Структура p n p – Транзисторы. Классификация и принцип работы (и шпаргалка). :: Электроника для всех

p-n-p Википедия

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство[ | ]

Упрощённая схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты

[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоя

Структура биполярного транзистора

Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими выпрямляющими электрическими переходами и тремя (или более) выводами, усилительные свойства которого обусловлены явлениями инжекции и экстракции неосновных носителей заряда.

Область транзистора, расположенную между p-n переходами, называют базой. Примыкающие к базе области чаще всего делают неодинаковыми. Одну из областей изготавливают так, чтобы из нее наиболее эффективно происходила инжекция носителей в базу, а другую – так, чтобы соответствующий p-n переход наилучшим образом осуществлял экстракцию носителей из базы.

Биполярные транзисторы являются основными активными элементами биполярных ИМС. Транзисторы n-p-n типа используются гораздо чаще, чем p-n-p, так как у n-p-n структуры проще обеспечить необходимые характеристики.

Планарно-эпитаксиальный транзистор со скрытым слоем и изоляциейp-n-перехода является наиболее широко распространённой разновидностью биполярного транзистора ИМС. Его физич. структура дана на рис.1,а одномерное распределение легирующих примесей на рис. 2.

Рис. 1 Физическая структура n-p-n интегрального транзистора

со скрытым слоем и изоляцией p-n переходов.

Взаимодействие междуp-n-переходами будет существовать, если толщина области между переходами (толщина базы) будет много меньше диффузионной длины неосновных носителей заряда. В этом случае носители заряда, инжектированные через один из p-n-переходов при его смещении в прямом направлении, могут дойти до другого перехода, находящегося под обратным смещением, и изменить его ток. Таким образом, взаимодействие выпрямляющих электрических переходов биполярного транзистора проявляется в том, что ток одного из переходов может управлять током другого перехода.

Рис. 2 Распределение примесей в активной области транзистора.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  1. режим отсечки – оба электронно-дырочных перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток;

  2. режим насыщения – оба электронно-дырочных перехода открыты;

  3. активный режим – один из электронно-дырочных переходов открыт, а другой закрыт.

В режиме отсечки и в режиме насыщения управление транзистором почти отсутствует. В активном режиме управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы (усиление, генерирование, переключение, и т.п.).

Основные характеристики транзистора определяются в первую очередь процессами, происходящими в базе. В зависимости от распределения примесей в базе может существовать или отсутствовать электрическое поле. Если при отсутствии токов в базе существует электрическое поле, которое способствует движению неосновных носителей заряда от эмиттера к коллектору, то транзистор называют дрейфовым, если же поле в базе отсутствует – бездрейфовым.

Основные свойства транзистора определяются соотношениями токов и напряжений в различных его цепях и взаимным их влиянием друг на друга. Чтобы рассмотреть работу транзистора на постоянном токе, необходимо изучить стационарные потоки носителей в нем. Это дает возможность получить

статические характеристики и параметры БП – соотношения между его постоянными токами и напряжениями.

Существенно снизить последовательное сопротивление коллектора удается, перейдя к конструкции транзистора типа n-p-n со скрытым слоем. Сопротивление rк пос. такого транзистора становится пренебрежимо малым, благодаря чему эти транзисторы используются в составе биполярных ИС.

Ниже представлен еще один вариант выполнения БТ, который также часто применяется в ИМС:

Рис.3 Поперечное сечение типичного n-p-n -транзистора, входящего в состав ИС.

Теоретически профили распределения примесей в активной области данного прибора описываются следующим графиком:

Рис.4 Профили распределения примесей под эмиттерным переходом.

Глубина проникновения примеси вглубь полупроводника определяется температурой, при которой происходит диффузия примесей, так как коэффициент диффузии сильно зависит от температуры. Равномерность распределения примеси по глубине слоя зависит от длительности действия факторов диффузии. Все эти факторы определяются технологией производства биполярного транзистора. Следует отметить, что тяжело добиться концентрации примесей выше

n-p-n Википедия

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство[ | ]

Упрощённая схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты

[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располага

p-n-переход — Википедия

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ. positive — положительная) и электронной (n, от англ. negative — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и другихПерейти к разделу «#Применение»).

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия; b) При приложенном прямом напряжении; c) При приложенном обратном напряжении.

В полупроводнике p-типа, который получается посредством акцепторной примеси, концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа, который получается посредством донорной примеси, концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — основные носители заряда (электроны и дырки) хаотично перетекают из той области, где их больше, в ту область, где их меньше, и рекомбинируют друг с другом. Как следствие, вблизи границы между областями практически не будет свободных (подвижных) основных носителей заряда, но останутся ионы примесей с некомпенсированными зарядами[1]. Область в полупроводнике p-типа, которая примыкает к границе, получает при этом отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получает положительный заряд, приносимый дырками (точнее, теряет уносимый электронами отрицательный заряд).

Таким образом, на границе полупроводников образуются два слоя с пространственными зарядами противоположного знака, порождающие в переходе электрическое поле. Это поле вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и изменение пространственных зарядов прекращается. Обеднённые области с неподвижными пространственными зарядами и называют p-n-переходом[2].

Перейти к разделу «#Применение» Устройство простейшего прибора, основанного на p-n-переходе — полупроводникового диода — и его символическое изображение на принципиальных схемах (треугольник обозначает p-область и указывает направление тока).

Если к слоям полупроводника приложено внешнее напряжение так, что создаваемое им электрическое поле направлено противоположно существующему в переходе полю, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением (на область p-типа подан положительный потенциал относительно области n-типа).

Если внешнее напряжение приложить так, чтобы созданное им поле было одного направления с полем в переходе, то это приведёт лишь к увеличению толщины слоёв пространственного заряда. Диффузионный ток уменьшится настолько, что преобладающим станет малый дрейфовый ток. Такое подключение напряжения к p-n-переходу называется обратным смещением (или запорным смещением), а протекающий при этом через переход суммарный ток, который определяется в основном тепловой или фотонной генерацией пар электрон-дырка, называется обратным током.

Ёмкость p-n-перехода — это ёмкости объёмных зарядов, накопленных в полупроводниках на p-n-переходе и за его пределами. Ёмкость p-n-перехода нелинейна — она зависит от полярности и значения внешнего напряжения, приложенного к переходу. Различают два вида ёмкостей p-n-перехода: барьерная и диффузионная[3].

Барьерная ёмкость[править | править код]

Барьерная (или зарядовая) ёмкость связана с изменением потенциального барьера в переходе и возникает при обратном смещении. Она эквивалентна ёмкости плоского конденсатора, в котором слоем диэлектрика служит запирающий слой, а обкладками — p и n-области перехода. Барьерная ёмкость зависит от площади перехода и относительной диэлектрической проницаемости полупроводника.

Диффузионная ёмкость[править | править код]

Диффузионная ёмкость обусловлена накоплением в области неосновных для неё носителей (электронов в p-области и дырок в n-области) при прямом смещении. Диффузионная ёмкость увеличивается с ростом прямого напряжения.

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Вплавление примесей[править | править код]

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется сплавным.

Диффузия примесей[править | править код]

В основе технологии получения диффузного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание[править | править код]

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется эпитаксиальным[3].

  • А. П. Лысенко, Л. С. Мироненко. Краткая теория p-n-перехода / Рецензент: проф. Ф. И. Григорьев. — М.: МИЭМ, 2002.
  • В. Г. Гусев, Ю. М. Гусев. Электроника. — 2-е изд. — М.: «Высшая школа», 1991. — 622 с.
  • К. И. Таперо, В. Н, Улимов, А. М. Членов. Радиационные эффекты в кремниевых интегральных схемах космического применения. — М.: 2009 г. — 246 с.

1.3. Полупроводниковый p-n–переход

Полупроводниковый p-n–переход образуется на границе раздела полупроводников p- и n–типов (рис. 1.4). Такая двухслойная p-n структура получается путем введения в один из слоев монокристалла кремния (германия) акцепторной примеси, а в другой – донорной примеси.

При этом при комнатной температуре атомы акцепторов и доноров можно считать полностью ионизированными, т.е. акцепторные атомы присоединяют к себе электроны, превращаясь в отрицательные ионы примеси, создавая при этом дырки, а донорные атомы отдают свои электроны, которые становятся свободными, превращаясь при этом в положительные ионы примеси. Кроме основных носителей зарядов в каждом из слоев имеются неосновные носители зарядов, создаваемые путем перехода электронов основного полупроводника из валентной зоны в зону проводимости. На практике распространение получили p-nструктуры с неодинаковой концентрацией внесенных акцепторнойN А и донорнойN Д примесей, т.е. неодинаковой концентрацией основных носителей заряда в слояхpp≈NAиnn≈N Д . Типичными являются структуры с

N А >>N Д (pp>>nn). На рис.1.4, б на примере германия показано распределение концентрации носителей заряда для таких структур, где принятыpp= 1018 см -3 ,nn= 1015см-3 .Концентрация собственных носителей заряда в германии при комнатной температуреni= 2,5 1013 см-3. Концентрация неосновных носителей заряда значительно меньше концентрации основных и составляетn р = 109 см-3 ,pn= 1012 см -3 .Вp-nструктуре на границе раздела слоёв из-за разности концентраций возникает диффузионное движение основных носителей заряда во встречном направлении. Дырки из р области диффундируют вn-область, электроны изn-области в р-область.

Дырки, вошедшие в n-область, рекомбинируют с электронами этой области, а электроны, вошедшие в р-область, — с дырками р-области. Вследствие диффузии и рекомбинации, в обеих приграничных областях концентрации основных носителей заряда снижаются.

Важнейшим следствием диффузионного движения носителей заряда через границу раздела полупроводников является появление в приграничных областях объемных зарядов, создаваемых ионами атомов примесей. Так в р-слое создается нескомпенсированный отрицательный объемный заряд за счет оставшихся отрицательных ионов акцепторных атомов примеси. В n-слое — нескомпенсированный положительный объемный заряд, создаваемый положительными ионами донорных атомов примеси. Толщина слоя объемного зарядаL 0 составляет доли микрометров. Этот слой ввиду отсутствия носителей заряда имеет очень высокое сопротивление (r = 10 9…1010Ом). Поэтому его еще называют запирающим слоем. Область объемного заряда называется p-n-переходом.

В виду наличия объемного заряда в p-nпереходе создаются внутреннее электрическое поле Е(x) и контактная разность потенциалов φк(x). Внутреннее электрическое поле с потенциальным барьером φ0(рис 1.4, в) создает тормозящее действие для основных носителей заряда, что приводит к снижению плотности диффузионного токаJДИФ. В тоже время оно является ускоряющим для несновных носителей, создающих встречный дрейфовый ток с плотностьюJДРчерезp-nпереход. Эти два тока уравнивают друг друга и результирующий ток черезp-nпереход равен нулю. Величина потенциального барьера (контактная разность потенциалов) составляет при комнатной температуре для германия

φ 0 = 0,3 …0,5 В, а для кремнияφ0 = 0,6 …0,8 В.

к=n-p=т,

где — тепловой (термический) потенциал: при комнатной

температуре (Т = 290 К ; т= 0,025 В;

k = 1,380662 · 10-23Дж/К — постоянная Больцмана;

е = 1,6021892 ·10-19Кл — заряд электрона;

Т — температура;

nnpp— концентрации основных носителей заряда в n- и р-областях соответственно;

ni— концентрация носителей заряда в собственном полупроводнике.

Подключение к полупроводниковой структуре внешнего напряжения UАприводит к изменению условий переноса зарядов черезp-nпереход. Внешнее напряжение может быть подключено в прямом (плюсом источника к выводу р-области и минусом кn-области) и обратном направлении (плюсом источника к выводуn-области и минусом кp-области). В случае прямого подключения источника, создаваемое им электрическое поле направлено встречно внутреннему полю в переходе, что приводит к уменьшению результирующего поля вp-nпереходе и снижению величины объемного заряда (поскольку объемному заряду вp-nпереходе будет отвечать результирующее напряжение φ0 –UA, меньшее, чем в отсутствии внешнего источника). Это приведет к увеличению диффузионного тока при неизменном дрейфовом токе. Плотность результирующего прямого тока черезp-nпереход

. (1.1)

С повышением внешнего напряжения диффузионный ток будет возрастать, так как потенциальный барьер будет уменьшаться, и все большее число основных носителей заряда будет способно преодолеть p-nпереход. Прямой токIAравен произведению плотности токаJAчерезp-nпереход на площадь его сеченияS.

При подключении к p-nпереходу источника внешнего напряжения в обратном направленииUB,создаваемое им электрическое поле будет направлено согласно с внутреннем полемp-nперехода. Это приведет к возрастанию потенциального барьера, который станет равным φ0 +UВ. Вследствие этого увеличится объемный заряд вp-nпереходе и его ширина, что затруднит прохождение основных носителей заряда. Произойдет снижение диффузионного тока при практически неизменном значении дрейфового тока. Однако теперь он будет превышать диффузионный ток. Через диод будет протекать ток в обратном направлении (обратный ток)

. (1.2)

Поведение диода описывается вольт-амперной характеристикой (ВАХ), приведенной на рис. 1.5.

Вольт-амперная характеристика может быть записана в аналитической форме :

IA = IS (e U/ φT — 1), (1.3)

где IS=SJДР — ток насыщения (тепловой ток), создаваемый неосновными носителями заряда; φт – тепловой потенциал. ПриU= 0, согласно выражения (1.3),IA= 0. При приложении прямого напряжения (U=UA> 0) единицей можно пренебречь и зависимостьIA=f(UA) будет иметь экспоненциальный характер. В случае обратного напряжения (U=UB< 0) можно не учитывать экспоненту и тогдаIA=IB= -IS.

При повышении прямого напряжения потенциальный барьер p-nперехода настолько снижается, что перестает влиять на прямой ток и ток будет линейно зависеть от напряжения. Этот участок прямой ветви ВАХ называется омическим и описывается приближенно уравнением

, (1.4)

где U0 – напряжение отсечки, равное отрезку, отсекаемому на оси напряжений линейной частью характеристики;— дифференциальное сопротивление, характеризующее наклон линейной части характеристики.

Обратная ветвь ВАХ

В кривой обратного тока на участке 0-1 возрастание IBпри увеличении обратного напряжения обусловлено эффектами генерации и лавинообразного размножения носителей заряда в объемеp-nперехода (при большом Uобрэлектроны приобретают большую скорость и выбивают из атомов кристаллической решетки новые электроны, которые также участвуют в ударной ионизации). На величину обратного тока влияет и температура окружающей среды. Для приближенных расчетов температурную зависимость обратного тока можно определить из эмпирического соотношения

IB (T) = IB (T0 ) 2 (TT0 ) / 10 C . (1.5)

Из (1.5) следует, что обратный ток удваивается при повышении температуры на каждые 10 С. Следовательно, при обратном включенииp-nпереход можно использовать, например, в качестве датчика температуры.

Участок 1-2-3— участок электрического пробоя р-n-перехода. При некотором напряжении Uобрток Iобррезко возрастает и сопротивление запирающего слоя резко уменьшается.

Существуют два вида электрического пробоя р-n-перехода — лавинный и туннельный.

Лавинный пробой— размножение носителей заряда за счет ударной ионизации и вырывания электронов из атомов сильным электрическим полем. Лавинный пробой характерен для широких р-n-переходов. Вырванные электроны тоже участвуют в ударной ионизации.

Туннельный пробой, вызванный туннельным эффектом — способностью некоторых электронов проникать через тонкий р-n-переход без изменения энергии. Это возможно при напряженности поля больше 10 5В/см в сильно легированных полупроводниках (высокая концентрация примесей).

Электрический пробой на участке 123является обратимым, то есть структура р-n-перехода не нарушается. На участке23работают диоды, предназначенные для стабилизации напряжения —стабилитроны.

Участок 3–4— участок теплового пробоя. Тепловой пробой необратим, так как сопровождается разрушением вещества в месте р-n-перехода. Объясняется это тем, что количество теплоты, выделяющееся в переходе от нагрева обратным током, превышает количество теплоты, отводимое от р-n-перехода. Это ведет к перегреву р-n-перехода и его тепловому разрушению.

Работа полупроводниковых приборов сильно подвержена влиянию температуры. С ростом температуры увеличивается генерация носителей заряда, растет прямой и особенно обратный ток через р-n-переход. При увеличении температуры в пределах 20…70 С обратный ток увеличивается более чем в 30 раз. Поэтому полупроводниковые схемы нуждаются в термостабилизации.

1.4. Полупроводники на основе карбида кремния (SiC)

Полупроводники на основе германия и кремния обладают достаточно низким рабочим температурным диапазоном: Ge- 80-90 °С, Si – 120 °С. Карбид-кремниевые полупроводники обладают более высоким показателями. Существует около 170 политипов карбид кремния. Но только два из них сегодня доступны для изготовления п/п приборов – это 4H-SiCи 6H-SiC. Для силовых полупроводников более предпочтителен политип 4H-SiC, обладающей большей подвижностью электронов. В таблице приведены основные электронные свойства политипа 4H-SiCв сравнении с кремниевым (Si) и арсенидгалиевым (GaAs) полупроводниковым материалом.

Намименование

Si

GaAs

4H-SiC

Ширина запрещенной энергетической зоны, эВ

1,12

1,5

3,26

Подвижность электронов, см2 /с·В

1400

9200

800

Подвижность дырок, см2 /с·В

450

400

140

Критическая напряженность электрического поля, МВ/cм

0,25

0,3

2,2

Теплопроводность, Вт/см·К

1,5

0,5

3,0-3,8

Карбид кремния обладает рядом преимуществ по сравнению с другими полупроводниками (кремний, арсенид галлия):

• Большая ширина запрещенной зоны обеспечивает работу при высоких температурах — ≥ + 600 ºС ;

• Напряженность поля электрического пробоя больше в 10 раз чем у Si и GaAs. Это приводит к значительному снижению сопротивления перехода в открытом состоянии;

• Высокая теплопроводность SiС снижает тепловое сопротивление кристалла;

• SiС крайне устойчив к воздействию радиации;

• Электрические свойства приборов на основе SiС очень стабильны во времени и слабо зависят от температуры.Все эти замечательные свойства в совокупности делают карбид кремния полупроводниковым материалом ближайшего будущего.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *