Стабилизатор на биполярном транзисторе – Простой способ стабилизации больших токов с малыми потерями на измерительном элементе

Содержание

Параллельный параметрический стабилизатор на стабилитроне

Рис. 2. Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Как правило, регулирующим элементом ИМС стабилизаторов напряжения является биполярный либо полевой транзистор. Если этот транзистор все время работает в активном режиме, то схему называют линейным (непрерывным) стабилизатором напряжения (JICH), а если регулирующий транзистор работает в ключевом режиме — импульсным (ИСН).

Рис. 3. Последовательный стабилизатор на биполярном транзисторе

Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входуэмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремнияприблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Рис. 4. Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz (напряжение стабилизации стабилитрона) должна быть выбрана 

меньше, чем Uout.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Военно-техническая подготовка

1.8. Стабилизаторы

Стабилизатор напряжения — электромеханическое или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.


1.8.1. Стабилизатор постоянного тока.

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением:

Последовательный : регулирующий элемент включен последовательно с нагрузкой.

Параллельный : регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

Параметрический : в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.

Компенсационный : имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.

Параллельный параметрический стабилизатор на стабилитроне

Рис 1.

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Рис 2.

Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Рис 3.

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz (напряжение стабилизации стабилитрона) должна быть выбрана

меньше , чем Uout.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ ( G openloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

Понижающий стабилизатор : выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.

Повышающий стабилизатор : выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.

Повышающе-понижающий стабилизатор : выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.

Инвертирующий стабилизатор : выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.


1.8.2. Стабилизатор переменного тока.

Ферромагнитные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Электромеханические стабилизаторы напряжения

Регулировка напряжения в электромеханических (электродинамических) стабилизаторах осуществляется автоматически, путём перемещения токосъёмного узла по обмотке трансформатора, что обеспечивает плавное изменение коэффициента его трансформации до достижения заданной величины выходного напряжения.

Это единственный тип стабилизаторов, обеспечивающий плавную регулировку напряжения не внося при этом искажений в форму синусоиды. Стабилизаторы этого типа обладают достаточно высокой точностью удержания выходного напряжения (2..3 %) и обеспечивают наиболее комфортный режим питания бытовой техники. Они успешно используются как в быту так и на производствах.

Однако, существует несколько ограничений области их применения: первое — невозможность работы при отрицательных температурах (в силу наличия открытых токоведущих поверхностей и опасности короткого замыкания из-за выпадения конденсата). Кроме этого, электромеханические стабилизаторы обладают сравнительно узким диапазоном входных напряжений (как правило, 150—260 Вольт) и невысокой скоростью регулировки, ограниченной скоростью перемещения сервоприводом токосъёмного узла.

В качестве токосъёмного элемента используются графитовые щётки или ролики с графитовым напылением. Роликовый токосъёмный узел менее капризен по отношению к запылению, однако требует проведения профилактических работ направленных на предотвращение заклинивания, поэтому такая конструкция используется, как правило, в промышленных стабилизаторах, а щёточный узел устанавливается в бытовых моделях. Скорость износа токосъёмных элементов обоих типов примерно одинакова и, в зависимости от интенсивности использования, через 7-11 лет требуется его замена.

Электронные стабилизаторы напряжения

Делятся на ступенчатые и непрерывного действия. Электронные ступенчатые стабилизаторы регулируют напряжение, переключая обмотки специального трансформатора посредством электронных ключей. Ключи управляются процессором по специальной программе.

В настоящее время существует два типа электронных стабилизаторов напряжения: с полупроводниковыми и релейными ключами. Последние было бы правильнее отнести к электронно-механическим, так как реле является электромеханическим элементом.

Стабилизаторы имеют большое быстродействие, поэтому применяются в комплексе с дорогостоящим оборудованием, требующем защиты от всех аномалий сети. Их также используют в жилых домах и на производствах. К преимуществам электронных стабилизаторов напряжения можно отнести их возможность работы при отрицательных температурах окружающей среды.

Электронные стабилизаторы непрерывного действия регулируют напряжение, изменяя либо сопротивление регулирующего элемента, как правило — транзистора, либо включая и выключая регулирующий элемент с высокой частотой (десятки килогерц), и управляя временем включенного и выключенного состояния регулирующего элемента (чаще всего IGBT транзистор). Такой метод регулирования называется ШИМ (широтно-импульсная модуляция). Стабилизаторы, использующие высокочастотную ШИМ, на данный момент являются наиболее совершенной реализацией стабилизатора переменного напряжения, и при правильном исполнении ближе всего к понятию «идеальный стабилизатор». В отличие от стабилизаторов инверторного типа, в них не происходит предварительного преобразования переменного напряжения в постоянное, а преобразованию подвергается непосредственно входное переменное напряжение, что обеспечивает им высокий КПД и приемлемую стоимость.

О стабилизаторах напряжения на транзисторах: схема правильного стабилитрона

Для работы электронной аппаратуры необходимо напряжение, обладающие точно заданными характеристиками. Но в промышленной сети напряжение постоянно меняется. Его уровень зависит от подключенных в систему предприятий, зданий и оборудования. Функционирование любого прибора напрямую зависит от напряжения, колебания данного параметра влияют на качество работы, например, при перепадах приемник может начать хрипеть или гудеть. Для того чтобы решить данную проблему, используют стабилизаторы на транзисторе.

Стабилизатор импульсного типа

Стабилизатор импульсного типа

Принцип работы стабилизатора

Одна часть этого оборудования отвечает за сравнение с эталонным значением, а другая – управляет параметрами. Если входящий параметр оказывается больше требуемого показателя, то система снижает его. Если же значение меньше, то характеристики повышаются. По этой же схеме регулируется вода в кране: когда поток меньше, чем надо, вентиль закручивается и наоборот.

Принцип стабилизации применяется на самом разном оборудовании, начиная от утюгов и заканчивая космической отраслью. Разница заключается только в технологии контроля и управления показателями.

Важно! Согласно существующему ГОСТу, напряжение в сети может изменяться в пределах до 5%, а в реальных условиях и 10% от указанного значения. Для качественного функционирования оборудования этот показатель не может превышать 0,1%.

Самая простая схема стабилизатора напряжения содержит всего лишь 2 элемента:

  1. источник опорного напряжения – стабилитрон VD1;
  2. балластный резистор R1.

Стабилитроном называют диод, который при определенных значениях напряжения стабилизации (обратно приложенного) начинает пропускать ток в обратном направлении. Если напряжение растет, при уменьшении внутреннего сопротивления стабилитрон продолжает удерживать напряжение в заданном значении. Принцип работы можно увидеть на схеме стабилизатора напряжения.

Схема и график работы стабилизатора

Схема и график работы стабилизатора

Если обратное напряжение растет, то стабилитрон оказывает сопротивление, а, значит, ток на выходе минимален. При достижении заданного параметра ток начинает расти. Затем, доходя до точки 1 на вольтамперной характеристике, напряжение перестает расти, несмотря на повышение показателей тока. На p-n переходе напряжение увеличивается только на резисторе, стабилитрон работает в заданном режиме. Конечно, любой стабилитрон может удерживать напряжение только в заданном значении, и после повышения показателей до точки 2 элемент может начать греться и выйти из строя. Расстояние между точками 1 и 2 называется рабочим участком.

Такой простой метод стабилизации подходит только для сетей, в которых применяют малые токи. Для того чтобы повысить нагрузочную способность, применяется эмиттерный повторитель в виде биполярного транзистора. Данный элемент повторяет приложенное напряжение. За счет этого нагрузка может быть на порядок больше. Можно использовать схему из нескольких транзисторов, тогда нагрузка еще сильнее увеличится.

При создании таких схем важно учесть, что из-за падения на участке p-n перехода выходное напряжение уменьшится. Поэтому необходимо выбирать стабилитрон с учетом потерь на переходах на транзисторах. На рисунке в схеме с двумя транзисторами также можно увидеть еще один резистор. Его используют для ликвидации реактивной составляющей второго транзистора.

Два простых стабилизатора

Два простых стабилизатора

Принципы расчета характеристик

Основными показателями стабилизатора являются максимальное выходное напряжение Uвых, минимальное выходное напряжение Uвых1 и максимальный ток Imax. Допустим, что эти величины составляют 14 Вольт, 1,5 Вольта и 1 Ампер, соответственно. Вычисляем входное напряжение по формуле:

Uвх=Uвых+ 3, где 3 – это коэффициент падения напряжение на переходе коллектор – эмиттер.

Обратите внимание! Паспортные параметры транзистора должны обеспечивать функционирование в полуоткрытом режиме и выдерживать разницу напряжений, возникающую между выходным напряжением и выходными данными.

Далее следует рассчитать максимальную мощность Pmax, которую будет рассеивать транзистор:

  • Pmax=1.3(Uвх-Uвых)Imax=1.3(17-14)=3.9 Вт;
  • Pmax=1.3(Uвх-Uвых1)Imax=1.3(17-1.5)=20,15 Вт.

Как видно, большее значение получается при расчете для минимального входного напряжения, и эта величина будет правильной, для того чтобы подобрать транзистор по справочнику. У нас это будет КТ817.

Важно! Значение напряжение должно быть больше входного значения, а ток – больше заданного максимального значения. Иначе элемент будет работать на пределе возможностей и быстро выйдет из строя.

Схема на полевом транзисторе

Схема на полевом транзисторе

Теперь нужно учесть Iб max ток базы самого транзистора:

Iб max=Imax/h31Э min, где h31Э min – коэффициент передачи тока (в нашем случае эта величина равна 25).

Iб max=1/25=0.04 А.

Зная эти показатели, можно определить характеристики стабилизатора напряжения на транзисторе. Стабилизированное напряжение равно 14 вольтам, а ток по формуле – 0.04 А. По этим показателям подходит Д814Д, но в этом случае ток базы будет составлять 0,005 А, то есть надо понизить выходные значение. Для этого используется второй транзистор (КТ315). За счет его использования нагрузка уменьшится на величину максимального коэффициента передачи тока второго транзистора (у нас h31Э=30). Таким образом, ток будет составлять 0,04/30=0,00133 мА.

Теперь определим показатели для Rб балластного резистора:

Rб=(Uвх-Uст)/(Iб max+Iст min)=(17-14)/(0,00133+0,005) = 474 Ом, где:

  • Iст min – ток стабилизации;
  • Uст – напряжение стабилизации стабилитрона.

Затем считаем балластную мощность:

Prб=(Uвх-Uст)2/Rб=(17-14)2/473=0,02 Вт.

Параметры дополнительного резистора рассчитывают редко, при выборе этой детали нужно учесть только одно, что его значение тока должно быть меньше максимально нагрузочного. У нас используется резистор с сопротивлением в 1 Ом.

Компенсационные стабилизаторы

Рассмотренные выше схемы представляют собой параметрические стабилизаторы, то есть устройства, работающие на стабилитроне. Более точными считаются компенсационные схемы, где присутствует обратная связь, и уже стабилизирующую составляющую сравнивают с эталонными значениями. Основным преимуществом таких устройств является точное выходное напряжение, на которое практически не оказывает влияния ток нагрузки, тогда, как у параметрических систем именно нагрузка влияет на всю работу транзисторного стабилизатора.

Схема стабилизатора компенсационного типа может быть последовательной и параллельной. В первом варианте регулирующими элементами обычно являются транзисторы.

Компенсационные стабилизаторы последовательного типа

Компенсационные стабилизаторы последовательного типа

На схеме:

  • Р – регулирующий элемент;
  • И – источник опорного (эталонного) напряжения;
  • ЭС – элемент сравнения;
  • У – усилитель постоянного тока.

Выходное напряжение для последовательного стабилизатора определяется по вышеуказанной формуле, где R4’ и R4’’, соответственно, верхняя и нижняя величина резистора R4. Транзистор VT1 выполняет роль регулирующего элемента, а VT2 стабилизирует, то есть сравнивает и при необходимости усиливает показатели. Источником опорного напряжения является стабилитрон VD1. Между базой и эмиттером VT2 напряжение определяется как разность UОП и UРЕГ. Если на нагрузке идет рост напряжения, то UРЕГ увеличивает и эмиттерные, и коллекторные токи VT2. Далее по схеме коллекторный ток идет на резистор R1, что вызывает падание напряжения. Это напряжение обратно по полярности для эмиттерной части VT1, поэтому коллекторные и эмиттерные токи данного транзистора падают, а номинальное напряжение на нагрузке восстанавливается.

Для плавной регулировки на выходной цепи стабилизатора используется делитель напряжения, состоящий из R3, R4, R5. Ступенчатое регулирование происходит с помощью опорного напряжения стабилитрона.

Типовая схема компенсационного стабилизатора параллельного типа

Типовая схема компенсационного стабилизатора параллельного типа

В компенсационном стабилизаторе напряжения параллельного типа при возникновении отклонения значения от номинального появляется сигнал рассогласования, который составляет разницу между опорным и выходным напряжением. Далее этот сигнал усиливается на регулирующей части, которая стоит параллельно нагрузке. За счет этого ток на регулирующем элементе изменяется, напряжение на резисторе R1 падает, а на выходе сохраняются постоянные показатели:

U1=U0–IBXR1=const.

Важно! КПД стабилизаторов параллельного типа небольшое, поэтому подобные схемы используются довольно редко.

Импульсные стабилизаторы

Кроме компенсационных и параметрических стабилизаторов, существуют импульсные схемы, в которых коэффициент полезного действия самый большой, даже если диапазон входных напряжений достаточно большой. Работа этих устройств основана на том, что регулирующий элемент отключается и выключается в импульсном режиме. Общая схема стабилизатора состоит из ключа, накопителя энергии и цепи управления. Накопитель и ключ вместе представляют силовую часть, вместе с цепью они составляют контур регулирования.

Импульсный стабилизатор напряжения можно собрать на основе 3 транзисторов. При этом VT1, VT2 составляют ключевой регулирующий элемент, а VT3 необходим для усиления сигнала рассогласования.

Схема импульсного стабилизатора

Схема импульсного стабилизатора

Алгоритм работы следующий:

  1. С коллектора VT2 через конденсатор С2 на базу VT1 поступает напряжение положительной обратной связи;
  2. VT2 при насыщении током от резистора R2 открывается;
  3. На коллекторно-эмиттерном переходе при насыщенном VT1 меньше, чем напряжение для открывания VT2, значит, когда VT1 открыт, VT2 закрытый;
  4. Усилитель на VT3 через эмиттер подключен к стабилитрону VD2, а база – к делителю выходного напряжения R5, R6, R7;
  5. Таким образом, VT1 управляет закрыванием и открыванием VT2 по сигналу от VT3;
  6. Когда VT2 открыт, происходит накопление энергии в дросселе, после закрывания энергия идет в нагрузку.

Каждая из представленных схем позволит собрать простейшей вариант стабилизаторов.

Видео

Оцените статью:

Стабилизатор тока на транзисторе

Содержание:
  1. Простой стабилизатор тока на транзисторе
  2. Стабилизатор тока на полевом транзисторе схема
  3. Сборка стабилизатора тока из двух транзисторов

В процессе работы электрических сетей постоянно возникает необходимость в стабилизации тока. Данная процедура осуществляется с помощью специальных приборов, в число которых входит стабилизатор тока на транзисторе. Они широко применяются в различных электронных устройствах, а также при зарядке аккумуляторов всех типов. Стабилизаторы используются в интегральных микросхемах в качестве генераторов тока, создавая преобразовательные и усилительные каскады.

Обычные стабилизаторы тока обладают большим выходным сопротивлением, исключая тем самым влияние факторов сопротивления нагрузки и входного напряжения на величину выходного тока. Основным недостатком этих устройств является необходимость использования источника питания с высоким напряжением. В этом случае стабильность тока достигается применением резисторов с большим сопротивлением. Поэтому мощность, выделяемая резистором (P = I2 x R) при больших значениях токов может стать неприемлемой для нормальной работы системы. Гораздо лучше зарекомендовали себя стабилизаторы тока на транзисторах, которые выполняют свои функции, независимо от величины входного напряжения.


Простой стабилизатор тока на транзисторе

Наиболее простыми устройствами считаются диодные стабилизаторы. Благодаря им, электрические схемы значительно упрощаются, что приводит к снижению общей стоимости приборов. Работа схем становится более устойчивой и надежной. Эти качества сделали диодные стабилизаторы просто незаменимыми в обеспечении питания светодиодов. Диапазон напряжений, в котором они могут нормально функционировать, составляет 1,8-100 вольт. За счет этого становится возможным преодолевать импульсные и продолжительные изменения напряжения.

Поэтому свечение светодиодов может быть разной яркости и оттенков, в зависимости от тока, протекающего в цепи. Несколько таких светильников, включенных последовательно, работают в нормальном режиме при участии всего лишь одного диодного стабилизатора. Данная схема может быть легко преобразована, в зависимости от количества светодиодов и питающего напряжения. Необходимый ток задается стабилизаторами, включенными параллельно в светодиодную цепь.

Такие стабилизаторы установлены во многих конструкциях светодиодных светильников, в том числе применяется и стабилизатор тока на биполярном транзисторе. Это связано со свойствами светодиодов, обладающих нелинейной вольтамперной характеристикой. То есть, когда на светодиоде изменяется напряжение, изменение тока происходит непропорционально. При постепенном увеличении напряжения, вначале наблюдается очень медленное возрастание тока и свечение светодиода отсутствует. После достижения напряжением порогового значения свет появляется и одновременно наблюдается очень быстрый рост тока.

Если напряжение продолжает увеличиваться, наступает критическое возрастание тока, что приводит к сгоранию светодиода. Поэтому значение порогового напряжения всегда указывается в числе характеристик светодиодных источников света. Светодиоды повышенной мощности выделяют много тепла и должны подключаться к специальным теплоотводам.

В связи с широким разбросом порогового напряжения, все светодиоды должны подключаться к источнику питания через стабилизатор. Даже у однотипных светодиодов может быть разное прямое напряжение. Следовательно, при параллельном подключении двух источников света, через них будет проходить разный ток. Отличие может быть настолько велико, что один из светодиодов раньше времени выйдет из строя или сразу сгорит.

С помощью стабилизатора для светодиода устанавливается значение заданного тока, независимо от напряжения, приложенного к схеме. Когда напряжение превышает пороговый уровень, ток, достигнув нужного значения, дальше уже не изменяется. При дальнейшем росте напряжения, оно остается неизменным на светодиоде, а возрастает лишь на стабилизаторе.


Стабилизатор тока на полевом транзисторе схема

Скачки сетевого напряжения очень часто приводят к выходу из строя электроприборов, устройств и прочего оборудования. Для того чтобы предупредить возникновение подобных ситуаций применяются различные стабилизирующие устройства. Среди них широкой популярностью пользуются стабилизаторы тока на полевых транзисторах, обеспечивающие стабильную работу электрооборудования. В быту часто используется стабилизатор постоянного тока своими руками, схема которого позволяет решать основные задачи.

Основной функцией данных устройств является компенсация перепадов и скачков напряжения в сети. Стабилизаторы автоматически поддерживают точно заданные параметры тока. Помимо скачков тока, компенсируется изменение мощности нагрузки и температуры окружающей среды. Например, если мощность, потребляемая оборудованием, возрастет, то соответственно увеличится и потребляемый ток. Как правило это приводит к падению напряжения на сопротивлении проводов и источника тока.

Среди многих стабилизирующих устройств, наиболее надежной считается схема стабилизатора тока на полевике, в которой транзистор подключается последовательно с сопротивлением нагрузки. Это вызывает лишь незначительные изменения нагрузочного тока, тогда как значение входного напряжения постоянно меняется.

Для того чтобы знать, как работают такие стабилизаторы, нужно знать устройство и принцип действия полевых транзисторов. Данные элементы управляются электрическим полем, в связи с этим и возникло их название. Само электрическое поле возникает под действием приложенного напряжения, следовательно, все полевые транзисторы являются полупроводниковыми приборами, работающими под управлением напряжения, открывающего каналы этих устройств.

Полевой транзистор состоит из трех электродов – истока, стока и затвора. Вход заряженных частиц происходит через исток, а выход – через сток. Закрытие или открытие потока частиц осуществляется с помощью затвора, выполняющего функции крана. Заряженные частицы будут течь лишь при условии напряжения, которое должно быть приложено между стоком и истоком. Если напряжение отсутствует, то и тока в канале не будет. Следовательно, чем выше подаваемое напряжение, тем больше открывается кран. За счет этого ток в канале между стоком-истоком увеличивается, а сопротивление канала – уменьшается. Для источников питания предусмотрена работа полевых транзисторов в режиме ключа, обеспечивающая полное открытие или закрытие канала.

Данные свойства позволяют сделать расчет стабилизатора тока на транзисторе, обеспечивающего поддержание токовых параметров на определенном уровне. Использование полевых транзисторов определяет и принцип действия такого стабилизатора. Всем известно, что каждый идеальный источник тока обладает ЭДС, стремящейся к бесконечности и также бесконечно большим внутренним сопротивлением. Это позволяет получить ток с необходимыми параметрами, вне зависимости от сопротивления нагрузки.

В таком идеальном источнике возникает ток, который остается на одном и том же уровне, несмотря на изменения сопротивления нагрузки. Поддержание тока на неизменном уровне требует постоянного изменения величины ЭДС в диапазоне свыше нуля и до бесконечности. То есть сопротивление нагрузки и ЭДС должны изменяться таким образом, чтобы ток при этом стабильно оставался на том же уровне.

Однако на практике такая идеальная микросхема стабилизатора тока не сможет обеспечить всеми необходимыми качествами. Это связано с тем, что диапазон напряжения на нагрузке сильно ограничен и не поддерживает требуемого уровня тока. В реальных условиях источники тока и напряжения используются совместно. В качестве примера можно привести обычную сеть, напряжением 220 вольт, а также другие источники в виде аккумуляторов, генераторов, блоков питания и других устройств, вырабатывающих электроэнергию. К каждому из них могут последовательно подключаться стабилизаторы тока на полевых транзисторах. Выходы этих устройств по сути являются источниками тока с нужными параметрами.

Таким образом, зависимость нагрузки и выходных характеристик полевого транзистора оказывает влияние на значение тока при минимальном и максимальном значении входного напряжения. Однако токовые изменения незначительны и не оказывают отрицательного влияния на потребителей.


Сборка стабилизатора тока из двух транзисторов

Стабилизатор напряжения на полевом транзисторе

Простая схема для регулировки и стабилизации напряжения показана на рисунке. Такую схему можно выполнить даже неопытному в электронике любителю. На вход подается 50 вольт, при этом на выходе получается 15,7 В.

Схема стабилизатора.

Главной деталью этого прибора стал полевой транзистор. В его качестве можно применять IRLZ 24 / 32 / 44 и аналогичные ему полупроводники. Чаще всего их изготавливают в корпусе ТО – 220 и D2 Pak. Его стоимость составляет менее одного доллара. Этот мощный полевик имеет 3 вывода. Он имеет внутреннее строение металл–изолятор–полупроводник.

Стабилизатор на микросхеме ТL 431 в корпусе ТО – 92 обеспечивает настраивание величины выходного напряжения. Мощный полевой транзистор мы оставили на охлаждающем радиаторе и проводами припаяли к монтажной плате.

Напряжение на входе для такой схемы 6-50 В. На выходе получаем от 3 до 27 В, с возможностью регулировки переменным сопротивлением на 33 кОм. Ток выхода большой, и составляет величину до 10 А, зависит от радиатора.

Выравнивающие конденсаторы С1, С2 емкостью от 10 до 22 мкФ, С2 – 4,7 мкФ. Без таких деталей схема будет функционировать, однако не с таким качеством, как необходимо. Нельзя забывать про допустимое напряжение электролитических конденсаторов, которые должны быть установлены на выходе и входе. Мы взяли емкости, которые выдерживают 50 В.

Такой стабилизатор способен рассеивать мощность не выше 50 Вт. Полевик необходимо монтировать на радиатор охлаждения. Его площадь целесообразно выполнять не меньше 200 см2. При установке полевика на радиатор нужно промазать место касания термопастой, для лучшего теплоотвода.

Можно применять переменный резистор на 33 кОм типа WH 06-1. Такие резисторы имеют возможность точной настройки сопротивления. Они бывают импортного и отечественного производства.

Для удобства монтажа на плату припаивают 2 колодки, вместо проводов. Так как провода быстро отрываются.

Вид платы дискретных компонентов и переменного сопротивления вида СП 5-2.

Стабильность напряжения в результате получается неплохой, а напряжение выхода колеблется на несколько долей вольта долгое время. Монтажная плата получается компактных размеров и удобна в работе. Дорожки платы окрашены зеленым цапонлаком.

Мощный стабилизатор на полевике

Рассмотрим сборку схемы стабилизатора, предназначенного для блока питания большой мощности. Здесь улучшены свойства прибора с помощью мощного электронного ключа в виде полевого транзистора.

При разработке мощных силовых стабилизаторов любители чаще всего применяют специальные серии микросхем 142, и ей подобные, которые усилены несколькими транзисторами, подключенными по параллельной схеме. Поэтому получается силовой стабилизатор.

Схема такой модели прибора изображена на рисунке. В нем использован мощный полевик IRLR 2905. Он служит для переключения, однако в этой схеме он применен в линейном режиме. Полупроводник имеет незначительное сопротивление и обеспечивает ток до 30 ампер при нагревании до 100 градусов. Он нуждается в напряжении на затворе до 3 вольт. Его мощность достигает 110 ватт.

Полевиком управляет микросхема TL 431. Стабилизатор имеет следующий принцип действия. При подсоединении трансформатора на вторичной обмотке возникает переменное напряжение 13 вольт, которое выпрямляется выпрямительным мостом. На выравнивающем конденсаторе значительной емкости появляется постоянное напряжение 16 вольт.

Это напряжение проходит на сток полевого транзистора и по сопротивлению R1 идет на затвор, при этом открывая транзистор. Часть напряжения на выходе через делитель попадает на микросхему, при этом замыкая цепь ООС. Напряжение прибора повышается до тех пор, пока входное напряжение микросхемы не дойдет границы 2,5 вольт. В это время микросхема открывается, уменьшая напряжение затвора полевика, то есть, немного закрывая его, и прибор работает в режиме стабилизации. Емкость С3 делает быстрее выход стабилизатора на номинальный режим.

Величина напряжения выхода устанавливается 2,5-30 вольт, путем выбора переменным сопротивлением R2, его величина может меняться в больших пределах. Емкости С1, С2, С4 дают возможность стабильному действию стабилизатора.

Для такого прибора наименьшее падение напряжения на транзисторе составляет до 3 вольт, хотя он способен работать при напряжении около нуля. Такой недостаток возникает поступлением напряжения на затвор. При малом падении напряжения полупроводник не будет открываться, так как на затворе должно быть плюсовое напряжение по отношению к истоку.

Для снижения падения напряжения цепь затвора рекомендуется подключать от отдельного выпрямителя на 5 вольт выше, чем напряжение выхода прибора.

Хорошие результаты можно получить при подключении диода VD 2 к мосту выпрямления. При этом напряжение на конденсаторе С5 повысится, так как падение напряжения на VD 2 станет ниже, чем на диодах выпрямителя. Для плавного регулирования напряжения выхода постоянное сопротивление R2 нужно заменить переменным резистором.

Величину выходного напряжения определяют по формуле: U вых = 2,5 (1+R2 / R3). Если применить транзистор IRF 840, то наименьшее значение напряжения управления на затворе станет 5 вольт. Емкости выбирают танталовые малогабаритные, сопротивления – МЛТ, С2, Р1. Выпрямительный диод с небольшим падением напряжения. Свойства трансформатора, моста выпрямления и емкости С1 подбирают по нужному напряжению выхода и тока.

Полевик рассчитан на значительные токи и мощность, для этого необходим хороший теплоотвод. Транзистор служит для монтажа на радиатор путем пайки с промежуточной пластиной из меди. К ней припаивают транзистор с остальными деталями. После монтажа пластину размещают на радиаторе. Для этого пайка не нужна, так как пластина имеет значительную площадь контакта с радиатором.

Если использовать для наружной установки микросхему П_431 С, сопротивления Р1, и чип-конденсаторы, то их располагают на печатной плате из текстолита. Плату паяют к транзистору. Настройка прибора сводится к монтажу нужного значения напряжения. Необходимо проконтролировать прибор и проверить его, имеется ли самовозбуждение на всех режимах.

Параметрический стабилизатор напряжения на транзисторе — radiohlam.ru

Итак, справа изображена схема простейшего транзисторного стабилизатора напряжения.

Обозначения:

  1. Iк — коллекторный ток транзистора
  2. Iн — ток нагрузки
  3. Iб — ток базы транзистора
  4. IR — ток через балластный резистор
  5. Uвх — входное напряжение
  6. Uвых — выходное напряжение (падение напряжения на нагрузке)
  7. Uст — падение напряжения на стабилитроне
  8. Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора

Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне? Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках (стабилитрона и p-n перехода база-эмиттер транзистора) участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов.

Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора. Поскольку падение напряжения на стабилитроне слабо зависит от тока (на рабочем участке оно равно напряжению стабилизации), падение напряжения на прямосмещённом p-n переходе тоже слабо зависит от тока (для кремниевого транзистора его можно взять примерно таким же, как для обычного кремниевого диода — примерно 0,6 Вольт), то получается, что и выходное напряжение тоже постоянно.

Теперь добавим немного математики.

С напряжением на нагрузке (выходным напряжением) уже всё понятно: Uвых=Uст-Uбэ, давайте рассчитаем R0 и область нормальной работы стабилизатора. Но прежде нарисуем рядом два рисуночка — кусок схемы нашего стабилизатора и кусок простейшего параметрического стабилизатора на стабилитроне:

Похоже, не правда ли? Более того, рассуждения и выводимые из них соотношения для расчёта R0 и области нормальной работы тоже очень похожи.

Уравнение, описывающее токи и напряжения для выдранного выше куска схемы нашего стабилизатора:

Uвх=Uст+IRR0, учитывая что IR=Iст+Iб, получим

Uвх=Uст+(Iст+Iб)R0   (1)

Для нормальной работы стабилизатора (чтобы напряжение на стабилитроне всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе базы транзистора. Зная это, найдём сопротивление балластного резистора:

R0=(Uвх min-Uст min)/(Iб max+Iст min)   (2)

Если учесть, что в нашем случае, когда транзистор включен по схеме с общим коллектором, ток базы связан с током эмиттера соотношением Iэ=Iб(h21Э+1), ток эмиттера равен току нагрузки (потому что в цепь эмиттера же у нас нагрузка включена), а напряжение на стабилитроне в рабочем режиме меняется незначительно (вместо Uст min возьмём просто Uст), то получим, что

R0=(Uвх min-Uст)/(Iн max/(h21Э+1)+Iст min)   (3)

h21Э+1 — это коэффициент усиления по току для схемы с общим коллектором (h21K), но поскольку h21Э обычно достаточно большой, то нередко слагаемое «+1» выкидывают и считают, что h21К=h21Э, тогда формула (3) становится чуть проще:

R0=(Uвх min-Uст)/(Iн max/h21Э+Iст min)

Максимальный ток через стабилитрон будет течь при минимальном токе базы транзистора и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Или, по другому:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно (первое слагаемое в правой части можно считать равным нулю), а также то, что Iн=Iэ=Iбh21Э («+1» — выкинем), тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:

(4)

Из этой формулы хорошо видно преимущество такого транзисторного стабилизатора над параметрическим стабилизатором на стабилитроне — при прочих равных параметрах у транзисторного стабилизатора выходной ток может меняться в более широких пределах.

Для примера опять возьмём стабилитрон КС147А (Iст=3..53мА), и прикинем на какой максимальный ток мы сможем рассчитывать при понижении напряжения с 6..10В до 5В при условии, что выходной ток может меняться от нуля до Imax. Транзистор возьмём КТ815А (h21Э=40). Решив совместно систему уравнений (3), (4), получим R0 около 110 Ом и максимальный ток порядка 550 мА.

Однако стоит заметить, что нестабильность выходного напряжения в данном случае будет ещё хуже, поскольку теперь к нестабильности напряжения на стабилитроне добавится ещё нестабильность падения напряжения на p-n переходе транзистора. Плюс мы ещё не учли, что выходное напряжение будет меньше, чем на стабилитроне на величину падения напряжения на p-n переходе, так что по хорошему нам бы надо было взять стабилитрон не на 4,7В, а на 5,1 или даже на 5,6 Вольт (я специально взял для примера такой же стабилитрон, как и в статье про параметрический стабилизатор на стабилитроне, чтобы нагляднее было видно насколько при одном и том же стабилитроне будет отличаться ток нагрузки).

Собственно, методы борьбы с нестабильностью здесь совершенно аналогичные — нужно как-то уменьшить нестабильность напряжения на стабилитроне. Для этого можно, как и в прошлый раз, взять более узкий рабочий участок ВАХ стабилитрона. Это естественно, также приведёт к сужению области нормальной работы (потому что диапазон изменения рабочего тока стабилитрона уменьшится), но в данном случае, когда область нормальной работы и так шире, чем у параметрического стабилизатора на стабилитроне (примерно в h21Э раз), мы вполне можем себе позволить отказаться от части диапазона выходного тока и/или части диапазона входного напряжения ради увеличения стабильности выходного напряжения.

Ещё больше увеличить область нормальной работы можно, если использовать два транзистора, включенные по схеме Дарлингтона или Шиклаи (рисунок слева). В этом случае h21Э будет гораздо больше.

Ну и самый писк — сделать компенсационный стабилизатор напряжения на операционном усилителе, поскольку коэффициент усиления ОУ не просто больше, а значительно, гораздо, во много — много раз больше, чем у любого транзистора (соответственно, мы сможем в ещё более узком диапазоне менять ток через стабилитрон, получим ещё меньшее изменение напряжения на нём и, как следствие, — ещё более стабильное выходное напряжение).

Есть другой вариант — можно вместо обычного стабилитрона взять интегральный стабилитрон, например, TL431. В этом случае, кроме значительно меньшей нестабильности, получим ещё и возможность регулирования выходного напряжения.

На закуску скажу, что лёгким движением руки такой стабилизатор напряжения можно превратить в стабилизатор тока (нужно просто стабилизировать напряжение не на нагрузке, а на специальном токоизмерительном резисторе).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *