Стабилитрон для чего нужен: Как работает стабилитрон и для чего он нужен?

Содержание

Как работает стабилитрон и для чего он нужен?

Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Содержание:

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.


Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Как работает стабилитрон и для чего он нужен?

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Как работает стабилитрон и для чего он нужен?

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Как работает стабилитрон и для чего он нужен?

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.

Как работает стабилитрон и для чего он нужен?
Как работает стабилитрон и для чего он нужен?

Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Как работает стабилитрон и для чего он нужен?

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Что такое транзистор-тестер
  • Как работает резистор
  • Как выпаивать радиодетали из плат
Опубликовано: 25.03.2020 Обновлено: 25.03.2020 нет комментариев
Стабилитрон: устройство, принцип действия, характеристики

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

принцип действия диода Зенера

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

Вольт-амперная характеристика

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Часть таблицы из ГОСТ 2.730-73

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.

Размеры УГО различных видов диодов, в том числе и стабилитронов по ГОСТ

Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Параметрический стабилизатор

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Часть таблицы из справочника по отечественным стабилитронами

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Параметрический стабилизатор из стабилитрона и транзистора — принципиальная схема

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Схема «стабилитрона» на транзисторе

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Схема подключения регулируемого стабилитрона TL431

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.

Советский Стабилитрон Д816БВнешний вид КС512А

Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Цветовая маркировка импортных стабилитронов

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Стабилитрон (Диод Зенера) — Принцип работы, ВАХ, сфера применения

Стабилитрон – это особый тип диодов, которые также называются зенеровскими. У этого типа есть главная особенность – при подаче напряжения, выше определенного номинала, увеличивается ток на выходе. Диод Зенера, который имеет и другое название – стабилитрон, имеет вид диода, который работает в режиме пробоя обратного смещения перехода. До этого, через него проходит небольшой ток, а утечка очень маленькая, что обуславливается большим сопротивлением.

При пробое, номинал тока моментально возрастает, так как его сопротивление в данный отрезок времени несколько долей Ом. В статье изложены принцип работы, где используются и какие функции они выполняют в современной радиоэлектронике. По теме диодов Зенера в статье представлены два интересных видеоролика и подробная научная статья бонусом для читателя.

Диоды Зенера или стабилитрона.

Диоды Зенера или стабилитрона.

Принцип работы стабилитрона

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993). Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах. Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током. На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г». Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

Стабилитрон.

Стабилитрон.

К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры. Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки. Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою.

Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния. Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м. Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитрон на схеме.

Стабилитрон на схеме.

Характеристики диода Зенера

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Что такое Диод Зенера

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах. Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Материал в тему: устройство подстроечного резистора.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем. Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Устройство полупроводникового диода.

Устройство полупроводникового диода.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так: Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод. Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза. Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Материал по теме: Что такое реле контроля.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр? Давайте возьмем стакан и будем наполнять его водой. Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику. Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине.

Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана. Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

 

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В: Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт. Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой.

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.  Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности. где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение. Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Обозначение стабилитрона.

Обозначение стабилитрона.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где:

  • Iпр– прямой ток, А
  • Uпр – прямое напряжение, В
  • Эти два параметра в стабилитроне не используются
  • Uобр– обратное напряжение, В
  • Uст– номинальное напряжение стабилизации, В
  • Iст – номинальный ток стабилизации, А
  • Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.
  • Imax– максимальный ток стабилитрона, А
  • Imin– минимальный ток стабилитрона, А
  • Iст, Imax, Imin– это  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником. Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Стабилитрон.

Стабилитрон.

Заключение

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

В статье разобраны все аспекты работы стабилитрона. Более детальную информацию можно узнать в статье Лабораторная работа по диодам Зенера. Более подробно об этом можно узнать, прочитав статью Что такое генератор Ганна.В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electricalschool.info

www.ruselectronic.com

www.ustroistvo-avtomobilya.ru

Предыдущая

ПолупроводникиЧто такое варикап?

Следующая

ПолупроводникиЧто такое фотодиод

Основные способы проверки исправности стабилитрона

Несколько работающих способов, как проверить стабилитрон на исправность. Технология проверки стабилитрона мультиметром, транзистор-тестером и другими приборами.

Полупроводниковый прибор, называемый стабилитроном, является основным элементом стабилизированного блока питания. Он обеспечивает постоянный уровень напряжения. Однако, во время работы, по тем или иным причинам он может выходить из строя. Специалисту, выполняющему ремонтные работы необходимо знать, как проверить стабилитрон на исправность, или как его еще называют —диод Зенера.

Содержание:

Общие сведения о принципе работы

Если вы не знаете как работает стабилитрон, то прежде чем прочитать текущую статью, прочтите опубликованную ранее — https://samelectrik.ru/kak-rabotaet-stabilitron-i-dlya-chego-on-nuzhen.html.

При достижении определенного напряжения, происходит лавинообразный пробой pn-перехода. Сопротивление перехода уменьшается. В результате напряжение на диоде остается постоянным. А ток, протекающий через полупроводник, увеличивается.

Принцип работы можно проиллюстрировать бочкой с водой, где имеется переливная трубка. Сколько бы мы воды ни наливали в бочку, уровень останется на постоянном уровне.

На нижеприведенном рисунке представлена схема работы на примере бочки с водой.


Этот элемент на схеме включается в обратном направлении. Т.е. плюс к минусу, а минус к плюсу. Если его включить в прямом направлении, то он будет работать как обыкновенный диод.

На рисунке выше представлена вольт-амперная характеристика, обозначение на схеме и его включение.

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры. Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность.

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.


Если диод пробит, то он будет звониться в обе стороны. При этом цешка может показывать незначительное отклонение сопротивления от 0. Если р-n переход находится в обрыве, то независимо от направления включения показания прибора будут отсутствовать.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Схема для проверки

Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:

  • Регулируемого блока питания. Постоянное напряжение должно изменяться плавно потенциометром от 0 до 50 В (чем выше максимальное напряжение тем больший диапазон элементов вы сможете проверить). Это позволит проверить практически любой маломощный стабилитрон.
  • Набор токоограничивающих резисторов. Обычно они имеют номинал 1 Ком, 2,2 Ком и 4,7 Ком, но их может быть и больше. Все зависит от напряжения и тока стабилизации.
  • Вольтметр, можно использовать обыкновенный мультиметр.
  • Колодка с подпружиненными контактами. Она должна иметь несколько ячеек, чтобы была возможность подключать полупроводники с различными корпусами.

Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.

Если на элементе есть маркировка, то полученные при измерении данные сверяют с таблицей в справочнике по параметрам.

Отметим, что стабилитроны могут выпускаться в различном исполнении. Например, КС162 производятся в керамических корпусах, КС133 в стеклянных, Д814 и Д818 в металлических.

Приведем характеристики некоторых распространенных отечественных стабилитронов:

  • КС133а напряжение стабилизации равно 3,3 В, выпускаются в стеклянном корпусе;
  • КС147а поддерживает напряжение на уровне 4,7 В, корпус стеклянный;
  • КС162а– 6,2 В, корпус из керамики;
  • КС175а – 7,5 В, имеет керамический корпус;
  • КС433а – 3,3 В, выпускают в металлическом корпусе;
  • КС515а – 15 В, корпус из металла;
  • КС524г – в керамическом корпусе с напряжением 24 В;
  • КС531в – 31 В, керамический корпус;
  • КС210б – напряжение стабилизации 10 В, корпус из керамики;
  • Д814а – 7-8,5 В, в металлическом корпусе;
  • Д818б – 9 В, металлический корпус;
  • Д817б – 68 В, в корпусе из металла.

Для проверки стабилитрона с большими напряжениями стабилизации применяется другая схема, которая представлена на рисунке снизу.

Проверка производится аналогично описанному способу. Похожие приборы выпускаются китайскими производителями.

Однако, можно собрать простейшую схему для проверки стабилитронов с применением мультиметра. Это хорошо показано на видео далее.

Следует предупредить, что показанную на видео электрическую схему применять не рекомендуется, т.к. она небезопасна и требует соблюдения техники безопасности. В противном случае можно получить травму (в лучшем случае).

Примеры из практики

Иногда стабилитроны проверяют на осциллографе, но для этого необходимо собрать специальную схему.

На рисунке снизу представлена схема приставки и ее подключение к осциллографу.

Однако проверка осциллографом должна производиться специалистом, который хорошо умеет им пользоваться.

Стабилитроны часто применяются как ограничивающие или предохранительные приборы. Например, в качестве защиты от перенапряжения на жестком диске, а, вернее, на его входе питания стоят стабилитроны или супрессоры на 6 и 14 вольт. Превышение напряжения приводит к их пробою или выгоранию. Для проверки просто выпаивают эти элементы, и проверяют жесткий диск без них. Если все включается, дело в стабилитронах. Их меняют на новые.

Еще один пример из практики ремонта скутеров, а именно после некорректной установки сигнализации (и не только) иногда выходит из строя стабилитрон, смонтированный в замке зажигания на «Хонда дио 34». Он понижает напряжение бортовой сети с 12 В до 10, после чего скутер можно завести. Если элемент вышел из строя — мопед не заведется. Полупроводник можно заменить аналогичным с напряжением на 3,9. Аналогичная ситуация и на других моделях скутеров от «хонды»: AF35, AF51 и т.д.

Вот мы и рассмотрели основные способы проверки стабилитронов, делитесь случаями из своей практики в комментариях и задавайте вопросы!

Опубликовано: 05.05.2020 Обновлено: 05.05.2020 нет комментариев

Для чего нужен стабилитрон: диод зенера

4.4. Стабилитроны

Стабилитроном называется полупроводниковый диод, вольт-амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт-амперной характеристики.

ВАХ стабилитрона имеет вид, представленный на рисунке 4.9.

Рис. 4.9. Вольт-амперная характеристика (а) и конструкция корпуса (б) стабилитрона

При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф ≈ 2÷50 Ом.

Основное назначение стабилитрона — стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом.

Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, — лавинный и туннельный пробой p-n перехода.

Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб стаб > 8 В.

Туннельный пробой в полупроводниках

Проанализируем более подробно механизмы туннельного и лавинного пробоя.

Рассмотрим зонную диаграмму диода с p-n переходом при обратном смещении при условии, что области эмиттера и базы диода легированы достаточно сильно (рис. 4.10).

Рис. 4.10. Зонная диаграмма диода на базе сильнолегированного p-n перехода при обратном смещении

Квантово-механическое рассмотрение туннельных переходов для электронов показывает, что в том случае, когда геометрическая ширина потенциального барьера сравнима с дебройлевской длиной волны электрона, возможны туннельные переходы электронов между заполненными и свободными состояниями, отделенными потенциальным барьером.

Форма потенциального барьера обусловлена полем p-n перехода. На рисунке 4.11 схематически изображен волновой пакет при туннелировании через потенциальный барьер треугольной формы.

Рис. 4.11. Схематическое изображение туннелирования волнового пакета через потенциальный барьер

Возьмем уравнение Шредингера Hψ = Eψ, где H — гамильтониан для свободного электрона , Е — энергия электрона.

Введем

Тогда снаружи от потенциального барьера уравнение Шредингера будет иметь вид:

Внутри потенциального барьера .

Решение для волновых функций электрона будем искать в следующем виде:

Используем условие непрерывности для волновой функции и ее производные ψ, dψ/dx на границах потенциального барьера, а также предположение об узком и глубоком потенциальном барьере (βW >> 1).

В этом случае для вероятности туннельного перехода Т получаем:

Выражение для туннельного тока электронов из зоны проводимости на свободные места в валентной зоне будет описываться следующим соотношением:

где использованы стандартные обозначения для функции распределения и плотности квантовых состояний.

При равновесных условиях на p+-n+ переходе токи слева и справа друг друга уравновешивают: IC→V = IV→C.

При подаче напряжения туннельные токи слева и справа друг друга уже не уравновешивают:

   (4.18)

Здесь fC, fV — неравновесные функции распределения для электронов в зоне проводимости и валентной зоне.

Для барьера треугольной формы получено аналитическое выражение для зависимости туннельного тока Jтун от напряженности электрического поля Е следующего вида:

   (4.19)

За напряженность электрического поля пробоя Eпр условно принимают такое значение поля Е, когда происходит десятикратное возрастание обратного тока стабилитрона: Iтун = 10·I0.

При этом для p-n переходов из различных полупроводников величина электрического поля пробоя Eпр составляет значения: кремний Si: Eпр = 4·105 В/см; германий Ge: Eпр = 2·105 В/см. Туннельный пробой в полупроводниках называют также зинеровским пробоем.

Оценим напряжение Uz, при котором происходит туннельный пробой.

Будем считать, что величина поля пробоя Eпр определяется средним значением электрического поля в p-n переходе Eпр = Uобр/W . Поскольку ширина области пространственного заряда W зависит от напряжения по закону , то, приравнивая значения W из выражений , получаем, что напряжение туннельного пробоя будет определяться следующим соотношением [5, 2]:

   (4.20)

Рассмотрим, как зависит напряжение туннельного пробоя от удельного сопротивления базы стабилитрона. Поскольку легирующая концентрация в базе ND связана с удельным сопротивлением ρбазы соотношением ND = 1/ρμe, получаем:

   (4.21)

Из уравнения (4.21) следует, что напряжение туннельного пробоя Uz возрастает с ростом сопротивления базы ρбазы.

Эмпирические зависимости напряжения туннельного пробоя Uz для различных полупроводников имеют следующий вид:

германий (Ge): Uz = 100ρn + 50ρp;
кремний (Si): Uz = 40ρn + 8ρp,
где n, p — удельные сопротивления n- и p-слоев, выраженные в (Ом·см).

Лавинный пробой в полупроводниках

Рассмотрим случай однородного электрического поля в полупроводнике. Если двигаясь вдоль силовых линий электрического поля электрон на расстоянии, равном длине свободного пробега λ, наберет энергию, равную либо большую, чем ширина запрещенной зоны, то, неупруго рассеиваясь, этот электрон может вызвать генерацию еще одной электронно дырочной пары. Дополнительно нагенерированные свободные носители также будут участвовать в аналогичном процессе. Это явление лавинного размножения свободных носителей в условиях сильного электрического поля получило название лавинного пробоя. На рисунке 4.12 показана схема, иллюстрирующая лавинный пробой.

Размеры геометрической области полупроводника W, в которой происходит лавинное умножение, должны быть существенно больше длины свободного пробега электрона λ. Соотношения, определяющие условие лавинного пробоя, будут следующие:

   (4.22)
Рис. 4.12. Схема, иллюстрирующая лавинный пробой в однородном полупроводнике [27, 10]:
а) распределение электрического поля, доноров и акцепторов и свободных носителей; б) распределение токов; в) зонная диаграмма, иллюстрирующая лавинное умножение в ОПЗ

Одним из параметров лавинного пробоя является коэффициент лавинного умножения M, определяемый как количество актов лавинного умножения в области сильного электрического поля. Если обозначить начальный ток I0, то после лавинного умножения величина тока будет иметь вид: I = M·I0,

где Uμ — напряжение лавинного пробоя, U — напряжение, n — коэффициент, равный 3 или 5 для Ge или Si соответственно.

Для несимметричного p+-n перехода расчет дает следующее значение напряжения лавинного пробоя VB при условии, что максимальное значение поля в ОПЗ p+-n перехода можно приближенно оценить как среднее:

   (4.23)

Величина электрического поля Еm, определяемая соотношением (4.23), зависит от величины и типа легирующей концентрации ND, NA, температуры и лежит в диапазоне Еm = (4÷5)·105 В/см для кремния и Еm = (2÷3)·105 В/см для германия.

Приборные характеристики стабилитронов

Основными характеристиками стабилитрона являются ток Iст и напряжение Uст стабилизации, дифференциальное напряжение стабилитрона rст и температурная зависимость этих параметров. На рисунке 4.13 приведены дифференциальные параметры различных стабилитронов.

Рис.

Как работает стабилитрон.

4.13. Дифференциальные параметры различных стабилитронов:
а) зависимость дифференциального сопротивления от прямого тока 2С108; б) зависимость изменения напряжения стабилизации от температуры для различных типономиналов стабилитрона 2С108; в) зависимость дифференциального сопротивления от прямого тока 2С351

Как следует из приведенных данных, значение дифференциального сопротивления для стабилитронов обратно пропорционально току стабилизации и составляет десятки Ом при рабочих параметрах токов. Точность значения напряжения стабилизации составляет десятки милливольт в стандартном температурном диапазоне.

Прекращаем ставить диод / Хабр


Нет, это не очередной «вечняк»

После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?


При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса


Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)


Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.

Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)


При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)


После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой беcтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)


Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)


Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

Архив с файлами схемы и разводки для EAGLE.

Спасибо за внимание.

Прекращаем ставить диод 2 / Хабр

Несколько лет назад мною была опубликована статья под аналогичным заголовком. Если кратко, то в ней я рассказал о процессе разработки с нуля устройства, выполняющего функции «идеального диода» для предотвращения разряда буферного аккумулятора на обесточенный блок питания.

Устройство получилось относительно сложным, хотя и довольно экономичным (ток потребления при использовании современной версии компаратора LM393 получился около 0.5 mA). Читатели обратили внимание на эту сложность и в комментариях предложили другой вариант «идеального диода», который выглядит на порядок более простым. К своему стыду, на тот момент я не был знаком с такой схемой, поэтому решил при удобном случае разобраться с ней подробнее. После серии экспериментов, которые начались с компьютерной симуляции, а закончились макетной платой, было выяснено, что при своей кажущейся простоте, эта схема очень нетривиальна как с позиции понимания всех протекающих в ней процессов, так и с точки зрения подводных камней, которые она в себе таит.


В общем, предлагаю вашему вниманию другой вариант реализации «идеального диода» с подробным описанием его особенностей.

Канонический вариант, предложенный в комментариях, имеет такой вид:


Всего четыре (или пять, смотря как считать) деталей и «идеальный диод» готов. Вроде бы все очень просто. Однако первое, что бросается в глаза, это использование сборки вместо обычных дискретных транзисторов. Может показаться, что это прихоть автора данного конкретного исполнения. Однако после изучения других вариантов обнаруживается, что такой подход используется почти во всех схемах, которые можно найти в сети. Тут мы и подходим к разбору принципа действия этой схемы.
Для понимания принципа начинать лучше с момента, когда все переходные процессы уже завершены, и нагрузка потребляет некоторый ток от блока питания. Этот ток течет через ключ и из-за ненулевого сопротивления канала, напряжение в точке 1 немного больше, чем в точке 2. В этом случае ток из точки 1 через эмиттерный переход T1 попадает в цепь баз обоих транзисторов, а затем через R1 стекает на «землю». В результате на базах транзисторов устанавливается напряжение, равное напряжению открытия эмиттерного pn-перехода. Но из-за того, что эмиттер T2 находится под более низким потенциалом, чем эмиттер T1, ток через его базу почти не течет потому что напряжение между его эмиттером и базой меньше, чем необходимо для открытия перехода. А раз базового тока нет, то T2 закрыт, сопротивление эмиттер-коллектор высокое, затвор силового ключа заземлен через R2, что создает условия для его открытия. Как итог, ток течет из точки 1 в точку 2 через открытый канал силового ключа (а не просто через технологический диод) и падение напряжения на этом участке измеряется милливольтами.

При обесточивании блока питания напряжение в точке 1 очень быстро станет ниже, чем в точке 2. При этом ток прекратит течение через эмиттерный переход T1 и вместо этого начнет протекать через эмиттерный переход T2, открывая его. В итоге сопротивление эмиттер-коллектор транзистора T2 сильно уменьшится, затвор силового ключа окажется соединенным с истоком, и канал будет закрыт.

Исходя из вышесказанного, необходимым условием работы схемы является тождественность транзисторов T1 и T2. Особенно это касается напряжения открытия эмиттерных переходов. Оно, во-первых, должно совпадать с точностью не хуже единиц милливольт, а во-вторых, любые его колебания под действием температурного фактора должны быть синхронными для обоих транзисторов.

Именно поэтому использование дискретных транзисторов в этой схеме недопустимо. Только изготовленная в рамках единого технологического цикла пара может считаться достаточно тождественной. А их размещение на общей подложке гарантирует необходимую температурную связь.

И уж тем более лишен смысла вариант схемы, который тоже можно найти на просторах интернета, где вместо одного из транзисторов используется диод.


Такая схема при определенном везении заработает, но ни о какой надежности работы тут речи просто не идет.

Кстати, некоторые авторы идут дальше, и кроме транзисторной сборки используют так же и резисторную (либо дискретные резисторы с допуском 1% или лучше), мотивируя это необходимостью дальнейшего соблюдения симметрии схемы. На самом деле резисторы совершенно не нуждаются в точном подборе, но об этом ниже.


Приведенное выше объяснения принципа действия является сильно упрощенным, оно дает краткий ответ на вопрос «как работает», но не дает понимания глубинных процессов, происходящих в схеме, и, в частности, никак не обосновывает выбор номиналов элементов.

Так что, если кому интересны подробности, то читаем дальше, а кому достаточно практической схемы, просто скрольте до последнего изображения статьи.

Для наглядности давайте сначала перевернем схему, заменим PNP-транзисторы более привычными NPN, и, наконец, немного усложним, чтобы было понятно, откуда вообще взялся конечный вариант.


Итак, что мы тут видим? Два простых усилительных каскада по схеме ОЭ и общая цепь смещения через резистор Rs. Если транзисторы одинаковые, то ток, текущий через резистор смещения, поровну разделится между базами обоих транзисторов и приоткроет их на одинаковую величину. В результате через коллекторные нагрузочные резисторы потекут одинаковые токи, и выходные напряжения в точках OUT1 и OUT2 будут тоже равны.

Теперь вернемся к нашим баранам и вспомним, что эмиттеры транзисторов не соединены вместе, напротив, между ними может возникать разность потенциалов, равная падению напряжения на открытом канале силового ключа. Учитывая величину сопротивления канала, разность напряжений между эмиттерами может составлять от единиц до сотен милливольт. Вот как это выглядит на нашей схеме.


В результате смещения эмиттер T2 оказывается немного «выше над землей», чем эмиттер T1, а значит напряжение Ube2 будет ниже, чем Ube1. Теперь вспомним, как выглядит ВАХ эмиттерного pn-перехода.
Если рабочая точка находится в области максимального наклона характеристики, то даже незначительное изменение приложенного напряжения ведет к очень сильному изменению протекающего тока, т.е. чем ниже прямое напряжение, тем больше эквивалентное сопротивление перехода.

Снова посмотрим на схему. Напряжение на эмиттерном переходе T2 уменьшилось, его эквивалентное сопротивление увеличилось, а значит ток смещения, текущий через Rs уже не разделяется симметрично между базами транзисторов, а течет преимущественно через эмиттерный переход T1. От этого T1 открывается, а T2, соответственно, закрывается на ту же величину. Распределение токов теряет симметрию и схему как-бы «перекашивает». Причем абсолютная величина перекоса равна коэффициенту передачи тока транзисторов (не суммарно, а каждого в отдельности, при условии, что транзисторы одинаковые).

Если мы перевернем разность потенциалов эмиттеров на обратную, схему аналогично перекосит в противоположную сторону: чем больше коллекторный ток у одного транзистора, тем меньше у второго и наоборот. В итоге имеем «обратное» токовое зеркало, где под влиянием одного входного сигнала происходит симметрично-противоположное изменение токов в плечах схемы.

Классическое «прямое» токовое зеркало (как те, что входят в состав операционных усилителей и компараторов) отличается тем, что в нем наоборот под влиянием двух однополярных входных величин в противоположные стороны изменяется ток одного транзистора.

Идем дальше. Полученная схема дает нам понятие о ролях резисторов. Коллекторные резисторы R1 и R2 являются нагрузкой транзисторов. Их роль – питание тех цепей, которые подключаются к нашей схеме, как к источнику управляющего сигнала. А значит, их сопротивление должно быть таким, чтобы протекающего через них тока было достаточно для активации входных цепей нагрузки. В данном конкретном случае нагрузкой является затвор MOS-транзистора, который имеет входное сопротивление многие мегаомы.
В даташитах обычно указывается не входное сопротивление, а ток утечки затвора при заданном напряжении. Из этого тока можно определить оммическое сопротивление изоляции затвора и защитных диодов. Например, для транзистора IRF5305 заявлен ток утечки не более 100 нано-ампер при напряжении 20 вольт. Простой подсчет дает нам величину входного сопротивления по меньшей мере 200 МОм.

При таком входном сопротивлении потребителя можно было бы использовать очень высокоомные нагрузочные резисторы, уменьшив таким образом собственное потребление транзисторов до наноамперного уровня. Однако лучше не «шиковать» слишком сильно, потому что высокоимпедансные цепи становятся чувствительными к разнообразным наводкам. А кроме того, при субмикроамперных коллекторных токах падает коэффициент усиления биполярного транзистора. Наиболее уместным сопротивлением нагрузок в данном случае можно считать сотни кОм. Это оптимальное сопротивление с точки зрения надежности, и при этом достаточно высокое с позиции экономичности.

С коллекторными резисторами разобрались. Теперь перейдем к резистору смещения Rs. Что зависит от его сопротивления? От него зависят начальные токи коллекторов, то есть токи полностью сбалансированной схемы. Причем эти токи зависят и от выбранных ранее номиналов нагрузочных резисторов, и от коэффициента усиления транзисторов. Так какое же значение этого сопротивления все-таки будет оптимальным? А такое, при котором режимы транзисторов окажутся в точках наименьшей устойчивости.

Ведь чем проще схема поддается влиянию дисбалансирующих факторов, тем выше получается ее чувствительность ко входному сигналу. Именно поэтому в отсутствие входного сигнала транзисторы не должны быть полностью открытыми или полностью закрытыми, они должны быть в промежуточном состоянии.

Тут уместна аналогия с простейшими качелями-балансирами. Если такие качели находится в равновесии, то вывести их из этого состояния проще всего: легкий толчок, и они наклоняются в нужную сторону. А вот если они уже перекошены грузом на одном из плечей, выведение из такого устойчивого состояния требует значительных усилий.

Поэтому наилучшим сопротивлением Rs является такое, при котором напряжения на коллекторах транзисторов примерно равны половине питающего напряжения. Это условие не нужно воспринимать буквально и подбирать сопротивление до ома. Более того, для уменьшения рабочих токов вполне допустимо сознательно увеличить Rs так, чтобы напряжения на коллекторах было примерно на 5 вольт ниже питающего. Это оставит достаточный запас для надежного управления силовым ключом, но при этом до минимума уменьшит токи во всех цепях, а значит и потребление схемы.
Для управления современным силовым MOSFET-том на его затвор нужно подавать напряжение, не менее того, что заявлено в строке «Gate threshold voltage» даташита. Для типичного современного транзистора это напряжение равно 3-4 вольта, отсюда и выбранное значение 5 вольт, которого гарантировано хватит чтобы полностью открыть транзистор при минимальном входном сигнале.

Что касается конкретного номинала Rs, то натурный эксперимент показал, что, например, для сборки BC807DS его сопротивление должно быть примерно 5 MОм. Для других транзисторов эта величина может отличаться, но есть еще один фактор, который играет нам на руку и уменьшает необходимость в тонком подборе сопротивлений.

Дело в том, что в реальной схеме, когда через силовой ключ начнет идти ток, выводящий схему из равновесия, напряжение на затворе начнет изменяться, а значит, начнет изменяться и сопротивление канала. И вот эта обратная связь носит усиливающий характер, когда падение напряжения на канале приводит к дисбалансу схемы, от чего изменяется напряжение на затворе так, что сопротивление канала меняется еще сильнее, что ведет к еще большему перекосу. И так продолжается до достижения крайнего положения, в котором силовой ключ больше не реагирует изменением сопротивления канала на изменение напряжения затвора. Однако, если коэффициент усиления транзистора достаточно большой, то процесс идет дальше, вплоть до достижения напряжения питания или нуля (в зависимости от соотношения напряжений в точках 1 и 2).

Таким образом, реальная схема, которую можно нарисовать с учетом сказанного выше, может иметь такой вид:


И в таком виде она действительно изредка встречается на сайтах, посвященных электронике. Однако начинали мы с другой вполне рабочей схемы, которая и проще и встречается гораздо чаще. Что отличает эти два варианта? Давайте снова на короткое время вернемся к прототипу, с которого начинали подробный разбор.
Что в этой схеме лишнее? По той причине, что управляющее напряжение для затвора силового ключа мы снимаем с коллектора одного из транзисторов (точка OUT2), напряжение на коллекторе второго (OUT1) нас совершенно не волнует. А по той причине, что наличие или отсутствие малого коллекторного тока весьма слабо сказывается на вольт-амперной характеристике эмиттерного перехода, нагрузочный резистор R1 спокойно можно удалить из схемы. А чтобы коллекторный вывод T1 не болтался воздухе и не собирал наводки, его лучше соединить с базой T1 (хотя делать это не обязательно, схема отлично работает и с оборванным выводом коллектора).
Итоговая схема принимает до боли знакомый вид:
Причем я специально сохранил расположение резисторов как в прототипе, чтобы подчеркнуть тот факт, что резисторы эти выполняют совершенно разные функции. Это не очевидно на исходной схеме, зато хорошо видно здесь, особенно после всех объяснений и выкладок. Левый резистор – это резистор смещения Rs, а правый – нагрузочный резистор R2 из схемы прототипа. Они не то что не должны быть совершенно одинаковыми (как думают некоторые авторы), их номиналы вообще взаимосвязаны очень косвенно и в общем случае не обязаны даже иметь общий порядок.

Именно поэтому нет никакой надобности использовать в этом месте резисторную сборку или дискретные резисторы малого допуска.

А еще из этой схемы следует, что питание устройство получает из точки 2, а точка 1 – просто источник входного сигнала. Таким образом, когда напряжение присутствует только в точке 2, питание подается непосредственно, а если только в точке 1, то сначала запитка происходит через технологический диод силового транзистора, а затем, когда схема проснется и начнет работать, уже через открытый канал.


С принципом действия и номиналами разобрались, результат на схеме:
Именно в таком виде схему массово рекомендуют на разных форумах, но есть пара нюансов, которые сильно ограничивают ее практическое применение. Первая проблема заключается в одном параметре биполярных транзисторов, о котором не принято вспоминать в большинстве практических применений. Вот он:
Оказывается, что максимальное обратное напряжение эмиттерного перехода большинства маломощных транзисторов составляет единицы вольт, и вот чем это грозит нашей схеме. Если напряжение есть только в точке 2, а точка 1 через небольшое сопротивление соединена с землей (как раз так себя ведет обесточенный блок питания), то ток из точки 2 через прямосмещенный эмиттерный переход T2 попадает на обратносмещенный эмиттерный переход T1, за которым уже почти земля. То есть почти все напряжение точки 2 оказывается приложено к эмиттерному переходу T1.
И вот тут и происходит самое интересное. Если напряжение в точке 2 выше предельно допустимого, то эмиттерный переход T1 входит в режим лавинного пробоя, и при достаточно малом значении RL, транзистор просто выходит из строя.

Таким образом, надежная эксплуатация этой схемы возможна только при рабочих напряжениях не выше, чем то, что заявлено в даташите на выбранный транзистор, т.е. на практике это не более 5-8 вольт. Даже 12-вольтовый источник формально уже не может быть подключен к такой схеме.

Тут кстати, интересный факт. Я перепробовал несколько сборок разного типа, у которых заявлено максимальное напряжение эмиттерного перехода от 5 до 8 вольт, и все они показали напряжение лавинного пробоя аж 12-13 вольт. Однако не стоит на это рассчитывать в практических схемах, не зря же говорят, что спецификации пишутся дымом сгоревших компонентов.

Если нужно коммутировать относительно высокое напряжение, то транзистор T1 нуждается в защите. Проще всего это сделать, просто внеся дополнительное сопротивление, которое ограничит обратный ток через переход.
Этот резистор внесет некоторый дисбаланс в схему, однако по той причине, что его сопротивление довольно мало по сравнению с сопротивлением резистора смещения, влияние будет минимальным и на практике не ощутимым. Кроме того, через этот резистор потечет небольшой ток утечки из точки 2 в точку 1, который сделает наш диод не таким идеальным, как хотелось бы. Но тут приходится идти на некоторый компромисс.

Некоторые авторы (те немногие, которые осознали саму необходимость защиты) предлагают дополнительно оградить эмиттерный переход при помощи прямо включенного диода.


Этот диод позволяет вообще не достигать порогового значения напряжения, ограничив его величиной прямого падения, то есть менее одного вольта.

Однако по моему скромному мнению, скрипач диод не нужен. Дело в том, что лавиный пробой для любого pn-перехода является совершенно нормальным режимом работы и с ним не нужно бороться.

Старая поговорка гласит: убивает не напряжение, убивает ток. И это относится не только к случаю поражению человека электрическим током. С диодами и транзисторами ситуация аналогичная. Лавинный пробой сам по себе полностью обратим и штатным образом используется, например, в стабилитронах. А дурная слава закрепилась за ним из-за того, что в силовых схемах это явление как правило сопровождается неконтролируемым ростом тока, протекающего через переход, сильным нагревом, и следующим за ним уже необратимым тепловым пробоем.


Если схему планируется использовать при напряжениях около 12 вольт, то все можно оставить как есть и наслаждаться. Но ситуации в жизни бывают разные и рано или поздно напряжение может оказаться и выше, например 24-27 вольт, как в бортовой сети больших автомобилей.

И вот тут всплывает еще одно ограничение, о котором тоже не часто приходится вспоминать при проектировании маловольтажных схем. Дело в том, что затвор MOSFET отделен от канала тончайшей оксидной пленкой. Ее толщина определяет передаточные свойства транзистора и на практике составляет единицы атомов оксида кремния. Естественно, что электрическая прочность такого тонкого диэлектрика оказывается весьма невысокой. Заглянем в даташит типового мощного «полевика».


Тут мы видим, что предельное напряжение завтора – 20 вольт. А теперь снова посмотрим на конечную схему нашего устройства и подумаем, что будет, когда транзистор T2 окажется полностью закрыт. В этом случае затвор полевого транзистора через R2 окажется заземлен. А так как сопротивление затвора, как мы выяснили выше, имеет порядок сотен мегаом, потенциалы распределятся так, что почти все напряжение питания будет приложено к изоляции затвора.

При питании напряжением выше 20 вольт получаем риск пробоя затвора силового ключа. Чтобы этого не произошло, нужно как-то ограничить напряжение между истоком и затвором до допустимой величины. Проще всего сделать это при помощи стабилитрона, шунтирующего выводы истока и затвора.


В этом случае даже если транзистор T2 окажется полностью закрыт, излишний ток возьмет на себя стабилитрон, и напряжение на затворе ограничится напряжением стабилизации D1. Именно поэтому напряжение стабилизации должно быть в диапазоне от параметра «Gate Threshold Voltage» до «Gate-to-Source Voltage», с небольшими отступами, конечно же.
В принципе, в некоторых даташитах в составе силового MOS-транзистора рисуют встречно-последовательную пару стабилитронов между затвором и истоком, которая, надо полагать, как раз и предназначена для ограничения напряжения на затворе. Так что тут каждый пусть решает сам, доверять судьбу транзистора встроенной защитной цепи, или же подстраховаться собственными силами.

Полученное тут устройство отлично выполняет свои функции «идеального диода», обеспечивая прямое сопротивление, полностью соответствующее выбранному силовому «полевику», обратное сопротивление более 100 кОм, и собственное потребление при напряжении 25 вольт не более 150 мкА.

Что такое стабилитрон

pcbway pcbway what is zener diode, zener diode working, what is zener diode uses, what is zener diode advantage, what is zener diode breakdown voltage, what is zener diode breakdown, zener diode Привет, друзья! Надеюсь, у вас все хорошо. В сегодняшнем уроке мы обсудим Что такое стабилитрон. Общий диод проводит и пропускает ток в прямом (состояние, когда анод соединен с положительным выводом, а катод с отрицательным выводом питания) в смещенном состоянии. В состоянии обратного смещения ток не проходит через этот диод, только небольшой ток проходит в этом состоянии, что называется током утечки.

Для улучшения этого факта обычного диода в мир машиностроения был введен диод специального назначения. Он был изобретен американским инженером Кларансом Мелвином Зинером, поэтому его зовут диод Зенера. Он работает как в прямом, так и в обратном направлении. В сегодняшнем посте мы рассмотрим его работу, функции, рейтинги, конструкцию и приложения. Итак, начнем с , что такое диод Зенера.

Что такое стабилитрон
  • Стабилитрон представляет собой специальный диод, который позволяет току течь не только от положительного контакта (анода) к отрицательному контакту (катоду), но и в противоположном направлении.
  • Легирование стабилитрона больше, чем у обычного диода, поэтому его обедненная часть имеет меньшую площадь.
  • Общий диод не работает в режиме с обратным смещением, но стабилитроны специально изготовлены для работы с обратным смещением.
  • Стабилитрон в основном используется в типах электронных устройств, таких как компьютеры, ноутбуки и т. Д., Он является основным компонентом электронных схем.
  • Используется для схем стабилизатора питания для поддержания уровня напряжения для конкретного устройства.
  • Стабилитрон также обеспечивает защиту любой цепи от перенапряжения, особенно от электростатического разряда. В ESD ток протекает внезапно между двумя заряженными точками из-за короткого замыкания или повреждения изоляции. what is zener diode, zener diode working, what is zener diode uses, what is zener diode advantage, what is zener diode breakdown voltage, what is zener diode breakdown, zener diode
Пробой в стабилитроне
  • В стабилитроне есть 2 основных зоны пробоя.
    • Лавинный срыв
    • Стабилизаторный срыв
  • Давайте обсудим их обоих поодиночке.

Лавинный пробой

  • Этот тип пробоя происходит не только в стабилитроне, но и в общем диоде из-за более высокого напряжения в условиях обратного смещения.
  • Когда диод находится в обратном смещенном состоянии, неосновные носители заряда получают большую энергию от источника и быстро перемещаются.
  • Высокоскоростные носители заряда сталкиваются с другими частицами и удаляют больше электронов из атома. Они движутся с большей скоростью, они также удаляют больше электронов из других атомов.
  • Из-за большего количества электронов обратный ток будет течь от катода к аноду, в некоторых условиях общий диод может быть поврежден.
  • Но диод Зенера не может гореть, потому что они рассчитаны на работу в таких условиях.
  • Лавинное пробивное напряжение для стабилитрона составляет шесть вольт.
  • Данная диаграмма объясняет лавинное пробивное напряжение. what is zener diode, zener diode working, what is zener diode uses, what is zener diode advantage, what is zener diode breakdown voltage, what is zener diode breakdown, zener diode
Пробой стабилитрона
  • Этот тип пробоя проявляется в диодах с высоким содержанием легирующих примесей, таких как стабилитроны, поскольку этот диод имеет меньшую площадь обеднения из-за более высокого уровня легирования.
  • Когда напряжение, подаваемое на диод, увеличивается, в тонкой области обеднения создается высокоэффективное электрическое поле.
  • Когда напряжение обратной полярности почти равно напряжению Зенера, электрическое поле в обедненной части является настолько сильным, что оно вытягивает электроны из своих валентных оболочек.
  • Внешний электрон оболочки, который получает достаточно энергии от поля, вырвется из-под влияния материнского атома.
  • Самая внешняя оболочка электрона, которая прорывается под действием своего материнского атома, будет двигаться свободно.
  • Из-за свободного дрейфа этих выборов обратный ток будет течь в диоде.
  • Меньшее приращение напряжения приведет к очень быстрому перемещению тока на участке пробоя стабилитрона. what is zener diode, zener diode working, what is zener diode uses, what is zener diode advantage, what is zener diode breakdown voltage, what is zener diode breakdown, zener diode
Сравнение пробоя стабилитрона и лавины
  • Разрушение стабилитрона происходит при меньшем значении уважаемого смещенного напряжения, а лавина — при более высоком обратном смещенном напряжении.
  • пробой стабилитрона происходит только в стабилитроне, так как они имеют меньшую площадь истощения.
  • Область пробоя — это такая область, на которой обычно работает стабилитрон.
Эффект Зенера
  • Эффект Зенера — это категория электрического отказа (пробоя), который возникает при обратном смещении PN-перехода. Сильное поле статики позволяет электронам перемещаться из зоны валентности в зону проводимости полупроводника.
  • Свое название он получил благодаря использованию этого фактора в работе стабилитрона.
Характеристики стабилитрона I-V
Преимущество стабилитрона
  • Есть некоторые преимущества стабилитрона по сравнению с обычным диодом, которые делают его эффективным для работы в условиях высокого напряжения.
    • Потребляемая мощность выше, чем у обычного диода.
    • Его эффективность очень высока.
    • Доступен в меньшем размере.
    • Это менее дорогой диод.
Применения стабилитрона
  • Вот некоторые применения стабилитрона.
    • Он широко используется в качестве устройства опорного напряжения.
    • Используется в регуляторах напряжения.
    • Используется для коммутации.
    • Стабилитрон является важной частью схемы зажима и ограничения.
    • Он используется во многих схемах безопасности.
    • Он также используется в электронных устройствах, таких как мобильные ноутбуки, компьютеры и т. Д.

Итак, это подробная статья о стабилитроне, у меня есть все, что связано с стабилитронами. Если у вас есть какие-либо вопросы об этом, задавайте в комментариях. Спасибо за чтение, будьте осторожны до следующего урока.

Что такое стабилитрон? — Определение, работа, характеристика кривой и приложения

Определение: Полупроводниковый диод с высокой степенью легирования, предназначенный для работы в обратном направлении, известен как стабилитрон. Другими словами, диод, который специально разработан для оптимизации области пробоя, известен как стабилитрон.

Символическое представление стабилитрона показано на рисунке ниже.

zener-diode-symbol

Принципиальная электрическая схема стабилитрона

Принципиальная схема стабилитрона показана на рисунке ниже.Стабилитрон используется в режиме обратного смещения. Обратное смещение означает, что материал n-типа диода подключен к положительной клемме источника питания, а материал P-типа подключен к отрицательной клемме источника питания. Область истощения диода очень тонкая, потому что он сделан из сильно легированного полупроводникового материала.

zener-diode-connection

рабочий стабилитрон

Стабилитрон изготовлен из сильно легированного полупроводникового материала. Сильно легированный означает, что к материалу добавляются примеси с высоким содержанием, чтобы сделать его более проводящим.Область обеднения стабилитрона очень тонкая из-за примесей. Сильно легирующий материал увеличивает напряженность электрического поля в обедненной области стабилитрона даже при небольшом обратном напряжении.

Когда смещение стабилитрона не применяется, электроны остаются в валентной зоне материала р-типа и ток через диод не протекает. Зона, в которой находятся валентные электроны (крайняя электронная орбита), называется электроном валентной зоны.Электроны валентной зоны легко переходят из одной полосы в другую, когда на нее подается внешняя энергия.

zener-diode-working

Когда обратное смещение применяется к диоду и напряжение питания равно напряжению стабилитрона, оно начинает проводить в обратном направлении смещения. Напряжение Зенера — это напряжение, при котором область обеднения полностью исчезает.

working-zener-diode

Обратное смещение применяется через диод увеличивает напряженность электрического поля в области истощения.Таким образом, это позволяет электронам перемещаться из валентной зоны материала P-типа в зону проводимости материала N-типа. Эта передача электронов валентной зоны в зону проводимости уменьшает барьер между материалом p и n-типа. Когда область истощения становится полностью исчезающей, диод начинает проводить в обратном смещении.

Характеристика стабилитрона

График ВИ характеристики диода Зенера показан на рисунке ниже. Эта кривая показывает, что стабилитрон, когда он подключен с переадресацией, ведет себя как обычный диод.Но когда на него подается обратное напряжение и обратное напряжение выходит за пределы заданного значения, в диоде происходит пробой стабилитрона.

vi-characteristic-of-zener-diode

При напряжении пробоя стабилитрона ток начинает течь в обратном направлении. График пробоя стабилитрона не совсем вертикальный, показанный выше, который показывает, что стабилитрон имеет сопротивление. Напряжение на стабилитроне представлено уравнением, показанным ниже.

В = В Z + I Z R Z

Применение стабилитрона

Стабилитрон в основном используется в коммерческих и промышленных применениях.Ниже приведены основные применения стабилитрона.

в качестве стабилизатора напряжения — стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника колебаний напряжения к нагрузке. Стабилитрон подключается параллельно через нагрузку и поддерживает постоянное напряжение V Z и, следовательно, стабилизирует напряжение.

Для защиты счетчика — Стабилитрон обычно используется в мультиметрах для управления перемещением счетчика от случайных перегрузок.Он подключен параллельно с диодом. Когда перегрузка происходит через диод, большая часть тока проходит через диод. Таким образом, защищает счетчик от повреждений.

Для формирования волны — Стабилитрон используется для преобразования синусоиды в прямоугольную волну. Это можно сделать, поместив два диода Зенера последовательно с сопротивлением. Диод подключен вплотную и в противоположном направлении.

Когда напряжение, подаваемое на клемму, меньше напряжения Зенера, диоды обеспечивают высокий резистивный путь к току, и входное напряжение, приложенное к диоду, появляется на выходной клемме.Когда напряжение поднимается выше напряжения стабилитрона, они предлагают путь с низким сопротивлением и большой ток, протекающий через диод. Из-за чего происходит сильное падение напряжения на сопротивлении и обрезание входной волны на пике. Таким образом, прямоугольная волна появляется на выходной клемме

,
Что такое стабилитрон? Принцип действия, типы и использование стабилитрона в качестве регулятора напряжения, ограничителя формы сигнала и преобразователя напряжения

Введение

Диоды

обычно известны как устройства, которые позволяют протекать току в одном направлении (с прямым смещением) и обеспечивают сопротивление потоку тока при использовании в обратном смещении. С другой стороны, Zener Diode (названный в честь американского ученого К. Зенера, который впервые объяснил его принципы работы), не только позволяют протекать току при использовании в прямом смещении, но также позволяют протекать току при использовании в обратное смещение до сих пор приложенное напряжение выше напряжения пробоя , известного как напряжение пробоя стабилитрона .Или, другими словами, Напряжение пробоя — это напряжение, при котором стабилитрон начинает проводить в обратном направлении.

Принцип действия стабилитрона:

Zener Diode Symbol Generic Diode Symbol

В нормальных диодах напряжение пробоя очень высокое и диод полностью поврежден, если приложено напряжение выше диода пробоя, но в диодах Зенера напряжение пробоя не такое высокое и не приводит к необратимому повреждению диода Зенера если напряжение приложено.

Когда обратное напряжение, подаваемое на стабилитрон, увеличивается по направлению к указанному напряжению пробоя (В), через диод начинает течь ток, и этот ток называется током стабилитрона , а этот процесс известен как пробой лавины . Ток увеличивается до максимума и стабилизируется. Этот ток остается постоянным в более широком диапазоне приложенного напряжения и позволяет стабилитрону выдерживать более высокое напряжение без повреждения.Этот ток определяется последовательным резистором.

Рассмотрим изображения ниже нормального диода в действии .

Diode operation in forward biased condition Diode operation in reversed biased condition

Чтобы показать операции стабилитрона , рассмотрим два эксперимента (A и B) ниже.

12v Zener diode operation 6v Zener diode operation

В эксперименте A стабилитрон 12 В подключен в обратном смещении, как показано на рисунке, и видно, что стабилитрон эффективно блокировал напряжение, потому что оно было меньше или равно напряжению пробоя конкретного стабилитрона и лампа, таким образом, осталась выключенной.

В эксперименте B использованный стабилитрон 6 В проводит (с включенной лампой) обратное смещение, потому что приложенное напряжение больше его напряжения пробоя и, таким образом, показывает, что область пробоя является областью действия стабилитрона

Вольт-амперная характеристика стабилитрона приведена ниже.

Zener diode V-I characteristics

Из графика можно сделать вывод, что стабилитрон, работающий в режиме обратного смещения, будет иметь довольно постоянное напряжение независимо от величины подаваемого тока.

Применения стабилитрона:

Стабилитроны

используются в трех основных областях применения в электронных схемах;

1. Регулирование напряжения

2. Waveform Clipper

3. Напряжение Shifter

1. Стабилитрон как регулятор напряжения

Это, пожалуй, самое распространенное применение стабилитронов.

Это применение стабилитронов в значительной степени зависит от способности стабилитронов поддерживать постоянное напряжение независимо от изменений тока питания или нагрузки.Общая функция устройства регулирования напряжения состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно к ней, независимо от изменений энергии, потребляемой нагрузкой (ток нагрузки), или изменений и нестабильности напряжения питания.

Стабилитрон будет обеспечивать постоянное напряжение при условии, что ток остается в диапазоне максимального и минимального обратного тока.

Принципиальная электрическая схема, показывающая стабилитрон , используемый в качестве регулятора напряжения , показана ниже.

Zener Diode as Voltage Regulator

Резистор R1 подключен последовательно с стабилитроном для ограничения количества тока, протекающего через диод, и входное напряжение Vin (которое должно быть больше напряжения стабилитрона) подключено поперек, как показано на рисунке, и выходное напряжение Vout берется по стабилитрону с Vout = Vz (напряжение Зенера). Поскольку характеристики обратного смещения стабилитрона необходимы для регулирования напряжения, он подключен в режиме обратного смещения, а катод подключен к положительной шине цепи.

Необходимо соблюдать осторожность при выборе значения резистора R1 , так как резистор малого значения приведет к большому току диода при подключении нагрузки, и это увеличит требования к рассеиваемой мощности диода, которые могут стать выше максимального значения. номинальная мощность стабилитрона и может повредить его.

Значение используемого резистора можно определить по формуле ниже.

R  1  = (V  в  - V  Z ) / I  Z 

Куда;
R1 - значение последовательного сопротивления.Vin - это входное напряжение.
Vz, которое совпадает с Vout, является напряжением стабилитрона
И Из является током Зенера. 

Используя эту формулу, легко убедиться, что значение выбранного резистора не приведет к току, превышающему то, что может выдержать стабилитрон.

Одна небольшая проблема, с которой сталкиваются схемы стабилизатора на основе стабилитрона, заключается в том, что стабилитрон иногда генерирует электрический шум на шине питания при попытке регулировки входного напряжения.Хотя это не может быть проблемой для большинства применений, эта проблема может быть решена путем добавления разделительного конденсатора большой величины через диод. Это помогает стабилизировать выход стабилитрона.

Stabilizing the output of the Zener diode voltage regulator by adding Capacitor

2. Стабилитрон как ограничитель формы волны

Одно из применений обычных диодов заключается в применении схем с ограничением и ограничением , которые являются схемами, которые используются для формирования или изменения формы входного сигнала переменного тока или сигнала , создавая выходной сигнал различной формы в зависимости от характеристик клипер или фиксатор.

Схемы ограничителей , как правило, представляют собой схемы, которые используются для предотвращения выхода выходного сигнала схемы за пределы предварительно определенного значения напряжения без изменения какой-либо другой части входного сигнала или формы сигнала.

Эти схемы вместе с фиксаторами широко используются в аналоговом телевидении и FM-радиопередатчиках для устранения помех (зажимные схемы) и ограничения шумовых пиков за счет ограничения высоких пиков.

Так как стабилитроны в целом ведут себя как нормальные диоды , когда приложенное напряжение не равно напряжению пробоя, они, таким образом, также используются в цепях ограничения.

Схемы отсечения могут быть предназначены для ограничения сигнала в положительной, отрицательной или обеих областях . Хотя диод естественным образом отсекает другую область при напряжении 0,7 В независимо от того, был ли он спроектирован как положительный или отрицательный ограничитель.

Например, рассмотрим схему ниже.

Zener Diode in as Clipper Circuit

Схема ограничителя предназначена для ограничения выходного сигнала при напряжении 6,2 В, поэтому был использован стабилитрон с напряжением 6,2 В. Стабилитрон предотвращает выход выходного сигнала за пределы напряжения Зенера независимо от формы входного сигнала.В этом конкретном примере использовалось входное напряжение 20 В, а выходное напряжение на положительном колебании составляло 6,2 В в соответствии с напряжением стабилитрона. Однако во время отрицательного колебания напряжения переменного тока стабилитрон ведет себя так же, как обычный диод, и обрезает выходное напряжение при 0,7 В, в соответствии с нормальными силиконовыми диодами.

Generated Waveforms of Zener diode Clipper Circuit

Для реализации схемы ограничения для отрицательного и переменного тока цепи переменного тока, а также для положительного колебания таким образом, чтобы напряжение ограничивалось на разных уровнях на положительном и отрицательном колебаниях, используется схема ограничения с двойным стабилитрономом.Принципиальная схема для схемы двойного стабилитрона показана ниже.

Generated Waveforms of Double Zener diode Clipper Circuit

В приведенной выше схеме ограничения напряжение Vz2 представляет напряжение на отрицательном колебании источника переменного тока, при котором выходной сигнал должен быть ограничен, в то время как напряжение Vz1 представляет напряжение на положительном колебании источника переменного тока, на котором выход напряжение желательно обрезать.

3. Стабилитрон как преобразователь напряжения

Сдвиг напряжения — одно из самых простых, но интересных применений стабилитрона.Если у вас был опыт, особенно с подключением датчика 3,3 В к 5 В MCU, и вы из первых рук видели ошибки в показаниях и т. Д., Что это может привести к ним, вы по достоинству оцените важность переключателей напряжения. Преобразователи напряжения помогают преобразовывать сигнал из одного напряжения в другое , а благодаря стабилитрону, поддерживающему постоянное выходное напряжение в области пробоя, это делает их идеальным компонентом для работы.

В преобразователе напряжения на основе стабилитрона схема понижает выходное напряжение на величину, равную напряжению пробоя конкретного используемого стабилитрона.Принципиальная схема для переключателя напряжения приведена ниже.

Zener Diode as Voltage Shifter

Рассмотрим эксперимент ниже,

Getting 3.3v Zener diode based voltage shifter

Схема описывает сдвиг напряжения на стабилитроне 3,3 В. Выходное напряжение (3,72 В) схемы определяется путем вычитания напряжения пробоя (3,3 В) стабилитрона из входного напряжения (7 В).

Vout = Vin –Vz

Vout = 7 — 3,3 = 3,7 В

Переключатель напряжения, как описано ранее, имеет несколько применений в современном дизайне электронных схем, так как инженеру-конструктору иногда приходится работать с тремя различными уровнями напряжения в процессе проектирования.

Типы стабилитронов:

Стабилитроны

подразделяются на типы по нескольким параметрам, которые включают;

  1. Номинальное напряжение
  2. Рассеиваемая Мощность
  3. Прямой ток привода
  4. Прямое напряжение
  5. Тип упаковки
  6. Максимальный обратный ток

Номинальное напряжение

Номинальное рабочее напряжение стабилитрона также известно как напряжение пробоя стабилитрона, и в зависимости от применения, для которого должен использоваться диод, это часто является наиболее важным критерием выбора стабилитрона.

Рассеиваемая мощность

Это максимальное количество энергии, которое может рассеивать ток стабилитрона. Превышение этого номинального значения приводит к чрезмерному повышению температуры стабилитрона, что может повредить его и привести к выходу из строя элементов, подключенных к нему в цепи. Таким образом, этот фактор следует учитывать при выборе диода с учетом его использования.

Максимальный ток стабилитрона

Это максимальный ток, который может проходить через стабилитрон при напряжении стабилитрона, не повреждая устройство.

Минимальный ток стабилитрона

Это относится к минимальному току, необходимому для стабилитрона, чтобы он начал работать в области пробоя.

Все остальные параметры, которые служат спецификацией для диода, должны быть полностью рассмотрены, прежде чем будет принято решение о типе типа стабилитрона, необходимого для этой специфической конструкции.

Вывод:

Вот 5 пунктов, которые вы никогда не должны забывать о стабилитроне.

  1. Стабилитрон похож на обычный диод только потому, что он легирован, чтобы иметь резкое пробивное напряжение.
  2. Стабилитрон поддерживает стабильное выходное напряжение независимо от входного напряжения, при условии, что максимальный ток стабилитрона не превышен.
  3. При подключении в прямом смещении стабилитрон ведет себя так же, как обычный силиконовый диод. Он проводит с тем же падением напряжения 0,7 В, что сопровождает использование обычного диода.
  4. Рабочее состояние стабилитрона по умолчанию находится в области пробоя (обратное смещение).Это означает, что он фактически начинает работать, когда приложенное напряжение выше напряжения Зенера при обратном смещении.
  5. Стабилитрон в основном используется в приложениях, связанных с регулированием напряжения, цепями ограничения и переключателями напряжения.

Что такое стабилитрон

Стабилитрон широко используется в качестве эталона напряжения, где его характеристика обратного пробоя обеспечивает стабильное напряжение на диоде в течение диапазона протекающих через него токов.


Учебное пособие по стабилитрону и эталонному диоду Включает в себя: стабилитрон
Теория работы стабилитрона Технические характеристики стабилитронов Схемы стабилитрона

Другие диоды: Типы диодов


Стабилитрон является разновидностью полупроводникового диода, который широко используется в электронных схемах в качестве эталона напряжения.

Стабилитрон или опорный диод напряжения — это электронный компонент, который обеспечивает стабильное и определенное напряжение. В результате цепи стабилитронов часто используются в источниках питания, когда требуются регулируемые выходы. Эти диоды также используются для многих других применений, где необходимы стабильные определенные опорные напряжения. Они также могут быть использованы для ограничения напряжения в ограничителях напряжения или для удаления скачков напряжения в линиях напряжения.

Стабилитроны

/ эталоны напряжения являются дешевыми, и они также просты в использовании, и эти электронные компоненты легко доступны для различных напряжений и с различными номинальными характеристиками мощности и т. Д.

Стабилитрон работает как обычный PN-диод в прямом направлении, но обеспечивает очень резкий пробой в обратном направлении при определенном напряжении. Именно это напряжение обратного пробоя используется для опорных напряжений или в приложениях ограничения.

стабилитрон история

История

стабилитронов имеет свои основания в разработке первых полупроводниковых диодов. Хотя ранние детекторы, такие как кошачьи усы, точечные контактные диоды были доступны примерно с 1905 года, во время и после Второй мировой войны была проделана большая работа над полупроводниками и полупроводниковыми диодами.

Первый человек, который описал электрические свойства, используемые стабилитроном, был описан Кларенсом Мелвином Зинером (родился 1 декабря 1905 года, умер 15 июля 1993 года).

Кларенс Зинер был физиком-теоретиком, работавшим в Bell Labs, и в результате своей работы Белл назвал его диодом Зенера. Сначала он постулировал эффект пробоя, который носит его имя, в статье, опубликованной в 1934 году.

Основы стабилитрона

диодов Зенера иногда называют в качестве опорных диодов, поскольку они способны обеспечить стабильное опорное напряжение для многих схем электроники.Сами диоды дешевы и многочисленны, их можно приобрести практически в любом магазине электронных компонентов.

Стабилитроны

обладают многими одинаковыми основными свойствами обычных полупроводниковых диодов. Они ведут в прямом направлении и имеют то же напряжение включения, что и обычные диоды. Для кремния это около 0,6 вольт.

Zener diode IV characteristic Стабилитрон IV характеристика

В обратном направлении работа стабилитрона совершенно отличается от обычного диода.При низких напряжениях диоды не работают так, как ожидалось. Однако при достижении определенного напряжения диод «ломается» и течет ток.

Глядя на кривые для стабилитрона, видно, что напряжение практически постоянно независимо от переносимого тока. Это означает, что диод Зенера обеспечивает стабильное и известное опорное напряжение для широкого диапазона текущих уровней.

Удивительная стабильность напряжения пробоя в широком диапазоне уровней пропускной способности по току делает эталонный стабилитрон настолько полезным.Он может быть использован в самых разнообразных схем для обеспечения стабильного опорного напряжения, а также используется в различных других схемах, где могут быть использованы его обратный пробой характеристикой.

Схема стабилитрона

Существует много стилей упаковки для стабилитрона. Некоторые используются для высокого уровня рассеиваемой мощности, а другие содержатся в форматах для поверхностного монтажа. Для строительства дома наиболее распространенный тип содержится в небольшой стеклянной оболочке.У этого есть группа вокруг одного конца, и это отмечает катод.

Видно, что полоса вокруг корпуса соответствует линии на символе диодной цепи, и это может быть простым способом запомнить, какой конец какой. Для стабилитрона, работающего в режиме обратного смещения, полоса является более положительным выводом в цепи.

Zener diode markings, symbol and package outlines Маркировка стабилитронов, обозначения символов и упаковки

Чтобы отличить стабилитрон или эталонный диод от других типов диодов на принципиальной электрической схеме, символ схемы стабилитрона размещает две метки на конце линейки — одну в направлении вверх, а другую в нижнем направлении, как показано на схеме ,

стабилитрон нумерация типа

С точки зрения нумерации типов, стабилитроны или опорные диоды напряжения представляют собой небольшую проблему для нумерации типов. Могут быть общие серии диодов в одном семействе, но с разным пробивным или опорным напряжением.

В результате можно зарезервировать последовательную последовательность номеров диодов в системе или добавить суффикс к номеру основного типа, чтобы указать напряжение.

Одним из способов нумерации стабилитронов в одном семействе, но с разными напряжениями является использование серии в стандартной системе нумерации.Одним из примеров является серия от 1N4728A до 1N4764A с одним номером детали, выделенным для каждого напряжения. Эти диоды представляют собой стабилитроны 400 мВт с напряжениями от 3,3 до 100 В с допуском 5% и в диапазоне E24.

Другой используемый метод состоит в том, чтобы иметь номер для семейства, а затем добавлять суффикс номера детали к напряжению, например, BZY88 C5V6, где 5V6 — напряжение, 5,6 вольт.

Стабилитроны или эталонные значения напряжения обычно разнесены с использованием серии E12, хотя некоторые доступны в серии E24, например.g 5V1 используется для ряда логических микросхем, где используется очень простой стабилизатор Зенера. Если транзисторный эмиттерный повторитель используется для большего тока, то стабилитрон 5V6 лучше, поскольку транзистор будет падать на 0,6 В, и это делает его идеальным.

Хотя лучше придерживаться более часто используемой серии E12, а еще лучше E6 или даже E3, часто это невозможно, и доступны значения напряжения стабилитрона из серии E24.


E24 Стандартное напряжение стабилитрона, серия
(примечание: значения E12 выделены жирным шрифтом)
1.0 1,1 1,2
1,3 1,5 1,6
1,8 2,0 2,2
2,4 2,7 3,0
3,3 3,6 3,9
4,3 4.7 5,1
5,6 6,2 6,8
7,5 8,2 9,1

Примечание: Значения E12 выделены жирным шрифтом.

Стабилитроны

обычно не поставляются последовательно выше диапазона E24. Причина этого заключается в том, что производственные допуски недостаточны и использование обычно не требует этого.

стабилитронная технология

Стабилитроны

работают с обратным смещением и используют две формы обратного пробоя. Одной из форм обратного пробоя называется пробоем стабилитрона, и это дает имя часто используется для описания всех форм опорного напряжения диода. Другой тип обратного пробоя может быть назван пробой ударной ионизации.

Установлено, что из двух эффектов эффект Зенера преобладает выше примерно 5,5 вольт, тогда как ударная ионизация является основным эффектом ниже этого напряжения.

Поскольку оба эффекта имеют температурный коэффициент, находящийся в противоположных значениях, это означает, что диоды с напряжением около 5,5 вольт являются наиболее стабильными при температуре.


Стабилитроны / опорные диоды напряжения Технические характеристики

При выборе диода Зенера или опорного напряжения диод для использования в схеме, существует несколько спецификаций, которые необходимо учитывать, чтобы гарантировать, что выбран оптимальный диод для применения.

Очевидной спецификацией стабилитрона является обратное напряжение, но другие характеристики, такие как рассеиваемая мощность, обратный ток и тому подобное, также важны для любой конструкции схемы, которая может включать в себя диод.


Схемы стабилитрона

Существует много способов использования стабилитронов или опорных диодов напряжения. Наиболее широко известен в качестве эталона напряжения в некоторой форме регулятора напряжения, но они также могут использоваться в качестве ограничителей формы сигнала для цепей, где может быть необходимо ограничить отклонение формы сигнала для предотвращения перегрузки и т. Д. Их также можно использовать. в переключателях напряжения.

Соответственно, стабилитроны часто встречаются в конструкциях электронных схем, и их огромное количество используется в производстве как в качестве свинцовых устройств, так и в форматах поверхностного монтажа.

Стабилитрон является особенно полезным компонентом для проектирования электронных схем. В результате многие миллионы стабилитронов используются каждый год при изготовлении электронного оборудования как в виде отдельных компонентов, так и компонентов, содержащихся в больших интегральных схемах.

Несмотря на то, что имеются опорные интегральные схемы напряжения, которые обеспечивают очень высокую степень точности и температурной стабильности, для большинства из них используется простой стабилитрон, более чем удовлетворительный и предоставляющий гораздо более дешевое решение.Соответственно, это помогает узнать, что такое стабилитрон, как он работает, и основы схемы стабилитрона.

Больше электронных компонентов:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители РЧ разъемы Клапаны / Трубы батареи Выключатели Реле
Вернуться в меню компонентов., ,

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *