Стабилизатор напряжения или реле напряжения: Реле напряжения или стабилизатор что лучше

Содержание

Реле напряжения или стабилизатор что лучше

Каждый кто задавался вопросом, как же защитить свое оборудование от перепадов напряжения и некачественной эл.энергии в сети, перед походом в магазин сталкивался с проблемой — а что лучше всего выбрать, реле напряжения или стабилизатор?

Прежде чем делать такой выбор в первую очередь вам нужно определиться, что вы хотите стабилизировать — напряжение во всем доме, или защитить какие-то отдельные дорогостоящие приборы (компьютер, led телевизор, холодильник). То есть фактически решить, покупать вам оборудование для подключения к электрощитку или просто в розетку.

Если вариант защиты всего оборудования в доме преобладает, то остановиться можно на таких вот реле: 

или стабилизаторах с клеммным подключением:

Чтобы установить и подключить подобные реле и стабилизаторы напряжения понадобятся определенные знания или помощь профессиональных электриков.

Когда речь идет о том, чтобы защитить от перенапряжения только холодильник или телевизор, то выбирайте простой розеточный вариант реле и стабилизатора.

Подробно о их настройке и работе можно прочесть в статьях Реле напряжения в розетку и Виды стабилизаторов напряжения.Никаких проводов у них нет, а все подключение происходит через привычную нам розетку и вилку.

Отличия реле напряжения от стабилизатора

В чем же заключается принципиальная разница между реле и стабилизатором? Стабилизатор напряжения — это аппарат предназначенный для выравнивания входного напряжения до стандартной величины в 220 вольт. Он также как и реле имеет предельные максимальный и минимальные пороги. То есть при определенном повышенном напряжении, когда его уже невозможно выровнять, он отключается и перестает выдавать на выходе напряжение вообще.

Но все же главное его отличие от реле именно и заключается в том, что он стабилизирует напряжение до нужных параметров, поднимая или опуская его в зависимости от ситуации. А реле напряжения никоим образом его не изменяет и не корректирует.

Оно лишь контролирует напряжение в заданных вами или заводскими установками параметрах.

Пределы срабатывания

Обычно выставляются пределы от 195 до 245 Вольт. И пока напряжение не выйдет за эти границы, реле будет исправно работать.

Например, если на входе в дом у вас будет 196 Вольт, то и в розетках после реле также будет 196 Вольт. А используя стабилизатор вы будете всегда иметь полноценные 220В.

И только после превышения напряжения этих величин (меньше 195В), реле отключится и обесточит аппаратуру, тем самым защитив ее от выхода из строя. Как только напряжение станет 195В, после определенной задержки времени, которую вы сами выбираете в настройках, реле включится и вновь подаст эти самые 195В в розетку.

Стоит напряжению буквально через 1 секунду опять упасть до нижнего предела, все повторится заново. То же самое происходит при изменении по верхнему пределу. Выставляете 245В, напряжение подскакивает до 250В — реле отключается и включается только после его нормализации.

Еще раз повторяю — пределы в большинстве марок реле вы выставляете самостоятельно. У каждого производителя они разные. Более подробно с ними можно ознакомиться в статье — Реле напряжения 220в для дома

 

Как вы понимаете, если у вас такие скачки напряжения происходят очень часто, и вы решили защититься от них с помощью реле — все это время вы попросту будете сидеть без света. Такова цена вашей защиты.

Поэтому в таких случаях лучше всего вместо реле контроля напряжения ставить стабилизатор.

Если же вы хотите просто перестраховаться и у вас проблем со светом практически нет, или они бывают не часто — тогда выбирайте установку реле напряжения. Это будет гораздо экономичный и более выгодный вариант. Разница в ценах реле и стабилизаторов очень существенна. 

Замер напряжения перед выбором

В целом реле напряжения — это бюджетный вариант, и они на сегодняшний день, по-хорошему должны стоять в каждой квартире. Просто верхние и нижние пороги для нечастых срабатываний нужно задавать грамотно. А для этого необходимо по крайней мере иметь мультиметр и опытным путем замерить входное напряжение в пиковые часы нагрузки.

Желательно сделать три замера — утром, вечером и ночью. И уже после этого исходя из результатов, устанавливать пороги срабатывания реле.

Если же замеры показывают, что напряжение у вас не скачет, но зато стабильно низкое 190В или наоборот высокое 260В и более, то вас спасет только стабилизатор напряжения.

Любой нормальный человек побоится выставлять такие пороги срабатывания на реле без наличия какой-либо другой защиты, и продолжать пользоваться электроэнергией при таких неудовлетворительных показателях.

Сравнение преимуществ и недостатков реле и стабилизатора

Все преимущества и недостатки выбора реле напряжения или стабилизатора можно свести в одну таблицу. Воспользовавшись ей и взвесив все за и против, можно легко определиться с правильным выбором того, что подойдет в вашем конкретном случае:

Параметры сравненияСтабилизатор напряженияРеле контроля напряжения
Потребление эл. энергии на холостом ходуДаНет
Выравнивание напряжения до 220ВДаНет
Работоспособность приборов, если на входе от 160В до 260ВДаНет
ГабаритыБольшиеМалые
ЦенаОт 5000р и вышеДо 3000р
Зависимость работоспособности от внешних условийДаНет
Чувствительность к помехамДаНет
Быстродействие при скачкахНизкаяВысокая
Шум при работеЕстьНет

Ну а вообще грубо говоря, нет какого-то универсального способа применения того или иного устройства, который дал бы 100% результат и удовлетворил все ваши потребности в защите от перекосов напряжений. Поэтому максимальную защиту может обеспечить только совместное применение реле напряжения и стабилизаторов.
Ознакомиться с текущими цена на стабилизаторы и подобрать себе необходимый вариант можно здесь.

Статьи по теме

Реле напряжения и стабилизатор: отличия

 

Реле напряжения: достоинства и недостатки, принцип работы

Электронное реле обеспечивает защиту оборудования от скачков напряжения путём отключения нагрузки. После нормализации показателей происходит повторное подключение потребителей с некоторой задержкой по времени. В отличие от стабилизатора, реле не выравнивает напряжение при допустимых колебаниях.

Конструкция реле состоит из двух основных элементов – силовой части и блока управления. Микроконтроллер производит постоянный мониторинг показателей в электросети. В случае если значение выходит за установленные пределы, подаётся сигнал к отключению на силовую часть, и происходит быстрое (за сотые доли секунды) срабатывание.

Эти устройства могут быть выполнены в трех вариантах:

  • для защиты одного потребителя – подключается к стандартной розетке и имеет одну выходную розетку;
  • для защиты 1-6 приборов – имеет вид удлинителя с несколькими выходными розетками;
  • для установки на DIN-рейку в щиток – способен защитить сразу большое количество потребителей.

Достоинства реле контроля напряжения

  • Такие приборы довольно компактны. При монтаже на DIN-рейку обычно занимает 2-3 стандартных модуля по 18 мм.
  • Подключаемые к розетке устройства выглядят как небольшая накладка на розетку или как удлинитель.
  • Высокая степень быстродействия. Приборы разработаны специально для защиты от перепадов, поэтому они быстрее реагируют на резкие изменения показателей.
  • По сравнению со стабилизаторами, менее чувствительны к пыли.
  • Нет необходимости в дополнительном охлаждении, т.к. при работе реле практически не греется. Некоторые модели оснащены специальной термозащитой, которая отключает питание при превышении допустимых пределов температуры.
  • Цена на реле в несколько раз ниже, чем на стабилизаторы.

 

Недостатки реле напряжения

Этот прибор служит защитой от критических перепадов, но не устраняет колебания напряжения в сети. Большое количество пиковых скачков может привести к частому отключению питания электроприборов.

Компания DS Electronics выпускает большой ассортимент реле напряжения RBUZ для различных нужд. Приборы выпускаются с номинальным рабочим током вплоть до 63 А, мощностью до 13900 ВА, могут устанавливаться на DIN-рейку или в розетку. Отсрочка включения, предусмотренная в приборах, позволяет избежать серии перепадов и частых выключений питания. Благодаря использованию в некоторых моделях защитных устройств алгоритма TrueRMS, достигается высокая степень контроля и скорость срабатывания. Наличие термозащиты обеспечивает дополнительную безопасность эксплуатации.

Стабилизатор напряжения: достоинства и недостатки, принцип работы

Стабилизатор способен поддерживать постоянное выходное напряжение благодаря трансформатору и контроллеру. Контроллер производит мониторинг показателей на входе и выходе. В случае их снижения или повышения в установленных пределах, даёт команду на переключение между обмотками трансформатора. Также в приборе установлена система защиты от различных аварий в электросети. В случае резкого повышения или снижения напряжения, сверх допустимых пределов, прибор отключится сам и отключит потребителей, чем предотвратит выход техники из строя.

Мощные нормализаторы подключаются к щитку и стабилизируют напряжение для всего оборудования в доме. Если необходимо защитить один или несколько приборов, то можно применять оборудование, которое подключается через стандартную розетку и имеет одну или несколько выходных розеток. Обычно они имеют малую мощность.

Преимущества стабилизатора напряжения

  • Постоянное 220В обеспечивает стабильную работу чувствительной к колебаниям техники (телевизоры, видео- и аудиоаппаратура).
  • Защищает приборы от больших перепадов, отключаясь при показателях ниже 160В или выше 280В.
  • Продлевает срок службы осветительных приборов и другого оборудования.
  • Незаменим при частых колебаниях напряжения в электрической сети.

Недостатки стабилизаторов напряжения

  • Высокие требования к влажности и запыленности. Трансформатор, который находится внутри прибора, создаёт электромагнитное поле, притягивающее пыль и водяную взвесь из воздуха. Загрязнение прибора может спровоцировать перегрев, сбои в работе и выход из строя.
  • Электрические помехи могут вызывать сбои в работе электроники и неправильной работе устройства.
  • При работе прибор нагревается, поэтому нужен постоянный приток воздуха для его охлаждения, а также достаточное пространство для его циркуляции.
  • Чем выше мощность стабилизатора, тем больше его размер. Поэтому для установки оборудования потребуется выделить отдельное место.
  •  Высокая стоимость оправдывает покупку стабилизатора только в случае постоянных колебаний показателей в сети.

Реле напряжения или стабилизатор, что лучше?

Ответить на этот вопрос однозначно нельзя. Так как перепады электричества случаются достаточно часто — можем рекомендовать, в первую очередь, установить реле напряжения. Его стоимость доступна для любого клиента. При помощи реле напряжения вы сможете защитить технику в доме, особенно холодильники и морозильные камеры.

Если часто наблюдается снижение, повышение или незначительные колебания напряжения, то дополнительно следует приобрести стабилизатор. Он будет сглаживать перепады и выдавать стабильные 220 В. Это защитит устройства от резких скачков, и обеспечит стабильность их работы.

Все основные характеристики стабилизаторов и реле напряжения мы свели в одну таблицу. Благодаря ей можно сравнить оба прибора и выбрать подходящий.

Сравнительные характеристики стабилизатора и реле напряжения

ПАРАМЕТРЫ СРАВНЕНИЯ

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

РЕЛЕ КОНТРОЛЯ НАПРЯЖЕНИЯ

Потребление эл.энергии на холостом ходу

да, среднее 15-30 Вт

да, не более 1 Вт (RBUZ D2)

Выравнивание напряжения до 220В

да

нет

Габариты

большие

минимальные

Цена

от 5200 руб

от 1761 руб (RBUZ D)

Зависимость работоспособности от внешних условий

да

нет

Чувствительность к помехам

да

нет

Шум при работе

есть

нет

Оцените новость:

Стабилизатор или реле контроля напряжения-что лучше выбрать?

Приветствую вас, уважаемые читатели сайта elektrik-sam. info!

Для защиты от скачков и перепадов напряжения в электрических сетях наших квартир и домов применяются два типа устройств — это стабилизаторы питающего напряжения и реле контроля максимального и минимального напряжения. В этой статье мы рассмотрим основные преимущества и недостатки каждого из этих устройств.

Стабилизаторы напряжения

Начнем рассмотрение со стабилизаторов питающего напряжения и по порядку рассмотрим вначале преимущества, а затем недостатки применения этого типа устройств.

Преимущества стабилизаторов напряжения

1. Обеспечивают постоянное стабильное напряжение для питания наших электроприборов 220 В. Стабилизаторы сглаживают скачки и небольшие колебания питающего напряжения, выдавая на выходе стабильное напряжение 220 В.

При снижении напряжения обычно ниже 160 В, либо при превышении им значения 280 В, стабилизаторы отключаются от внешней питающей сети и обесточивают внутренних потребителей. Тем самым предохраняя электроприборы от выхода из строя.

2. Подключенное через стабилизаторы напряжения оборудование остается работоспособным. Такие электроприборы, как аудио- и видеотехника очень чувствительны к отклонениям питающего напряжения. Повреждение этих приборов такие колебания напряжения не вызывают, но могут сказываться на качестве его работы. Применение стабилизатора обеспечивает надежную работоспособность такого оборудования.

3. При применении стабилизаторов напряжения прекращают мерцать электрические лампочки. Это существенно продлевает срок их службы.

Недостатки стабилизаторов напряжения

1. Большие габариты. В большинстве случаев стабилизаторы напряжения довольно громоздки, и для их установки необходимо выделять дополнительное место. Габариты зависят от мощности подключаемой нагрузки. Чем больше мощность, тем больше габариты применяемого стабилизатора.

Во время своей работы эти устройства нагреваются, поэтому им необходимо достаточное место для эффективного охлаждения корпуса самого стабилизатора, и его внутренних элементов.

В трехфазных электрических сетях обычно применяют три отдельных стабилизатора напряжения, установленных в каждую фазу. Если устанавливать один трехфазный стабилизатор, то в случае короткого замыкания или пропадания одной из фаз, стабилизатор отключится.

Все однофазные потребители, подключенные к любой из фаз будут обесточены до тех пор, пока не восстановятся нормальные условия работы стабилизатора. Это очень неудобно, поэтому чаще применяется установка трех отдельных стабилизаторов напряжения в каждую из фаз. А это в свою очередь значительно увеличивает габариты.

2. Цена. Покупка хорошего стабилизатора напряжения может обойтись в приличную сумму денег.

Стабилизаторы намного дороже, чем реле контроля напряжения. В большинстве случаев стоимость является решающим фактором при выборе устройств защиты, и большинство пользователей склоняются в стороны приобретения реле напряжения.

3. Стабилизаторы чувствительны к пыли и влажности помещения, в котором они установлены. Внутри стабилизатора находится трансформатор, большое электромагнитное поле, которое притягивает пыль. Поэтому место установки должно быть хорошо защищено от пыли и влаги.

4. Чувствительность стабилизаторов напряжения к различным электрическим помехам. Если в электрической сети часты электрические помехи, это приведет к тому, что электроника стабилизаторов начнет «глючить», они могут отключиться, обесточивая тем самым всю квартиру.

Реле контроля напряжения

Следующий вид устройств для защиты от скачков и перепадов питающего напряжения — реле контроля напряжения, которые еще называют «барьерами» напряжения.

Преимущества реле контроля напряжения

1. В отличие от стабилизаторов напряжения, реле напряжения имеют малые габариты и в большинстве случаев предназначены для установки на DIN-рейку.

Также реле напряжения выпускаются для подключения в розетку. Это дает возможность защитить отдельный электроприбор (или группу приборов), не изменяя конфигурацию электропроводки. А это очень удобно.

2. Стоимость. Реле контроля напряжения намного дешевле, чем стабилизатор напряжения. Даже если мы используем несколько реле напряжения, их стоимость оказывается ниже, чем стабилизатора напряжения.

3. Автоматичность. Основная функция стабилизаторов — стабилизация питающего напряжения, в то время, как реле контроля напряжения является прибором автоматики и предназначены именно для защиты от скачков и перепадов напряжения. Их схемотехника лучше реагирует на скачки и перепады, она более быстродействующая.

Реле контроля напряжения лучше лучше справляются с защитой потребителей от выхода из строя электроприборов при превышении, либо понижении питающим напряжением допустимых пределов.

Недостатки реле контроля напряжения

1. Не устраняет колебания напряжения.

2. Для максимальной защиты необходима установка нескольких устройств.

Резюме

Как видно из выше рассмотренного, нет какого-то одного способа, который бы дал наилучший результат.

Максимальную защиту электроприборов в наших квартирах обеспечивает совместное применение стабилизаторов напряжения и реле контроля напряжения.

В этом случае наши потребители будут иметь максимальную защиту от возможных критических изменений напряжения в наших питающих электрических сетях.

Более подробно преимущества и недостатки каждого из устройств я рассмотрел в видео:

Стабилизатор или реле контроля напряжения?

Также рекомендую посмотреть

Реле контроля напряжения. Защита от скачков напряжения.

Подключение нескольких реле напряжения.

Реле контроля напряжения в трехфазной сети 380В.

Реле приоритета. Автоматическое управление нагрузкой.

Что лучше реле напряжения или стабилизатор

Преимущества и недостатки стабилизаторов

Качество электросети, которую нам предоставляют, оставляет желать лучшего. Электропроводка старых домов практически разрушена. Постоянные короткие замыкания, обрывы ноля, приводят к поломкам бытовых приборов и техники. Да и в новых домах нередко встречается некачественный монтаж электропроводки.

Симисторный стабилизатор напряжения ЭЛТЕХ СН

Чтобы защитить свою бытовую технику, приобретают реле напряжения или стабилизатор. Так что лучше выбрать реле напряжения или стабилизатор? Стабилизаторы по техническим характеристикам, габариту, исполнению бывают разные. Выбирают их из параметров своей сети. Например, сеть может колебаться в пределах 190 – 230 В или 120 – 280 В.

Назначение стабилизаторов – это стабилизация выходного напряжения например с 160 – 265 В  входного напряжения до стабильного выходного напряжения 220 В ±5%. По конструкции стабилизаторы могут быть трансформаторного типа, с переключением обмоток трансформатора с помощью реле или тиристоров.

Также имеются очень качественные инверторные стабилизаторы. Все типы стабилизаторов только стабилизируют сетевое напряжение до необходимого уровня. Если напряжение сети будет ниже нижнего или выше верхнего порога стабилизации напряжения, то стабилизатор отключится до момента, когда сеть не восстановится. На резкие всплески напряжения сети стабилизаторы трансформаторного типа не реагируют.

Поэтому использование этих стабилизаторов ещё не гарантирует полную защиту бытовых приборов от поломок. Стабилизаторы большой мощности имеют и большие габариты, поэтому они занимают не мало места. Временами им нужна профилактика, так как скопление пыли снижает его охлаждение, особенно у стабилизаторов с принудительной системой охлаждения.

Реле напряжения в электрощитке

Инверторные стабилизаторы имеют значительно лучшие технические параметры, чем стабилизаторы другого типа. Пределы стабилизации инверторного стабилизатора находятся в пределах 100 – 300 В. То есть такие пределы стабилизации не имеет ни один другой стабилизатор. Если ваша электросеть колеблется от 100 до 300 В, на выходе это устройство выдаст напряжение 220 В ± (1-3)%.

Еще одно преимущество данного стабилизатора в том, что он имеет накопительную емкость, которая сглаживает все большие перепады не качественный сети. Ему без разницы все всплески и искажения формы входного напряжения, на выходе он выдаст высококачественное чистое синусоидальное напряжение со стабилизацией ±(1-3)%.  Ещё одно преимущество инверторного стабилизатора – это небольшой вес, связанный с отсутствием трансформатора.

Особенности реле напряжения

Назначение реле контроля напряжения – это отключение нагрузки при резких перепадах напряжения сети в целях защиты потребителей. Реле напряжения имеют настройки нижнего и верхнего пределов отключения напряжения сети, значения которых выставляют во время настройки реле – это ориентировочно 160 -260 В и зависят от перепадов конкретной сети.

Однако реле напряжения не защитит потребителя от перепадов домашней сети в пределах нижнего и верхнего настроенных порогов сети. У реле напряжения есть такой параметр в настройках как временная задержка отключения и включения реле. Выставив время задержки порядка 1 сек, реле включится или отключиться с этой задержкой после восстановления нижнего или верхнего порога срабатывания реле.

Многофункциональное реле напряжения МР – 63

А если появится короткий импульс с большой амплитудой, тогда реле просто не сработает. Этот импульс также представляет собой некоторую опасность для бытовой техники. Лучший выбор защиты – реле напряжения или стабилизатор

Итог выбора лучшей защиты от перепадов в сети

1. Обычно типичные стабилизаторы напряжения стабилизирует сеть при относительно небольших колебаниях напряжения, где-то от 160 до 260 В, что зависит от типа и качества исполнения устройства. Если напряжение выйдет из этих пределов, стабилизатор просто отключится, до восстановления порога его срабатывания.

Все виды электрических помех стабилизаторы, работающие по принципу автотрансформатора, не устраняют и не ограничивают импульсные помехи. То есть такие стабилизаторы стабилизируют выходное напряжение до 220 В, но не задерживают помехи. Однако в основном, они неплохо справляются с защитой бытовой техники от перепадов напряжения сети. Выбор этих устройств в достаточной степени, оправдан.

2. Реле напряжения только ограничивает нижний и верхний пределы напряжения сети, и в пределах этих порогов не стабилизирует сеть. Реле напряжения устанавливают, когда нет больших перепадов напряжения сети. Реле контроля имеет невысокую стоимость и их еще устанавливает, когда нет возможности приобрести стабилизатор, а защита бытовой техники нужна. Такая защита просто необходима в случае старой электропроводки, да и новой тоже, когда есть вероятность обрыва нуля (напряжение сети может достигнуть 380 В).

Инверторные стабилизаторы

3. Совместное включение реле и стабилизатора большой роли в улучшении защиты не сыграет. Реле обладает только функцией ограничения нижнего и верхнего предела напряжения сети. Такой же функцией обладают и стабилизаторы. Моё мнение, если имеется стабилизатор, тогда добавлять реле контроля напряжения смысла не имеет.

4. Ну а для приверженцев высококачественной сети выпускают инверторные стабилизаторы напряжения. Во-первых, они имеют очень большие границы нижнего и верхнего порога стабилизации сети, которые колеблются от 100 до 300 В.

Принцип работы инверторных стабилизаторов с двойным преобразованием на накопительных ёмкостях, позволяет получить на выходе высококачественную синусоиду с высокой стабилизацией и полное отсутствие всех видов импульсных помех.

Единственный недостаток – это его стоимость. Но ведь вы приобретаете его не на один день. Посчитайте стоимость всех бытовых приборов и техники и сравните со стоимостью инвертора, а потом делайте свой выбор.

Что лучше стабилизатор или реле напряжения на 220 В для квартиры

На вопрос, что лучше стабилизатор или реле контроля, трудно ответить однозначно. Для каждого случая проблему защиты следует решать с учетом конкретных факторов. Объективно сравнить данные устройства можно только, зная принцип их действия и отличительные особенности.

Отличия реле напряжения от стабилизатора

Современная квартира напичкана многочисленными электрическими и электронными приборами, многие из которых достаточно чувствительны к изменению напряжения. В то же время, даже в крупных городах электрическая сеть грешит нестабильностью, а что говорить о сельской местности. От любого скачка напряжения домашняя электроника может просто выйти из строя.

Защита бытовой техники от скачков напряжения и перенапряжения в сети обеспечивается в основном двумя типами устройств – стабилизатор и реле контроля максимального и минимального напряжения. Их работа основывается на различных принципах, и выбор проводится с учетом особенностей.

Стабилизаторы напряжения

Стабилизатор – это прибор, который поддерживает напряжение на заданном уровне при его колебании в сети в определенных пределах. Обычно в бытовых условиях применяется стабилизатор, удерживающий значение 220 В ±5% при колебании входного сигнала от 160 до 260 В. При скачке за пределы возможностей прибор просто отключает сеть.

Конструктивно стабилизаторы подразделяются на несколько типов. Наиболее распространены приборы ступенчатого типа, включающие трансформатор и силовые ключи (релейные или полупроводниковые). Плавная установка обеспечивается в электромеханических стабилизаторах, в которых трансформатор имеет регулировку первичной и вторичной обмотки. Этот прибор снижает нижний предел входного напряжения до 120-130 В.

Наиболее совершенным, но и самым дорогим, является инверторный стабилизатор, содержащий накопительную ёмкость. Она способна сгладить перепады напряжения в пределах 100-300 В, а выходной сигнал имеет значение 220 В ± (1-3)% с практически идеальной синусоидальной формой.

Реле напряжения

Реле контроля – это устройство, контролирующее нижнюю или верхнюю границу допустимого значения напряжения. Соответственно, существуют реле минимального и максимального напряжения. Для защиты от перенапряжений используется реле максимального напряжения. Если входное напряжение превысит установленное значение (например, 230 В), то нагрузка отключается. При возврате его величины в нужные пределы сеть снова включается.

Чаще используется принцип задержки включения. В таких реле есть настройка времени отключения. Например, если осуществлена установка 2 с, то после истечения этого времени сеть снова включится, и ток поступит на бытовое оборудование.

Надо отметить, что при коротких импульсах скачка реле может не сработать. Для таких случаев существует многофункциональное реле МР-63, которое выполняет роль максимального и минимального реле, а также реагирует на мгновенные импульсы значительной амплитуды.

В чем заключается различие

Предыдущий анализ показывает, что рассматриваемые устройства имеют принципиальные различия. Оба прибора отключают подачу электроэнергии, если напряжение превышает минимально или максимально допустимое значение. Однако, стабилизатор в пределах между экстремальными значениями еще и выравнивает напряжение, поддерживая его на заданном уровне. Реле осуществляет только контроль предельных величин, после чего отключает сеть, но включает снова при исправлении положения.

Таким образом, бытовая техника при использовании стабилизатора не только защищена от скачков напряжения и перенапряжения в сети, но и получает стабильный электросигнал, что повышает её работоспособность. В то же время, нельзя говорить о полном превосходстве стабилизаторов над реле. Для составления полной картины необходимо разобраться со всеми плюсами и минусами этих приборов.

Преимущества использования стабилизаторов

Стабилизаторы имеют ряд несомненных преимуществ:

  1. При скачке напряжения за пределы допустимых значений обеспечивается отключение электросети, что предохраняет технику от сбоев в работе. Пороговые значения можно устанавливать на нужном уровне.
  2. В пределах предельных значений происходит стабилизация напряжения с достаточной точностью. Даже самые простые и дешевые устройства обеспечивают выравнивание в пределах ±5%. Современные электромеханические приборы дают точность 3%, а инверторные устройства — 1%.
  3. Стабилизаторы значительно повышают долговечность бытовой техники и электроники. Улучшается качество показа видеотехники. Прекращается мерцание ламп накаливания, что увеличивает их срок службы.
  4. Широкий выбор по техническим характеристикам. Мощность разных моделей колеблется от 50 до 50 ВА до 150 кВА.
  5. Качественные стабилизаторы практически не влияют на форму сигнала, а инверторные установки даже улучшают синусоиду.
  6. Высокий КПД (98-99%).

Важно! Стабилизаторы имеют простое подключение, а потому для их установки не надо приглашать специалиста. При этом к прибору может подводиться любая фаза трехфазной цепи. При подключении автоматический автомат необходимо устанавливать до ввода в стабилизатор.

Недостатки стабилизаторов

Несмотря на выраженные преимущества стабилизаторов, они имеют серьезные недостатки, ограничивающие их использование:

  1. Значительные размеры. Этот параметр прямо зависит от мощности прибора. Даже при минимальном количестве бытовой техники на входе нужно ставить стабилизатор, который не поместится в стандартный электрический щиток. Для него необходимо выделить отдельное место.
  2. Необходимость эффективного охлаждения аппарата, т.к. при работе его основные элементы и корпус нагреваются.
  3. Высокая цена, возрастающая с увеличением мощности.
  4. Необходимость надежной защиты от пыли и влаги. Электромагнитное поле внутреннего трансформатора активно притягивает пыль, а потому необходимо максимально оградить стабилизатор от запыления.
  5. Повышенный уровень шума, что требует дополнительной звукоизоляции или вынесение стабилизатора за пределы жилого помещения.
  6. Чувствительность электроники стабилизатора к помехам в электрической сети.

Наиболее значительными недостатками стабилизаторов является громоздкость, большой вес и высокая цена. Особенно они чувствительны для устройств мощностью 3 и более кВт, которые необходимы для установки на входе квартиры. При мощности менее 1 кВт эти характеристики находятся в разумных пределах, а потому стабилизаторы чаще применяются в качестве индивидуальной защиты отдельных бытовых приборов. Некоторые современные бытовые электроприборы имеют встроенные стабилизаторы.

Преимущества реле

Несмотря на то, что реле не способны удерживать напряжение в нужных пределах, они достаточно часто применяются в схеме защиты от перенапряжения. Этому способствуют следующие их преимущества:

  1. Гарантированное отключение электричества при критических скачках напряжения. При кратковременной продолжительности такого скачка питания включается сразу после возврата сети в нормальное состояние. Реле уже через 1 с готово снова автоматически включить цепь.
  2. Малые габариты. Вся схема защиты на основе реле легко помещается во входном щитке, даже когда монтируется несколько устройств (минимальное и максимальное реле).
  3. Удобный монтаж. Современные реле выполнены так, чтобы могли устанавливаться на стандартную DIN-рейку, а провод цепи легко и быстро закрепляется в клеммном зажиме. При защите отдельных бытовых приборов можно использовать модель реле, которая просто подключается в розетку.
  4. Доступная цена. Стоимость реле значительно ниже стоимости стабилизатора. Покупка даже нескольких таких устройств обойдется заметно дешевле, чем одного стабилизатора.
  5. Бесшумность работы.
Важно! Для надежной защиты электроники важным параметром считается быстрота ее реакции на опасный импульс. Реле контроля напряжения относятся к специальным устройствам релейной защиты, а потому их срабатывание происходит практически мгновенно.

Недостатки реле

Основной недостаток реле контроля – неспособность выравнивать напряжение. Например, предельные его значения составляют 190-240 В. Если в сети длительно подается напряжение 195 В, то именно оно и будет питать все электроприборы, что, несомненно, скажется на качестве работы видеотехники и накале ламп в осветительной аппаратуре. Такое явление характерно для сельской местности. На долговечность приборов может отразиться и длительная подача напряжения 235 В. Отключение электроэнергии произойдет только при выходе напряжения за предельные значения.

Отсутствие стабилизации напряжения особенно сильно сказывается там, где электрическая сеть далека от идеальной. Нередко его колебания считаются обычным явлением, а это приводит, в частности, к миганию ламп накаливания, что резко снижает их срок службы, влияет на качество освещения и даже на человеческую психику.

Отмечается и другой недостаток. Для обеспечения полной защиты требуется установка, как минимум, двух максимальных реле – минимального и максимального. Схему такого подключения может разработать только человек с соответствующими навыками, а значит, необходимо привлекать специалиста.

Наконец, надежность работы всей бытовой техники в доме существенно зависит от правильности настройки реле контроля. Далеко не всякие скачки напряжения способны существенно повлиять на работу бытовой техники, а вот частое отключение электричества не пройдет незаметно. Пределы лучше устанавливать после консультации со специалистом и с учетом наличия конкретных приборов в доме.

Стабилизаторы напряжения по своему функционалу смотрятся значительно привлекательнее реле. Однако стоимость, габариты и масса существенно ограничивает их применение. Именно поэтому такие приборы чаще применяются для индивидуальной защиты бытовой техники, а не всей внутренней цепи в целом. Реле контроля напряжения доступны по цене и обеспечивают надежную защиту от перенапряжения без его выравнивания. Какой вид защиты выбрать, прежде всего, зависит от финансовых возможностей, а также от качества и стабильности входной электрической сети.

Стабилизатор или реле напряжения: что выбрать?

 

Сегодня к нам в офис обратился клиент, который хотел защитить свой дом, а точнее, технику от нестабильного напряжения в сети. Главным вопросом, которым он задался, был: купить стабилизатор или реле и на что обратить внимание при выборе? Наши специалисты помогли ему определиться. И я решил поделиться этой полезной информацией с теми, кто все еще сомневается.
 

Достоинства и недостатки в работе стабилизаторов

 

Стабилизаторы обеспечивают защиту техники путем нормализации питающего напряжения.

Достоинства приборов:

1. Предоставляют стабильное напряжение 220В посредством сглаживания прыжков и несущественных колебаний.
2. Защищают технику от поломок путем обесточивания при сверхнизких (160В) или излишне высоких (280В) скачках.
3. Обеспечивают работоспособность техники, а также позволяют защитить особенно чувствительные к колебаниям электроприборы (аудио- и видеоаппаратура).
4. Позволяют продлить работоспособность электрических лампочек (они не прекращают мигать).

 


Слабыми сторонами стабилизаторов являются:
 

1. Громоздкие размеры. Безусловно, габариты прибора прямо зависят от мощности подключаемой нагрузки. Но, чтобы установить стабилизатор, придется найти лишнее место. При работе прибор нагревается, поэтому ему также требуется дополнительное пространство для охлаждения.
2. Стоимость. Даже исключительная ценность данного вида устройства не всегда способна переубедить покупателей. И вместо того, чтобы приобрести стабилизатор, человек отдает предпочтение реле.
3. Чувствительность к влаге и пыли. При установке особое внимание нужно уделить защищенности месторасположения прибора от вредных для него факторов.
4. Восприимчивость к электрическим помехам. В случае их наличия, стабилизатор может начать работать странно. Например, беспричинно выключиться, обесточив весь дом.

Достоинства и недостатки в работе реле

 

 

Реле контроля («барьер») напряжения обеспечивает защиту техники от поломки путем ее обесточивания при скачках.

Достоинства реле:

1. Компактные размеры — устройства устанавливаются на DIN-рейку или подключаются в розетку.
2. Доступная цена. Даже приобретение нескольких моделей обойдется дешевле, чем стоимость одного стабилизатора.
3. Автоматичность. Устройства обеспечивают автоматическую защиту от перепадов напряжения, способны быстро и качественно на них реагировать.


Основными недостатками реле являются:

1. Не сможет избавить от колебаний напряжения
2. Нужно устанавливать несколько приборов для обеспечения максимальной защиты.


Суммируя все вышесказанное, можно определить, что панацеи от нестабильности сети нет. Одни устройства способны нормализировать напряжение, другие — пресекают возможность поломки техники при чрезмерных скачках. Лучшей защитой для электрических устройств Вашего дома будет совместное использование стабилизатора и реле. Тогда техника будет в наибольшей безопасности и прослужит Вам долгие годы.

Защита от перенапряжения — что лучше стабилизатор или реле контроля напряжения?

Достаточно часто у потребителей возникает вопрос о том, как защитить свою электрическую сеть от возможных перепадов и скачков напряжений. Одни считают, что для этого эффективнее будет использование стабилизатора, а другие ставят на первое место реле. Рассмотрим детально, чем отличаются эти два устройства, какие их преимущества и недостатки, и постараемся определиться с тем, какое же из двух устройств лучше защитит бытовую технику от сбоев при подаче питающего напряжения.

Блок: 1/7 | Кол-во символов: 476
Источник: https://gesla.ru/chto-vybrat-dlya-zashchity-elektricheskoy-cepi-stabilizator-ili-rele-napryazheniya.html

Что выбрать, стабилизатор или реле напряжения

Для защиты бытовых электрических приборов от перепадов напряжения в электрических сетях наших квартир и домов применяются два типа устройств:  стабилизаторы напряжения и реле контроля максимального и минимального напряжения. Для того, чтобы выбрать стабилизатор или реле напряжения необходимо рассмотреть преимущества и недостатки этих приборов.

Блок: 2/8 | Кол-во символов: 393
Источник: http://www.ocenin.ru/chto-vybrat-stabilizator-ili-rele-kontrolya-napryazheniya/

Особенности реле напряжения

Назначение реле контроля напряжения — это отключение нагрузки при резких перепадах напряжения сети в целях защиты потребителей. Реле напряжения имеют настройки нижнего и верхнего пределов отключения напряжения сети, значения которых выставляют во время настройки реле — это ориентировочно 160 -260 В и зависят от перепадов конкретной сети.

Однако реле напряжения не защитит потребителя от перепадов домашней сети в пределах нижнего и верхнего настроенных порогов сети. У реле напряжения есть такой параметр в настройках как временная задержка отключения и включения реле. Выставив время задержки порядка 1 сек, реле включится или отключиться с этой задержкой после восстановления нижнего или верхнего порога срабатывания реле.

Многофункциональное реле напряжения МР — 63

А если появится короткий импульс с большой амплитудой, тогда реле просто не сработает. Этот импульс также представляет собой некоторую опасность для бытовой техники. Лучший выбор защиты — реле напряжения или стабилизатор

Блок: 3/4 | Кол-во символов: 1020
Источник: https://electricavdome.ru/chto-luchshe-rele-napryazheniya-ili-stabilizator.html

Стабилизаторы напряжения

Начнем рассмотрение со стабилизаторов питающего напряжения и по порядку рассмотрим вначале преимущества, а затем недостатки применения этого типа устройств.

Преимущества стабилизаторов напряжения

1. Обеспечивают постоянное стабильное напряжение для питания наших электроприборов 220 В. Стабилизаторы сглаживают скачки и небольшие колебания питающего напряжения, выдавая на выходе стабильное напряжение 220 В.

При снижении напряжения обычно ниже 160 В, либо при превышении им значения 280 В, стабилизаторы отключаются от внешней питающей сети и обесточивают внутренних потребителей. Тем самым предохраняя электроприборы от выхода из строя.

2. Подключенное через стабилизаторы напряжения оборудование остается работоспособным. Такие электроприборы, как аудио- и видеотехника очень чувствительны к отклонениям питающего напряжения. Повреждение этих приборов такие колебания напряжения не вызывают, но могут сказываться на качестве его работы. Применение стабилизатора обеспечивает надежную работоспособность такого оборудования.

3. При применении стабилизаторов напряжения прекращают мерцать электрические лампочки. Это существенно продлевает срок их службы.

Недостатки стабилизаторов напряжения

1. Большие габариты. В большинстве случаев стабилизаторы напряжения довольно громоздки, и для их установки необходимо выделять дополнительное место. Габариты зависят от мощности подключаемой нагрузки. Чем больше мощность, тем больше габариты применяемого стабилизатора.

Во время своей работы эти устройства нагреваются, поэтому им необходимо достаточное место для эффективного охлаждения корпуса самого стабилизатора, и его внутренних элементов.

В трехфазных электрических сетях обычно применяют три отдельных стабилизатора напряжения, установленных в каждую фазу. Если устанавливать один трехфазный стабилизатор, то в случае короткого замыкания или пропадания одной из фаз, стабилизатор отключится.

Все однофазные потребители, подключенные к любой из фаз будут обесточены до тех пор, пока не восстановятся нормальные условия работы стабилизатора. Это очень неудобно, поэтому чаще применяется установка трех отдельных стабилизаторов напряжения в каждую из фаз. А это в свою очередь значительно увеличивает габариты.

2. Цена. Покупка хорошего стабилизатора напряжения может обойтись в приличную сумму денег.

Стабилизаторы намного дороже, чем реле контроля напряжения. В большинстве случаев стоимость является решающим фактором при выборе устройств защиты, и большинство пользователей склоняются в стороны приобретения реле напряжения.

3. Стабилизаторы чувствительны к пыли и влажности помещения, в котором они установлены. Внутри стабилизатора находится трансформатор, большое электромагнитное поле, которое притягивает пыль. Поэтому место установки должно быть хорошо защищено от пыли и влаги.

4. Чувствительность стабилизаторов напряжения к различным электрическим помехам. Если в электрической сети часты электрические помехи, это приведет к тому, что электроника стабилизаторов начнет «глючить», они могут отключиться, обесточивая тем самым всю квартиру.

Блок: 2/4 | Кол-во символов: 3077
Источник: http://elektrik-sam.info/stabilizator-ili-rele-napryajeniya-chto-vybrat/

Преимущества использования стабилизаторов

Стабилизаторы имеют ряд несомненных преимуществ:

  1. При скачке напряжения за пределы допустимых значений обеспечивается отключение электросети, что предохраняет технику от сбоев в работе. Пороговые значения можно устанавливать на нужном уровне.
  2. В пределах предельных значений происходит стабилизация напряжения с достаточной точностью. Даже самые простые и дешевые устройства обеспечивают выравнивание в пределах ±5%. Современные электромеханические приборы дают точность 3%, а инверторные устройства — 1%.
  3. Стабилизаторы значительно повышают долговечность бытовой техники и электроники. Улучшается качество показа видеотехники. Прекращается мерцание ламп накаливания, что увеличивает их срок службы.
  4. Широкий выбор по техническим характеристикам. Мощность разных моделей колеблется от 50 до 50 ВА до 150 кВА.
  5. Качественные стабилизаторы практически не влияют на форму сигнала, а инверторные установки даже улучшают синусоиду.
  6. Высокий КПД (98-99%).

Важно! Стабилизаторы имеют простое подключение, а потому для их установки не надо приглашать специалиста. При этом к прибору может подводиться любая фаза трехфазной цепи. При подключении автоматический автомат необходимо устанавливать до ввода в стабилизатор.

Блок: 3/6 | Кол-во символов: 1237
Источник: https://odinelectric.ru/equipment/zashita-ot-perenapyazheniya-chto-luchshe-stabilizator-ili-rele-napryazheniya

Резюме

Как видно из выше рассмотренного, нет какого-то одного способа, который бы дал наилучший результат.

Максимальную защиту электроприборов в наших квартирах обеспечивает совместное применение стабилизаторов напряжения и реле контроля напряжения.

В этом случае наши потребители будут иметь максимальную защиту от возможных критических изменений напряжения в наших питающих электрических сетях.

Более подробно преимущества и недостатки каждого из устройств я рассмотрел в видео:

Стабилизатор или реле контроля напряжения?

Также рекомендую посмотреть

Реле контроля напряжения. Защита от скачков напряжения.

Подключение нескольких реле напряжения.

Реле контроля напряжения в трехфазной сети 380В.

Реле приоритета. Автоматическое управление нагрузкой.

Блок: 4/4 | Кол-во символов: 756
Источник: http://elektrik-sam.info/stabilizator-ili-rele-napryajeniya-chto-vybrat/

Итог выбора лучшей защиты от перепадов в сети

1. Обычно типичные стабилизаторы напряжения стабилизирует сеть при относительно небольших колебаниях напряжения, где-то от 160 до 260 В, что зависит от типа и качества исполнения устройства. Если напряжение выйдет из этих пределов, стабилизатор просто отключится, до восстановления порога его срабатывания.

Все виды электрических помех стабилизаторы, работающие по принципу автотрансформатора, не устраняют и не ограничивают импульсные помехи. То есть такие стабилизаторы стабилизируют выходное напряжение до 220 В, но не задерживают помехи. Однако в основном, они неплохо справляются с защитой бытовой техники от перепадов напряжения сети. Выбор этих устройств в достаточной степени, оправдан.

2. Реле напряжения только ограничивает нижний и верхний пределы напряжения сети, и в пределах этих порогов не стабилизирует сеть. Реле напряжения устанавливают, когда нет больших перепадов напряжения сети. Реле контроля имеет невысокую стоимость и их еще устанавливает, когда нет возможности приобрести стабилизатор, а защита бытовой техники нужна. Такая защита просто необходима в случае старой электропроводки, да и новой тоже, когда есть вероятность обрыва нуля (напряжение сети может достигнуть 380 В).

Инверторные стабилизаторы

3. Совместное включение реле и стабилизатора большой роли в улучшении защиты не сыграет. Реле обладает только функцией ограничения нижнего и верхнего предела напряжения сети. Такой же функцией обладают и стабилизаторы. Моё мнение, если имеется стабилизатор, тогда добавлять реле контроля напряжения смысла не имеет.

4. Ну а для приверженцев высококачественной сети выпускают инверторные стабилизаторы напряжения. Во-первых, они имеют очень большие границы нижнего и верхнего порога стабилизации сети, которые колеблются от 100 до 300 В.

Принцип работы инверторных стабилизаторов с двойным преобразованием на накопительных ёмкостях, позволяет получить на выходе высококачественную синусоиду с высокой стабилизацией и полное отсутствие всех видов импульсных помех.

Единственный недостаток — это его стоимость. Но ведь вы приобретаете его не на один день. Посчитайте стоимость всех бытовых приборов и техники и сравните со стоимостью инвертора, а потом делайте свой выбор.

Блок: 4/4 | Кол-во символов: 2243
Источник: https://electricavdome.ru/chto-luchshe-rele-napryazheniya-ili-stabilizator.html

Реле контроля напряжения

Реле также относятся к устройствам защиты электрических цепей от скачков напряжения. Они играют роль своего рода «барьеров» напряжения, исключая подачу напряжения к бытовым приборам после его резкого скачка.

Функционирование таких устройств основано на отключении подачи питания от внешней сети во внутреннюю, если величина напряжения превышает значение выбранной уставки. Одними из таких систем являются реле серии МР-63, которые обеспечивают эффективную защиту как в цепях переменного, так и постоянного тока.

Многофункциональное реле МР-63

Срабатывание электронной системы защиты этих устройств происходит, когда величина контролируемого напряжения в определенный момент превысит предельно заданное значение. Такие релейные системы в основном не имеют источников оперативного питания и работают от сети, которую контролируют. Они обеспечиваются цифровыми индикаторами, что позволяет визуально наблюдать величину напряжения в цепи, а при их срабатывании используется система аварийной светодиодной индикации.

Блок: 5/7 | Кол-во символов: 1037
Источник: https://gesla.ru/chto-vybrat-dlya-zashchity-elektricheskoy-cepi-stabilizator-ili-rele-napryazheniya.html

Преимущества реле напряжения

В отличие от стабилизаторов напряжения, реле напряжения имеют малые габариты и в большинстве случаев предназначены для установки на DIN-рейку щита учета электроэнергии. Также реле напряжения выпускаются для подключения в розетку. Это дает возможность защитить отдельный электроприбор или группу приборов, не изменяя конфигурацию электрической схемы дома.

Стоимость реле контроля напряжения намного меньше, стоимости стабилизатора напряжения, даже если мы используем несколько реле напряжения.

Реле контроля напряжения не стабилизирует напряжение, как стабилизатор напряжения, а является прибором автоматики и предназначено для защиты от скачков напряжения. Оно значительно быстрее реагирует на опасные скачки напряжения вследствие чего, лучше справляются с защитой потребителей от выхода из строя.

Блок: 7/8 | Кол-во символов: 829
Источник: http://www.ocenin.ru/chto-vybrat-stabilizator-ili-rele-kontrolya-napryazheniya/

Кол-во блоков: 11 | Общее кол-во символов: 11068
Количество использованных доноров: 5
Информация по каждому донору:
  1. http://elektrik-sam.info/stabilizator-ili-rele-napryajeniya-chto-vybrat/: использовано 2 блоков из 4, кол-во символов 3833 (35%)
  2. https://gesla.ru/chto-vybrat-dlya-zashchity-elektricheskoy-cepi-stabilizator-ili-rele-napryazheniya.html: использовано 2 блоков из 7, кол-во символов 1513 (14%)
  3. https://odinelectric.ru/equipment/zashita-ot-perenapyazheniya-chto-luchshe-stabilizator-ili-rele-napryazheniya: использовано 1 блоков из 6, кол-во символов 1237 (11%)
  4. http://www.ocenin.ru/chto-vybrat-stabilizator-ili-rele-kontrolya-napryazheniya/: использовано 2 блоков из 8, кол-во символов 1222 (11%)
  5. https://electricavdome.ru/chto-luchshe-rele-napryazheniya-ili-stabilizator.html: использовано 2 блоков из 4, кол-во символов 3263 (29%)

Что такое стабилизатор напряжения — зачем он нам, как он работает, типы и применение

Применение стабилизаторов напряжения стало необходимостью в каждом доме. Теперь доступны разные типы стабилизаторов напряжения с разным функционалом и работой. Последние достижения в области технологий, такие как микропроцессорные микросхемы и силовые электронные устройства, изменили наш взгляд на стабилизатор напряжения. Теперь они полностью автоматические, интеллектуальные и снабжены множеством дополнительных функций.Они также обладают сверхбыстрой реакцией на колебания напряжения и позволяют пользователям дистанционно регулировать требования к напряжению, включая функцию пуска / останова для выхода.

Что такое стабилизатор напряжения?

Стабилизатор напряжения — это электрическое устройство, которое используется для обеспечения постоянного выходного напряжения на нагрузке на ее выходных клеммах независимо от любых изменений / колебаний на входе, то есть входящем питании.

Основная цель стабилизатора напряжения — защита электрических / электронных устройств (например, кондиционер, холодильник, телевизор и т. Д.).) от возможного повреждения из-за скачков / колебаний напряжения, перенапряжения и пониженного напряжения.

Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения

также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним / офисным оборудованием, на которое подается питание извне. Даже корабли, которые имеют собственное внутреннее устройство электроснабжения в виде дизельных генераторов, сильно зависят от этих АРН в плане безопасности своего оборудования.

Мы можем видеть различные типы стабилизаторов напряжения, доступные на рынке. Как аналоговые, так и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и растущему вниманию к устройствам безопасности. Эти стабилизаторы напряжения могут быть однофазными (выход 220–230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа приложения. Регулировка желаемого стабилизированного выхода осуществляется методом понижающего и повышающего напряжения в соответствии с его внутренней схемой.Трехфазные стабилизаторы напряжения доступны в двух разных моделях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они также доступны в различных номиналах кВА и диапазонах. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с повышающим понижающим напряжением 20-35 вольт от источника входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что стабилизатор напряжения широкого диапазона может обеспечить стабилизированное выходное напряжение 190-240 вольт с повышающим понижающим напряжением 50-55 вольт при входном напряжении от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальные стабилизаторы напряжения для небольших устройств, таких как телевизор, холодильник, микроволновая печь, до одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизации, стабилизаторы текущего напряжения имеют множество полезных дополнительных функций, таких как защита от перегрузки, переключение при нулевом напряжении, защита от изменения частоты, отображение отключения напряжения, возможность запуска и остановки выхода, ручной / автоматический запуск, отключение напряжения и т. Д. и т.п.

Стабилизаторы напряжения — это устройства с очень высокой энергоэффективностью (с КПД 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения? — Его важность

Все электрические / электронные устройства спроектированы и изготовлены для работы с максимальной эффективностью при стандартном напряжении питания, известном как номинальное рабочее напряжение. В зависимости от установленного безопасного рабочего предела рабочий диапазон (с оптимальным КПД) электрического / электронного устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за множества проблем входное напряжение, которое мы получаем, всегда имеет тенденцию к колебаниям, что приводит к постоянному изменению входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис.2 — Проблемы, связанные с колебаниями напряжения

Помните, что нет ничего важнее для электрического / электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания.Правильный и стабильный источник напряжения очень необходим для того, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который гарантирует, что устройство получит желаемое и стабилизированное напряжение независимо от того, насколько велики колебания. Таким образом, стабилизатор напряжения является очень эффективным решением для всех, кто хочет получить оптимальную производительность и защитить свои устройства от этих непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и ИБП, стабилизаторы напряжения также используются для защиты электрического и электронного оборудования.Колебания напряжения очень распространены независимо от того, где вы живете. Колебания напряжения могут быть вызваны различными причинами, такими как электрические неисправности, неисправная проводка, молнии, короткие замыкания и т. Д. Эти колебания могут иметь форму повышенного или пониженного напряжения.

Влияние постоянного / повторяющегося перенапряжения на бытовую технику

  • Это может привести к необратимому повреждению подключенного устройства.
  • Это может вызвать повреждение изоляции обмотки.
  • Это может привести к ненужному прерыванию нагрузки
  • Это может привести к перегреву кабеля или устройства.
  • Это может снизить срок службы устройства

Влияние постоянного / повторяющегося пониженного напряжения на бытовую технику

  • Это может привести к неисправности оборудования.
  • Это может привести к низкой эффективности устройства.
  • В некоторых случаях устройству может потребоваться дополнительное время для выполнения той же функции.
  • Это может снизить производительность устройства.
  • Это может привести к тому, что устройство будет потреблять большие токи, что может привести к перегреву.

Как работает стабилизатор напряжения? — Принцип работы понижающего и повышающего режима

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: i.е. Функция Buck и Boost. Функция понижающего и повышающего напряжения — это не что иное, как регулирование постоянного напряжения от перенапряжения и пониженного напряжения. Эта функция понижения и повышения может выполняться вручную с помощью переключателей или автоматически с помощью дополнительных электронных схем.

Рис. 3 — Основная функция стабилизатора напряжения

В условиях перенапряжения функция понижающего напряжения обеспечивает необходимое снижение интенсивности напряжения.Точно так же в условиях пониженного напряжения функция Boost увеличивает интенсивность напряжения. Идея обеих функций в целом состоит в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает добавление или вычитание напряжения из первичного источника напряжения. Для выполнения этой функции в стабилизаторах напряжения используется трансформатор, который подключается к переключающим реле в различных требуемых конфигурациях. В некоторых стабилизаторах напряжения используется трансформатор, имеющий различные ответвления на обмотке для обеспечения различных корректировок напряжения, в то время как несколько стабилизаторов напряжения (например, серво стабилизатор напряжения) содержат автотрансформатор для обеспечения желаемого диапазона коррекции.

Как работают функции понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим их на отдельные функции.

Понижающая функция в стабилизаторе напряжения

Рис. 4 — Принципиальная схема понижающей функции в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в «понижающем» режиме. В функции Buck полярность вторичной катушки трансформатора подключается таким образом, что приложенное к нагрузке напряжение является результатом вычитания напряжения первичной и вторичной катушек.

Рис.5 — Вычитание напряжения в понижающей функции стабилизатора напряжения

В стабилизаторе напряжения имеется переключающая цепь. Каждый раз, когда он обнаруживает перенапряжение в первичном источнике питания, подключение нагрузки вручную / автоматически переключается в конфигурацию «понижающего» режима с помощью переключателей / реле.

Функция повышения напряжения в стабилизаторе напряжения

Рис. 6 — Принципиальная схема функции повышения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в режиме «Boost».В функции Boost полярность вторичной катушки трансформатора подключается таким образом, что приложенное к нагрузке напряжение является результатом сложения напряжения первичной и вторичной катушек.

Рис.7 — Сумма напряжения в функции повышения стабилизатора напряжения

Как конфигурация Buck и Boost работает автоматически?

Вот пример стабилизатора напряжения ступени 02. В этом стабилизаторе напряжения используются реле 02 (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки во время повышенного и пониженного напряжения.

Рис. 8 — Принципиальная электрическая схема для автоматической функции понижения и повышения в стабилизаторе напряжения

На принципиальной схеме двухступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения понижающей и повышающей конфигураций при различных условиях колебания напряжения, то есть при повышенном и пониженном напряжении. Например — Предположим, что вход переменного тока составляет 230 В переменного тока, а требуемый выход также является постоянным 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижающая и повышающая стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное желаемое напряжение (230 вольт) в диапазоне от 205 вольт (пониженное напряжение) до 255 вольт (повышенное напряжение) входного источника переменного тока. .

В стабилизаторах напряжения, в которых используются ответвительные трансформаторы, точки ответвления выбираются на основе требуемой величины напряжения для понижения или повышения. В этом случае у нас есть разные диапазоны напряжения на выбор. Принимая во внимание, что в стабилизаторах напряжения, которые используют автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения для понижения или повышения. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились стабилизаторы напряжения с ручным управлением / переключателем.В стабилизаторах этого типа используются электромеханические реле для выбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы, и стабилизаторы напряжения стали автоматическими. Затем появился стабилизатор напряжения на основе сервопривода, который способен непрерывно стабилизировать напряжение без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно условно разделить на три типа.Их:

  • Релейные стабилизаторы напряжения
  • Стабилизаторы напряжения на сервоприводах
  • Стабилизаторы статического напряжения

Релейные стабилизаторы напряжения

В стабилизаторах напряжения релейного типа напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора (ов) в различных конфигурациях для достижения функции Buck & Boost.

Как работает стабилизатор напряжения релейного типа?

Фиг.9 — Внутренний вид стабилизатора напряжения релейного типа

На рисунке выше показано, как стабилизатор напряжения релейного типа выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, блок микроконтроллера и другие вспомогательные компоненты.

Электронная плата выполняет сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает какое-либо повышение или понижение входного напряжения сверх эталонного значения, он переключает соответствующее реле для подключения необходимого ответвления для функции понижения / повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование / преимущества стабилизаторов напряжения релейного типа

Этот стабилизатор в основном используется для приборов / оборудования малой мощности в жилых / коммерческих / промышленных целях.

  • Стоят дешевле.
  • Они компактны по размеру.
Ограничения релейных стабилизаторов напряжения
  • Их реакция на колебания напряжения немного медленная по сравнению с другими типами стабилизаторов напряжения
  • Они менее долговечны
  • Они менее надежны
  • Они не могут выдерживать скачки высокого напряжения, так как их предел устойчивости к колебаниям меньше.
  • При стабилизации напряжения, изменение тракта питания может привести к незначительному прерыванию подачи питания.

Стабилизаторы напряжения на сервоприводах

В стабилизаторах напряжения на основе сервопривода регулировка напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это системы с замкнутым контуром.

Как работает стабилизатор напряжения на основе сервопривода?

В системе с замкнутым контуром отрицательная обратная связь (также известная как подача ошибок) гарантируется с выхода, чтобы система могла гарантировать, что желаемый выход был достигнут.Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход больше / ниже требуемого значения, то сигнал ошибки (Выходное значение — Входное значение) будет получен регулятором источника входного сигнала. Затем этот регулятор снова будет генерировать сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подавать его на исполнительные механизмы, чтобы привести выход к точному значению.

Благодаря свойству замкнутого контура, стабилизаторы напряжения на основе сервоприводов используются в устройствах / оборудовании, которые очень чувствительны и нуждаются в точном входном источнике питания (± 01%) для выполнения намеченных функций.

Рис.10 — Стабилизатор напряжения на сервоприводе, вид изнутри

На рисунке выше показано, как стабилизатор напряжения на сервоприводе выглядит изнутри. Он имеет серводвигатель, автотрансформатор, понижающий и повышающий трансформатор, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки понижающего и повышающего трансформатора соединен с фиксированным ответвлением автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который управляется серводвигателем.Один конец вторичной катушки понижающего и повышающего трансформатора подключен к входному источнику питания, а другой конец — к выходу стабилизатора напряжения.

Рис. 11- Принципиальная схема стабилизатора напряжения с сервоприводом

Электронная плата выполняет сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает какое-либо повышение или понижение входного напряжения сверх эталонного значения, он запускает двигатель, который далее перемещает плечо на автотрансформаторе.

По мере движения плеча автотрансформатора входное напряжение первичной обмотки понижающего и повышающего трансформатора изменяется на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться до тех пор, пока разница между значением опорного напряжения и выходным сигналом стабилизатора не станет равной нулю. Этот полный процесс происходит за миллисекунды. Сегодняшние стабилизаторы напряжения на основе сервоприводов поставляются со схемой управления на основе микроконтроллера / микропроцессора, чтобы обеспечить интеллектуальное управление для пользователей.

Стабилизаторы напряжения с сервоприводом различных типов

Существуют различные типы стабилизаторов напряжения на основе сервоприводов: —

Однофазные стабилизаторы напряжения на сервоприводе

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к регулируемому трансформатору.

Трехфазные стабилизаторы напряжения сбалансированного типа с сервоприводом

В трехфазных стабилизаторах напряжения сбалансированного типа с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к автотрансформатору 03 и общей цепи управления. Мощность автотрансформаторов варьируется для достижения стабилизации.

Трехфазные стабилизаторы напряжения несимметричного типа с сервоприводом

В трехфазных несимметричных серво стабилизаторах напряжения стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Рис. 12 — Внутренний вид трехфазных несимметричных стабилизаторов напряжения с сервоприводом

Использование / преимущества стабилизатора напряжения на сервоприводе
  • Они быстро реагируют на колебания напряжения.
  • Они обладают высокой точностью стабилизации напряжения.
  • Они очень надежные
  • Они выдерживают скачки высокого напряжения.
Ограничения стабилизатора напряжения на сервоприводе
  • Они нуждаются в периодическом обслуживании.
  • Чтобы устранить ошибку, серводвигатель необходимо выровнять. Для регулировки серводвигателя нужны умелые руки.

Стабилизаторы статического напряжения

Рис.13 — Стабилизаторы статического напряжения

Выпрямитель статического напряжения

не имеет движущихся частей, как в случае стабилизаторов напряжения на базе сервопривода. Он использует схему силового электронного преобразователя для стабилизации напряжения. Эти стабилизаторы статического напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит понижающий и повышающий трансформатор, силовой преобразователь на биполярном транзисторе с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие важные компоненты.

Рис.14 — Внутренний вид стабилизатора статического напряжения

Как работает стабилизатор статического напряжения?
Микроконтроллер / микропроцессор

управляет преобразователем мощности IGBT, чтобы генерировать требуемый уровень напряжения, используя метод «широтно-импульсной модуляции».В методе «широтно-импульсной модуляции» в импульсных преобразователях мощности используется силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором с заданным выходным напряжением. Это генерируемое напряжение затем подается на первичную обмотку понижающего и повышающего трансформатора. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть синфазным или сдвинутым по фазе на 180 градусов по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного источника питания.

Рис.15 — Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он отправляет сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT соответственно генерирует напряжение, аналогичное разнице напряжений, на которую снизился входной источник питания. Это генерируемое напряжение синфазно с входным источником питания. Затем это напряжение подается на первичную обмотку понижающего и повышающего трансформатора.Поскольку вторичная катушка понижающего и повышающего трансформатора подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. Таким образом, на нагрузку будет подаваться стабилизированное повышенное напряжение.

Аналогичным образом, как только микропроцессор обнаруживает повышение уровня напряжения, он отправляет сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT соответственно генерирует напряжение, аналогичное разнице напряжений, на которую снизился входной источник питания.Но на этот раз генерируемое напряжение будет сдвинуто по фазе на 180 градусов по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку понижающего и повышающего трансформатора. Поскольку вторичная катушка понижающего и повышающего трансформатора подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, теперь будет вычитаться из входного источника питания. Таким образом, на нагрузку будет подаваться стабилизированное пониженное напряжение.

Использование / преимущества статических стабилизаторов напряжения
  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Обладают очень высокой точностью стабилизации напряжения.
  • Поскольку движущаяся часть отсутствует, обслуживание практически не требуется.
  • Они очень надежны.
  • Их эффективность очень высока.
Ограничения статического стабилизатора напряжения

Дороже по сравнению с аналогами

В чем разница между стабилизатором напряжения и регулятором напряжения?

Хорошо.. оба звучат одинаково. Оба они выполняют одну и ту же функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное отличие стабилизатора напряжения от регулятора напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входящего напряжения. А

Регулятор напряжения

— это устройство, которое подает на выход постоянное напряжение без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы.В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам дополнительных долларов. Так почему бы не выбрать такой стабилизатор напряжения, который может удовлетворить ваши требования и сэкономить ваш карман.

Различные факторы, которые играют важную роль при выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения: —

  • Требуемая мощность прибора (или группы приборов)
  • Тип прибора
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Отключение при повышении / понижении напряжения
  • Тип стабилизации / цепи управления
  • Тип крепления стабилизатора напряжения

Пошаговое руководство по выбору / покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома: —

  • Проверьте номинальную мощность устройства, для которой требуется стабилизатор напряжения.Номинальная мощность указана на задней панели устройства в виде наклейки или паспортной таблички. Это будет в киловаттах (кВт). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Преобразуйте его в киловатт (кВт).

(кВт = кВА x коэффициент мощности)

  • Рассмотрите возможность сохранения дополнительного запаса в 25–30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебания напряжения. Если это соответствует вашим потребностям, вы готовы пойти дальше.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете запросить и сравнить дополнительные функции в одном ценовом диапазоне от разных производителей и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Предположим, что мощность вашего телевизора составляет 1 кВА. Добавочная наценка 30% на 1 кВА составляет 300 Вт. Добавив и то, и другое, вы можете подумать о покупке стабилизатора напряжения 1,3 кВт (1300 Вт) для вашего телевизора.

Надеюсь, статья получилась информативной. Продолжайте учиться.
Прочтите о том, как выбрать батарею — метод и кратковременные / долгосрочные требования к питанию.

Ратна имеет степень бакалавра компьютерных наук и имеет опыт работы в сфере информационных технологий для мэйнфреймов в Великобритании. Она также является активным веб-дизайнером. Она является автором, редактором и основным партнером Electricalfundablog.

Что такое стабилизатор напряжения и как он работает? Типы стабилизаторов

Что такое стабилизатор напряжения и зачем он нам? Работа стабилизатора, типы и применение

Введение в стабилизатор:

Внедрение технологии микропроцессорных микросхем и силовых электронных устройств в конструкцию интеллектуальных стабилизаторов напряжения переменного тока (или автоматических регуляторов напряжения (AVR)) привело к получению высоких -качественное, стабильное электроснабжение при значительных и продолжительных отклонениях сетевого напряжения.

В качестве усовершенствования традиционных стабилизаторов напряжения релейного типа в современных инновационных стабилизаторах используются высокопроизводительные цифровые схемы управления и полупроводниковые схемы управления, которые исключают регулировку потенциометра и позволяют пользователю устанавливать требования к напряжению с помощью клавиатуры, с возможностью запуска и остановки выхода.

Это также привело к тому, что время срабатывания стабилизаторов или чувствительность стабилизаторов были очень низкими, обычно менее нескольких миллисекунд, кроме того, это можно регулировать с помощью переменной настройки.В настоящее время стабилизаторы стали оптимизированным решением для питания многих электронных устройств, чувствительных к колебаниям напряжения, и они нашли работу со многими устройствами, такими как станки с ЧПУ, кондиционеры, телевизоры, медицинское оборудование, компьютеры, телекоммуникационное оборудование и т. Д.

Что такое стабилизатор напряжения?

Это электрический прибор, который разработан для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от изменений входного или входящего напряжения питания.Он защищает оборудование или машину от перенапряжения, пониженного напряжения и других скачков напряжения.

Его также называют автоматическим регулятором напряжения (АРН) . Стабилизаторы напряжения предпочтительны для дорогостоящего и драгоценного электрического оборудования, поскольку они защищают его от вредных колебаний низкого / высокого напряжения. Некоторое из этого оборудования — кондиционеры, офсетные печатные машины, лабораторное оборудование, промышленные машины и медицинское оборудование.

Стабилизаторы напряжения регулируют колебания входного напряжения до того, как оно может быть подано на нагрузку (или оборудование, чувствительное к колебаниям напряжения).Выходное напряжение стабилизатора будет оставаться в диапазоне 220 В или 230 В в случае однофазного питания и 380 В или 400 В в случае трехфазного питания в пределах заданного диапазона колебаний входного напряжения. Это регулирование осуществляется с помощью понижающих и повышающих операций, выполняемых внутренней схемой.

На современном рынке доступно огромное количество разнообразных автоматических регуляторов напряжения. Это могут быть одно- или трехфазные блоки в зависимости от типа применения и необходимой мощности (кВА).Трехфазные стабилизаторы выпускаются в двух версиях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они доступны либо в виде отдельных блоков для бытовых приборов, либо в виде больших стабилизаторов для целых приборов в определенном месте, например, во всем доме. Кроме того, это могут быть стабилизаторы аналогового или цифрового типа.

К распространенным типам стабилизаторов напряжения относятся стабилизаторы с ручным управлением или с переключением, автоматические стабилизаторы релейного типа, твердотельные или статические стабилизаторы и стабилизаторы с сервоуправлением.В дополнение к функции стабилизации большинство стабилизаторов имеют дополнительные функции, такие как отсечка низкого напряжения на входе / выходе, отсечка высокого напряжения на входе / выходе, отсечка при перегрузке, возможность запуска и остановки выхода, ручной / автоматический запуск, отображение отсечки напряжения, переключение при нулевом напряжении. и др.

Зачем нужны стабилизаторы напряжения?

Как правило, каждое электрическое оборудование или устройство рассчитано на широкий диапазон входного напряжения. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенными значениями, например, одно оборудование может выдерживать ± 10 процентов от номинального напряжения, а другое — ± 5 процентов или меньше.

Колебания напряжения (повышение или понижение величины номинального напряжения) довольно часто встречаются во многих областях, особенно на оконечных линиях. Наиболее частые причины колебаний напряжения — это освещение, неисправности в электросети, неисправность проводки и периодическое отключение устройства. Эти колебания приводят к поломке электрического оборудования или приборов.

Результатом длительного перенапряжения

  • Необратимое повреждение оборудования
  • Повреждение изоляции обмоток
  • Нежелательное прерывание нагрузки
  • Повышенные потери в кабелях и сопутствующем оборудовании
  • Снижение срока службы устройства

Длительное понижение напряжения приведет к

  • Неисправность оборудования
  • Более длительные периоды работы (как в случае резистивных нагревателей)
  • Снижение производительности оборудования
  • Возникновение больших токов, которые в дальнейшем приводят к перегреву
  • Ошибки вычислений
  • Пониженная частота вращения двигателей

Таким образом, стабильность и точность напряжения определяют правильную работу оборудования.Таким образом, стабилизаторы напряжения гарантируют, что колебания напряжения на входящем источнике питания не влияют на нагрузку или электрический прибор.

Как работает стабилизатор напряжения?

Основной принцип стабилизатора напряжения для выполнения операций понижения и повышения

В стабилизаторе напряжения коррекция напряжения при повышенном и пониженном напряжении выполняется с помощью двух основных операций, а именно b oost и операций понижения . Эти операции могут выполняться вручную с помощью переключателей или автоматически с помощью электронных схем.В условиях пониженного напряжения режим повышения напряжения увеличивает напряжение до номинального уровня, в то время как понижающий режим снижает уровень напряжения во время состояния повышенного напряжения.

Концепция стабилизации включает в себя добавление или вычитание напряжения в сети и из нее. Для выполнения такой задачи в стабилизаторе используется трансформатор, который в различных конфигурациях соединен с переключающими реле. В некоторых стабилизаторах используется трансформатор с отводами на обмотке для обеспечения различных коррекций напряжения, в то время как в сервостабилизаторах используется автотрансформатор для обеспечения широкого диапазона коррекции.

Чтобы понять эту концепцию, давайте рассмотрим простой понижающий трансформатор с номиналом 230 / 12В и его связь с этими операциями приведены ниже.

На рисунке выше показана конфигурация повышения, в которой полярность вторичной обмотки ориентирована таким образом, что ее напряжение добавляется непосредственно к первичному напряжению. Следовательно, в случае пониженного напряжения трансформатор (будь то переключение ответвлений или автотрансформатор) переключается с помощью реле или твердотельных переключателей, так что к входному напряжению добавляются дополнительные вольт.

На приведенном выше рисунке трансформатор подключен в компенсирующей конфигурации, в которой полярность вторичной катушки ориентирована таким образом, что ее напряжение вычитается из первичного напряжения. Схема переключения переключает соединение с нагрузкой в ​​эту конфигурацию во время состояния перенапряжения.

На рисунке выше показан двухступенчатый стабилизатор напряжения, в котором используются два реле для обеспечения постоянной подачи переменного тока на нагрузку во время перенапряжения и в условиях напряжения. Путем переключения реле могут выполняться операции понижения и повышения напряжения для двух конкретных колебаний напряжения (одно находится под напряжением, например, 195 В, а другое — при повышенном напряжении, например, 245 В).

В случае стабилизаторов ответвительного трансформаторного типа, различные ответвления переключаются в зависимости от требуемой величины повышающего или понижающего напряжения. Но в случае стабилизаторов автотрансформаторного типа двигатели (серводвигатели) используются вместе со скользящим контактом для получения повышающего или понижающего напряжения от автотрансформатора, поскольку он содержит только одну обмотку.

Типы стабилизаторов напряжения

Стабилизаторы напряжения стали неотъемлемой частью многих бытовых электроприборов, промышленных и коммерческих систем.Раньше использовались ручные или переключаемые стабилизаторы напряжения для повышения или понижения входящего напряжения, чтобы обеспечить выходное напряжение в желаемом диапазоне. Такие стабилизаторы построены с электромеханическими реле в качестве переключающих устройств.

Позже, дополнительная электронная схема автоматизирует процесс стабилизации, и на свет появились автоматические регуляторы напряжения РПН. Другой популярный тип стабилизатора напряжения — сервостабилизатор, в котором коррекция напряжения осуществляется непрерывно без какого-либо переключателя.Обсудим три основных типа стабилизаторов напряжения.

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения этого типа регулирование напряжения осуществляется переключением реле таким образом, чтобы одно из нескольких ответвлений трансформатора подключалось к нагрузке (как описано выше) независимо от того, он предназначен для работы в режиме наддува или противодействия. На рисунке ниже показана внутренняя схема стабилизатора релейного типа.

Он имеет электронную схему и набор реле помимо трансформатора (который может быть трансформатором с тороидальным или железным сердечником с выводами на его вторичной обмотке).Электронная схема включает схему выпрямителя, операционный усилитель, микроконтроллер и другие крошечные компоненты.

Электронная схема сравнивает выходное напряжение с эталонным значением, обеспечиваемым встроенным источником эталонного напряжения. Каждый раз, когда напряжение повышается или опускается за пределы опорного значения, схема управления переключает соответствующее реле для подключения к выходу требуемого ответвления.

Эти стабилизаторы обычно изменяют напряжение при колебаниях входного напряжения от ± 15 процентов до ± 6 процентов с точностью выходного напряжения от ± 5 до ± 10 процентов.Этот тип стабилизаторов наиболее часто используется для низкоуровневых бытовых приборов в жилых, коммерческих и промышленных помещениях, поскольку они имеют малый вес и низкую стоимость. Однако они страдают рядом ограничений, таких как низкая скорость коррекции напряжения, меньшая долговечность, меньшая надежность, прерывание цепи питания во время регулирования и неспособность выдерживать высокие скачки напряжения.

Сервоуправляемые стабилизаторы напряжения

Их просто называют сервостабилизаторами (работа над сервомеханизмом, который также известен как отрицательная обратная связь), и название предполагает, что он использует серводвигатель для коррекции напряжения.Они в основном используются для обеспечения высокой точности выходного напряжения, обычно ± 1% при изменении входного напряжения до ± 50%. На рисунке ниже показана внутренняя схема сервостабилизатора, который включает в себя серводвигатель, автотрансформатор, повышающий трансформатор, драйвер двигателя и схему управления в качестве основных компонентов.

В этом стабилизаторе один конец первичной обмотки понижающего повышающего трансформатора соединен с фиксированным ответвлением автотрансформатора, а другой конец соединен с подвижным рычагом, которым управляет серводвигатель.Вторичная обмотка понижающего повышающего трансформатора подключена последовательно к входящему источнику питания, который является не чем иным, как выходом стабилизатора.

Электронная схема управления обнаруживает провал и рост напряжения путем сравнения входного сигнала со встроенным источником опорного напряжения. Когда схема обнаруживает ошибку, она приводит в действие двигатель, который, в свою очередь, перемещает рычаг автотрансформатора. Он может питать первичную обмотку повышающего трансформатора, так что напряжение на вторичной обмотке должно быть желаемым выходным напряжением.Большинство сервостабилизаторов используют встроенный микроконтроллер или процессор для схемы управления для достижения интеллектуального управления.

Эти стабилизаторы могут быть однофазными, трехфазными симметричными или трехфазными несимметричными. В однофазном типе серводвигатель, соединенный с регулируемым трансформатором, обеспечивает коррекцию напряжения. В случае трехфазного симметричного типа серводвигатель соединен с тремя автотрансформаторами, так что стабилизированный выход обеспечивается во время колебаний путем регулировки выхода трансформаторов.В несбалансированном типе сервостабилизаторов три независимых серводвигателя соединены с тремя автотрансформаторами и имеют три отдельные цепи управления.

Сервостабилизаторы обладают различными преимуществами по сравнению со стабилизаторами релейного типа. Некоторые из них — более высокая скорость коррекции, высокая точность стабилизированного выхода, способность выдерживать броски тока и высокая надежность. Однако они требуют периодического обслуживания из-за наличия двигателей.

Стабилизаторы статического напряжения

Как следует из названия, стабилизатор статического напряжения не имеет движущихся частей, как механизм серводвигателя в случае сервостабилизаторов.Он использует схему силового электронного преобразователя для стабилизации напряжения, а не вариацию в случае обычных стабилизаторов. С помощью этих стабилизаторов можно добиться большей точности и отличного регулирования напряжения по сравнению с сервостабилизаторами, и обычно регулирование составляет ± 1 процент.

По сути, он состоит из повышающего трансформатора, преобразователя мощности IGBT (или преобразователя переменного тока в переменный) и микроконтроллера, микропроцессора или контроллера на базе DSP. Управляемый микропроцессором преобразователь IGBT генерирует соответствующее количество напряжения с помощью метода широтно-импульсной модуляции, и это напряжение подается на первичную обмотку повышающего трансформатора.Преобразователь IGBT вырабатывает напряжение таким образом, что оно может быть синфазным или сдвинутым на 180 градусов по фазе входящего линейного напряжения, чтобы выполнять сложение и вычитание напряжений во время колебаний.

Каждый раз, когда микропроцессор обнаруживает провал напряжения, он посылает импульсы ШИМ на преобразователь IGBT, так что он генерирует напряжение, равное величине отклонения от номинального значения. Этот выход находится в фазе с входящим питанием и подается на первичную обмотку повышающего трансформатора.Поскольку вторичная обмотка подключена к входящей линии, индуцированное напряжение будет добавлено к входящему источнику питания, и это скорректированное напряжение подается на нагрузку.

Точно так же повышение напряжения заставляет схему микропроцессора посылать импульсы ШИМ таким образом, что преобразователь выводит напряжение с отклоненной величиной, которое на 180 градусов не совпадает по фазе с входящим напряжением. Это напряжение на вторичной обмотке понижающего вольтодобавочного трансформатора вычитается из входного напряжения, так что выполняется понижающая операция.

Эти стабилизаторы очень популярны по сравнению со стабилизаторами с переключением отводов и сервоуправляемыми стабилизаторами из-за большого количества преимуществ, таких как компактный размер, очень быстрая скорость коррекции, отличное регулирование напряжения, отсутствие технического обслуживания из-за отсутствия движущихся частей, высокая эффективность и высокий КПД. надежность.

Разница между стабилизатором напряжения и регулятором напряжения

Здесь возникает серьезный, но сбивающий с толку вопрос: какова именно разница (я) между стабилизатором и регулятором на ? Хорошо.. Оба выполняют одно и то же действие, которое заключается в стабилизации напряжения, но основное различие между стабилизатором напряжения и регулятором напряжения : :

Стабилизатор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменений. по входящему напряжению.

Регулятор напряжения: Это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменения тока нагрузки.

Как выбрать стабилизатор напряжения правильного размера?

Прежде всего, необходимо учесть несколько факторов, прежде чем покупать стабилизатор напряжения для прибора.Эти факторы включают в себя мощность, требуемую для устройства, уровень колебаний напряжения, которые наблюдаются в зоне установки, тип устройства, тип стабилизатора, рабочий диапазон стабилизатора (на который стабилизатор подает правильное напряжение), отключение по перенапряжению / пониженному напряжению, тип схема управления, тип монтажа и другие факторы. Здесь мы привели основные шаги, которые следует учитывать перед покупкой стабилизатора для вашего приложения.

  • Проверьте номинальную мощность устройства, которое вы собираетесь использовать со стабилизатором, наблюдая за деталями паспортной таблички (вот образцы: паспортная табличка трансформатора, паспортная табличка MCB, паспортная табличка конденсатора и т. Д.) Или из руководства пользователя продукта.
  • Поскольку стабилизаторы рассчитаны на кВА (как и у трансформатора, рассчитанные на кВА, а не на кВт), также можно рассчитать мощность, просто умножив напряжение прибора на максимальный номинальный ток.
  • Рекомендуется добавить запас прочности к номиналу стабилизатора, обычно 20-25 процентов. Это может быть полезно для будущих планов по добавлению дополнительных устройств к выходу стабилизатора.
  • Если прибор рассчитан в ваттах, учитывайте коэффициент мощности при расчете номинальной мощности стабилизатора в кВА.Напротив, если стабилизаторы рассчитаны в кВт, а не в кВА, умножьте коэффициент мощности на произведение напряжения и тока.

ниже — это живой и решенный пример , как выбрать стабилизатор напряжения подходящего размера для вашего электроприбора (ов)

Предположим, если прибор (кондиционер или холодильник) рассчитан на 1 кВА. Следовательно, безопасный запас в 20 процентов составляет 200 Вт. Прибавив эти ватты к фактическому номиналу, мы получим мощность 1200 ВА. Поэтому для устройства предпочтительнее стабилизатор на 1,2 кВА или 1200 ВА.Для домашних нужд предпочтительны стабилизаторы от 200 ВА до 10 кВА. А для коммерческих и промышленных применений используются одно- и трехфазные стабилизаторы большой мощности.

Надеемся, что представленная информация будет информативной и полезной для читателя. Мы хотим, чтобы читатели выразили свое мнение по этой теме и ответили на этот простой вопрос — какова цель функции связи RS232 / RS485 в современных стабилизаторах напряжения — в разделе комментариев ниже.

(PDF) Анализ стабилизаторов напряжения и бесконтактных реле в системах электроснабжения

Рис.12. Напряжение характеристики «вход-выход» тиристора

реле напряжения

Вывод

1. Анализ показателей качества электроэнергии показывает, что необходимо использовать стабилизаторы напряжения

с простой схемой управления

.

2. Исследование схем стабилизирующих устройств

показало, что предлагаемые большинством предприятий

стабилизаторы напряжения имеют сложную конструкцию с большим количеством элементов

, что приводит к ограничению области их применения.

3. Анализ приведенных стабилизаторов напряжения показывает

, что в качестве элементов управления используются тиристоры или симисторы,

, что приводит к значительному искажению формы сигнала на выходе

стабилизатора напряжения.

4. Анализ процесса стабилизации показывает, что для регулирования работы стабилизатора

необходимо

использовать систему в цепи управления для размыкания тиристоров

в момент перехода тока нагрузки через ноль.

5. Анализ исследования показывает, что нагрузка Rload составляет

, подключенную к сети при напряжении 220 В. На основе схемы

, указанной выше, разработанное реле напряжения обеспечивает синусоидальную форму сигнала

напряжения на нагрузке, а коэффициент доходности

близок к единице.

Список литературы

1. Государственный стандарт Узбекистана O’z DSt 1044: 2003.

Протокол 05-19 от 18 июля 2003 г. — пп.27.

2. Государственный стандарт Узбекистана O’z DSt 1050: 2004.

Протокол 05-02 от 30 января 2004 г. — пп.53.

3. Усманов Э.Г., Абдураимов Э.Х., Каримов Р.Ч.

Вестник ТГТУ, Ташкент, 3-4, — С.48-51, (2012).

4. Каримов Р.Ч., Шамсиев К. и др. IOP Conf.

Серия

: Материаловедение и инженерия, 883 (1),

012142, (2020). doi: 10.1088 / 1757-899X / 883/1/012142

5. Каримов Р.Ч., Шамсиева Н.и другие. IOP

конф. Серия: Материаловедение и инженерия, 883 (1),

012120, (2020). doi: 10.1088 / 1757-899X / 883/1/012120

6. Миловзоров В.П., Мусолин А.К. Учебное пособие, —

М .: Изд. Энергоатомиздат, — С.247, (1986).

7. Усманов Э.Г., Расулов ​​А.Н., Бободжанов М.К.,

Р.Ч. Каримов. E3S Web of Conferences 139, 01079

(2019), doi.org/10.1051/e3sconf/2019139

8. Поскробко А.А., Братолюбов В.Б. Учебное

пособие, — М .: Изд. Энергия, — С.192, (1978).

9. Каримов Р.Ч. Технические науки и инновации, 2,

(2019). uzjournals.edu.uz/btstu/vol2019/iss2/8

10. Бободжанов М.К., Усманов Э.Г., Абдураимов Э.Х.,

Каримов Р.Ч. Европейский научный обзор, 1-2. —

PP.210-212, (2018).

11. Каримов Р.Ч. European Science Review, 9-10, —

PP.144-146, (2015).

12. Г. Рафикова, М.Р.Рузиназаров, С.Махмутхонов.

E3S Web of Conferences, 139, 01075, (2019),

https://doi.org/10.1051/e3sconf/2019135

13. Хошимов Ф.А., Бахадиров И.И., Ереджепов М.,

Джумамуратов , Б. (2019) Разработка метода нормализации потребления электроэнергии

E3S Web Conf 139

doi: 10.1051 / e3sconf / 2019134

14. Суллиев А.Х., Каримов Р.Ч. Вестник Ташкент

Институт инженеров железнодорожного транспорта, Ташкент, 4.- PP.149-

154, (2018).

15. Абдураимов Э.Х., Каримов Р.Ч., Рузиназаров

М.Р. Свидетельство об официальной регистрации ЭВМ

с программой ДГУ 05850, (2018).

16. Бободжанов М.К., Расулов ​​А.Н., Каримов Р.Ч.,

Саттаров Х.А. Бюллетень Потомки Мохаммеда Аль-

Хорезми (ISSN: 2181-9211), Ташкент, 3 (5), —

PP.106-109, (2018).

17. Расулов ​​А.Н., Каримов Р.Гл. European Science

review, 9-10, — PP.140-143, (2015).

18. Расулов ​​А.Н., Каримов Р.Ч. EESJ, 4, — PP.174-

178, (2015), doi: 10.12851 / EESJ201508C05ART02

19. Усманов Э.Г., Абдураимов Э.Х., Каримов Р.Ч.

Патент на изобретение Республики Узбекистан, ИАП

05122, (2015).

20. Таслимов А.Д., Рахмонов И.Ю. Journal of Physics:

Conference Series, 1399, 055046, (2019).

doi: 10.1088 / 1742-6596 / 1399/5/055046

21. И.Ю. Рахмонов, Л.Нематов, Н.Ниезов, К.Реймов,

Т.М. Юлдошев. Журнал физики: Серия конференций

1515, 022054, (2020). doi: 10.1088 / 1742-

6596/1515/2/022054

22. Каримов Р.Ч., Бободжанов М.К., Расулов ​​А.Н.,

Усманов Э.Г. E3S Web of Conferences, 139, 01039,

(2019), doi.org/10.1051/e3sconf/201913

9

23. Рахмонов И.Ю., К.М.Реймов, С.Х. Дустова. IOP

конф. Серия: Материаловедение и инженерия 862,

062070, (2020). doi: 10.1088 / 1757-899X / 862/6/062070

24. Расулов ​​А.Н., Каримов Р.Ч. EESJ, 4, — PP.179-

183, (2015). doi: 10.12851 / EESJ201508C05ART01

25. Рисмухамедов Д., Туйчиев Ф. и другие. IOP

конф. Серия: Материаловедение и инженерия, 883 (1),

012140, (2020). doi: 10.1088 / 1757-899X / 883/1/012140

E3S Web of Conferences 216, 01162 (2020)

RSES 2020

https: // doi.org / 10.1051 / e3sconf / 202021601162

7

трансформатор — Схема реле цифрового стабилизатора напряжения

Я мог бы рассмотреть двоичную лестницу и изменить 6,12,24,36, … 128 = 206 на 6,12,24,48, .. 128 = 218 всего.

Мин. 128 В до 254 Viacom кажется чрезмерным, и если бы все в Индии или Пакистане использовали бы это, сеть увидела бы нагрузку с отрицательным сопротивлением (при падении напряжения ток нагрузки увеличивается и приводит к нестабильности сети, если все переключаются примерно в одно и то же время.Так что имейте в виду, что вы и ваши товарищи вносите свой вклад в нестабильность сети , пока вы пытаетесь компенсировать ненадежную сеть.

Вот почему мы не используем их в Северной Америке. Лучше модернизировать инфраструктуру.

Возможно, вы захотите уменьшить несколько вторичных обмоток или пересчитать первичную обмотку на желаемое соотношение входных / выходных обмоток, например, от 220 В до 240 В переменного тока, а не прибавлять 206 В переменного тока, если вы не работаете с 208 В переменного тока.

Если это сделать, тогда лучше будет работать 4-битный двоичный ЦАП И понижает выходное напряжение 23 В переменного тока на 5% или два шага с 4-битным управлением или 16 шагов, вы сдвинули все шаги вниз на 2/16 шагов.

Но ваша схема не двоичная, возможно, из-за чрезмерного последовательного сопротивления. Ваша индуктивность не должна превышать 10% коэффициента тока холостого хода при номинальном первичном токе. Это ваш ток возбуждения для минимизации потерь на холостом ходу. Но также DCR любой комбинации определяет фактическую потерянную мощность без нагрузки. Это также можно вычислить с помощью отношения L / R при выборе оптимального размера проводника. Взаимная связь должна быть высокой с слоями с силикатным покрытием CRGOS с низкими потерями, изготовленными без заусенцев на закорачивающихся кромках, а также без силикатной железной пыли, которая склонна к частичному разряду из-за загрязнения.

Если это трансформатор сухого типа, то чистота имеет решающее значение для первичной вторичной изоляции с помощью чистой эпоксидной смолы поверх слюдяной ленты или каптоновой ленты, которая не имеет пустот путем вакуумной и вибрационной дегазации. Эти пустоты или мельчайшее улавливание газа также могут создавать частичные разряды, которые могут привести к карбонизации эпоксидной смолы и разрушению изоляции. (представьте себе крошечный зазор в мкм с пузырьком газа 1 пФ, последовательно соединенным с эпоксидной смолой 1 нФ. Пузырь сгибается и бесшумно горит, увеличиваясь с течением времени.

Если это маслонаполненный трафик 10 кВА, то подобное загрязнение от силикатной железной пыли может также привести к образованию h3 растворенного горючего газа, так что «чистота — это благочестие».некоторые используют специальные методы очистки. ЧР — это то, что также происходит в дефектах КМОП с загрязнениями, поскольку 30 кВ / мм становится 30 мВ / нм для частичного разряда.

Релейные стабилизаторы напряжения Производители и Поставщики релейных стабилизаторов напряжения из Китая NeoPower.

General ( Relay Voltage Stabilizer )
Neopower Relay Voltage Stabilizer — это однофазный стабилизатор напряжения, который не только обладает всеми характеристиками SVC, но также имеет преимущества роскошного внешнего вида, надежные функции защиты, такие как защита от перенапряжения и пониженного напряжения. защита по напряжению, кроме того, предусмотрена возможность выбора по времени задержки, это действительно экономичный продукт с высоким соотношением производительности и цены.

Приложение (Релейный стабилизатор напряжения)
Релейный стабилизатор напряжения используется для офисного оборудования, испытательного оборудования, медицинского оборудования, оборудования промышленной автоматизации, бытовой техники, системы освещения, системы связи и т. Д.


Модель и спецификация (Релейный стабилизатор напряжения)

Модель

SDR-
500 ВА

SDR-
1000 ВА

SDR-
1500 ВА

SDR-
2000 ВА

SDR-
3000 ВА

SDR-
5000 ВА

SDR-
8000ВА

SDR-
10 кВА

Мощность

500 ВА

1000 ВА

1500 ВА

2000 ВА

3000 ВА

5000 ВА

8000ВА

10 кВА

Ввод

Диапазон входного напряжения

140-260 В переменного тока

Входная частота

50/60 Гц

Выход

Выходное напряжение

220 В переменного тока

Точность вывода

8%

КПД

98%

Фаза

Однофазный

Состояние дисплея счетчика

Входное напряжение / Выходное напряжение

Светодиодный дисплей
статус

РАБОЧАЯ

Green; Индикация включения / выключения питания.

ЗАДЕРЖКА

желтый; Во время задержки этот светодиод горит, задержка закончилась, гаснет.

НЕОБЫЧНОЕ

красный; Индикация того, что машина выполняет защиту, когда защита завершена, гаснет.

Окружающая среда

Рабочая температура

0 ~ 40

Температура хранения

-15 ~ 45

Относительная влажность при эксплуатации

10% относительной влажности ~ 102% относительной влажности; Без конденсации

Физические

Размер машины (мм)

233110
152

255125
171

265140
188

265140
188

352220
256

352220
256

410220
256

410220
256

Н.Вт (кг)

2,25

3,65

4,5

5,33

9,0

12,8

17,2

19,55

SVS-1000VA ВЫСОКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ, РЕЛЕЙНЫЙ СТАБИЛИЗАТОР С МИКРОПРОЦЕССОРНЫМ УПРАВЛЕНИЕМ — Critical Power

Главная / Стабилизаторы напряжения / СВС-1000ВА ВЕРХНИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ, РЕЛЕЙНЫЙ СТАБИЛИЗАТОР С МИКРОПРОЦЕССОРНЫМ УПРАВЛЕНИЕМ

КШС11,650.00

Производительность
Входное напряжение Однофазный 120–300 В Выходное напряжение
Входное напряжение Однофазный 160-264 В Выходное напряжение
Входное напряжение Однофазный 176В-264В Выходное напряжение
Входное напряжение Трехфазный 208-520В Выходное напряжение 380 В, точность 2% ~ 7%
Входное напряжение Трехфазный 266V-494V Выходное напряжение
Входное напряжение Трехфазный 304V-456V Выходное напряжение
Частота
Искажение формы волны Шум <60 дБ (расстояние: 1 м)
КПД 80% (полная нагрузка) Имеет автоматическую защиту от короткого замыкания, вывод
напряжение падает до нуля при коротком замыкании нагрузки
цепь, однако, когда выходное короткое замыкание длится 5 мин,
Выходное напряжение 220 В, точность 2% -7% не допускается непрерывная работа.
Модель и характеристики
Спец. (КВА) Размер изделия Вес
(см) (кг)
одиночный- CWY-0.3 21
фаза CWY-0.5 27
CWY-1 40
CWY-2 60
CWY-3 90
CWY-5 120
CWY-10 330
Спец.(КВА) Размер изделия Вес
(см) (кг)
Три- CWY-1.5 80
фаза CWY-3 195
CWY-6 330
CWY-9 580
CWY-15 650
CWY-20 900
CWY-30 1250
Анализ электрической схемы стабилизатора напряжения

Стабилизатор напряжения — это схема источника питания или устройство источника питания, которое может автоматически регулировать выходное напряжение.Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрического оборудования в пределах установленного диапазона значений. Стабилизатор напряжения предназначен для обеспечения нормальной работы различных цепей или электрического оборудования при номинальном рабочем напряжении.

Крупногабаритные стабилизаторы напряжения в десятки и даже сотни киловатт используются для обеспечения рабочей мощности крупномасштабного экспериментального оборудования. Существуют также небольшие стабилизаторы переменного напряжения мощностью от нескольких ватт до нескольких киловатт, обеспечивающие качественное питание небольших лабораторий или бытовой техники.

В самом начале стабилизатор напряжения через биение реле стабилизировал напряжение. Когда напряжение в сети колеблется, активируется схема автоматической коррекции стабилизатора напряжения, чтобы активировать внутреннее реле и заставить выходное напряжение оставаться близким к установленному значению. Преимущество этой схемы состоит в том, что схема проста, но недостатком является то, что точность регулирования напряжения невысока, и каждое биение и смещение реле вызовут мгновенное прерывание источника питания и искровые помехи.

Это вызовет серьезные помехи при чтении и записи компьютерного оборудования, а также может вызвать неправильные сигналы в компьютере. В тяжелых случаях жесткий диск будет поврежден.

Современные высококачественные малые стабилизаторы напряжения в основном используют метод угольных щеток с приводом от двигателя для стабилизации напряжения. Этот тип стабилизатора напряжения имеет небольшие помехи для электрического оборудования, а точность регулирования напряжения относительно высока. Это продукт без искажения формы волны.

Анализ принципиальной схемы стабилизатора напряжения

Схема стабилизации напряжения источника питания состоит из силового трансформатора T3, выпрямительных диодов VDl-VD4, конденсатора фильтра Cl-C3 и трехконтактных интегральных схем стабилизации напряжения IC1 и IC2.

Схема сравнения входов состоит из резистора Rl, потенциометра RPl-RP9, конденсатора C6-Cl4 и Nl-Ng внутри интегральной схемы операционного усилителя lC3-1C5.

Цепь управления кодом состоит из интегральной схемы без затвора IC6-1C8, интегральной схемы затвора и без затвора IC9, глянцевого диода IC10 VD8-VDl5, резистора R4-R11, конденсатора Cl5-C22.

Выходная цепь компенсации состоит из интегральных схем электронного переключателя ICl (Sl-S4), IC17 (S5-S8), тиристоров VTl-VT8, главного компенсационного трансформатора Tl, вспомогательного компенсационного трансформатора T2, контактора переменного тока KM, вольтметра PV и амперметра. PA.

Схема защиты от перенапряжения / пониженного напряжения состоит из незатворного D9 в IC7, диодов VD5-VD7, резисторов R2, R3, транзистора V и реле K.

Относительно простой стабилизатор напряжения 220 В переменного тока может использовать электронное обнаружение и механическую регулировку.Сравнивая понижающее и выпрямленное напряжение постоянного тока 220 В со стандартным напряжением, полученным интегральной схемой стабилизатора напряжения, можно обнаружить, что при низком напряжении источника питания 220 В выпрямленное выходное напряжение постоянного тока относительно низкое по сравнению со стандартным. Напряжение. Если схема триодного переключателя приводится в действие для срабатывания реле, контакт реле заставляет регулирующий двигатель вращаться вперед. Затем однофазный трансформатор регулирования напряжения, приводимый в действие регулирующим двигателем, увеличивает напряжение источника питания до тех пор, пока разница между выходным напряжением постоянного тока схемы обнаружения и стандартным напряжением не станет меньше, чем напряжение проводимости схемы переключения.Реле отпускается, и наддув закончен. Если 220 В слишком высокое, должна быть включена соответствующая цепь переключателя, чтобы двигатель регулирования реверсировал и понижал скорость.

Этот метод предназначен в основном для обнаружения цепи управления приводом. Используя различные регуляторы мощности или трансформаторы, можно просто изменить мощность регулятора. Однако точность этого метода стабилизации напряжения невысока и может достигать примерно 5%.

T1 — понижающий трансформатор переменного тока.Если вы хотите снизить напряжение 220 В переменного тока до более низкого напряжения, для этого выходного линейно регулируемого источника питания 12 В достаточно установить вторичное напряжение T1 на 14 В ~ 15 В.

Выпрямительный мост, состоящий из D1, D2, D3 и D4, может преобразовывать выходное переменное напряжение вторичной обмотки T1 в однонаправленное пульсирующее напряжение.

C1 и C2 — конденсаторы входного фильтра, которые могут преобразовывать однонаправленное пульсирующее напряжение в напряжение постоянного тока с небольшой пульсацией. Помимо пульсаций, это постоянное напряжение также будет изменяться с колебаниями напряжения сети, которое нестабильно.

C3 и C4 являются конденсаторами выходного фильтра, их основная функция — подавлять автоколебания, которые может создавать 7812, чтобы обеспечить его нормальную работу.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *