Современные источники энергии – Альтернативные источники энергии в быту для загородных домов: дополнительное электроснабжение, популярные источники | Блог о строительстве и ремонте

Содержание

Энергия будущего, традиционные и современные источники 21 века

Ученые спешат найти источники энергии будущего, чтобы улучшить окружающую среду и уменьшить зависимость от нефти и других видов ископаемого топлива.

Некоторые предсказывают что энергия будущего это водородные топливные элементы. Другие говорят, что солнце – это путь. Более дикие схемы включают в себя ветряные турбины высоко в воздухе или двигатель на антивеществе.

Рассмотрим, что будет представлять собой энергия будущего в 21 веке и позднее.

Энергия антивещества энергия антивеществаэнергия антивещества

Антивещество является аналогом материи, состоящей из античастиц, которая имеют ту же массу, что и обычная материя, но с противоположными атомными свойствами, известными как спин и заряд.

Когда противоположные частицы встречаются, они аннигилируют друг друга и высвобождают огромное количество энергии в соответствии с известным уравнением Эйнштейна Е=mc2.

Энергия будущего в виде прообраза антивещества уже используется в медицинской технике визуализации, известной как позитронно-эмиссионная томография (ПЭТ), но ее использование в качестве потенциального источника топлива остается в сфере научной фантастики.

Проблема антивещества в том, что во Вселенной его очень мало. Антивещество можно произвести в лабораториях, но в настоящее время только в очень малом количестве и при непомерно высоких ценах. И даже если проблема производства может быть решена, все равно остается главный вопрос в том, как хранить то, что имеет тенденцию уничтожать себя при контакте с обычной материей, а также как использовать эту энергию антивещества, когда-то созданную.

Ученые проводят исследования по созданию антивещества, которое могло бы однажды переправить человечество к звездам, но мечты о звездолетах, работающих на энергии антивещества все еще далеки, согласны все эксперты.

Водородные топливные элементы топливные элементытопливные элементы

На первый взгляд водородные топливные элементы могут показаться идеальной альтернативой ископаемым видам топлива. Они могут произвести электричество используя только водород и кислород без особого загрязнения.

Автомобиль, работающий на водородных топливных элементах, будет не только более эффективным, чем автомобиль, работающий на двигателе внутреннего сгорания, но и имеющий единственный выброс это воду.

К сожалению, в то время как водород является самым распространенным элементом во Вселенной, большая его часть связана с молекулами, такими как вода. Это означает, что чистый несвязанный водород должен производиться с помощью других ресурсов, которые во многих случаях связаны с ископаемым топливом. Если это так, то многие экологические преимущества водорода как топлива ничтожны. Другая проблема с водородом что его нельзя сжать легко или безопасно и требуются особые баки для хранения. Кроме того, по причинам, которые не до конца понятны, маленькие атомы водорода имеют тенденцию к проникновению через материалы баков.

Ядерная ядерная энергияядерная энергия

Альберт Эйнштейн сказал нам, что грань между материей и энергией нечеткая. Энергия будущего может быть произведена путем разделения или слияния ядер – процессы известные как ядерные реакции деления и образования более тяжелых ядер где выделяется термоядерная энергия.

Ядерное атомное деление высвобождает вредную радиацию и производит большое количество радиоактивных материалов, которые могут оставаться активными в течение тысяч лет и могут разрушать целые экосистемы в случае утечки. Существует также озабоченность по поводу того, что ядерный материал может быть использован в оружии.

В настоящее время большинство атомных электростанций используют деление, и для производства требуется поддержание необходимых температур.

Также известно природное явление, как сонолюминесценция.

Сонолюминесценция может однажды стать средством обладающим гигантскими ядерными и термоядерными реакторами в стакане жидкости.

Сонолюминесценция относится к вспышке света, когда специальные жидкости создают высокоэнергетические звуковые волны. Звуковые волны разрывают жидкость и производят крошечные пузырьки, которые быстро расширяются, а затем сильно разрушаются. Свет производится в процессе, но что более важно, внутренности взрывающихся пузырьков достигают чрезвычайно высоких температур и давлений. Ученые предполагают что этого может быть достаточно для ядерного синтеза.

Ученые также экспериментируют с методами создания управляемого ядерного синтеза, ускоряя “тяжелые” ионы водорода в мощном электрическом поле.

Преобразование тепловой энергии океана энергия будущегоэнергия будущего

Океаны покрывают 70 процентов Земли, а вода является природным солнечным коллектором энергии будущего. Преобразование тепла океана происходит путем использования температурных различий между поверхностными водами нагреваемыми солнцем и водой в холодных глубинах океана для выработки электричества.

Преобразование тепловой энергии океана может работать по следующему принципу:

  • Замкнутый цикл: жидкость с низкой температурой кипения, например аммиак, кипит используя теплую морскую воду. Полученный пар используется для работы электрогенерирующей турбины, затем пар охлаждается холодной морской водой.
  • Открытый цикл: теплая морская вода преобразуется в пар низкого давления который используется для генерации электричества. Пар охлаждается и превращается в полезную пресную воду с холодной морской водой.
  • Гибридный цикл: используется замкнутый цикл для того, чтобы произвести электричество, которое применяется создавая окружающую среду низкого давления необходимого для открытого цикла.

Тепловую энергию океана используют и для добычи пресной воды и богатых питательными веществами морской воды извлекаемой из глубин океана для культивирования морских организмов и растений. Главный недостаток тепловой энергии океана, что необходимо работать на таких малых разницах температуры, вообще около 20 градусов по Цельсию где эффективность от 1 до 3 процента.

Гидроэлектроэнергия энергия водыэнергия воды

Падающую, пропускающую или в противном случае двигающую воду с древних времен уже обуздали для производства электричества.

Гидроэнергетика обеспечивает около 20 процентов электроэнергии в мире.

До недавнего времени считалось, что водная энергия будущего является богатым природным ресурсом, не требующим дополнительного топлива и не вызывающего загрязнения.

Недавние исследования, однако, оспаривают некоторые из этих утверждений и предполагают, что гидроэлектрические плотины могут производить значительное количество углекислого газа и метана за счет распада погруженного в воду растительного материала. В некоторых случаях эти выбросы конкурируют с выбросами электростанций, работающих на ископаемом топливе. Еще одним недостатком плотин является то, что людей часто нужно переселять. В случае строительства плотин в трех ущельях в Китае, который стал самой большой плотиной в мире 1,9 миллиона человек были перемещены, а исторические места были затоплены и потеряны.

Биомасса биотопливобиотопливо

Источником энергии будущего является биомасса или биотопливо, которое включает в себя высвобождение химических ресурсов, хранящихся в органических веществах, таких как древесина, сельскохозяйственные культуры и животные отходы. Эти материалы сжигаются непосредственно для получения тепла или очищаются для создания алкогольного топлива, такого как этанол.

Но в отличие от некоторых других возобновляемых источников энергии, энергия биомассы не является чистой, так как при сжигании органического вещества производится большое количество углекислого газа. Однако можно компенсировать или устранить эту разницу, посадив быстрорастущие деревья и травы в качестве топлива. Ученые также экспериментируют с использованием бактерий для разрушения биомассы и получения водорода для использования в качестве топлива.

Одно интересное, но спорное альтернативное биотопливо включает в себя процесс, известный как тепловая конверсия.

В отличие от обычного биотоплива тепловая конверсия может преобразовать практически любой тип органического вещества в высококачественную нефть с водой в качестве единственного побочного продукта.

Однако еще предстоит выяснить, могут ли компании, запатентовавшие этот процесс, производить достаточно нефти для того, чтобы эта энергия будущего стала жизнеспособной альтернативой топливу.

Нефть будущие источники энергиибудущие источники энергии

Некоторые называют это черным золотом. На этом основаны целые империи, из-за которых ведутся войны. Одна из причин, почему нефть или сырая нефть, так ценна, потому что она может быть преобразована в различные продукты, от керосина до пластика и асфальта. Является ли это источником энергии будущего горячо обсуждается.

Оценки того, сколько нефти осталось в земле, сильно различаются. Некоторые ученые прогнозируют, что запасы нефти достигнут пика, а затем быстро сократятся; другие считают, что будет открыто достаточно новых запасов для удовлетворения мировых энергетических потребностей в течение еще нескольких десятилетий.

Подобно углю и природному газу, нефть является относительно дешевой по сравнению с другим альтернативным топливом, но её использование связано с более высокими издержками экологического ущерба. Использование нефти производит большое количество углекислого газа, а разливы нефти могут повредить хрупкие экосистемы.

Ветер энергия ветраэнергия ветра

Взяв концепцию ветряных мельниц на шаг дальше и выше, ученые хотят создавать электростанции в небе, плавающие в воздухе ветряные мельницы на высоте от 1000 метров. Устройство с винтами будет стабилизироваться на одном месте, а электричество будет подаваться на землю через кабель.

Энергия ветра в настоящее время составляет всего 0,1 процента от мирового спроса на электроэнергию. Это число, как ожидается, увеличится, поскольку ветер является одной из самых чистых форм энергии и может генерировать энергию до тех пор пока дует ветер.

Проблема, конечно, в том, что ветры не всегда дуют, и на ветроэнергетику нельзя полагаться, чтобы производить постоянное электричество. Существует также озабоченность по поводу того, что ветряные электростанции могут оказывать влияние на местную погоду таким образом, который еще предстоит полностью понять.

Ученые надеются, что поднятие ветряных мельниц в небо решит эти проблемы, так как ветры на высоте дуют гораздо сильнее и более постоянно на больших высотах.

Уголь энергия угляэнергия угля

Уголь был топливом, которое привело в действие промышленную революцию, и с тех пор он играет все более важную роль в удовлетворении мировых энергетических потребностей.

Главное преимущество угля в том, что его много. Достаточно, чтобы продержаться еще 200-300 лет при нынешних темпах потребления.

Пока свое обилие делает его очень экономичным, однако при горении уголь выпускает примеси серы и азота в воздух, который может совместиться с водой в атмосфере для того чтобы сформировать кислотный дождь. Сжигание угля также производит большое количество углекислого газа, который по мнению большинства климатологов, способствует глобальному потеплению. Серьезные усилия прилагаются, чтобы найти новые способы уменьшить отходы и побочные продукты добычи угля.

Солнечная энергия солнечная энергиясолнечная энергия

Солнечная энергия не требует никакого дополнительного топлива и загрязнения не происходит. Солнечный свет можно концентрировать в виде тепла или преобразовать в электричество используя фотоэлектрический или фотовольтаический эффект через синхронизированные зеркала которые отслеживают движение солнца через небо. Ученые также разработали методы использования солнечной энергии будущего для замены газового двигателя нагревом водородного газа в резервуаре, который расширяется и приводит в движение генератор.

К недостаткам солнечной энергии можно отнести высокие начальные затраты, а также потребность в больших пространствах. Также для большинства альтернатив выход солнечной энергии будущего подвержен капризам загрязнения воздуха и погоды, которые могут блокировать солнечный свет.

10 лучших альтернативных источников энергии

Наша цивилизация нуждается в огромных количествах энергии — для любого вида производства, заправки транспорта, освещения домов… Но Земля, кажется, совершенно неистощима.

«Солнечные окна». Солнце — очевидный и надёжный источник энергии, но для солнечных батарей требуются чрезвычайно дорогие материалы. Технология SolarWindow использует прозрачные пластиковые стёкла, служащие одновременно панелями солнечных батарей. Их можно устанавливать в качестве обычных окон, и цена производства вполне приемлема.

Приливы. Мы начали присматриваться к приливам в качестве источников энергии совсем недавно. Наиболее перспективный волновой генератор — Oyster — был разработан лишь в 2009 году. Название переводится как «устрица», так как именно её он внешне напоминает. Двух установок, запущенных в Шотландии, хватает для обеспечения энергией 80 жилых домов.

Генератор микроволн — амбициозный проект британского инженера Роберта Шоера, предлагающий полностью отказаться от привычного топлива космических аппаратов. Резонирующие микроволны гипотетически должны создавать мощную реактивную тягу, при этом попутно опровергая третий закон Ньютона. Работает система или является шарлатанством, пока неясно.

Вирусы. Учёные из Национальной лаборатории им. Лоуренса в Беркли пару лет назад обнаружили вирус, способный создавать электроэнергию за счёт деформации модифицированных материалов. Такие свойства проявили безвредные вирусы-бактериофаги M13. Сейчас эта технология используется для подпитки экранов ноутбуков и смартфонов.

Один из самых известных и широко распространённых альтернативных источников энергии — геотермальная. Она берётся из жара самой Земли и потому не тратит её ресурсов. Одна тепловая электростанция, «сидящая» на вулкане, обеспечивает током около 11500 жилых домов.

Существует ещё одна солнечная батарея нового типа, правда, делающая упор не на дешевизну, а на эффективность. Betaray представляет из себя наполненную особой жидкостью сферу, обтянутую улавливающими тепло панелями. Устройство вырабатывает в четыре раза больше энергии, чем обычные солнечные батареи.

Биотопливо — весьма перспективный источник энергии, буквально выращиваемый на полях. Его добывают из растительных масел — например, сои или кукурузы. Но самыми перспективными являются… водоросли, отдающие стократно больше ресурсов, чем наземные растения. И даже отходы от них можно использовать в качестве удобрения.

Радиоактивный торий весьма напоминает уран, но отдаёт в 90 раз больше энергии! Правда, для этого учёным приходится изрядно попотеть, и в основном торий играет второстепенную роль в ядерных реакторах. Его запасы в земной коре превышают запасы урана в 3−4 раза, так что потенциально торий способен обеспечить человечество энергией на сотни лет.

Надувная турбина по сути является следующим уровнем развития ветряных электростанций. Турбина, наполненная гелием, поднимается на высоту до 600 метров, где ветер дует постоянно и с огромной силой. Кроме окупаемости по энергии, устройство также весьма устойчиво к любой непогоде и дешево.

Международный экспериментальный термоядерный реактор. Несмотря на все опасности, связанные с атомными станциями, они всё равно остаются мощнейшими источниками энергии, изобретёнными человеком. ITER — проект международного термоядерного реактора, в котором участвуют: страны ЕС, Россия, США, Китай, Корея, Япония и Казахстан. Конец строительства реактора запланирован на 2020 год.

Основные источники энергии — например, уголь или нефть, имеют обыкновение кончаться, и к тому же загрязняют окружающую среду. Им противопоставляются возобновляемые ресурсы — такие как геотермальная энергия или солнечное излучение. Рассмотрим десять альтернативных источников энергии, которые уже показали себя в деле.

Альтернативная энергия: производство, использование, виды, плюсы и минусы

Альтернативная энергия для частного дома — мечта многих людей, которые желают избавиться от платы за коммунальные платежи. Но все ли мы понимаем, что это такое? Так вот, альтернативная энергия — это любой источник энергии, который является альтернативой традиционному виду топлива.

В основном они относятся к классу возобновляемых, а их цель — справиться с проблемами, возникающими от использования традиционных источников, а именно сильным загрязнением окружающей среды углекислым газом.

С течением времени понятие того, что представляет собой альтернативный источник, сильно изменилось, так же как и усилились противоречия в отношении их использования. Определение некоторых источников в качестве «альтернативных» считается весьма противоречивым. Причиной тому служит многообразие путей использования материалов и сильное отличие целей сторонников их применения. Таким образом, любители делать альтернативные источники энергии своими руками могут сильно навредить окружающей среде даже не осознавая это.

Содержание:

Виды альтернативных источников энергии

  • Гидроэнергетика: получение энергии из движения воды. К этому классу относятся традиционные ГЭС, а также приливные и волновые электростанции.
  • Ядерная энергетика: используется огромное количество энергии, которое высвобождается при ядерном делении тяжелых элементов.
  • Ветроэнергетика: генерация электричества за счет вращения ветром специальных установок.
  • Солнечная энергетика: получение полезной энергии из солнечного света и излучения. Термальные преобразователи задействуют тепло Солнца, а свет используется для генерации электричества фотогальваническими устройствами.
  • Геотермальная энергетика: использование горячих источников нашей планеты, чтобы прогревать строения или производить электричество.
  • Биотопливо: альтернатива нефти, применяемая в качестве топлива в машинах, мотоциклах и т. д.
  • Водород: носитель энергии, можно отнести к биотопливу. Существует множество способов получения материала, например из воды с помощью электролиза.

История

Некоторые ученые историки исследовали основные моменты смены традиционной энергетики на схожую по назначению. Они считают, что такие переходы оказали существенное влияние на экономическую обстановку. Типичным фактором данного процесса является снижение стабильности поставок основного вида энергии в совокупности с сильным ростом цен на него.

Уголь как альтернатива древесине

Одним из основных видов топлива в средние века была древесина. Чрезмерное пользование материалом привело к сильному обезлесиванию, а следовательно нехватке источника энергии. Именно тогда люди нашли для себя нового спасителя — мягкий уголь. Вот как рисует ситуацию того времени Норман Ф. Кантор:

В ранние средневековье население Европы существовало рядом с большими запасами леса. После 1250 года человечество имело такой существенный опыт в работе с деревьями, что к 1500 году н.э. у них отсутствовало достаточное количество материала для житейских нужд… Таким образом, в это время население оказалось на грани топливной и пищевой катастрофы. Найти выход из ситуации помогло применение мягкого угля, а также освоение таких растительных культур как кукуруза и картофель.

Нефть как альтернатива китовому маслу

На старте 19 века китовое масло было доминирующим источником топлива для ламп, а так же являлось основным видом смазки . Однако к середине века постоянное вырезание животного привело к резкому подъему стоимости масла. Именно это стало ключевым фактором, после которого люди начали смотреть в сторону нефти.

Этанол против ископаемого топлива

Еще в начале 20 века Александр Грэхем Белл предлагал заменить традиционные ископаемые источники топлива на этанол из растительных культур, таких как кукуруза или пшеница. Он говорил, что привычные нам материалы для топлива могут закончиться достаточно быстро, а их основной недостаток — они не возобновляются.

В конце 20 века Бразилия запустила этанольную программу. За счет ее реализации страна начала экспортировать данного топливо больше всех в мире, а так же заняла вторую строчку международного рейтинга по объему его производства. В качестве исходного материала они решили использовать сахарный тростник — это дешевый вид растения, к тому же его отходы можно отправить в топку на получение дополнительной энергии. Сейчас в Бразилии больше нет транспортных средств, работающих на старом виде топлива, а найти этанол на любой заправке страны можно было еще в 2008 году.

Специальный целлюлозный этанол можно получить из разного сырья, а его создание подразумевает задействование полного объема урожая. Такой подход должен повысить сбор растительной продукции и понизить уровень углерода, который появляется из-за удобрений, требующих много энергии при производстве.

Газификация угля вместо нефти

В конце 20 века правительство США хотела избавиться от зависимости в дорогостоящей нефти из-за границы. В качестве альтернативы власти выбрали газификацию угля, но вскоре из-за падения стоимости нефти программу пришлось закрыть. Также стоит отметить, что данный метод имеет сильные загрязняющие последствия.

Вспомогательные технологии

Вспомогательные технологии — любые виды разработок, которые помогают снизить НЕ эффективность систем. Например, большинство техники выделяет огромное количество энергии в никуда, в воздух. Ваш компьютер или телефон вырабатывает тепло, которое можно было бы направить в правильное русло, тем самым увеличив полезность работы устройства.

Запасание термальной энергии

Кондиционирование холода в виде замерзшей воды, сохранение жара в источнике — это пути запасать энергию. Специальными разработками можно сохранить термальную энергию как на сутки, так и на целые сезоны. Виды источников различны:

  • естественные — солнечные коллекторы способны использовать тепловую энергию солнца, а сухие градирни применяются для запасения холода;
  • выработанная энергия — например, от различного рода устройств, процессов или деятельности электростанций. Самым простым примером послужит обычный компьютер, вырабатывающий при работе тепло, которое можно было бы использовать;
  • избыточная энергия — например, сезонные превышение нормы выработки от гидроэнергетики или ветропарков.

Примером послужит сообщество Drake Landing (Альберта, Канада). Тепло, запасенное в скважине или любом изолированном источнике с помощью солнечных коллекторов, почти весь год обеспечивает их термальной энергией.

Рекуперация

Рекуперация — повторное задействование уже израсходованной энергии. Технологию часто еще называют регенерацией. В основном выделяют два пути рекуперации: тепла и кинетической энергии.

(Система рекуперации торможения bmw i3)

Компьютеры имеют свойство нагреваться во время работы, поэтому их необходимо постоянно охлаждать, дабы они не вышли из строя. Таким образом здесь описывается сразу два случая траты энергии: на понижение температуры устройства и нагрев воздуха, который в итоге и нужно охлаждать. Теперь представьте, что в одном месте собраны сотни и даже тысячи таких машин, и насколько большие затраты придется нести владельцу. А ведь именно с этой проблемой сталкиваются собственники дата-центров. Но некоторые фирмы находят пути снижения издержек — одним из них как раз и является рекуперация тепла. Дата-центр компании Яндекс в Финляндии использует естественный холод с улицы для охлаждения серверов, а выделяемое компьютерами тепло они отравляют на отопление домов близлежащего городка. Как все это работает, можно посмотреть в специальном ролике компании:

Но такие системы очень сложны и стоят больших денег, следовательно, могут позволить себе не все. Именно поэтому данной технологией пользуются лишь крупные фирмы, такие как Amazon, Facebook, Apple и некоторые другие.

Еще одним путем, помимо работы с теплом, является рекуперация энергии торможения. Транспортные средства, оборудованные системой регенерации при замедлении, способны поймать уходящую в никуда кинетическую энергию и направить ее в запасы аккумулятора.

«Автомобиль в сети» или V2G

Технология «автомобиль в сети» или V2G становится все более популярной с развитием электрических машин. Суть заключается в том, что электромобиль подключается к центральной сети, а запасом энергии батареи позволяется распоряжаться коммунальной службе. Таким образом, во время пиковых нагрузок из аккумулятора транспортного средства может быть извлечена необходимая мощность, а в любое другое время батарея заряжается.

Недавнее исследование показало, что в итоге электромобили с системой V2G позволят сэкономить огромные суммы денег даже если коммунальные службы будут платить собственникам за доступ к их машинам. К аналогичным выводом пришел BMW, который 3 года тестировал программу «ChargeForward» на автомобилях BMW i3. Автопроизводитель даже заявил, что машину можно превратить в «дойную корову». Стоит упомянуть компанию Tesla, которая в свое время отказалась от этой идеи, а сейчас думает поменять свою точку зрения. К тому же, данная технология улучшает использование возобновляемых источников энергии.

Виртуальные электростанции

Виртуальные электростанции начали появляться совсем недавно, и они никак не связаны с виртуальным миром. На самом деле, это лишь распределенные источники энергии подключенные в единую сеть. Их появлению способствовало широкое распространение домашних накопителей энергии в совокупности с солнечными установками.

Идея технологии проста. Солнечная система любого дома может быть подключена к центральной сети. Пиковые часы — проблема любой коммунальной электрической службы, так как нагрузка вырастает в разы. Однако, используя технологию виртуальной электростанции, недостающая мощность частично или полностью берется из домашних накопителей, которые сохранили излишки солнечной энергии. Владельцам жилищ на момент пика эта энергия может быть ни к чему, так как их дом питается от солнечных батарей или же просто нет необходимости в столь большом потреблении.

В темное время суток, когда солнечные панели не могут вырабатывать электричество, мощность берется из общей сети со скидкой или же за деньги, которые владельцы получили от взятой у них же энергии.

Примером реализации этой технологии служит Австралия. В мае 2018 года правительство страны договорилось с фирмой Tesla, что та поставит на 50 000 домов солнечные панели и систему запаса энергии Powerwall. Результатом должна получиться распределенная электростанция на 650 МВт-ч — это самая большая распределенная электростанция на текущий момент. Уже летом того же года первые 100 установок продемонстрировали свою пользу.

(Tesla Powerwall)

Другое интересное решение придумал дуэт фирм из Западной Австралии. Они создали альтернативу отдельным Powerwall для группы домов из одной мощной батареи Tesla Powerpack. Компании предоставляют энергетические возможности 52 семьям с солнечными установками в Медоу-Спрингс. Таким образом владельцы не тратятся на индивидуальные аккумуляторы и получают скидку на электричество из общей сети или того, что сохранил Powerpack.

Как видно, такие станции сильно способствуют распространению солнечной энергетики.

Балансировка сетей большими аккумуляторными батареями

Принципиально нового здесь ничего нет. Используется батарея в качестве резервного источника питания. Единственное исключение, что применяются такие аккумуляторы в крупных масштабах, начиная от небольших зданий/университетов и заканчивая целыми городами.

Одним из самых крупных представителей данной области является Tesla. Компания реализовала уже множество проектов различных масштабов:

Большинство клиентов отмечает превосходную работу техники Tesla и говорят, что их вложения быстро окупаются.

Видеоролик компании об установках Powerpacks в Бельгии:

Возобновляемая и не возобновляемая энергетика

Свет солнца, тепло земли, ветер — из всего этого мы можем получить энергию, которая постоянно пополняется за счет привычных нам закономерностей природы. Именно это отличает возобновляемые источники от не возобновляемых. Процессы получение этих двух разных типов энергии сильно отличаются. Добыча природных ископаемых, таких как нефть, уголь и газ — трудоемкие и высокотехнологичные процессы, которые требуют большого количества дорогого оборудования, сложных физических и химических процессов. С другой стороны, возобновляемую энергию можно широко использовать с применением естественных процессов и существующего оборудования.

Относительно новые концепции альтернативной энергетики

Углеродно-нейтральное и отрицательное топливо

Данный тип топлива является синтетическим. К нему относятся реактивное топливо, дизель, бензин и т. д. Такой вид топлива выделяют из источников, содержащих углерод, например дыма от электростанций или из автомобильных выхлопов. Компании рассчитывают, что у них получится сделать производство топлива коммерчески успешным при стоимости нефти на уровне $50-60.

Возобновляемый метанол — еще одно топливо, нейтральное по отношению к углеродным выбросам, так как его самого получают из данного элемента. Метанол используется как для питания различных машин, так и в качестве материала химических процессов.

Например, в Исландии есть перерабатывающий завод, первичным материалом которого является углекислый газ из дыма близлежащей электростанции. Его годовая выработка составляет более 5 млн. литров начиная с 2011 года.

Еще одним примером можно назвать фирму Ауди. Завод компании в Германии создает сжиженный природный газ, после использования которого остается только вода и кислород. Данное производство служит для получения облегченного источника энергии транспортных средств, таких как Audi A3 Sportback g-tron. Выпускаемое топливо выделяют из углеродосодержащих веществ, поэтому и выбросов в атмосферу фактически никаких нет.

Использование топлива не дает реального повышения содержания углекислого газа в окружающей среде, поэтому его и называют нейтральным. Оно облегчает ситуацию, связанную с заимствованием природных источников из-за рубежа, с поиском и разработкой аналогов и с другими проблемами, возникающими от использования ископаемого топлива. Также, отпадает большая необходимость в переходе на электромобили или альтернативный «чистые» машины, а следовательно нет необходимости замены существующих двигателей. Нейтральные к углероду топлива обеспечивают относительно низкое энергопотребление, уменьшают трудности падения активности ветровой и солнечной энергетики, а также в какой-то степени позволяют доставлять энергию возобновляемых источников по уже построенным газопроводам(энергия этих источников используется для производства газа, который передается по трубам).

Самая дешевая энергия получается благодаря ветру ночью. Вырабатываемое в это время электричество и направляют на синтез топлива. Это связано с тем, что кривая нагрузки на сеть резко возрастает, когда люди бодрствуют, а активность ветра в основном повышается в ночное время суток.

Водорослевое топливо

Еще одним источником биотоплива являются водоросли. Из школьного курса биологии нам известно, что растения во время фотосинтеза поглощают углекислый газ и солнечный свет, а в обмен создает кислород и биомассу. Во время фотосинтеза водоросли и другие фотосинтетические организмы захватывают углекислый газ и солнечный свет и превращают его в кислород и биомассу. Обычно процесс получения энергии начинается с того, что растение размещается между двумя стеклами, где оно выделяет три вида энергетического топлива: тепло (из его цикла роста), биотопливо (натуральное «масло») и биомасса (из самого растения, поскольку оно собирается после зрелости).

Тепло может использоваться для нагрева, например воды, или для производства энергии. Биотопливо — это масло, добытое из водорослей в зрелости и применяемое для создания топлива — аналогично биодизелю. Биомасса — это все то, что остается после извлечения масла и воды, и может быть выделено для получения горючего метана.

Кроме того, преимуществами биотоплива из водорослей будет то, что для его производства не нужно использовать пахотные земли и отбирать часть продовольственных культур, таких как соя, пальма и рапс.

Брикеты из биомассы

Брикеты из биомассы применяются в развивающихся странах в качестве альтернативы древесному углю. Данные подход подразумевает пресование разлиных растений в небольшие брикеты, содержащие более 65% энергетического запаса угля.

Найти примеры выпуска брикетов в крупных масштабах довольно тяжело. Одним из них служит Северный Киву, где уничтожение леса опасно для существования горной гориллы. Сотрудники Национального парка Вирунга успешно обучили местных жителей и оснастили более 3500 человек всем необходимым оборудованием для производства брикетов из биомассы. Таким образом удалось искоренить незаконное производство древесного угля в национальном парке, а также создать значительную занятость для людей, живущих в условиях крайней нищеты в районах, затронутых конфликтами.

Биогазовое расщепление

Биогаз получается из метанового газа, который выделяется, когда органические отходы разлагаются в анаэробной среде. Его можно обнаружить на мусорных свалках или в канализационных системах. Газ используется в качестве топлива для отопления или, чаще всего, для выработки электроэнергии.

Производство биологического водорода

Водородный газ является полностью чистым горючим топливом, а его единственный побочный продукт — вода. Он содержит высокое количество энергии по сравнению с другими видами топлива из-за его химической структуры. К сожалению, для получения газа требуется много энергии, что делает его коммерчески неэффективным. Однако есть вариант производства топлива с использованием биологических организмов, которые расщепляли бы воду на составляющие. К таким организмам относятся бактерии или чаще водоросли. Этот процесс известен как производство биологического водорода.

Теперь о самом процессе. Данный способ использует одноклеточных существ для создания газообразного водорода путем брожения. Без присутствия кислорода обычное клеточное дыхание невозможно, и тогда дело в свои руки берет ферментация или же просто брожение. Именно газообразный водород является основным побочным продуктом этого процесса.

Реализация данного метода в больших масштабах позволила бы получать достаточно водородного газа, чтобы считать его крупным источником энергии. Однако широкомасштабное производство оказалось трудным. Только в 1999 году получилось воссоздать необходимые анаэробные условия. Но брожение является эволюционным резервом, активизирующимся во время стресса, поэтому клетки умирали во время данного процесса уже через несколько дней. В 2000 году был разработан двухстадийный подход, позволяющий вводить клетки в анаэробное состояние, а затем выводить их из него, чтобы организмы оставались в живых.

В течение последних десятков лет поиски способа воссоздать данный процесс в крупном масштабе был главной целью исследований. До сих пор не получилось добиться каких-то значительных результатов в этой сфере, хотя многие ученые бьются над решением этой задачи. Некоторые считают, что как только мы найдем ключ к этой головоломке, то производство данного вида топлива сможет решить наши энергетические проблемы. Однако не стоит забывать, что сейчас мир активно переходит на электрические машины. Илон Маск когда-то уже делал заявление, что автомобили на водороде — глупость и опасная технология, к тому же добиться хорошей плотности энергии, как в случае литий-ионных аккумуляторов, тоже вряд ли получится. Но тогда можно использовать водород в качестве источника для подзарядки автомобильных батарей.

Малая гидроэнергетика

В 2015 году гидроэнергетика произвела 16,6% всей электроэнергии в мире и 70% от общего объема возобновляемой электроэнергии. Однако по статистике IRENA к 31 марта 2018 года доля данного источника по отношению к остальной возобновляемой электроэнергии снизилась до 53%. Несмотря на этот факт, выработка от гидроэнергетики увеличивается с каждым годом.

Популярной альтернативой крупным плотинам прошлого является русловая ГЭС(гидроэлектростанция), которая не требует хранения воды в дамбе, а выработка энергии варьируется в зависимости от осадков. Использование данной технологии во влажные сезоны в совокупности с солнечными станциями в засушливые времена может сбалансировать временные колебания для обоих. Альтернатива крупным плотинам также являются малые установки, которые ставят в начале притоке, где быстрое течение.

(Шексинская ГЭС — фотография русловой гидроэлектростанции)

Морской ветер

Морские(или оффшорные) ветровые электростанции подобны наземным, но расположены на берегу океана. Их погружают в воду на глубину до 40 метров, а плавучие турбины могут находиться в воде до глубины в 700 метров. Преимуществом таких станций является использование ветров из открытого океана, который не встречает на своем пути каких-либо препятствий, таких как холмы, деревья или здания. Морские ветра способны достигать в два раза большей скорости, чем в прибрежных районах.

(Схема крепления морских ветряков)

Сама по себе ветровая энергетика развивается огромными шагами во всем мире, с каждым годом отвоевывая все большую долю в выработке электроэнергии возобновляемыми источниками. Однако существенная генерация энергии на шельфе уже сейчас восполняет многие потребности Европы, Азии и Америки.

Традиционные оффшорные турбины прикрепляются к морскому дну в менее глубоких местах. По мере развития технологий, генерирующих энергию из океанского ветра, в более глубоких водах начинают все чаще использоваться плавающие структуры, где ветра еще сильнее.

(Плавучий морской ветряк)

В последнее время виден значительный рост данной отрасли в США и Европе. Но даже несмотря на это, до сих пор нет четкого понимания о том, как сильно ветроэнергетика влияет на природу и животных.

Морская и гидрокинетическая энергия

Сила океана или морская и гидрокинетическая (MHK) энергия относится к следующим проектам:

  • Использование силы волн — ветровые волны имеют огромный запас энергии, которую можно направить на выполнение полезной работы — например, на выработку электроэнергии или перекачивание воды в водоемы;
  • Энергия приливов — специальные турбины размещаются в прибрежных и устьевых районах, где суточные потоки воды достаточно сильны и вполне предсказуемы;
  • Расположение турбин в быстроходных реках;
  • Океанские турбины в районах сильных морских течений;
  • Океанские тепловые преобразователи энергии в глубоководных тропических водах.

Данная отрасль активно развивается и старается использовать новые технологи для повышения эффективности работы установок. Так к примеру, на приливную электростанцию Nova Innovation в Шотландии установили батарейный блок Tesla Powerpack, тем самым была создана первая приливная станция с базовой нагрузкой. Аккумулятор позволяет запасать излишки энергии и выдавать их, когда турбины бездействуют.

Управляемый термоядерный синтез

Термоядерный синтез — один из самых лучших вариантов выработки энергии. Это довольно безопасная технология, которая выделяет недолго живущие ядерные отходы. Однако есть одно большое НО. Чтобы управлять реакцией, необходимо поддерживать температуру в миллионы градусов. Именно поэтому реальный термоядерный реактор еще не был создан.

Попытки создать коммерчески успешную станцию есть. В настоящий момент на юге Франции продолжается создание огромного термоядерного реактора ITER. Однако до сих пор у них не получилось выработать больше энергии, чем ушло на ее создание. Если вам хочется узнать больше об этом проекте, пос

1 Современные и перспективные источники электроэнергии

1.1 Энергоресурсы

Реки были первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энергию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже пользовались водяным колесом в виде вала с лопатками (рис. 1.1). Почти полторы тысячи лет после распада Римской империи водяные колеса служили основным источником энергии для всевозможных производственных процессов в Европе, заменяя физический труд человека.

Турбина – энергетически очень выгодная машина, потому что вода легко и просто меняет поступательное движение на вращательное. Тот же принцип часто используют и в машинах, которые внешне совсем не похожи на водяное колесо (если на лопатки воздействует пар, то речь идет о паровой турбине).

Преимущества гидроэлектростанций очевидны: постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды.

Уголь. Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 12000 млрд т, из которых 6000 млрд т относятся к достоверным. Наглядное представление о мировых запасах угля и перспективах их использования дает рис. 1.2. Наибольшими достоверными запасами располагают Россия и США. Значительные достоверные запасы имеются в ФРГ, Англии, КНР и ряде других стран. Современная техника и технология позволяют экономически оправданно добывать лишь 50 % от всех достоверных запасов угля.

Рисунок 1.1 — Схема простого водяного колеса с вертикальным валом

Рисунок 1.2 — Оценки мировых запасов угля:

а– на различных континентах;б– перспектива использования

Запасы угля мирового масштаба находятся в Восточной и Западной Сибири. Среди подсчитанных общих геологических запасов углей в России более 90 % составляют энергетические угли и менее 10 % дефицитные коксующиеся угли, необходимые для металлургии. Энергетические угли большой массы (202 млрд т) имеются на площадях, пригодных для открытой разработки. Это, например, Канско-Ачинский бассейн в Восточной Сибири, где имеются запасы бурых углей в мощных (от 20 до 40 м) пластах, залегающих на глубине менее 200 м от поверхности, и многие другие.

Атомная энергия.При исследовании распада атомных ядер оказалось, что каждое ядро весит меньше, чем сумма масс его протонов и нейтронов. Это объясняется тем, что при объединении протонов и нейтронов в ядро выделяется много энергии. Убыль массы ядер на 1 грамм эквивалентна количеству тепловойэнергии, получаемой при сжигании300вагонов каменного угля.

Нейтрон – электрически нейтральная частица, поэтому легко может проникнуть в атомное ядро. Под действием одного нейтрона наступает деление (расщепление) ядра. Например ядро урана-235 распадается на два приблизительно одинаковых осколка, например на ядра криптона и бария. Эти осколки с огромными скоростями разлетаются в разных направлениях. Но главное в этом процессе, что при распаде одного ядра урана возникают два-три новых свободных нейтрона. Каждый из новых нейтронов может сделать то же, что сделал первый, когда расщепил одно ядро. Так происходит цепная реакция, и, если ею не управлять, она приобретает лавинный характер и заканчивается мощнейшим взрывом.

Энергия, выделяющаяся при термоядерной реакции на единицу топлива, превосходит энергию, получаемую при расщеплении (делении) тяжелых ядер урана или плутония. Количество энергии, выделяемой газообразным дейтерием массой 1 кг в результате реакции синтеза, соответствует энергии, выделяемой при сжигании 10 тыс. т угля.

Одним из перспективных источников получения электричества является освоение термоядерной энергии, т. е. энергии трития и дейтерия, содержащейся в неисчерпаемых количествах в воде океанов.

Ветровая энергия.По оценкам различных исследований, общий ветроэнергетический потенциал Землиприблизительно равен 175219 тыс. ТВтч в год. Однако с пользой может быть использовано только 5 %.

Возможности применения этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2(скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2.

Геотермальная энергия.Энергетика земли – геотермальная энергетика, базируется на использовании природной теплоты Земли. Под геотермальной энергией понимают физическое тепло флюидов (сухих горячих паров и воды) и сухих горных парод, расположенных на различных глубинах и имеющих температуры, превышающие температуру воздуха на поверхности.

Верхняя часть земной коры имеет термический градиент, равный 20–30°С в расчете на 1 км глубины. По данным Уайта (1965 г.), количество теплоты, содержащейся в земной коре до глубины 10 км (без учета температуры поверхности), равно приблизительно 12,6·1026Дж. Эти ресурсы эквивалентны теплосодержанию 4,6·1016т угля (принимая среднюю теплоту сгорания угля равной 27,6·109Дж/т), что более чем в 70 тыс. раз превышает теплосодержание всех мировых ресурсов угля, которые можно извлечь с техническо-экономической точки зрения.

Наибольший интерес представляют гидротермальные источники, при которых подземное тепло выносится на поверхность через скважину потоком горячей термальной воды. Вода, поступающая на поверхность, находится под давлением и в большинстве случаев перегрета. При сбросе давления эта вода вскипает и превращается в пар, который может быть использован в паровой турбине.

В настоящее время термальные воды широко применяются для отопления и горячего водоснабжения в ряде стран. Так, столица Исландии Рейкьявик почти полностью обогревается теплотой подземных источников. Вбольших масштабах термальные воды для теплоснабжения используют в Австралии, Новой Зеландии, Италии.

Эксплуатация первой геотермальной электростанции была начата в Италии в 1904 г. Интерес к таким станциям возрос в последние годы в связи с резким увеличением цен на ископаемое топливо на мировом рынке.

Энергия мирового океана.Запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн км2) занимают моря и океаны. АкваторияТихого океана составляет 180 млн км2, Атлантического– 93 млн км2, Индийского – 75 млн км2.Тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину в 1026Дж. Кинетическая энергия океанских течений оценивается величиной в 1018Дж.

Тепловая энергия океана. Последнее десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – ОсеаnТhеrmalEnergyConversion, т.e. преобразование тепловой энергии). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность.

При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная – 53 кВт; из которых 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее – на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки, в число которых входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и генераторе электрической энергии.

Энергия приливов и отливов. Прилив – ритмичное движение морских вод, которое вызывают силы притяжения Луны и Солнца.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. В течение лунных суток, т. е. за 24 ч 50 мин, дважды наблюдается повышение и понижение уровня воды в морях и океанах. Амплитуда колебаний уровня воды в различных точках земного шара зависит от широты и характера берега континента. Ее величина может быть значительной. Так, около Магелланова пролива зарегистрирована амплитуда колебаний уровня воды 18 м, а около берегов Америки 21 м. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 5070 см. Максимального уровня приливная волна достигает в тех случаях, когда Земля, Луна и Солнце находятся на одной прямой (рис. 1.3).

Рисунок 1.3 — Положения Солнца, Луны и Земли, влияющие на приливы

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВтч. Советскийинженер Н.А. Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. По проекту Бернштейна в 1968 году была построена ПЭС в Кислой Губе около Мурманска.

Энергия морских течений. Важнейшее и самое известное морское течение – Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2. Активную энергию, которую несет такой поток воды со скоростью 0,9 м/с, можно рассчитать по формуле (Вт):

гдеm– масса воды (кг),р– плотность воды (кг/м3),А– сечение (м2),– скорость (м/с).

Энергия морского течения Гольфстрим составляет 50000 МВт.

Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от 50 крупных электростанций по 1000 МВт. Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около 10 % энергии течения.

Энергия волн. В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, и во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превысило бы мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах так, чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.

Энергия солнца.Почти все источники энергии, о которых мы говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия.

Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Поток солнечной энергии на земную поверхность эквивалентен условному топливу массой 1,21014т.

Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Энергия биомассы.Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз).

Одно из наиболее перспективных направлений энергетического использования биомассы – производство из неё биогаза, состоящего на 5080 % из метана и на 2050 % из углекислоты. Его теплотворная способность 56 тыс. ккал/м3 .

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 1012 м3метана.

Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Предполагается, что топливо на энергетических плантациях будет производиться по ценам примерно 25 долл/т, что ниже современных мировых цен на нефть.

Для получения тепловой мощности, равной 100 МВт, потребуется примерно 50 м2площади энергетических плантаций.

Химическая энергия водорода.Химическая энергия водорода приобретает в последнее время большое значение. Запасы водорода неистощимы и не связаны с каким-то регионом планеты, так как он имеется везде и может быть использован повторно неограниченное число раз. Водород в связанном состоянии содержится в молекулах воды.

Нефть и газ. Оценка мировых запасов нефти в настоящее время представляет особый интерес. Это вызвано быстрым ростом ее потребления и тем, что во многих странах (Японии, Швеции и др.) нефть при производстве электроэнергии вытеснила уголь (в последнее время этот процесс приостановился). На транспорте за счет нефти в настоящее время удовлетворяется свыше 90 % мирового потребления энергии.

Мировые геологические запасы газа оцениваются в 140170 трлн м3.

Нефть и газ нужны не столько как энергетическое сырье, сколько как сырье для химической промышленности. В настоящее время известно более 5000 синтетических полезных продуктов, получаемых из нефти и газа, и число их ежегодно увеличивается. Однако пока только 35 % от добытых запасов перерабатывается как химическое сырье.

Перспективы развития и применения альтернативных источников энергии

Содержание статьи:

Ограниченность природных запасов и возрастающая сложность добычи ископаемого топлива, вкупе с глобальным загрязнением окружающей среды подталкивает человечество прилагать усилия в поиске возобновляемых, альтернативных источников энергии. Вместе с сокращением вреда экологии от новых энергоресурсов ожидают минимальных показателей себестоимости всех циклов транспортировки, переработки и производства.

Назначение альтернативных источников энергии

Пристальный взгляд в саму суть альтернативных источников энергии

Пристальный взгляд в саму суть альтернативных источников энергии

Являясь целиком возобновляемым ресурсом или явлением, альтернативный источник энергии полностью заменяет собой традиционный, работающий на угле, природном газе или нефти. Различные источники энергии человечество использует давно, но возросшая масштабность их применения наносит невосполнимый урон окружающей среде. Ведет к выбросам в атмосферу большого количества углекислого газа. Провоцирует парниковый эффект и способствует глобальному повышению температуры, глобальному потеплению. Мечтая о практически неисчерпаемом или полностью возобновляемом энергоресурсе, люди заняты поиском перспективных способов получения, использования и последующей передачи энергии. Конечно, беря во внимание экологический аспект и экономичность новых, нетрадиционных источников.

Надежды, связанные с нетрадиционными источниками энергии

Актуальность использования нетрадиционных источников энергии будет непрерывно возрастать, требуя ускорения процессов поиска и внедрения. Уже сегодня большинство стран на государственном уровне вынуждены внедрять программы, снижающие расход энергии, тратя на это огромные средства и урезая собственных граждан в правах.

Историю не повернуть вспять. Процессы развития общества не остановить. Жизнь человечества больше немыслима без энергоресурсов. Не обретя полноценной альтернативы современным, стандартным источникам энергии, жизнь социума не представима и гарантировано зайдет в тупик (см. Запасы нефти в мире — на сколько их хватит?)

Факторы, ускоряющие внедрение нетрадиционных энергоресурсов:

  1. Глобальный экологический кризис, построенный на утилитарном и без преувеличения — хищническом отношении к природным богатствам планеты. Факт пагубного влияния общеизвестен и споров не вызывает. Человечество связывает большие надежды в решении разрастающейся проблемы именно на альтернативные источники энергии.
  2. Экономическая выгода, снижающая затраты на получение и конечную стоимость альтернативной энергии. Сокращение сроков окупаемости строительства объектов нетрадиционной энергетики. Высвобождение больших материальных средств и человеческого ресурса, направляемых на благо цивилизации (см. Примеры маркетинг-партнерства корпораций ради спасения окружающего мира).
  3. Социальная напряженность в обществе, вызванная снижением качества жизни, ростом плотности и численности населения. Экономической и экологической обстановкой, постоянное ухудшение которых приводят к росту различных заболеваний.
  4. Конечность и постоянно возрастающая сложность добычи ископаемого топлива. Данная тенденция неминуемо потребует ускорить переход на возобновляемые энергоресурсы.
  5. Политический фактор, выводящий в мировые лидеры страну, первой полноценно освоившую альтернативную энергетику.

Только осуществив основное предназначение нетрадиционных источников, можно сполна насытить развивающееся человечество необходимой и жадно потребляемой энергией.

Применение и перспективы развития различных видов альтернативных источников энергии

Основной источник обеспечения энергетических потребностей в настоящее время получают из трех видов энергоресурсов: воды, органического топлива и атомного ядра (см. Мирный атом: дорога в никуда или светлое будущее?). Требуемый временем, процесс перехода на альтернативные виды, движется медленно, но понимание необходимости заставляет большинством стран вести разработки энергосберегающих технологий и активнее внедрять свои и общемировые наработки в жизнь. С каждым годом все больше возобновляемой энергии человечество получает от солнца, ветра и остальных альтернативных источников. Разберемся, какие есть альтернативные источники энергии.

Основные виды возобновляемой энергетики

Энергия солнца

Энергия солнца

Энергия солнца

Солнечная энергия считается ведущим и экологически чистым источником энергии. На сегодня для получения электроэнергии разработаны и используются термодинамический и фотоэлектрический метод. Подтверждается концепция работоспособности и перспективности наноантенн. Солнце, являясь неистощимым источником экологически чистой энергии, вполне может обеспечить потребности человечества.

Интересный факт! На сегодня окупаемость солнечной электростанции на фотоэлементах составляет примерно 4 года.

Энергия ветра

Энергия ветра

Энергия ветра

Давно и успешно используется людьми энергия ветра, ветряков. Ученые разрабатывают новые и совершенствуют имеющиеся ветряные электростанции. Снижая затраты и повышая КПД ветряков. Особую актуальность они имеют на побережьях и в местностях с постоянными ветрами. Преобразуя кинетическую энергию воздушных масс в дешевую электрическую энергию, ветряные электростанции уже сегодня вносят существенный вклад в энергосистему отдельных стран.

Геотермальная энергетика

Геотермальная энергетика

Геотермальная энергетика

Источники геотермальной энергии используют неисчерпаемый источник — внутреннее тепло Земли. Существует несколько рабочих схем, не меняющих суть процесса. Природный пар очищают от газов и подают в турбины, вращающие электрогенераторы. Подобные установки работают по всему миру. Геотермальные источники дают электричество, греют целые города и освещают улицы. Но мощность геотермальной энергетики использована очень мало, а технологии получения имеют низкий КПД.

Интересный факт! В Исландии более 32% электричества добывается с помощью термальных источников.

Геотермальная энергетика 2

Геотермальная энергетика 2

Приливная и волновая энергетика

Приливная и волновая энергетика

Приливная и волновая энергетика

Приливная и волновая энергетика — это бурно развивающийся способ преобразования потенциальной энергии движения водяных масс в электрическую энергию. Имея высокий коэффициент преобразования энергии, технология имеет большой потенциал. Правда, может использоваться только на побережьях океанов и морей.

Биомассовая энергетика

Биомассовая энергетика

Биомассовая энергетика

Процесс разложения биомассы приводит к выделению газа имеющим в своем составе метан. Очищенным, он используется для выработки электроэнергии, обогрева помещений и других хозяйственных нужд. Существуют небольшие предприятия, полностью обеспечивающие свои энергетические потребности.

Стратегия преобразования лесной промышленности в биолесную индустрию

Биомассовая энергетика 2Биомассовая энергетика 2

Рост популярности альтернативных источников энергии, используемых для частного дома

Постоянный рост тарифов на энергоносители вынуждает владельцев частных домов использовать альтернативные источники. Во многих местах удаленные приусадебные участки и частные хозяйства совершенно лишены возможности, даже теоретического подключения к необходимым энергетическим ресурсам.

Рост популярности альтернативных источников энергии, используемых для частного дома

Рост популярности альтернативных источников энергии, используемых для частного дома

Основные источники нетрадиционной энергии, применяемые в частном доме:

  • солнечные батареи и различные конструкции тепловых коллекторов, работающие от солнечной энергии;
  • ветряные электростанции;
  • мини и микро ГЭС;
  • восполняемая энергия из биотоплива;
  • разнообразные виды тепловых насосов, использующих тепло воздуха, земли или воды.

Сегодня, пользуясь нетрадиционными источниками, существенно сократить расходы на энергопотребление не получается. Но постоянно совершенствующиеся технологии и снижение цены на устройства непременно приведут к буму потребительской активности.

Возможности, предоставляемые альтернативными видами энергий

Человечество не представляет дальнейшего развития без сохранения темпов потребления энергии. Но движение в данном направлении ведет к гибели окружающей среды и серьезно скажется на жизни людей. Единственным вариантом, способным исправить ситуацию, представляется возможность использования нетрадиционных источников энергии. Ученые рисуют радужные перспективы, добиваются технологических прорывов в опробованных и инновационных технологиях. Правительство многих стран, понимая выгоды, вкладывает большие средства в исследования. Развивает альтернативную энергетику и переводит производственные мощности на нетрадиционные источники. На данном этапе развития социума, сохранить планету и обеспечить благополучие людей возможно лишь усиленно работая с альтернативными источниками энергии.

Мировое использование различных видов альтернативных источников энергии

Кроме потенциала и степени развития технологии, на эффективности использования различных альтернативных видов энергии, влияние оказывает интенсивность источника энергии. Поэтому страны, в особенности, не обладающие запасами нефти, усиленно развивают имеющиеся источники нетрадиционных энергоресурсов.

Вырубка лесов как экологическая проблема. Последствия к которым приводит вырубка лесов и пути ее решения

Направление развития восстанавливаемых энергоресурсов в мире:

  • Финляндия, Швеция, Канада, Норвегия — массовое использование солнечных электростанций;
  • Япония — эффективное применение геотермальной энергии;
  • США — существенные успехи в развитии альтернативных источников энергии во всех направлениях;
  • Австралия — хороший экономический эффект от развития нетрадиционной энергетики;
  • Исландия — обогрев геотермальной энергии Рейкьявика;
  • Дания — мировой лидер ветровой энергетики;
  • Китай — удачный опыт по внедрению и расширению сети ветровой энергетики, массовое использование энергии воды и солнца;
  • Португалия — эффективное применение солнечных электростанции.

В гонку технологий включились многие развитые страны, добиваясь на собственной территории весомых успехов. Правда, общемировое производство альтернативной энергии давно топчется вокруг 5% и конечно выглядит удручающе.

Перспективы развития альтернативных источников энергии в России

Перспективы развития альтернативных источников энергии в России

Перспективы развития альтернативных источников энергии в России

Использование нетрадиционных источников энергии в России развито плохо, по сравнению со многими странами находится на низком уровне. Сложившееся положение объясняется обилием и доступностью ископаемых энергоносителей. Однако понимание малой продуктивности данной позиции и взгляд в будущее, обязывает правительство все больше заниматься данной проблемой.

Наметились позитивные тенденции. В Белгородской области успешно работает и планируется к расширению массив солнечных батарей. Планируются работы по внедрению биоэнергетики. В различных регионах запускаются ветряные электростанции. На Камчатке успешно используется энергия геотермальных источников.

Доля нетрадиционных источников энергии в общем энергобалансе страны, оценивается очень приблизительно и составляет около 4%, но имеет теоретически неисчерпаемые возможности развития.

Интересные факты! Калининградская область намерена стать в России лидером добычи чистого электричества.

Очевидные плюсы и минусы альтернативных источников энергии

Альтернативные источники энергии обладают бесспорными и ярко выраженными достоинствами. И просто требуют приложения всех усилий на их изучение.

Плюсы альтернативных источников энергии:

Потребности человечества в бесперебойной энергии диктуют суровые требования к нетрадиционным источникам. И существует реальная возможность устранить недостатки дальнейшим развитием технологий.

Проблема переработки мусора в России. Сбор, утилизация и переработка мусора как бизнес

Существующие минусы альтернативных источников энергии:

  • возможное непостоянство с зависимостью от времени суток и погодных условий;
  • неудовлетворяющий уровень КПД;
  • неразвитость технологии и высокая стоимость;
  • низкая единичная мощность отдельных установок.

Остается надеяться, что попытки поиска идеального, восполняемого источника энергии увенчаются успехом. Экология будет спасена и люди намного улучшат качество жизни.

традиционная и альтернативная. Энергия будущего

Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Атомная энергетика

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические электростанции

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

В некотором смысле это подвид тепловой энергетики, но практически производственные показатели работы ядерных станций на порядок выше ТЭС. В России используют полные циклы выработки атомной электроэнергии, что позволяет генерировать большие объемы энергетического ресурса, но имеют место и огромные риски использования технологий обработки урановой руды. Обсуждением вопросов безопасности и популяризации задач данной отрасли, в частности, занимается АНО «Информационный центр атомной энергетики», имеющий представительства в 17 регионах России.

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Биомассовая энергия

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Геотермальные источники энергии

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Ветровая энергетика

Энергетические технологии будущего

По оценкам экспертов, к 2100 г совокупная доля угля и нефти в мировом балансе составит около 3%, что должно отодвинуть термоядерную энергетику на роль второстепенного источника энергетических ресурсов. На первое же место должны встать солнечные станции, а также новые концепции преобразования космической энергии, основанной на беспроводных каналах передачи. Процессы становления энергии будущего должны начаться уже к 2030 г., когда наступит период отказа от углеводородных источников топлива и перехода к «чистым» и возобновляемым ресурсам.

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Солнечная энергия

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

Альтернативные источники энергии в наши дни.

Без энергии жизнь человечества немыслима. Все мы привыкли использовать в качестве источников энергии органическое топливо – уголь, газ, нефть. Однако их запасы в природе, как известно, ограничены. И рано или поздно наступит день, когда они иссякнут. На вопрос «что делать в преддверии энергетического кризиса?» уже давно найден ответ: надо искать другие возможности – нетрадиционные, возобновляемые и альтернативные источники энергии.

Какие же в настоящее время существуют основные альтернативные источники энергии?

Солнечная энергия

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы).

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками солнечной энергии являются зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Так же читайте про варианты использования солнечной энергии:

Ветряная энергия

Одним из перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора. Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума, вследствие чего их стараются строить вдали от мест проживания людей.

Если вам интересна тема использования энергии ветра, то посмотрите эти статьи:

Геотермальная энергия

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики.

Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому для отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Использование других видов альтернативных источников энергии:

Как видим, альтернатива традиционным источникам энергии – существует. И это вселяет надежду на то, что в будущем человечество сможет преодолеть энергетический кризис, связанный с истощением невозобновляемых источников энергии!

Видео

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *