Стабилизатор напряжения википедия: Стабилизатор — Википедия – Стабилизатор напряжения — Википедия

Содержание

Стабилизатор напряжения — Википедия

Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое[1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ. Power conditioner) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования.[2]

Стабилизатор переменного напряжения

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного напряжения

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор напряжения представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть входной мощности рассеивается в виде тепла на регулирующем элементе, мощность потерь в последовательном стабилизаторе PL{\displaystyle P_{L}}:

PL=(Uin−Uout)⋅Iout,{\displaystyle P_{L}=(U_{in}-U_{out})\cdot I_{out},}
где Uin{\displaystyle U_{in}} — входное напряжение стабилизатора,
Uout{\displaystyle U_{out}} — выходное напряжение стабилизатора,
Iout{\displaystyle I_{out}} — выходной ток стабилизатора.

Поэтому регулирующий элемент в стабилизаторах такого типа и повышенной мощности должен рассеивать значительную мощность, то есть должен быть установлен на радиатор нужной площади.

Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых электронных компонентов.

В зависимости от включения элемента с изменяемым сопротивлением линейные стабилизаторы классифицируются на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, где дифференциальное сопротивление прибора мало в широко диапазоне изменения токов, протекающих через прибор.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на полупроводниковом стабилитроне

В этой схеме может быть применён как полупроводниковый стабилитрон, так и газоразрядный стабилитрон тлеющего разряда.

Простейшая схема параметрического стабилизатора

Такие стабилизаторы применяется для стабилизации напряжения схем с малым потребляемым током, так как для стабилизации напряжения ток через стабилитрон D1{\displaystyle D1} должен в несколько раз (3 — 10) превышать ток потребления от стабилизатора в присоединённой нагрузке RL{\displaystyle R_{L}}. Обычно такая схема линейного стабилизатора применяется в качестве источника опорного напряжения в более сложных схемах регулирующих стабилизаторов.

Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV{\displaystyle R_{V}} включают двухполюсник с высоком дифференциальным сопротивлением на участке ВАХ в диапазоне рабочих токов, работающий как источника тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

В этой схеме напряжение на базе регулирующего транзистора равно напряжению на стабилитроне Uz{\displaystyle U_{z}} и выходное напряжение будет: Uout=Uz−Ube, {\displaystyle U_{out}=U_{z}-U_{be},\ } Ube{\displaystyle U_{be}} — напряжение между базой и эмиттером транзистора. Так как Ube{\displaystyle U_{be}} мало зависит от тока эмиттера, — выходного тока стабилизатора, и невелико (0,4 В для германиевых транзисторов и 0,6—0,65 В для кремниевых транзисторов) приведённая схема осуществляет стабилизацию напряжения.

Фактически схема представляет собой рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет контура авторегулирования, обеспечивающего практически полную компенсацию изменений выходного напряжения и изменений выходного тока.

Выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube{\displaystyle U_{be}}, которая мало зависит от величины тока, протекающего через транзистор. Некоторая зависимость Ube{\displaystyle U_{be}} от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель здесь является усилителем тока и позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в Bst{\displaystyle B_{st}} раз, Bst{\displaystyle B_{st}} — статический коэффициент передачи тока транзистора в режиме с общим коллектором. Так как Bst{\displaystyle B_{st}} в несколько десятков раз больше 1, малый ток, отбираемый от параметрического стабилизатора усиливается в Bst{\displaystyle B_{st}} раз. Если такого усиления тока недостаточно для обеспечения заданного выходного тока, то применяют составной транзистор, например, пару Дарлингтона.

При очень малом токе нагрузки, порядка единиц — десятков мкА, выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на примерно 0,6 В, так как Ube{\displaystyle U_{be}} при таких токах становится близким к нулю. В некоторых применениях это нежелательно, тогда к выходу стабилизатора подключают дополнительный нагрузочный резистор, обеспечивающий в любом случае минимальный ток нагрузки стабилизатора в несколько миллиампер.

Последовательный компенсационный стабилизатор с контуром авторегулирования
Последовательный компенсационный стабилизатор с применением операционного усилителя

В таких стабилизаторах выходное напряжение сравнивается с опорным напряжением, разность этих напряжения усиливается усилителем сигнала рассогласования, выход усилителя сигнала рассогласования управляет регулирующим элементом.

В качестве примера приведена схема на рисунке. Часть выходного напряжения Uout{\displaystyle U_{out}}, снимаемая с резистивного делителя напряжения, состоящего из потенциометра R2{\displaystyle R2} и постоянных резисторов R1, R3{\displaystyle R1,\ R3} сравнивается с опорным напряжением Uz{\displaystyle U_{z}} от параметрического стабилизатора — стабилитрона D1{\displaystyle D1}. Разность этих напряжений усиливается дифференциальным усилителем на операционном усилителе (ОУ) U1{\displaystyle U1}, выход которого изменяет базовый ток транзистора, включенного по схеме эмиттерного повторителя[3].

В этой схеме имеется контур авторегулирования, — петля отрицательной обратной связи. Если выходное напряжение меньше заданного, то через обратную связь регулирующий транзистор открывается больше, если выходное напряжения больше заданного, — то наоборот.

Для устойчивости контура авторегулирования петлевой сдвиг фазы должен быть близок к 180°. Так как часть выходного напряжения Uout{\displaystyle U_{out}} подаётся на инвертирующий вход операционного усилителя U1{\displaystyle U1}, сдвигающего фазу на 180°, а регулирующий транзистор включен по схеме эмиттерного повторителя, который при низких частотах фазу не сдвигает, это обеспечивает устойчивость контура авторегулирования, так как петлевой сдвиг фазы близок к 180°.

Опорное напряжение Uz{\displaystyle Uz} зависит от величины тока, протекающего через стабилитрон. Основной источник нестабильности опорного напряжения — изменения входного напряжения, так как при таких изменениях изменяется ток стабилитрона. Для стабилизации тока при изменениях Uin{\displaystyle U_{in}} вместо резистора RV{\displaystyle R_{V}} иногда включают источник тока.

В этом стабилизаторе ОУ включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение сопротивлений резисторов в цепи обратной связи задают его коэффициент усиления, определяющий во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz{\displaystyle U_{z}} (напряжение стабилизации стабилитрона) должна быть выбрана меньше, чем Uout{\displaystyle U_{out}}, либо опорное напряжение снимают с резистивного делителя, подключённого к стабилитрону.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, так как за счёт большого коэффициента усиления современных ОУ, достигающих 105…106, остальные источники нестабильности выходного напряжения оказываются скомпенсированными.

Параметры такого стабилизатора оказались подходящими для многих практических нужд. Поэтому уже почти полвека выпускаются, и на сегодня имеют широчайшее применение, такие стабилизаторы в интегральном исполнении: КР142ЕН5А, 7805 и мн. др.

Импульсный стабилизатор

В импульсном стабилизаторе напряжение от нестабилизированного внешнего источника подаётся на накопитель энергии (обычно конденсатор или дроссель) короткими импульсами формируемыми посредством электронного ключа. Во время замкнутого состояния ключа в накопителе запасается энергия, которая затем передается в нагрузку. Применение в качестве накопительного элемента дросселя позволяет изменять выходное напряжение стабилизатора относительно входного без использования трансформаторов: увеличивать, снижать или инвертировать. Стабилизация осуществляется должным управлением длительностью импульсов и пауз между ними с помощью широтно-импульсной модуляции, частотно-импульсной модуляции или их комбинации.

Импульсный стабилизатор по сравнению с линейным обладает значительно более высоким КПД, так как регулирующий элемент работает в ключевом режиме. Недостатки импульсного стабилизатора — импульсные помехи в выходном напряжении и относительная сложность.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом, зависящим от схемы стабилизатора и режима управления его ключами:

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение в зависимости от режима управления ключами может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение может отличаться от выходного напряжения в любую сторону.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение входного напряжения может быть любым.
  • Универсальный — выполняющий все функции перечисленных.

Стабилизаторы переменного напряжения

Подразделяются на два основных вида

1) Однофазные стабилизаторы напряжения на 220-230 вольт- предназначение, бытовые, офисные и промышленные нагрузки небольших мощностей.

2) Трехфазные стабилизаторы напряжения на 380-400 вольт- предназначение, промышленные нагрузки средних и больших мощностей.

Феррорезонансные стабилизаторы

Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно их использовали для питания телевизоров. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи телевизора, например, цепи анодного напряжения и накала электровакуумных приборов питались нестабилизированным напряжением), что при суточных колебаниях и резких скачках сетевого напряжения, особенно в сельской местности, приводило к ухудшению качества изображения и требовало предварительной стабилизации переменного сетевого напряжения.

С появлением телевизоров более поздних поколений, например, 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, исчезла необходимость во внешней дополнительной стабилизации напряжения сети.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него, так как его ферромагнитный сердечник периодически насыщается. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах. Недостатком таких стабилизаторов является чувствительность к частоте напряжения в питающей сети. Незначительное отклонение частоты питающей сети существенно влияет на выходное напряжение феррорезонансного стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические
  • с электромеханическим сервоприводом регулирующего элемента, например, автотрансформатора
  • феррорезонансные
  • электронные разных типов
    • ступенчатые (силовые электронные ключи, симисторные, тиристорные)
    • ступенчатые релейные (силовые релейные ключи)
    • компенсационные (электронные плавные)
    • комбинированные (гибридные)

Промышленностью производятся разнообразные модели с входным напряжением однофазной сети, (220/230 В), так и трёхфазной (380/400 В) исполнении, с выходной мощностью их от нескольких единиц ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, ±50 %,−25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в сторону снижения входного напряжения), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. В настоящее время существуют модели стабилизаторов напряжения с нижним допустимым входным напряжением 90 вольт.

Важной характеристикой стабилизатора напряжения является его быстродействие, — скорость отклика на возмущение. Чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие определяется как промежуток времени, за которое стабилизатор способен изменить выходное напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия. —>

Важным параметром является точность стабилизации выходного напряжения стабилизатора переменного сетевого напряжения. Согласно ГОСТ 13109-97 предельно допустимо отклонение выходного напряжения на ±10 % от номинального. Точность стабилизации современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %.

Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовых и промышленных электротехнических устройств со встроенными инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %).[источник не указан 1371 день] Более жесткие требования (точность стабилизации лучше 1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора отдавать номинальную мощность во всем диапазоне входного напряжения, но не все стабилизаторы обладают таким свойством.

КПД сервоприводных стабилизаторов большой мощности более 98 %, а электронных большой мощности — 96 %.

См. также

Примечания

Литература

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Техніка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Ссылки

Стабилизатор напряжения — Википедия

Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое[1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ. Power conditioner) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования.[2]

Стабилизатор переменного напряжения

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного тока

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть входной мощности рассеивается в виде тепла на регулирующем элементе, мощность потерь в последовательном стабилизаторе PL{\displaystyle P_{L}}:

PL=(Uin−Uout)⋅Iout,{\displaystyle P_{L}=(U_{in}-U_{out})\cdot I_{out},}
где Uin{\displaystyle U_{in}} — входное напряжение стабилизатора,
Uout{\displaystyle U_{out}} — выходное напряжение стабилизатора,
Iout{\displaystyle I_{out}} — выходной ток стабилизатора.

Поэтому регулирующий элемент в стабилизаторах такого типа и повышенной мощности должен рассеивать значительную мощность, то есть должен быть установлен на радиатор нужной площади.

Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых электронных компонентов.

В зависимости от включения элемента с изменяемым сопротивлением линейные стабилизаторы классифицируются на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, где дифференциальное сопротивление прибора мало в широко диапазоне изменения токов, протекающих через прибор.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на полупроводниковом стабилитроне

В этой схеме может быть применён как полупроводниковый стабилитрон, так и газоразрядный стабилитрон тлеющего разряда.

{\displaystyle I_{out}} Простейшая схема параметрического стабилизатора

Такие стабилизаторы применяется для стабилизации напряжения схем с малым потребляемым током, так как для стабилизации напряжения ток через стабилитрон D1{\displaystyle D1} должен в несколько раз (3 — 10) превышать ток потребления от стабилизатора в присоединённой нагрузке RL{\displaystyle R_{L}}. Обычно такая схема линейного стабилизатора применяется в качестве источника опорного напряжения в более сложных схемах регулирующих стабилизаторов.

Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV{\displaystyle R_{V}} включают двухполюсник с высоком дифференциальным сопротивлением на участке ВАХ в диапазоне рабочих токов, работающий как источника тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе
{\displaystyle R_{V}}

В этой схеме напряжение на базе регулирующего транзистора равно напряжению на стабилитроне Uz{\displaystyle U_{z}} и выходное напряжение будет: Uout=Uz−Ube, {\displaystyle U_{out}=U_{z}-U_{be},\ } Ube{\displaystyle U_{be}} — напряжение между базой и эмиттером транзистора. Так как Ube{\displaystyle U_{be}} мало зависит от тока эмиттера, — выходного тока стабилизатора, и невелико (0,4 В для германиевых транзисторов и 0,6—0,65 В для кремниевых транзисторов) приведённая схема осуществляет стабилизацию напряжения.

Фактически схема представляет собой рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет контура авторегулирования, обеспечивающего практически полную компенсацию изменений выходного напряжения и изменений выходного тока.

Выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube{\displaystyle U_{be}}, которая мало зависит от величины тока, протекающего через транзистор. Некоторая зависимость Ube{\displaystyle U_{be}} от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель здесь является усилителем тока и позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в Bst{\displaystyle B_{st}} раз, Bst{\displaystyle B_{st}} — статический коэффициент передачи тока транзистора в режиме с общим коллектором. Так как Bst{\displaystyle B_{st}} в несколько десятков раз больше 1, малый ток, отбираемый от параметрического стабилизатора усиливается в Bst{\displaystyle B_{st}} раз. Если такого усиления тока недостаточно для обеспечения заданного выходного тока, то применяют составной транзистор, например, пару Дарлингтона.

При очень малом токе нагрузки, порядка единиц — десятков мкА, выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на примерно 0,6 В, так как Ube{\displaystyle U_{be}} при таких токах становится близким к нулю. В некоторых применениях это нежелательно, тогда к выходу стабилизатора подключают дополнительный нагрузочный резистор, обеспечивающий в любом случае минимальный ток нагрузки стабилизатора в несколько миллиампер.

Последовательный компенсационный стабилизатор с контуром авторегулирования
U_{{be}} Последовательный компенсационный стабилизатор с применением операционного усилителя

В таких стабилизаторах выходное напряжение сравнивается с опорным напряжением, разность этих напряжения усиливается усилителем сигнала рассогласования, выход усилителя сигнала рассогласования управляет регулирующим элементом.

В качестве примера приведена схема на рисунке. Часть выходного напряжения Uout{\displaystyle U_{out}}, снимаемая с резистивного делителя напряжения, состоящего из потенциометра R2{\displaystyle R2} и постоянных резисторов R1, R3{\displaystyle R1,\ R3} сравнивается с опорным напряжением Uz{\displaystyle U_{z}} от параметрического стабилизатора — стабилитрона D1{\displaystyle D1}. Разность этих напряжений усиливается дифференциальным усилителем на операционном усилителе (ОУ) U1{\displaystyle U1}, выход которого изменяет базовый ток транзистора, включенного по схеме эмиттерного повторителя[3].

В этой схеме имеется контур авторегулирования, — петля отрицательной обратной связи. Если выходное напряжение меньше заданного, то через обратную связь регулирующий транзистор открывается больше, если выходное напряжения больше заданного, — то наоборот.

Для устойчивости контура авторегулирования петлевой сдвиг фазы должен быть близок к 180°. Так как часть выходного напряжения Uout{\displaystyle U_{out}} подаётся на инвертирующий вход операционного усилителя U1{\displaystyle U1}, сдвигающего фазу на 180°, а регулирующий транзистор включен по схеме эмиттерного повторителя, который при низких частотах фазу не сдвигает, это обеспечивает устойчивость контура авторегулирования, так как петлевой сдвиг фазы близок к 180°.

Опорное напряжение Uz{\displaystyle Uz} зависит от величины тока, протекающего через стабилитрон. Основной источник нестабильности опорного напряжения — изменения входного напряжения, так как при таких изменениях изменяется ток стабилитрона. Для стабилизации тока при изменениях Uin{\displaystyle U_{in}} вместо резистора RV{\displaystyle R_{V}} иногда включают источник тока.

В этом стабилизаторе ОУ включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение сопротивлений резисторов в цепи обратной связи задают его коэффициент усиления, определяющий во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz{\displaystyle U_{z}} (напряжение стабилизации стабилитрона) должна быть выбрана меньше, чем Uout{\displaystyle U_{out}}, либо опорное напряжение снимают с резистивного делителя, подключённого к стабилитрону.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, так как за счёт большого коэффициента усиления современных ОУ, достигающих 105…106, остальные источники нестабильности выходного напряжения оказываются скомпенсированными.

Параметры такого стабилизатора оказались подходящими для многих практических нужд. Поэтому уже почти полвека выпускаются, и на сегодня имеют широчайшее применение, такие стабилизаторы в интегральном исполнении: КР142ЕН5А, 7805 и мн. др.

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель энергии (обычно конденсатор или дроссель) короткими импульсами формируемыми посредством электронного ключа. Во время замкнутого состояния ключа в накопителе запасается энергия, которая затем передается в нагрузку. Применение в качестве накопительного элемента дросселя позволяет изменять выходное напряжение стабилизатора относительно входного без использования трансформаторов: увеличивать, снижать или инвертировать. Стабилизация осуществляется должным управлением длительностью импульсов и пауз между ними с помощью широтно-импульсной модуляции, частотно-импульсной модуляции или их комбинации.

Импульсный стабилизатор по сравнению с линейным обладает значительно более высоким КПД, так как регулирующий элемент работает в ключевом режиме. Недостатки импульсного стабилизатора — импульсные помехи в выходном напряжении и относительная сложность.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом, зависящим от схемы стабилизатора и режима управления его ключами:

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение в зависимости от режима управления ключами может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение может отличаться от выходного напряжения в любую сторону.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение входного напряжения может быть любым.
  • Универсальный — выполняющий все функции перечисленных.

Стабилизаторы переменного напряжения

Подразделяются на два основных вида

1) Однофазные стабилизаторы напряжения на 220-230 вольт- предназначение, бытовые, офисные и промышленные нагрузки небольших мощностей.

2) Трехфазные стабилизаторы напряжения на 380-400 вольт- предназначение, промышленные нагрузки средних и больших мощностей.

Феррорезонансные стабилизаторы

Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно их использовали для питания телевизоров. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи телевизора, например, цепи анодного напряжения и накала электровакуумных приборов питались нестабилизированным напряжением), что при суточных колебаниях и резких скачках сетевого напряжения, особенно в сельской местности, приводило к ухудшению качества изображения и требовало предварительной стабилизации переменного сетевого напряжения.

С появлением телевизоров более поздних поколений, например, 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, исчезла необходимость во внешней дополнительной стабилизации напряжения сети.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него, так как его ферромагнитный сердечник периодически насыщается. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах. Недостатком таких стабилизаторов является чувствительность к частоте напряжения в питающей сети. Незначительное отклонение частоты питающей сети существенно влияет на выходное напряжение феррорезонансного стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические
  • с электромеханическим сервоприводом регулирующего элемента, например, автотрансформатора
  • феррорезонансные
  • электронные разных типов
    • ступенчатые (силовые электронные ключи, симисторные, тиристорные)
    • ступенчатые релейные (силовые релейные ключи)
    • компенсационные (электронные плавные)
    • комбинированные (гибридные)

Промышленностью производятся разнообразные модели с входным напряжением однофазной сети, (220/230 В), так и трёхфазной (380/400 В) исполнении, с выходной мощностью их от нескольких единиц ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, ±50 %,−25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в сторону снижения входного напряжения), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. В настоящее время существуют модели стабилизаторов напряжения с нижним допустимым входным напряжением 90 вольт.

Важной характеристикой стабилизатора напряжения является его быстродействие, — скорость отклика на возмущение. Чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие определяется как промежуток времени, за которое стабилизатор способен изменить выходное напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия. —>

Важным параметром является точность стабилизации выходного напряжения стабилизатора переменного сетевого напряжения. Согласно ГОСТ 13109-97 предельно допустимо отклонение выходного напряжения на ±10 % от номинального. Точность стабилизации современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %.

Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовых и промышленных электротехнических устройств со встроенными инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %).[источник не указан 1007 дней] Более жесткие требования (точность стабилизации лучше 1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора отдавать номинальную мощность во всем диапазоне входного напряжения, но не все стабилизаторы обладают таким свойством.

КПД сервоприводных стабилизаторов большой мощности более 98 %, а электронных большой мощности — 96 %.

См. также

Литература

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Ссылки

Примечания

Стабилизатор напряжения — Википедия. Что такое Стабилизатор напряжения

Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое[1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ. Power conditioner) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования.[2]

Стабилизатор переменного напряжения

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного тока

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть входной мощности рассеивается в виде тепла на регулирующем элементе, мощность потерь в последовательном стабилизаторе PL{\displaystyle P_{L}}:

PL=(Uin−Uout)⋅Iout,{\displaystyle P_{L}=(U_{in}-U_{out})\cdot I_{out},}
где Uin{\displaystyle U_{in}} — входное напряжение стабилизатора,
Uout{\displaystyle U_{out}} — выходное напряжение стабилизатора,
Iout{\displaystyle I_{out}} — выходной ток стабилизатора.

Поэтому регулирующий элемент в стабилизаторах такого типа и повышенной мощности должен рассеивать значительную мощность, то есть должен быть установлен на радиатор нужной площади.

Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых электронных компонентов.

В зависимости от включения элемента с изменяемым сопротивлением линейные стабилизаторы классифицируются на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, где дифференциальное сопротивление прибора мало в широко диапазоне изменения токов, протекающих через прибор.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на полупроводниковом стабилитроне

В этой схеме может быть применён как полупроводниковый стабилитрон, так и газоразрядный стабилитрон тлеющего разряда.

{\displaystyle I_{out}} Простейшая схема параметрического стабилизатора

Такие стабилизаторы применяется для стабилизации напряжения схем с малым потребляемым током, так как для стабилизации напряжения ток через стабилитрон D1{\displaystyle D1} должен в несколько раз (3 — 10) превышать ток потребления от стабилизатора в присоединённой нагрузке RL{\displaystyle R_{L}}. Обычно такая схема линейного стабилизатора применяется в качестве источника опорного напряжения в более сложных схемах регулирующих стабилизаторов.

Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV{\displaystyle R_{V}} включают двухполюсник с высоком дифференциальным сопротивлением на участке ВАХ в диапазоне рабочих токов, работающий как источника тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе
{\displaystyle R_{V}}

В этой схеме напряжение на базе регулирующего транзистора равно напряжению на стабилитроне Uz{\displaystyle U_{z}} и выходное напряжение будет: Uout=Uz−Ube, {\displaystyle U_{out}=U_{z}-U_{be},\ } Ube{\displaystyle U_{be}} — напряжение между базой и эмиттером транзистора. Так как Ube{\displaystyle U_{be}} мало зависит от тока эмиттера, — выходного тока стабилизатора, и невелико (0,4 В для германиевых транзисторов и 0,6—0,65 В для кремниевых транзисторов) приведённая схема осуществляет стабилизацию напряжения.

Фактически схема представляет собой рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет контура авторегулирования, обеспечивающего практически полную компенсацию изменений выходного напряжения и изменений выходного тока.

Выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube{\displaystyle U_{be}}, которая мало зависит от величины тока, протекающего через транзистор. Некоторая зависимость Ube{\displaystyle U_{be}} от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель здесь является усилителем тока и позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в Bst{\displaystyle B_{st}} раз, Bst{\displaystyle B_{st}} — статический коэффициент передачи тока транзистора в режиме с общим коллектором. Так как Bst{\displaystyle B_{st}} в несколько десятков раз больше 1, малый ток, отбираемый от параметрического стабилизатора усиливается в Bst{\displaystyle B_{st}} раз. Если такого усиления тока недостаточно для обеспечения заданного выходного тока, то применяют составной транзистор, например, пару Дарлингтона.

При очень малом токе нагрузки, порядка единиц — десятков мкА, выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на примерно 0,6 В, так как Ube{\displaystyle U_{be}} при таких токах становится близким к нулю. В некоторых применениях это нежелательно, тогда к выходу стабилизатора подключают дополнительный нагрузочный резистор, обеспечивающий в любом случае минимальный ток нагрузки стабилизатора в несколько миллиампер.

Последовательный компенсационный стабилизатор с контуром авторегулирования
U_{{be}} Последовательный компенсационный стабилизатор с применением операционного усилителя

В таких стабилизаторах выходное напряжение сравнивается с опорным напряжением, разность этих напряжения усиливается усилителем сигнала рассогласования, выход усилителя сигнала рассогласования управляет регулирующим элементом.

В качестве примера приведена схема на рисунке. Часть выходного напряжения Uout{\displaystyle U_{out}}, снимаемая с резистивного делителя напряжения, состоящего из потенциометра R2{\displaystyle R2} и постоянных резисторов R1, R3{\displaystyle R1,\ R3} сравнивается с опорным напряжением Uz{\displaystyle U_{z}} от параметрического стабилизатора — стабилитрона D1{\displaystyle D1}. Разность этих напряжений усиливается дифференциальным усилителем на операционном усилителе (ОУ) U1{\displaystyle U1}, выход которого изменяет базовый ток транзистора, включенного по схеме эмиттерного повторителя[3].

В этой схеме имеется контур авторегулирования, — петля отрицательной обратной связи. Если выходное напряжение меньше заданного, то через обратную связь регулирующий транзистор открывается больше, если выходное напряжения больше заданного, — то наоборот.

Для устойчивости контура авторегулирования петлевой сдвиг фазы должен быть близок к 180°. Так как часть выходного напряжения Uout{\displaystyle U_{out}} подаётся на инвертирующий вход операционного усилителя U1{\displaystyle U1}, сдвигающего фазу на 180°, а регулирующий транзистор включен по схеме эмиттерного повторителя, который при низких частотах фазу не сдвигает, это обеспечивает устойчивость контура авторегулирования, так как петлевой сдвиг фазы близок к 180°.

Опорное напряжение Uz{\displaystyle Uz} зависит от величины тока, протекающего через стабилитрон. Основной источник нестабильности опорного напряжения — изменения входного напряжения, так как при таких изменениях изменяется ток стабилитрона. Для стабилизации тока при изменениях Uin{\displaystyle U_{in}} вместо резистора RV{\displaystyle R_{V}} иногда включают источник тока.

В этом стабилизаторе ОУ включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение сопротивлений резисторов в цепи обратной связи задают его коэффициент усиления, определяющий во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz{\displaystyle U_{z}} (напряжение стабилизации стабилитрона) должна быть выбрана меньше, чем Uout{\displaystyle U_{out}}, либо опорное напряжение снимают с резистивного делителя, подключённого к стабилитрону.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, так как за счёт большого коэффициента усиления современных ОУ, достигающих 105…106, остальные источники нестабильности выходного напряжения оказываются скомпенсированными.

Параметры такого стабилизатора оказались подходящими для многих практических нужд. Поэтому уже почти полвека выпускаются, и на сегодня имеют широчайшее применение, такие стабилизаторы в интегральном исполнении: КР142ЕН5А, 7805 и мн. др.

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель энергии (обычно конденсатор или дроссель) короткими импульсами формируемыми посредством электронного ключа. Во время замкнутого состояния ключа в накопителе запасается энергия, которая затем передается в нагрузку. Применение в качестве накопительного элемента дросселя позволяет изменять выходное напряжение стабилизатора относительно входного без использования трансформаторов: увеличивать, снижать или инвертировать. Стабилизация осуществляется должным управлением длительностью импульсов и пауз между ними с помощью широтно-импульсной модуляции, частотно-импульсной модуляции или их комбинации.

Импульсный стабилизатор по сравнению с линейным обладает значительно более высоким КПД, так как регулирующий элемент работает в ключевом режиме. Недостатки импульсного стабилизатора — импульсные помехи в выходном напряжении и относительная сложность.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом, зависящим от схемы стабилизатора и режима управления его ключами:

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение в зависимости от режима управления ключами может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение может отличаться от выходного напряжения в любую сторону.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение входного напряжения может быть любым.
  • Универсальный — выполняющий все функции перечисленных.

Стабилизаторы переменного напряжения

Подразделяются на два основных вида

1) Однофазные стабилизаторы напряжения на 220-230 вольт- предназначение, бытовые, офисные и промышленные нагрузки небольших мощностей.

2) Трехфазные стабилизаторы напряжения на 380-400 вольт- предназначение, промышленные нагрузки средних и больших мощностей.

Феррорезонансные стабилизаторы

Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно их использовали для питания телевизоров. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи телевизора, например, цепи анодного напряжения и накала электровакуумных приборов питались нестабилизированным напряжением), что при суточных колебаниях и резких скачках сетевого напряжения, особенно в сельской местности, приводило к ухудшению качества изображения и требовало предварительной стабилизации переменного сетевого напряжения.

С появлением телевизоров более поздних поколений, например, 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, исчезла необходимость во внешней дополнительной стабилизации напряжения сети.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него, так как его ферромагнитный сердечник периодически насыщается. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах. Недостатком таких стабилизаторов является чувствительность к частоте напряжения в питающей сети. Незначительное отклонение частоты питающей сети существенно влияет на выходное напряжение феррорезонансного стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические
  • с электромеханическим сервоприводом регулирующего элемента, например, автотрансформатора
  • феррорезонансные
  • электронные разных типов
    • ступенчатые (силовые электронные ключи, симисторные, тиристорные)
    • ступенчатые релейные (силовые релейные ключи)
    • компенсационные (электронные плавные)
    • комбинированные (гибридные)

Промышленностью производятся разнообразные модели с входным напряжением однофазной сети, (220/230 В), так и трёхфазной (380/400 В) исполнении, с выходной мощностью их от нескольких единиц ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, ±50 %,−25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в сторону снижения входного напряжения), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. В настоящее время существуют модели стабилизаторов напряжения с нижним допустимым входным напряжением 90 вольт.

Важной характеристикой стабилизатора напряжения является его быстродействие, — скорость отклика на возмущение. Чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие определяется как промежуток времени, за которое стабилизатор способен изменить выходное напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия. —>

Важным параметром является точность стабилизации выходного напряжения стабилизатора переменного сетевого напряжения. Согласно ГОСТ 13109-97 предельно допустимо отклонение выходного напряжения на ±10 % от номинального. Точность стабилизации современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %.

Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовых и промышленных электротехнических устройств со встроенными инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %).[источник не указан 1007 дней] Более жесткие требования (точность стабилизации лучше 1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора отдавать номинальную мощность во всем диапазоне входного напряжения, но не все стабилизаторы обладают таким свойством.

КПД сервоприводных стабилизаторов большой мощности более 98 %, а электронных большой мощности — 96 %.

См. также

Литература

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Ссылки

Примечания

Стабилизаторы переменного напряжения — Википедия

Стабилизаторы напряжения в магазине, Россия

Стабилизатор переменного напряжения (англ. Voltage regulator) — устройство, на выходе которого обеспечивается стабильное переменное напряжение той же частоты, что и питающее напряжение.[1]:6

Стабилизированный источник переменного напряжения (англ. Power conditioner) — устройство, на выходе которого обеспечивается переменное стабильное напряжение с частотой, не зависящей от частоты питающего напряжения.[1]:6

Кроме стабилизаторов, на выходе которых напряжение соответствует номинальному напряжению на входе, существуют варианты конструкций со стабилизированным переменным напряжением на выходе, отличающимся от напряжения на входе.[1]:30

Существует ряд продолжительных изменений характеристик напряжения электропитания в точке передачи электрической энергии пользователю электрической сети: отклонение частоты; медленные изменения напряжения; колебания напряжения; фликер.[2] Даже при использовании в качестве источников питания мощных энергосистем напряжение сети подвержено медленным и кратковременным колебаниям. Медленные колебания вызваны постепенным подключением или отключением потребителей и повторяются каждые сутки. Кратковременные колебания связаны с переходными процессами при коммутации потребителей.[1]:5

Стабилизаторы (трансформаторы)

Трансформатор со стабилизированным вторичным напряжением — трансформатор, предназначенный для ограничения влияния колебаний первичного напряжения.[3]:п. 3.101

Феррорезонансные

Феррорезонансный стабилизатор напряжения является статическим аппаратом, в котором явление феррорезонанса токов используется для преобразования нестабильного сетевого напряжения в напряжение, эффективная величина которого практически постоянна. Может применяться в автоматических установках, для питания бытовой электроники, для преобразования однофазной системы напряжений в симметричную трехфазную.[4]

Одним из важнейших свойств феррорезонансных стабилизаторов является практически безынерционное действие. Изменения входного напряжения в пределах рабочего диапазона приводят только к изменениям формы кривой напряжения на выходе: действующее (или среднее за полупериод) значение последнего остается практически неизменным. Возможно их применение для устройств, чувствительных к резким кратковременным (на протяжении нескольких полупериодов) изменениям питающего напряжения. Недостатками являются: зависимость стабилизированного напряжения от частоты источника питания, несинусоидальность формы кривой выходного напряжения, чувствительность к виду нагрузки, большой вес на единицу выходной мощности.[5]

Физические процессы в таких стабилизаторах можно сравнить с качелями. Раскачанные до определенной силы качели сложно остановить или резко заставить качаться быстрее. Катаясь на качелях, не обязательно отталкиваться каждый раз — энергия колебания делает процесс инерционным. Увеличить или уменьшить частоту колебаний тоже сложно — качели имеют свой резонанс. В феррорезонансных стабилизаторах происходят электромагнитные колебания в колебательном контуре ёмкости и индуктивности.

Данный вид стабилизаторов может применяться в комплексе с механизмами, вносящими сильные помехи в электросеть.

Стабилизатор производства ГДР

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Из-за своей простоты устройства популярны в быту для стабилизации напряжения отдельных устройств: холодильников, телевизоров и т. д.

Ферромагнитный

Ферромагнитный стабилизатор напряжения является электромагнитным аппаратом, основанным на использовании процессов насыщения железных сердечников. Используется для преобразования нестабильного сетевого напряжения в напряжение средняя величина которого практически постоянна. Разделяются на стабилизаторы параметрического типа и компенсационного типа с подмагничиваемыми исполнительными органами.[6]

Автотрансформаторы

Регулировка напряжения в электромеханических (электродинамических) стабилизаторах осуществляется вручную или автоматически, путём перемещения токосъёмного узла по обмотке трансформатора, что обеспечивает плавное изменение коэффициента его трансформации до достижения заданной величины выходного напряжения.

Это единственный тип стабилизаторов, обеспечивающий плавную регулировку напряжения, не внося при этом искажений в форму синусоиды. Стабилизаторы этого типа обладают достаточно высокой точностью удержания выходного напряжения (2..3 %) и обеспечивают наиболее комфортный режим питания бытовой техники. Они успешно используются как в быту, так и на производствах.

Однако существует несколько ограничений области их применения: первое — невозможность работы при отрицательных температурах (в силу наличия открытых токоведущих поверхностей и опасности короткого замыкания из-за выпадения конденсата). Кроме этого, электромеханические стабилизаторы обладают сравнительно узким диапазоном входных напряжений (как правило, 150—260 Вольт) и невысокой скоростью регулировки, ограниченной скоростью перемещения сервоприводом токосъёмного узла.

В качестве токосъёмного элемента используются графитовые щётки или ролики с графитовым напылением. Роликовый токосъёмный узел менее капризен по отношению к запылению, однако требует проведения профилактических работ, направленных на предотвращение заклинивания, поэтому такая конструкция используется, как правило, в промышленных стабилизаторах, а щёточный узел устанавливается в бытовых моделях. Скорость износа токосъёмных элементов обоих типов примерно одинакова и, в зависимости от интенсивности использования, через 7—11 лет требуется его замена.

Электронные ступенчатые стабилизаторы регулируют напряжение, переключая обмотки специального трансформатора посредством электронных ключей. Ключи управляются процессором по специальной программе. В настоящее время существует два типа электронных стабилизаторов напряжения: с полупроводниковыми и релейными ключами. Последние было бы правильнее отнести к электронно-механическим, так как реле является электромеханическим элементом. Стабилизаторы имеют большое быстродействие, поэтому применяются в комплексе с дорогостоящим оборудованием, требующим защиты от всех аномалий сети. Их также используют в жилых домах и на производствах. К преимуществам электронных стабилизаторов напряжения можно отнести их возможность работы при отрицательных температурах окружающей среды.

Вольтдобавочные трансформаторы

Вольтодобавочный трансформатор — трансформатор питания малой мощности, вторичная обмотка которого включается последовательно в цепь, в которой он изменяет напряжение.[7]

Стабилизированные источники

Инверторный

Стабилизаторы напряжения инверторного типа преобразуют переменное напряжение в постоянное и накапливают энергию, заряжая промежуточные ёмкости.

Далее с помощью электронного генератора преобразуют постоянное напряжение опять в переменное, но уже с устойчивыми характеристиками.

Данные устройства успешно применяют для обеспечения работы медицинского и спортивного оборудования.

Электромашинные

Этот стабилизатор работает по принципу преобразования электроэнергии в кинетическую электродвигателем и далее преобразования её обратно в электрическую с помощью генератора. Накопление кинетической энергии и стабилизация выходного напряжения при провалах питающего напряжения производится маховиком, жестко связанным с роторами двигателя и генератора.

Такие стабилизаторы обычно применяются для стабилизации напряжения в трехфазных системах напряжения. Даже при сильных скачках и провалах напряжения питающей сети скорость вращения маховика остается почти неизменна, поэтому практически неизменно выходное напряжение генератора.

Импульсные всплески гасятся за счет большой инерции маховика. Скорость же вращения маховика зависит не от величины входного напряжения, а от фазной частоты.

Данные системы широко использовались для питания БЭВМ. В настоящее время используются редко. В основном на объектах стратегического значения.

Силовая электроника

Электронные стабилизаторы непрерывного действия регулируют напряжение, изменяя либо сопротивление регулирующего элемента, как правило — транзистора, либо включая и выключая регулирующий элемент с высокой частотой (десятки килогерц), и управляя временем включенного и выключенного состояния регулирующего элемента (чаще всего IGBT-транзистор). Такой метод регулирования называется ШИМ (широтно-импульсная модуляция).

Стабилизаторы, использующие высокочастотную ШИМ, на данный момент являются наиболее совершенной реализацией стабилизатора переменного напряжения, и при правильном исполнении ближе всего к понятию «идеальный стабилизатор». В отличие от стабилизаторов инверторного типа, в них не происходит предварительного преобразования переменного напряжения в постоянное, а преобразованию подвергается непосредственно входное переменное напряжение, что обеспечивает им высокий КПД и приемлемую стоимость.

Источники бесперебойного питания

Подобно стабилизаторам инверторного типа, источники бесперебойного питания также накапливают энергию, но не в ёмкости, а в аккумуляторы.

После этого также, с помощью собственного генератора выдают напряжение с нужными характеристиками.

Устройства бесперебойного питания популярны для работы в комплексе с вычислительной техникой. Кроме обеспечения стабильного напряжения, устройства исключают сбои программного обеспечения при аварийных отключениях питания.

Ссылки

  • ГОСТ Р 54149-2010 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»
  • Стабилизатор электрический — статья из Большой советской энциклопедии. 

Примечания

  1. 1 2 3 4 Илюкович А.М., Шульман Б.Р. Стабилизаторы и стабилизированные источники питания переменного тока —МЛ.: Энергия, 1965
  2. ↑ ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения п.4.2
  3. ↑ ГОСТ IEC 61558-2-12-2015 Безопасность силовых трансформаторов, источников питания, реакторов и аналогичных изделий. Часть 2—12. Дополнительные требования и методы испытаний трансформаторов со стабилизированным вторичным напряжением и стабилизированных блоков питания
  4. ↑ Стабилизатор напряжения феррорезонансный//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  5. ↑ Богданов Д.И. Феррорезонансные стабилизаторы напряжения — М.: Энергия, 1972. с. 3
  6. ↑ Стабилизатор напряжения ферромагнитный//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  7. ↑ ГОСТ 20938-75 Трансформаторы малой мощности. Термины и определения п. 8

Стабилизатор напряжения — Вики

Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое[1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ. Power conditioner) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования.[2]

Стабилизатор переменного напряжения

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного напряжения

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор напряжения представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть входной мощности рассеивается в виде тепла на регулирующем элементе, мощность потерь в последовательном стабилизаторе PL{\displaystyle P_{L}}:

PL=(Uin−Uout)⋅Iout,{\displaystyle P_{L}=(U_{in}-U_{out})\cdot I_{out},}
где Uin{\displaystyle U_{in}} — входное напряжение стабилизатора,
Uout{\displaystyle U_{out}} — выходное напряжение стабилизатора,
Iout{\displaystyle I_{out}} — выходной ток стабилизатора.

Поэтому регулирующий элемент в стабилизаторах такого типа и повышенной мощности должен рассеивать значительную мощность, то есть должен быть установлен на радиатор нужной площади.

Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество и

Стабилизатор напряжения — Википедия (с комментариями)

Ты — не раб!
Закрытый образовательный курс для детей элиты: «Истинное обустройство мира».
http://noslave.org

Материал из Википедии — свободной энциклопедии

Файл:KREN8A.JPG

Микросхема линейного стабилизатора КР1170ЕН8

Стабилиза́тор напряже́ния — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного тока

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на стабилитроне

Эта схема может быть построена как на полупроводниковом, так и на газоразрядном стабилитроне.

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется двухполюсник, реализующий функцию источника тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы, чтобы не было генерации, петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение

Бареттер — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 июня 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 июня 2019; проверки требуют 2 правки. Бареттер 0,3Б5-135 Бареттер 0,85Б5,5-12 Бареттер 6 Вольт / 0,1 Ампер

Баре́ттер (англ. barretter, iron-hydrogen resistor) — электронный газонаполненный прибор, двухполюсник — стабилизатор тока.

Бареттер представляет собой заполненный водородом стеклянный баллон, внутрь которого помещена тонкая платиновая, железная или вольфрамовая проволока (нить), обычно свёрнутая в спираль. По сути, это специальная разновидность лампы накаливания с водородным наполнением. Такое устройство имеет нелинейную вольт-амперную характеристику (ВАХ), на которой в некотором диапазоне изменений напряжения ток изменяется в незначительных пределах. Нелинейность ВАХ обусловлена положительным температурным коэффициентом сопротивления металлической нити, при увеличении напряжения на приборе увеличивается тепловыделение в нити, что увеличивает её температуру и, соответственно, увеличивает сопротивление, что сохраняет ток цепи приблизительно одинаковым. Таким образом, бареттер, включенный последовательно с нагрузкой, поддерживает в ней относительно стабильный ток при изменениях напряжения питания.

Так как при изменениях напряжения температура нити не может быстро изменяться из-за тепловой инерции, для снижения тепловой инерции и увеличения быстродействия нить изготавливают из тонкой проволоки, а колбу наполняют водородом, так как водород имеет высокую теплопроводность по сравнению с другими газами, что обеспечивает ускоренный отвод тепла от проволоки при снижении напряжения на приборе. Этим бареттер отличается от осветительных ламп накаливания, при конструировании которых, наоборот, стремятся снизить конвективные теплопотери от накаливаемой нити.

Бареттер обладает заметной тепловой инерцией, поэтому способен стабилизировать только медленные изменения тока.

При включении бареттера из холодного состояния до согрева его нити наблюдается скачок тока, так как холодная нить имеет малое сопротивление. По мере прогрева нити током ток устанавливается на заданном значении. Этот скачок тока может быть нежелательным в некоторых применениях, потому иногда бареттеры объединяют в одном корпусе с урдоксами (ограничителями пусковых токов).

Таким образом, электротехнически бареттеры являются простейшими двухполюсными параметрическими стабилизаторами тока.

Существуют также полупроводниковые электронные устройства, функционально эквивалентные бареттеру, собранные на активных полупроводниковых приборах (транзисторах и диодах), или в виде законченных интегральных микросхем[1].

Такие приборы использовались ранее для защиты дорогостоящих ламп накаливания, нитей накала кинескопов и радиоламп, в стабилизаторах тока. В настоящее время (2015 г.) практически полностью вытеснены из употребления полупроводниковыми стабилизаторами тока.

Бареттеры ограничивают опасное превышение тока при всплесках питающего напряжения. В качестве бареттера в таких применения можно использовать лампу накаливания с вольфрамовой нитью, при надлежащем выборе электрических параметров лампы.

Бареттеры могут применяться для стабилизации как постоянного тока, так и для переменного тока, если период переменного тока много меньше постоянной времени тепловой инерции нити.

Обычные бареттеры не защищены от перегрузок по току (при существенном превышении напряжения на бареттере нить его перегорает как в обычной лампе накаливания) и не способны задавать предельный ток нагрузки.

В радиолюбительских схемах в качестве бареттеров иногда применяются галогенные лампы накаливания ввиду их доступности для быстрого макетирования прототипов, например, в схемах ограничения тока заряда аккумуляторов и защиты цепей заряда электрохимических элементов от токовой перегрузки. В штатном режиме сопротивление лампы мало и несущественно снижает КПД зарядной системы.

Основные нормируемые характеристики[править | править код]

  • Напряжение стабилизации — рабочее напряжение на бареттере, соответствующее средней точке области стабилизации;
  • Номинальный ток бареттера;
  • Пределы бареттирования по току — наименьший и наибольший ток, при котором бареттер работает устойчиво;
  • Пределы бареттирования по напряжению — пределы изменения падения напряжения на сопротивлении бареттера, при которых ток, протекающий через него, изменяется не более чем на 5 %.

В обозначении бареттера первое число указывает его номинальный ток, иногда этот ток называют током бареттирования в амперах, вторые два числа — пределы бареттирования в вольтах.

Примеры промышленно изготавливаемых бареттеров[править | править код]

Газонаполненные[править | править код]
  • 0,3Б17-35 — 300 мА
  • 0,425Б5,5-12 — 425 мА
  • 0,85Б5,5-12 — 850 мА
  • 1Б5-9 — 1000 мА
  • 1Б10-17 — 1000 мА
Интегральные микросхемы[править | править код]
  • CCSL-1 — 25 мА,
  • CCSL-2 — 50 мА,
  • CCSL-3 — 75 мА,
  • CCSL-4 — 100 мА

Отправить ответ

avatar
  Подписаться  
Уведомление о