети устройство, которое также будет соответствовать характеристикам, указанным в паспорте. Установленный здесь радиатор обеспечит быстрый теплоотвод. Эта лампочка будет служить более чем в 5 раз дольше дешевой китайской.

Советы по выбору и подключению

Выбирая светодиодную лампочку стоит учитывать не только мощность, но и вырабатываемый световой поток. Данные характеристики можно найти на упаковке. К примеру, лампа мощностью 60 Вт излучает поток 800 Лм, а на 100 Вт – 1600 Лм. Также рекомендуется учесть следующее:

  • цвет освещения. Перед покупкой нужно понять, какая лампа нужна, с теплым или холодным оттенком. Лампочка накаливания имеет характеристики 2700-2800К (теплые тона). Свечение с показателями 4000К имеет белый цвет. Для дома рекомендуется подбирать теплые тона, так как они подчеркнут домашний уют;
  • частота включения и выключения. Частое включение может повлиять на срок службы лампочки. Она может перегореть из-за некачественной электронной схемы. Существует мнение о том, что светодиодную лампу не стоит устанавливать в комнаты, в которых свет будет часто включаться и выключаться. Например, если нужна лампочка для санузла, стоит приобрести дорогую модель, так как дешевый аналог перегорит достаточно быстро;
  • совместимость с диммером. Диммер – это регулятор, с помощью которого можно регулировать интенсивность света. Далеко не все лампы совместимы с этим устройством.

Температура свечения LED-лампочки.

Чтобы не прогадать, перед покупкой лампочки её нудно внимательно осмотреть и проверить на наличие видимых дефектов. Также стоит обратить внимание не радиатор, он не должен быть наборным. От этого зависит срок службы изделия. Если он будет покрыт термопластиком, это лучший из вариантов. В момент включения лампа не должна мерцать. Если на глаз это незаметно, на неё следует посмотреть через камеру телефона. Мерцающую лампочку покупать не стоит.

Основные компоненты в устройстве светодиодных ламп

Как устроены светодиодные лампы

Не смотря на то, что светодиодные лампы уже прочно вошли в нашу жизнь и 60 процентов населения нашей страны давно используют их в своих квартирах, для большинства устройство светодиодных ламп остается «секретом». И не потому, что внутренности лампы сложны, а из-за того, что мало кого интересует из чего состоят любые LED лампы. Мы уже выяснили, что светодиодные лампы не имеют аналогов по энергоэффективности. Но немаловажным является и то, что эти источники света являются экологически чистыми.

Но не будем опять переливать из пустого в порожнее о том, на сколько хороши LED лампы. Цель этой статьи – рассмотреть как устроены светодиодные лампы. В отличии от ламп накаливания состоят они из нескольких важных элементов. Но обо всем по порядку…

Устройство светодиодных лампУстройство светодиодных ламп

Цоколь — одна из важных частей в устройстве LED ламп при их выборе


 

Устройство светодиодных ламп - цоколиЦоколи светодиодных ламп

Эта часть практически ничем не отличается от привычных нам ЛН или КЛЛ. Так же, как и везде при производстве используют либо металл, либо керамику. Хорошие лампы от известных производителей выпускают без применения пайки, что позволяет полностью исключить окисление или прилипание цоколя к патрону. Вроде бы несущественное изменение, но очень приятное, особенно для тех, кто помнит, сколько времени стоит потратить, чтобы «вызволить цоколь из лап патрона» светильника.

Цоколи выпускают разных типов и видов. Наиболее популярные и распространенные представлены на картинке выше. В нашей стране большинство потребителей используют LED лампы с цоколем Е27 и Е14.

Устройство LED ламп не мыслимо без радиатора


Мы рассматривали вопрос о том, что излишнее тепло очень критично сказывается на работоспособности светодиода. И это если мы берем во внимание только один диод. А если рассматривать лампу, то тепловой нагрев в этом случае становится еще более критичным. Без хорошего теплоотвода лампа проживет в лучшем случае год. В худшем – два-три месяца. Поэтому перед покупкой стоит обратить внимание на то, каким образом выполнен теплоотвод в лампе.

Много LED lamp устроены таким образом, что теплоотвод выполнен ТОЛЬКО одними продольными или поперечными отверстиями по всему корпусу лампы. Как показывает эксплуатация, этого не достаточно. Не зря «продвинутые» производители используют металлические радиаторы. Китайцы зачастую вместо металла могут впихнуть керамику. Не скажу, что это плохо, но хрупкое от этого получается детище.

Радиаторы могут быть сплошными, спиралевидными, пластинчатыми и т.д. Толщина зависит от мощности используемых светодиодов.

Устройство светодиодных ламп - радиаторыРадиаторы LEDs lamp

Какой бы радиатор не использовался, как бы не отводилось тепло, мы все-равно до сих пор не можем найти тот единственный радиатор, который смог бы установить необходимое рабочее тепло для светодиодов. Разные производители с попеременным успехом пытаются решить эту проблему.

Есть даже такие, которые внесли кардинальное изменение в устройство светодиодной лампы и в качестве охладителя используют обычную воду. К сожалению, мне еще не попадались такие экземпляры, но я бы с удовольствием их протестировал. Может когда-нибудь и свершится это чудо))).

Драйвер в устройстве светодиодных ламп


Драйверы для светодиодных лампДрайеры для светодиодных ламп

Драйвер – один из главных, если не основных компонентов в устройстве светодиодной лампы. Ни один LED источник света без него не будет работать. Другое дело, что кто-то выполняет его из качественных компонентов, а кто-то использует минимум компонентов. Драйверы можно разделить на электронные и на конденсаторах. Лампа и в том и в другом случае работать будет, но как долго и какая безопасность от этого – другой вопрос.

О том, какие драйвера лучше я рассмотрю в другой статье. А сейчас могу только сказать, что огромным минусом в устройстве светодиодных ламп драйверов на конденсаторах стоит считать пульсацию.

Монтажные платы со светодиодами


Лирическое отступление))) Вообще я не люблю писать материал на очевидные темы. Мне всегда кажется, что понятные вещи мне, должны быть понятны и другим. Так и с этой статьей. Пишу и думаю… А кому эта информация нужна? Ведь все очевидно! Но да ладно… Раз начал, то прийдется закончить и перейти к более интересным темам.

ПлатаМонтажная плата со светодиодами

Монтажная плата. Тут каждый производитель изгаляется по своему. Пытаясь удешевить свою конструкцию за счет использования этих плат. Вернее материалов, на которых выполнена плата. В настоящий момент я отдаю предпочтение лампам, в которых монтажные платы выполнены из сплава алюминия. Т.к. это способствует абсорбции теплового излучения до 90 процентов. При этом не стоит забывать о том, что использование термопасты уменьшит тепловое сопротивление самой платы, тем самым передав тепло на радиатор.

Светодиоды в устройстве диодных ламп


Второй по значимости компонент))

Светодиоды, используемые в лампахСветодиоды в лампах

Тут уж точно, ставят виды светодиодов какие бог на душу положит. Лампы могут быть на smd диодах, мощных или COB. Упоминалось в наших статьях и о филаментных светодиодах. Важным моментом остается только факт «правильного» количества чипов. Чем больше свтодиодов, тем больше тепла выделяется, тем тяжелее его отводить. Чем меньше, тем холоднее будет лампа. Но от этого пострадает мощность. Дилемма…

Рассеиватели и линзы в светодиодных лампах


Рассеиватели LEDs lampРассеиватели светодиодных ламп

Очень мало видов ламп, которые выпускаются без рассеивателей. Они способствуют концентрировать свет под определенным углом. В своем большинстве изготовлены из матового пластика. Плюсом стоит отметить то, что такие рассеиватели безопасны, в отличии от стеклянных колб по вполне понятным причинам. По конструкции могут быть шарообразные, грушевидные, свечеообразные и т.п.

ЛинзыЛинзы для светодиодных ламп

Часто производители вместо рассеивателей используют линзы для светодиодов. Они также имеют огромное количество разновидностей. Производят их из разнообразных материалов. Более полную информацию о рассеивателях и линзах я опубликую не много позднее.

В принципе, устройство любой светодиодной лампы одинаково. И основные компоненты указаны в моей статье. Кто-то может вносить некоторые изменения в форму, корпус, радиатор и т.п. Но от этого ничего не меняется. Улучшаются одни характеристики и занижаются другие. Какие? Это уже необходимо смотреть каждую лампу индивидуально. Но сам факт того, что устройство LED ламп простое не подвергается сомнению. Пока «рожал» в муках ( так как особо писать про устройство не вижу смысла ) статью, появилась мысль о создании другого интересного материала, в частности про светодиодные драйверы лед ламп. Типы, виды и преимущества… Чем и займусь в ближайшее время. А пока можете оставить комментарии, поругать или похвалить…Как говорится, мне все равно…Вообще, у меня стоит задача в настоящее время наполнить наш раздел общей информацией по светодиодным лампам. Для меня это тяжело, т.к. больше люблю освещать не обыденные и обмусоленные всеми темы, а что-то новое и интересное. Жду-не дождусь, когда закончу с общими вопросами и приступлю к публикации тестов и обзоров). Благо материала накопилось вагон и маленькая тележка.

Видео материал по устройству светодиодных ламп


Ну и в конце, как уже повелось, приведу пример видео материала, в котором Вы можете воочию увидеть то, из чего устроена светодиодная лампа. Пишу, пишу… А может заняться и делать видеообзоры? Стоит подумать. Но и времени, как всегда, катастрофически не хватает…( Жаль.

Как устроена и как работает светодиодная лампа

Что такое светодиодная лампа, как она устроена и каков принцип работы данного источника света. Основные виды светодиодных ламп и область их применения.


Светодиодные лампочки пользуются все большей популярностью у покупателей, что объясняется рядом достоинств этих источников света. В отличие от классических ламп накаливания и ламп дневного света их энергопотребление существенно ниже, да и рабочий ресурс заметно больше. При равной потребляемой мощности LED-лампочки обеспечивают лучшую освещенность комнат, чем те же люминесцентные аналоги. Все это вынуждает подробно ознакомиться с тем, что такое светодиодная лампа, какой у нее принцип работы и конструкция. Итак, обо всем по порядку. Содержание:

Устройство LED-лампы

Пользователям, желающим ознакомиться с тем, что это такое, придется разобраться с конструкцией и принципом работы светодиодной лампочки. Прежде всего, классический LED светильник представляет собой сборное устройство, состоящее из следующих основных узлов (фото ниже):

  • Нескольких светодиодных излучателей, размещенных на теплоотводящей алюминиевой подложке (радиаторе).
  • Матового куполообразного рассеивателя, конструкция которого обеспечивает равномерность распределения светового потока.
  • Электронного преобразователя (драйвера), снабжающего LED светодиоды питанием нужного качества.
  • Стандартного цоколя (E14, E 27, E 40 и других типов).

Важно! В простейших моделях лампочек от китайского производителя может устанавливаться один мощный светодиод.

При рассмотрении различных вариантов исполнения светодиодных лампочек важно научиться различать их по величине питающего напряжения.

Принцип действия

Принцип работы лампочки на светодиодах представляется как ряд преобразований, обеспечивающих свечение входящих в ее состав излучателей. При подаче питающего напряжения на цоколь сначала оно поступает на драйвер, назначение которого как раз и состоит в приведении высокого напряжения к приемлемому для LED ламп виду.

Чтобы кратко описать этот способ энергообеспечения, достаточно обратиться к следующей схеме:

Если выражаться простыми словами – ее работа может быть представлена так:

  1. Сначала переменное напряжение подается на диодный мост, где частично выпрямляется.
  2. Следующая за ним электролитическая емкость предназначена для сглаживания пульсаций.
  3. После этого полностью выпрямленное напряжение подается на контроллер, управляющий работой LED лампы.
  4. С электронного модуля оно через развязывающий импульсный трансформатор поступает непосредственно на светодиоды.

Важно! При ответе на нередко задаваемый вопрос: для чего нужна такая развязка, ответим – ее наличие частично снижает угрозу поражения высоким напряжением при работе с цоколем лампы.

Принцип действия LED лампочки на 12 Вольт намного проще, поскольку для преобразования напряжения потребуется типовой блок питания и ничего больше. А это, в конечном счете, снижает стоимость всего изделия в целом.

Различия по типу питания

В соответствие с этим параметром известные образцы LED ламп подразделяются на следующие модификации:

  • со светодиодами, рассчитанными на 220 Вольт.
  • работающие от пониженного и выпрямленного напряжения 12 Вольт.

Первые в этом списке источники света работают в типовых электросетях и включаются подобно обычным лампам накаливания.

Светодиодные лампы, рассчитанные на 12 Вольт постоянного тока, благодаря низкому напряжению и широкому выбору цоколей, относятся к универсальным изделиям.

Для работы таких ламп потребуется специальный блок питания, понижающий переменное сетевое напряжение до постоянной величины 12 Вольт.

Область применения

При рассмотрении вопроса о том, где применяются светодиодные лампы, потребуется отдельный подход к различным образцам. Изделия, включаемые непосредственно в сеть 220 Вольт, эксплуатируются как обычные лампы (люминесцентные или накаливания) с соответствующим цоколем. В отличие от них низковольтные светодиодные осветители используются в самых различных целях, начиная от точечного освещения при обустройстве натяжных потолков и заканчивая организацией наружной и внутренней подсветки. Отдельные образцы позиционируются как автомобильные лампочки, устанавливаемые в большинстве моделей современного автотранспорта.

Важно! Сравнительно низкое по величие напряжение питания обеспечивает светодиодным лампам высокую электрическую и пожарную безопасность (исключает удар током и возгорание).

Указанные достоинства позволяют расширить область применения LED лампочек и устанавливать низковольтные модели в следующих ситуациях:

  1. В помещениях повышенной влажности (например, при обустройстве светодиодной подсветки зеркала в ванной).
  2. В условиях высокой пожарной и взрывоопасности.
  3. При обустройстве подсветок различного вида.
  4. В складах и подвальных помещениях.
  5. На улице под открытым небом.

В последнем случае такие лампы могут эксплуатироваться без специальных мер защиты и использования проводки с повышенными требованиями к надежности изоляции.

Обратите внимание: Универсальность светодиодных ламп подчеркивается тем, что в качестве блока питания в них нередко используется модуль от ленточных светодиодных подсветок.

Однако для надежности эксплуатации низковольтных ламп лучше всего воспользоваться специализированным блоком питания 12 Вольт, рассчитанным на работу со светодиодами.

Виды ламп и оценка их качества

С технической точки зрения все рассмотренные светодиодные лампы различаются по следующим показателям:

  • Вид питания (220 или 12 Вольт).
  • Тип цоколя.
  • Количества светодиодов.
  • Мощность освещения (световой поток).
  • Форма корпуса.

По конструктивным особенностям, влияющим на надежность данного образца и его стоимость, LED лампочки подразделяются на фирменные изделия и на дешевые китайские образцы. Последние из них имеют более простое устройство и не отличаются высокой надежностью.

Конструктивные отличия брендовых изделий от китайского ширпотреба проявляется в таких деталях как наличие «мощного» теплового отвода и качественно оформленные рассеиватель и цоколь.

 

Любая лампочка на светодиодах, представленная на рынке, рассматривается пользователем двояко: со стороны ее надежности (качества) и с точки зрения издержек на покупку. При таком подходе к приобретению осветителей выбор остается за самим покупателем. В заключение отметим, что светодиоды позволяют на практике реализовать принцип экономии электроэнергии в бытовых условиях. Благодаря особенностям их устройства и функционирования удается сберечь часть средств, расходуемых на осветительные нужды.

Теперь вы знаете, что такое светодиодная лампа, как она устроена и как работает. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы по теме:

  • Как выбрать светодиодные лампы для дома
  • Как понизить напряжение в сети
  • Как экономить на освещении
Опубликовано: 27.06.2019 Обновлено: 27.06.2019 нет комментариев

Принцип работы светодиодной лампы

Как устроена светодиодная лампа и принцип ее работы

По сравнению с обычными лампами накаливания устройство светодиодной лампы с технической точки зрения сложнее.

Принцип действия светодиодных ламп

Принцип работы этих приборов построен на сложных физических процессах. При подаче электрического тока происходит соприкосновение двух веществ, изготовленных из разносортных материалов. Это приводит к образованию светового потока.

Парадоксальность системы связана с тем, что ни один из материалов, используемых для изготовления двух веществ, не относится к проводникам электрического тока. Это полупроводники, способные пропускать ток только в одном направлении. Поэтому при подключении светодиодов важно соблюдать полярность. Один материал наделен отрицательными электронами, а другой — положительными ионами.

Все приборы, которые пропускают ток в одном направлении, называются диодами. Светодиоды — диоды, способные выделять световой поток.

Первые LED-диоды излучали свет в узком спектре — красном, желтом или зеленом.

При этом сила свечения была минимальной. В течение продолжительного отрезка времени светодиоды использовались исключительно как индикаторы.

Сегодня диапазон излучения значительно расширен и охватывает едва ли не весь спектр.

С другой стороны, определенные волны всегда длиннее, поэтому данные устройства делятся на источники холодного и теплого света (в зависимости от тепловой температуры).

Способы сборки

DIP

DIP расшифровывается как Dual In-line Package. Конструкция приборов интересна, но существенно устарела.

Выделяют следующие размеры светодиодов:

Также полупроводниковые изделия различаются цветом, материалом изготовления, формой чипа. Из преимуществ DIP-сборки выделим малый нагрев и высокую яркость. Бывают одноцветные и многоцветные (RGB-технология). Можно распознать по характерной цилиндрической форме и встроенной линзе выпуклого типа.

«Пиранья»

Данная группа осветительных устройств характеризуется высоким световым потоком. Изготавливаются прямоугольной формы, имеют четыре PIN-вывода, бывают красными, синими, белыми или зелеными.

По сравнению с DIP-технологией изделия более жестко и прочно «сидят» на плате. Свинцовая подложка повышает теплопроводность, но в то же время понижает общую безопасность при эксплуатации. Широкая распространенность обусловлена большим диапазоном рабочих температур.

SMD-технология

SMD расшифровывается как Surface Mounting Device (в переводе с англ. — «устройство, фиксируемое на поверхности»). Эти светодиоды характеризуются мощностью в диапазоне 0,01–0,2 Вт.

Главная особенность связана с наличием нескольких кристаллов (1–3), монтируемых на керамическую подложку.

Корпус покрыт люминофором. Стандартный припой используется для соединения основной платы и контактных площадок.

Из недостатков выделим низкую ремонтопригодность: если выйдет из строя хотя бы один диод, то придется заменять целую плату.

COB-технология

Последняя и наиболее надежная технология изготовления светодиодов получила название Chip On Board (COB). Полупроводники крепятся на плату без корпуса и какой-либо подложки, после чего покрываются люминофором.

Главное преимущество связано с небольшой площадью свечения при высокой мощности. Равномерное свечение изделия гарантируется высокой плотностью светодиодов и наличием люминофора. Такие светодиоды чаще применяются в наши дни.

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

  • LED-диоды;
  • драйверы;
  • корпус;
  • радиатор;
  • цоколь.

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Дешевые драйверы применяют в обычных фонариках, в которых светодиоды питаются от батареек. В таком случае нет необходимости в резисторе, ограничивающем ток. Из-за этого диоды могут получать повышенный ток, что приводит к их скорому выходу из строя.

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Потребляя то же количество электроэнергии, изделия светят намного ярче аналогов. Обычная светодиодная лампа имеет закрытую колбу, производимую из стекла или пластика. Матовое покрытие понижает светопропускаемость, но это незначительные издержки производства.

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Принцип работы светодиодной лампы

Принцип работы светодиодной лампы основан на излучении света в очень узком диапазоне длин волн: то есть, с цветовой характеристикой энергии полупроводникового материала, который используется для изготовления светодиодов.

Для излучения белого света от светодиодной лампы надо смешивать излучения от красного, зеленого и синего светодиодов или использовать люминофор для преобразования частей света в другие цвета.

Один из методов — RGB (red, green, Blue), это использование нескольких светодиодных матриц, каждая из которых излучает различную длину волн, в непосредственной близости, для создания общего белого цвета.

Принцип работы устройства

Когда диод смещен вперед, электроны быстро движутся через соединение. Они постоянно объединяются, удаляя друг друга. Вскоре, после того как электроны начинают движение от n-типа к кремнию p-типа, диод соединяется с отверстиями, а затем исчезает. Следовательно, он делает полный атом более стабильным и дает небольшой импульс энергии в виде фотона света.

Особенности питания светодиодов

Блок питания светодиодных ламп на 220В имеет некоторые особенности работы.

Светодиод имеет нелинейную зависимость напряжения и тока.

Так, при увеличении номинального напряжения ток на светодиоде резко возрастает.

Это может привести к поломке. Поэтому в недорогих лампах (часто китайского происхождения) последовательно со светодиодом устанавливается ограничивающий резистор.

Если произойдет скачок напряжения, он не позволит току увеличиться.

Но при этом на резисторе упадет мощность.

КПД недорогого светильника по этой причине уменьшается.

Блок питания обеспечивает нормальное напряжение для питания светодиодов.

Именно этот прибор чаще всего включается в схему ламп представленного типа.

Блок питания для светодиодной лампы 12В или с иным значением исходящего напряжения, называется драйвером.

Это маркетинговое обозначение подобных приборов.

Источник постоянного напряжения для светодиодов, которые работают от напряжения 12 В, принято называть блоком питания.

Если же устройство еще и стабилизирует входной ток, то это драйвер.

Можно сказать, что это разновидность блока питания, которая устанавливается в качественных лампах.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Немного об основах схемотехники светодиодных ламп / Хабр

Судя по комментариям, многих людей интересуют не только параметры светодиодных ламп, но и теория их внутреннего устройства. Потому я решил немного поговорить об основах схемотехнических решений, чаще всего применяемых в этой области.

Итак, ядром и главным компонентом светодиодной лампочки является светодиод. С точки зрения схемотехники светоизлучающие диоды ничем не отличаются от любых других, разве только тем, что в смысле применения их как собственно диодов они обладают ужасными параметрами – очень маленьким допустимым обратным напряжением, относительно большой емкостью перехода, огромным рабочим падением напряжения (порядка 3.5 В для белых светодиодов – например, для выпрямительного диода это был бы кошмар) и т.д.

Однако мы понимаем, что главная ценность светодиодов для человечества состоит в том, что они светятся, причем порой достаточно ярко. Чтобы светодиод светился долго и счастливо, ему необходимо два условия: стабильный ток через него и хороший теплоотвод от него. Качество теплоотвода обеспечивается различными конструкционными методами, потому сейчас мы не будем останавливаться на этом вопросе. Поговорим о том, зачем и как современное человечество достигает первой цели – стабильного тока.

К слову, о белых светодиодахПонятное дело, что для освещения более всего интересны белые светодиоды. Делаются они на основе кристалла, излучающего синий свет, залитого люминофором, переизлучающим часть энергии в желто-зеленой области. На заглавной картинке хорошо видно, что токоведущие проволочки уходят в нечто желтое — это и есть люминофор; кристалл расположен под ним. На типичном спектре белого светодиода хорошо виден синий пик:


Спектры светодиодов с разными цветовыми температурами: 5000K (синий), 3700K (зеленый), 2600K (красный). Подробнее тут.

Мы уже разобрались, что в схемотехническом смысле светодиод отличается от любого другого диода только значениями параметров. Здесь надо сказать, что прибор это принципиально нелинейный; то есть, знакомому со школы закону Ома он совершенно не подчиняется. Зависимость тока от приложенного напряжения на таких устройствах описывается т.н. вольт-амперной характеристикой (ВАХ), причем для диода она носит экспоненциальный характер. Из этого следует, что самое незначительное изменение приложенного напряжения приводит к огромному изменению тока, но и это еще не все – при изменении температуры (а также старении) ВАХ смещается. Кроме этого, положение ВАХ слегка разное для разных диодов. Оговорю отдельно – не только для каждого типа, но для каждого экземпляра, даже из одной партии. По этой причине распределение тока через диоды, включенные параллельно, обязательно будет неравномерным, что не может хорошо сказаться на долговечности конструкции. При изготовлении матриц стараются либо использовать последовательное включение, что решает проблему в корне, либо выбирать диоды с примерно одинаковым прямым падением напряжения. Чтобы облегчить задачу, производители обычно указывают так называемый «бин» — код выборки по параметрам (по напряжению в том числе), в которую попадает конкретный экземпляр.


ВАХ белого светодиода.

Соответственно, чтобы все работало хорошо, светодиод необходимо подключать к устройству, которое вне зависимости от внешних факторов будет с высокой точностью автоматически подбирать такое напряжение, при котором в цепи протекает заданный ток (например, 350 мА для одноваттных светодиодов), причем контролировать процесс непрерывно. Вообще, такое устройство называется источником тока, но в случае светодиодов в наши дни модно употреблять заморское слово «драйвер». В целом, драйвером часто называют решения, главным образом предназначенные для работы в конкретном применении – например, «драйвер MOSFET» — микросхема, предназначенная для управления конкретно мощными полевыми транзисторами, «драйвер семисегментного индикатора» — решение для управления конкретно семисегментниками, и т.д. То есть, называя источник тока драйвером светодиодов, люди намекают, что этот источник тока по задумке предназначен именно для работы со светодиодами. Например, он может иметь специфичные функции – что-нибудь в духе наличия светового интерфейса DMX-512, определения обрыва и короткого замыкания на выходе (а обычный источник тока, вообще, должен без проблем работать и на короткое замыкание), и т.п. Тем не менее, понятия часто путают, и, например, называют драйвером самый обычный адаптер (источник напряжения!) для светодиодных лент.

Кроме того, устройства, предназначенные для задания режима осветительного прибора, часто называют балластом.

Итак, источники тока. Самым простым источником тока может быть сопротивление, включенное последовательно со светодиодом. Так делают при малых мощностях (где-то до полуватта), например, в тех же светодиодных лентах. С увеличением мощности потери на резисторе становятся слишком велики, а требования к стабильности тока повышаются, и потому возникает необходимость в более продвинутых устройствах, поэтичный образ которых я нарисовал выше. Все они строятся по одинаковой идеологии – в них имеется регулирующий элемент, контролируемый обратной связью по току.

Стабилизаторы тока разделяются на два типа – линейные и импульсные. Линейные схемы – родственники резистора (сам резистор и его аналоги также относятся к этому классу). Особого выигрыша в КПД они обычно не дают, зато повышают качество стабилизации тока. Импульсные схемы являют собой наилучшее решение, однако они сложнее и дороже.

Давайте теперь кратко пробежимся по тому, что в наши дни можно увидеть внутри светодиодных ламп или рядом с ними.

1. Конденсаторный балласт

Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:

Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.

Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000 ~ 11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).

Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.

Считая по формуле из учебника, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.

Лирическое отступление«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву «μ» с оторванным хвостиком.

Итак, 1 Ф/F = 1000 мФ/mF = 1000000 мкФ/uF/μF, и никак иначе!

Кроме того, «Фарад» — мужского рода, так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!

Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.

2. Бестрансформаторная понижающая топология

Это схемотехническое решение относится к семейству бестрансформаторных преобразователей, включающему в себя понижающую, повышающую и инвертирующую топологии. Кроме того, к бестрансформаторным преобразователям также относится SEPIC, преобразователь Чука и другая экзотика, вроде переключаемых конденсаторов. В принципе, драйвер светодиодов можно построить на основе любой из них, однако на практике в этом качестве они встречаются гораздо реже (хотя повышающая топология применяется, например, во многих фонариках).

Один из вариантов драйвера на основе бестрансформаторной понижающей топологии приведен на рисунке ниже.

В живой природе такое включение можно наблюдать на примере ZXLD1474 или варианта включения ZXSC310 (которая в исходной схеме включения, кстати, как раз повышающий преобразователь).

Здесь светодиод включается последовательно с катушкой. Схема управления отслеживает ток с помошью измерительного резистора R1 и управляет ключом T1. Если ток через светодиод падает ниже заданного минимума, транзистор открывается, и катушка с включенным последовательно с ней светодиодом оказывается подключенной к источнику питания. Ток в катушке начинает линейно нарастать (красный участок на графике), диод D1 в это время заперт. Как только схема управления регистрирует достижение током заданного максимума, ключ закрывается. В соответствии с первым законом коммутации катушка стремится поддержать ток в цепи за счет энергии, накопленной в магнитном поле. В этот момент ток протекает через диод D1. Энергия поля катушки расходуется, сила тока линейно убывает (зеленый участок на графике). Когда ток падает ниже заданного минимума, схема управления регистрирует это и снова открывает транзистор, подкачивая энергию в систему – процесс повторяется. Таким образом, ток поддерживается в заданных пределах.

Отличительная особенность понижающей топологии – возможность сделать пульсации светового потока сколь угодно малыми, поскольку в таком включении ток через светодиод никогда не прерывается. Путь приближения к идеалу лежит через увеличение индуктивности и повышение частоты коммутации (сегодня существуют преобразователи с рабочими частотами до нескольких мегагерц).

На основе такой топологии был сделан драйвер лампы Gauss, рассмотренной в предыдущей статье.

Недостатком метода является отсутствие гальванической развязки – когда транзистор открыт, схема оказывается напрямую соединенной с источником напряжения, в случае сетевых светодиодных ламп – с сетью, что может быть небезопасно.

3. Обратноходовый преобразователь

Несмотря на то, что обратноходовый преобразователь содержит нечто, похожее на трансформатор, в данном случае эту деталь правильнее называть двухобмоточным дросселем, поскольку ток никогда не течет через обе обмотки одновременно. В действительности по принципу действия обратноходовый преобразователь похож на бестрансформаторные топологии. Когда T1 открыт, ток в первичной обмотке нарастает, энергия в запасается в магнитном поле; при этом полярность включения вторичной обмотки сознательно подбирается такой, чтобы диод D3 на этом этапе был закрыт и тока на вторичной стороне не текло. Ток нагрузки в этот момент поддерживает конденсатор С1. Когда T1 закрывается, полярность напряжения на вторичной обмотке становится обратной (поскольку производная тока в первичной обмотке меняет знак), D3 открывается и накопленная энергия передается на вторичную сторону. В смысле стабилизации тока все то же самое – схема управления анализирует падение напряжения на резисторе R1 и подстраивает временные параметры так, чтобы ток через светодиоды оставался постоянным. Чаще всего обратноходовый преобразователь применяется при мощностях не более 50 Вт; далее он перестает быть целесообразным из-за возрастающих потерь и необходимых габаритов трансформатора-дросселя.

Надо сказать, что существуют варианты обратноходовых драйверов без оптоизолятора (например). Они полагаются на тот факт, что токи первичной и вторичной обмоток связаны, и при определенных оговорках можно ограничиться анализом тока первичной обмотки (или, чаще, отдельной вспомогательной обмотки) – это позволяет сэкономить на деталях и, соответственно, удешевить решение.

Обратноходовый преобразователь хорош тем, что он, во-первых, обеспечивает изоляцию вторичной части от сети (выше безопасность), а, во-вторых, позволяет относительно легко и дешево изготавливать лампы, совместимые со стандартными диммерами для ламп накаливания, а также устраивать коррекцию коэффициента мощности.

Лирическое отступлениеОбратноходовый преобразователь называется так потому, что изначально подобный метод применялся для получения высокого напряжения в телевизорах на основе электронно-лучевых трубок. Источник высокого напряжения был схемотехнически объединен со схемой горизонтальной развертки, и импульс высокого напряжения получался во время обратного хода электронного луча.

Немного о пульсациях

Как уже было упомянуто, импульсные источники работают на достаточно высоких частотах (на практике – от 30 кГц, чаще около 100 кГц). Потому ясно, что сам по себе исправный драйвер не может быть источником большого коэффициента пульсаций – прежде всего потому, что на частотах выше 300 Гц этот параметр просто не нормируется, ну и, кроме того, высокочастотные пульсации в любом случае достаточно легко отфильтровать. Проблема заключается в сетевом напряжении.

Дело в том, что, разумеется, все перечисленные выше схемы (кроме схемы с гасящим конденсатором) работают от постоянного напряжения. Потому на входе любого электронного балласта прежде всего стоит выпрямитель и накопительный конденсатор. Предназначением последнего является питать балласт в те моменты, когда сетевое напряжение уходит ниже порога работы схемы. И здесь, увы, необходим компромисс – высоковольтные электролитические конденсаторы большой емкости, во-первых, стоят денег, а, во-вторых, занимают драгоценное место в корпусе лампы. Здесь же коренится причина проблем с коэффициентом мощности. Описанная схема с выпрямителем имеет неравномерное потребление тока. Это приводит к возникновению высших гармоник оного, что и является причиной ухудшения интересующего нас параметра. Причем чем лучше мы будем пытаться отфильтровать напряжение на входе балласта, тем более низкий коэффициент мощности мы получим, если не предпринимать отдельных усилий. Этим объясняется тот факт, что почти все лампы с низким коэффициентом пульсаций, которые мы видели, показывают очень посредственный коэффициент мощности, и наоборот (разумеется, введение активного корректора коэффициента мощности скажется на цене, потому на нем пока что предпочитают экономить).

Пожалуй это все, что в первом приближении можно сказать на тему электроники светодиодных ламп. Надеюсь, что этой статьей я в какой-то мере ответил на все вопросы схемотехнического толка, которые были заданы мне в комментариях и личных сообщениях.

LED Vision Desk Lamp V1 Pro-Yeelight LED Vision Desk Lamp V1 Pro-Yeelight

Yeelight 导航 切换
  • HOME
  • ТОВАРЫ
  • ПОДДЕРЖКА
    • Справочный центр
    • Интеграция
    • Cloud API
    • Локальный API
  • О КОМПАНИИ
    • Профиль
    • Вехи
    • Контакты
  • МАГАЗИН
  • GIVEAWAY
  • ПОТОЛОЧНЫЙ СВЕТ

    Hola Потолочный светильник Кристаллический подвесной светильник Кристаллический потолочный светильник Plus Crystal Сенсорный светильник Потолочный мини-светильник Crystal Pro Yeelight Galaxy LED потолочный светильник Для детей) Светодиодный потолочный светильник

    НАСТОЛЬНЫЙ СВЕТ

    Светодиодный светильник Vision V1 Pro Staria Прикроватная лампа Pro Serene Удобная для глаз настольная лампа Prime Беспроводная зарядка Датчик ночника Зеркало для макияжа Serene Удобная для глаз Настольная лампа Pro Serene Удобная для глаз настольная лампа Yeelight LED Desk Lamp

    ОСНОВНОЕ ОСВЕЩЕНИЕ

    Умная светодиодная лампа накаливания ST64 Светодиодная лампа 1S (Цвет) Светодиодная лампа 1S (с регулируемой яркостью) Умная светодиодная лампа накаливания

    AMBIANCE LIGHTING

    Светодиодная прикроватная лампа D2 Подключаемый датчик света Ночник Aurora Lightstrip Plus Yeelight Candela Аккумуляторный ночник

    SMART CONTROL

    Smart Dual Control Module Smart Dimmer
    • HOME
    • CEILING LIGHT
      • Hola Ceiling Light
      • Crystal Pendant Light
      • Crystal Ceiling Light Plus
      • Crystal Sensory Light Mini
      • Crystal потолочный светильник Pro
      • Yeelight
      • LED Потолочный светильник
      • Светодиодный потолочный светильник (для детей)
      • Светодиодный потолочный светильник
    • НАСТОЛЬНЫЙ СВЕТ
      • Настольная светодиодная лампа Vision V1 Pro
      • Прикроватная лампа Staria Pro
      • Настольная лампа Serene Friendly для глаз Prime
      • Ночник с беспроводной зарядкой
      • Сенсорное зеркало для макияжа
      • Настольная лампа Serene для глаз Pro
      • Настольная лампа Serene для глаз
      • Настольная светодиодная лампа Yeelight
    • ESSENTIAL LIGHTING
      • Smart LED лампа накаливания ST64
      • Цветная светодиодная лампа
      • S (
      • Светодиодная лампа 1S (с регулируемой яркостью)
      • Интеллектуальная светодиодная лампа накаливания 9 0004
    • AMBIANCE LIGHTING
      • Светодиодная прикроватная лампа D2
      • Съемный датчик света Ночник
      • Aurora Lightstrip Plus
      • Yeelight Candela
      • Аккумуляторный ночник
    • Smart CONTROL
    • SMART CONTROL 9000 Модуль Smart 9000
  • ОПОРНАЯ
  • .

    Современное Электрическое Устройство Лампы Светодиодное Освещение Люстра из Белого Золота Черный Утопленный Металл для Кухни Кровать Комната Гостиная | |

    QQ20180718155616 QQ20180718155628 QQ20180718155650 QQ20180718155537

    Размер примерки:

    Контролер спецификаций для выполнения заказа. Размер de maten zijn hand gemeten en toegestane verschil составляет от 1 до 3 см / 1 ».


    kleur Несоответствие:

    foto boven zijn real shoot.100% bijpassende является onmogelijk.lichteverschillen toegestane в kleur kan worden veroorzaakt door een andere redenen zoals verlichting, achtergrond.

    ставки:

    wij принимает ставки через AliExpress.
    Бесплатная доставка онлайн-предложений по всем продуктам kosten en koerier lading, niet omvat belasting of inklaring kosten kan dat geheven in klant land. Als de aangepaste van uw land oplegt invoerrechten, de koper is verantwoordelijk om maken zoals betaling.
    als je uit Rusland, Vertel ons uw volledige naam в Энгельсе.
    als je uit Brazilië, gelieve bieden uw CPF.

    верзендинг:

    У нас есть адрес AliExpress. zorg ervoor dat uw adres правильные общие данные.
    Items worden verzonden binnen 2-5 werkdagen na ontvangst van betaling meestal.
    как EMS как verzendmethode, verkoper heeft recht kiezen de meest geschikt Expediteur schip debestelling binnen EMS DHL FedEx TNT UPS.Дверной столб verzenden, koper moet verzamelen de pakket uit postkantoor. EMS voorafgaand; Als ruimte beschikbaar, опровергая China Post Air Parcle. Normaly, почта Китая Lucht Parcle duurt 1 maand te bereiken bestemming; Als ongevallen, 2 maanden.
    op ontvangst van het pakket, open en controleer dat all items zijn in goede staat. als dit niet mogelijk, dan teken de koerier bestuurder papierwerk als «niet geïnspecteerd». Eventuele items is gevonden beschadigd, dan verzoek proof van uw verslag schriftelijk.zonder deze proof, мы staat vervangen beschadigde item.

    terugkeer:

    als u niet wilt de product (voor koper reden), который можно найти в 2 weken de datum het werd ontvangen. terugkeer moet door de koper betaald. мы сделаем 50% объемного белья, сделаем это оригинальное изделие в оригинальной упаковке со всеми приобретенными и начальными аксессуарами.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *