Стабилизатор напряжения на мощном полевом транзисторе
Стабилизатор напряжения на мощном полевом транзисторе
И. НЕЧАЕВ, г. Курск
В статье описан аналоговый стабилизатор напряжения для блока питания повышенной мощности. Автору удалось значительно улучшить параметры стабилизатора, применив в качестве силового элемента мощный переключательный полевой транзистор.
При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.
Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт.
Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.
Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления ву микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е. частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим. Значение выходного напряжения можно установить в пределах от 2,5 до 30 В подбором резистора R2, его значение может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора.
Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5…3 В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю. Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нем транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока.
Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5…7 В больше, чем выходное напряжение стабилизатора. Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор (рис. 2). Эффект от такой простой доработки может быть большим. Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока. Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.
Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе. При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным резистором. Значение выходного напряжения можно определить по формуле Uвых = 2,5(1+R2/R3). В устройстве допустимо применить подходящий транзистор из списка в вышеприведенном справочном листке, желательно выделенный желтым цветом. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5…5 В. Конденсаторы — малогабаритные танталовые, резисторы — МЛТ, С2-33, Р1-4. Диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.
Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки. В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали (рис. 4). Затем, после окончания монтажа, пластину можно разместить на радиаторе. Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором.
Если применить для поверхностного монтажа микросхему DA1 типа~П_431С, резисторы типа Р1 -12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате (рис. 5) из односторонне фольгированного стеклотекстолита. Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем. В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж.
Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.
ЛИТЕРАТУРА
- Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.
- И. Нечаев. Необычное применение микросхемы КР142ЕН19А. — Радио, 2003, № 5, с. 53,54.
Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905)
При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор,
Схема одного из вариантов такого стабилизатора приведена на рис. 3.28.0. Со вторичной обмотки трансформатора переменное напряжение около 13 В (эффективное значение) поступает на выпрямитель и сглаживающий фильтр. На конденсаторах фильтра оно равно 16 В. Это напряжение поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор.
Часть выходного напряжения через делитель R2, R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т.е. частично закрывая его, и, таким образом, устройство входит в режим стабилизации. Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3.28.6). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе.
При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроенным резистором.
В стабилизаторе в качестве регулирующего элемента применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30 А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В. Мощность, рассеиваемая транзистором, может достигать 110 Вт.
Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (импортный аналог TL431). Конденсаторы — малогабаритные танталовые, резисторы — MJ1T, С2-33, диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока. Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод.
Налаживание сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.
Печатная плата устройства приведена на рис. 3.29. Эта плата рассчитана на установку малогабаритных деталей в корпусах для поверхностного монтажа, в том числе и микросхема КР142ЕН19 требует замены на импортный аналог в корпусе SO-8.
В случае, если полевой транзистор найти не удалось, стабилизатор можно выполнить по другой схеме (рис. 3.30), на мощных биполярных транзисторах, с использованием той же микросхемы. Правда, максимальный ток нагрузки у этого варианта стабилизатора не более 3…4 А. Для повышения коэффициента стабилизации применен стабилизатор тока на полевом транзисторе, в качестве регулирующего элемента применен мощный составной транзистор. Трансформатор должен обеспечивать на вторичной обмотке напряжение не менее 15 В при максимальном токе нагрузки.
Схема. Модуль мощного стабилизатора напряжения на полевом транзисторе
На основе мощных переключательных полевых транзисторов [1] можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в [2]. Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток—исток — 55 В, затвор—исток — ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.
Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 — вход, 2 — общий, 3 — выход. В качестве управляющего элемента применена микросхема DA1 — параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор—исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.
Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод — к истоку.
В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в [1], желательно выделенный желтым цветом. VT1 — КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы — К10-17, резисторы — Р1-4, МЛТ, С2-33.
Схема подключения модуля стабилизатора приведена на рис. 2.
При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 — площадки на печатной плате, а вывод 3 (сток транзистора VT2) — металлический вывод-стойка на керамической шайбе.
Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть — навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.
Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.
ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. — Радио, 2003, № 8. с. 53, 54.
И. НЕЧАЕВ, г. Курск
“Радио” №2 2005г.
Похожие статьи:
ПОВЫШАЮЩИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Импульсный источник питания на однопереходном транзисторе
Регулируемый стабилизатор напряжения с ограничением по току
Мощный стабилизатор двухполярного напряжения для УМЗЧ
Post Views: 1 622
Стабилизатор тока на полевом транзисторе
Содержание:
- Работа стабилизаторов тока
- Устройство и работа полевого транзистора
- Полевые транзисторы в стабилизаторах тока
- Видео
Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.
Работа стабилизаторов тока
Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.
Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.
В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.
Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.
Устройство и работа полевого транзистора
Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.
Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.
В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.
В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.
Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.
Полевые транзисторы в стабилизаторах тока
Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы.
Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки.
Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне.
Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока.
Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока.