Сопротивление между землей и нулем: Инструкция как проверить заземление в 3 этапа

Содержание

Инструкция как проверить заземление в 3 этапа


Как работает заземление

Мультиметры иногда называют цифровыми вольтметрами. Они способны производить широкий спектр электрических измерений. Большинство моделей имеют большой ЖК-дисплей наверху, набор из 3 соединений внизу для тестовых зондов и циферблат в середине. Для проверки электрической розетки, нужно использовать только настройку напряжения переменного тока.

Особенности:

  1. Наличие тестовых проводов счетчика обычно подразумевает красные и черные цвета. 
  2. На одном конце имеется короткий толстый разъем, называемый штепсельной вилкой, а на другом узкие острые металлические зонды с жесткими пластиковыми ручками. 
  3. Чтобы измерить данные, вставьте черную штепсельную вилку в разъем, обозначенный «COM» на счетчике.
  4. Один из оставшихся 2 разъемов должен иметь «V» для напряжения, а греческая буква omega, которая выглядит, как подкова, символизирует сопротивление.
  5. Необходимо найти этот разъем, и подключить в него красный провод.

Посмотрите на шкалу на счетчике и определите настройку напряжения переменного тока. Некоторые модели имеют отдельные положения для переменного и постоянного напряжения, в то время как другие имеют одно значение и кнопку, которая позволяет переключаться между настройками тока. 

Большинство выходов поляризованы, это означает, что один слот шире другого. Более широкий слот является отрицательным или заземленным, а более узкий означает напряжение.

Вставьте черный провод в более широкий слот, а красный в более узкий. Дисплей должен показывать значение от 109 до 121 вольт, стандартный диапазон. 

Если на дисплее появляется знак минуса перед номером, полярность в розетке меняется на противоположную.

Какое это имеет значение, и почему это так важно? Это не проблема для ламп или других простых электроприборов, но это может вызвать проблемы для сложной электроники. Затем выньте черный зонд из широкого гнезда, и переместите его в круглое (заземление) в нижней части розетки. Напряжение должно быть одинаковым. Наконец, вставьте один зонд в более широкий нейтральный паз, а другой в круглое заземление. Напряжение должно быть равно нулю. Обычные лампочки могут не пострадать при отсутствии заземления, но электроприборы могут выйти из строя.

Советы: как проверить заземление в розетке

Провод заземления, подключенный к цепи на щитке, позволяет любому электрическому источнику с внезапным скачком, перемещаться через заземляющий провод в стержень для рассеивания. Тем не менее, неисправное заземление может сделать приборы уязвимыми.

Для проверки заземления в розетке:

  1. Подключите датчики мультиметра к основному корпусу измерителя. Красный идет в положительном направлении, отмеченном «Вольт». Черный идет в отрицательном или заземленном отверстии, отмеченном «COM».
  2. Поверните мультиметр на самый высокий диапазон напряжения переменного тока. Напряжение переменного тока обозначается как «VAC» или «V».
  3. Вставьте 2 измерительных провода в основную и нейтральную части выхода. 

Красный идет к меньшему зубцу, а черный к большему. Меньший контакт – это основной провод, который переносит ток от главного блока к розетке. 

Должны получить около 120 В, это подтверждает, что розетка получает питание.

Удалите черный провод и поместите его в заземление. Испытание должно показать одинаковые результаты. Если нет, розетка неправильно заземлена. 

Основные правила проверки заземления

Чтобы обеспечить безопасность и надежность работы, проверьте мультиметром или тестером розетки переменного тока в своем частном доме. Прежде чем подключаться к источнику переменного тока, выполните проверки источника питания переменного тока.

А именно:

  1. Выключите автоматический выключатель, который питает щит. К выключателю прикрепите тег S229-0237.
  2. Используйте измеритель сопротивления заземления, чтобы проверить сопротивление между заземляющим штырем приемника с каждым из фазных штырьков. Тест проверяет короткое замыкание на землю или разводку проводки.
  3. Используйте тестер заземления, чтобы проверить бесконечное сопротивление между фазными штырьками. Тест проверяет короткую проводку.
  4. Используйте мультиметр для измерения соответствующих напряжений между фазами. С помощью мультиметра убедитесь, что напряжение на розетке переменного тока правильное.

Правильное напряжение между нулем и землей

Нуль – это обратный путь для цепи переменного тока, которая должна выдерживать его в нормальном состоянии и правильно поддерживать исправную работу электроприборов. Этот ток может быть вызван многими причинами, главным образом из-за дисбаланса фазового тока. Могут быть и другие причины, но величина этого тока находится в аналогии фазного тока, и в немногих случаях она может быть вдвое выше фазного. Таким образом, нейтральный провод всегда считается заряженным (в активной цепи). Этот нейтральный провод подается на землю (заземление), чтобы вторая клемма нейтрального провода была равна нулю.

Земля предназначена для защитного действия от утечки или остаточных токов, проходящих в системе через наименьший путь сопротивления. 

В то время, как фаза и нуль подключены к основной силовой проводке, земля может быть подсоединена к корпусу оборудования или к любой системе, которая в нормальном состоянии не несет ток, но в случае некоторого отказа изоляции, должна иметь некоторый незначительный заряд. Напряжение между нулем и землей также называется общим. Источники для синфазных напряжений в линиях электропередач различаются. Они могут возникать на частоте линии электропередачи на более высоких показателях (с источниками питания в режиме переключения и нелинейными электронными нагрузками современного оборудования).

Особенности:

  1. Частота 50/60 Гц является простой, но возможно падение ее до 45 Гц в нейтральном проводнике. Она в балансе в 3-фазных нагрузках увеличивается, поскольку нейтраль обычно уменьшена.
  2. Ведь, для 3 фаз обычно используется 1 нейтраль, и в идеале этот ток равен 0 (для сбалансированных нагрузок).
  3. Фазные токи взаимно компенсируют друг друга, но с балансировкой идет большее количество тока, что вызывает их падение, особенно, когда эта нейтраль уменьшена.

Если подключены другие источники на высокой частоте, значит синфазные напряжения рассогласовываются, из-за переключения электроники и индуцированного шума от внешних источников. 

Нюансы, как проверить сопротивление заземления

Чтобы замерить удельное сопротивление грунта, подключите измеритель заземления. 4 штыря заземления расположены в грунте по прямой линии, равноудаленные друг от друга. Расстояние между заземлениями должно быть, как минимум в 3 раза больше, чем глубина кола. 

Тестер заземления:

  1. Генерирует определенный ток, через 2 внешних заземления.
  2. Потенциал падения напряжения измеряется между 2 внутренними наземными вставками. 
  3. Автоматически вычисляет сопротивление почвы, используя Закон Ома (V = IR).

Заземление – это самый низкий путь сопротивления, предлагаемый для любого остаточного или рассеянного тока, присутствующего на корпусе любого электрического устройства. Работает таким образом – когда человек прикасается к прибору, он безопасен, поскольку сопротивление с человеческим телом больше, чем заземляющей проволоки, и все токи проходят через провод, и организм остается в безопасности.

Основы проверки контура заземления в видеоприборах

Контур заземления – это любая цепь, в которой между электрическими устройствами выходит более одного источника заземления. Отсутствие заземления в оборудовании CCTV может вызывать многочисленные проблемы, в том числе волнистые линии и плохое качество видео. 

Разрывы в контурах заземления влияют, например, на камеры и рекордеры, подключенные к разным автоматическим выключателям. 

Камера, подключенная к заземленному стеновому трансформатору в 100 м от рекордера, скорее всего, будет заземлена на другой автоматический выключатель, чем рекордер. Это позволяет определить и узнать, что между 2 источниками питания может быть разница в несколько вольт. 

Для проверки контура заземления:

  1. Установите вольтметр на самую чувствительную настройку.
  2. Отключите камеру, которую вы хотите протестировать.
  3. Поместите один контакт на корпус (попробуйте использовать винт на корпусе для обеспечения заземления).
  4. Поместите другой контакт на внешней стороне разъема.

Любое значение выше, чем ноль, как в квартире, указывает на отсутствующий разрыв контура заземления. Любое значение выше 0,1В выходит за пределы допуска для правильной записи.

Совет: как проверить заземление (видео)

Обязательно проверьте напряжение переменного и постоянного тока для контуров заземления (между фазой и землей). Также, стоит помнить, что при подключении УЗО, необходимо обязательно сделать заземление.

Напряжение между нулем и землей. Почему светится лампа между нулем и землей.

Напряжение между нулем и землей. Почему светится лампа между нулем и землей.

Коллеги, подскажите, что это было? Совсем запутался. Делал на выходных тестю подключение от воздушной линии к трубостойке. Воздушный ввод в дом уже существовал, но этот дом будут сносить, а для нового и на период строительства решили подключить ВРУ во дворе на трубостойке. Собрал ВРУ и узел учета. Закопали как положено заземление — забили три трех метровых уголка 50х50.

Систему заземления решил делать как и положено TN-C-S с расщеплением PEN до вводного автомата — на фото большой сжим между PEN и заземлением.

Перед подключением решил потыкать контролькой (лампа накаливания 60Вт) включил ее между фазой и землей — горит ярко. Отлично думаю — земля хорошая. И на всякий случай включил лампу между рабочим нулем и землей и лампа тоже загорелась (см. схему 1), но не в полную силу, а довольно ощутимо — светло-оранжевым свечением, при этом я ВРУ к линии еще не подключил, фазу и ноль на контрольку, брал от переноски длинной примерно 15м и сечением провода 1,5 — 2,5 кв.мм (на схеме обозначил как R3), в доме кроме моего удлинителя была включена нагрузка (R2) какая не знаю, не смотрел, пару киловатт точно было. Удивился результату и подумал, что заземление на подстанции ни к черту. ВЛ — деревенская, выполнена алюминием, столбы дерево и бетон в перемешку, повторных заземлений на столбах по своей улице не нашел.

Решил отказаться от TN-C-S, сделать TT, чтобы не быть единственным заземлением для всего квартала. При подключении, когда отрезали провода от фасада еще раз потыкал контролькой в отрезанный СИП см. схему 2. лампа между нулем и землей светиться перестала!

Собственно в этом и вопрос — что это было? Почему при включении по схеме 1 контролька L1 светится, а при убранной нагрузке (схема 2) лампа не горит? Я что-то туплю не могу понять. Подскажите.

PS: Собранный щит в заключение. Черная хреновина слева — ТЭН для обогрева. Места в ящике маловато пришлось примостить его на металлический уголок.

Между нулем и землей 110 вольт. Между заземлением и фазой 110V. Что не правильно?

    0

    Перестраиваю дачу и пришлось по новому делать электропроводку, только в одной комнате остается старая. Щиток со счетчиком находится снаружи дома. В нем автомат на 25А – на него приходит фаза со столба и с него на счетчик. Ноль приходит прямо на счетчик. После счетчика два автомата по 16А, с них фаза и ноль заходят в дом. Провод трехжильный, заземление пока еще не подключил.
    С первой распаечной коробки – пошло на старую проводку в одну комнату и в другую сторону – две розетки, лампочка с выключателем и силовой провод пошел дальше.
    Пришло во вторую коробку, здесь уже получается сложный узел. С нее идет две розетки в санузел (водонагреватель и стиралка), одна розетка здесь же в прихожей , лампочка с выключателем здесь же и лампочка с выключателем в санузле. И дальше провод пошел на веранду и комнату.
    Все провода подключаю по цветам. Проверил , все нормально – на лампочки напряжение подается, при замыкании на выключателях, в проводах которые на розетки фаза и ноль присутствуют. И тут дернуло меня дотронуться пробником-индикатором фазы к не подключенному проводу заземления – он показывает фазу. Но горит не сильно ярко.
    Тогда стал я проверять цешкой и получается, между нолем и фазой 220, между фазой и заземлением 110, а между нолем и заземлением 70 вольт. Но если фазу и заземление закорачиваю – ничего не происходит и автоматы не выбивает.
    Все это происходит после второй распредкоробки, после первой все нормально. Может разгрузить ее (вторую) и сделать перед ней пару коробок на розетку в прихожей и на одну розетку в ванной?

Напряжение между нулем и землей 100в. Напряжение и сопротивление между землёй и нулём

    0

    Добрый день!
    Имею частный дом, кирпичный, старой постройки. Ввод в дом 3-х-фазный. На входе стоит 3-х-фз. реле напряжения и контактор. Также везде, где проложены провода с заземлением поставил УЗО либо диф.автоматы (это чтобы исключить вопросы по этому поводу). Заземления не было. Позавчера сделал. Прокопал траншею, забил 3 штыря на глубину 3 метра (круглая сталь 20мм), на расстоянии 3 метра друг от друга, обвязал их стальной полосой 40х4 мм (сварка), завёл в дом, до щитка кинул медный провод сечением 10мм. Штыри забивал вряд, для треугольника места не хватает, от стены дома до дороги (грунтовой) 1,5 метра. В щитке землю посадил на корпус щитка, он железный.
    На этом же газончике стоит бетонный столб-опора ЛЭП. С этой опоры ввод ко мне в дом. Ноль на этой опоре заземлён тут же. Пришлось один из штырей забивать на расстоянии 1 метра от опоры.
    Нулевой провод с земляным не соединял нигде.
    Попробовал лампочкой между одной из фаз и землёй — горит ярко.
    Далее проверял китайским тестером-мультиметром (другого не имею).
    Между любой из фаз и землёй примерно то же напряжение, что и между этой же фазой и нулём, плюс-минус 1-2 Вольта.
    Сопротивление между землёй и нулём (в моём щитке) около 50-60 Ом, напряжение между ними же 4-5 Вольт. Повторюсь, в доме никаких соединений между землёй и нулём нет. Если в щитке отсоединить провод, который идёт от забитых штырей, то сопротивление показывает «Бесконечность».

Напряжение между нулем и трубой. Про воровство электричества и почему трубы в ванной могут бить током.

С некоторой периодичностью, тут всплывают посты, как некоторые, Гневные соседи развешивают объявы о том что найдут какое-то существо которое хочет их убить током, и засунут ему этот ток глубоко и на долго. Пару раз описывал ситуации в комментариях, в этот раз накропалил на целый пост. немного сумбурно, Но , думаю доходчиво.

В домашнем бытовом счетчике, есть 4 контакта, первый это фаза с генератора, ( подстанции и т.п) второй это выход этой фазы со счетчика. Третий ноль с подстанции четвертый этот же ноль со счетчика.

Так вот, фаза приходящая на первый контакт попадает на трансформатор тока, с которой сам счетчик снимает параметры, ( протекающий ток,) и учитывает их. А ноль приходящий на третий контакт, накоротко замкнут с нулём выходящим с четвертого контакта, и он используется счетчиком ТОЛЬКО для питанияяя элементов самого счетчика. То есть, счетчик не учитывает протекание тока через ноль.. и взяв фазу со счетчика а ноль с любого иного места, счетчик все так же будет подсчитывать протекающий через фазу ток. Подходит как для советских индукционных счетчиков, так и для новых электронных. Это об абсурдности воровства электричества путём заземления на трубы.

Трубы отопления в ванной, так же как и трубы водоснабжения, если они металлические, соприкасаются с землей ( в подвале, в магистрали, на кочегарке.) в любом случае они заземлены, Если на них прислонить фазу то весь ток должен стекать в землю, а устройство защиты ( автомат, ) отключать линию. Т.к. сопротивление труба — земля, значительно меньше чем сопротивление труба- человек- пол- земля. то весь ток будет уходить в землю даже если человек будет держаться за эту трубу.

Трубы водоснабжения, и трубы отопления по идее связанны между собой, ( в подвале). Так же ванная и металлическая раковина, должны быть соединены проволокой. ( это называется уравнение потенциалов). то есть между этими предметами, находящимися в доступности прикосновения человека к двум, или трем предметам сразу разность потенциалов должна быть равна нулю.

Если эти условия выполняются, То есть: трубы заземлены, в ванной комнате произведено уравнение потенциалов. То в случае попадания фазы на трубы, попадания молнии в стояк канализации и т.п. человеку контактирующему с данными металлическими предметами не будет НИЧЕГО.

Почему от трубы может щипать, ( бить) током.

старые дома, где часть труб сгнила в подвале, отварилось или отломано заземление, частично заменены трубы на полипропиленовые, либо сделан ремонт китайцами, которые не слышали про уравнение потенциалов, в общем, некоторые трубы не имеют заземления, ванная не соединена с землей, а трубы отопления не соединены с трубами водоснабжения. создаётся разность потенциалов. Между трубами возникает напряжение. Водонагреватели с вышедшими из строя тэнами ( нагревательными элементами,) начинают прошивать на корпус, который у вас, или у соседей может быть соединён с трубами водоснабжения и не заземлен. то есть на контуре водоснабжения, через водонагреватель соседей попадает ток и в случае человек дотронется до трубы водоснабжения, стоя на мокром полу его начнет щипать током, а если он будет стоять на заземленной ванне, и дотронется до металлического крана, тут уже удар тока будет значительней.

Из моей практики: Приехали в детский сад, по заявке, трубы бьются током. тыкнули в трубу обычным индикатором, показывает фазу. Душевой гибкий рукав, лежащий на Заземленной раковине нагрелся на столько что началась плавиться резина. Вывод. На не заземленные трубы ( в одной группе) водоснабжения в какой-то из стен попала фаза ( т.к. проводка старая, садик старый, стены частично мокрые были,,) и участок труб оказался под напряжением.

История 2 . В одном детском саду выбивало автомат на водонагреватели (3 фазы 40 ампер) после включения проходила минута две, автомат выбивало, выходящий провод одной фазы ощутимо нагревался.. Оказалось, в одном из водонагревателей, тэн вышел из строя, раскрошился внутри бака и фаза стала пробивать на корпус, Но так как садик был новый электрика сделана грамотно, заземление исправно, то ничего не произошло, локализовали неисправность, нашли причину.

Напряжение между плюсом и землей. Что такое ноль

Однако, трехфазный ток оптимален для применения на производстве. То есть, он хорош для питания мощных потребителей электроэнергии. Для бытового потребления такое количество фаз обычно излишне. К тому же линейное напряжение составляет 380-400 вольт. Такое высокое напряжение слишком опасно для применения в быту. Потому в бытовых условиях применяют однофазный ток напряжением 220 вольт.

Напряжение между нулем и каждой фазой

Было бы экономически невыгодно генерировать однофазный и трехфазный ток отдельно друг от друга. Потому однофазный переменный ток получают от того же источник питания, применяя нулевой проводник. Как правило, от электростанции переменный ток передается только по фазным проводникам. Нулевой проводник при этом не применяется. Потому как не нужно питать однофазных потребителей.

Ток при передаче имеет очень большое напряжение. Так транспортировать переменный ток намного удобнее чем при малом напряжении. Потому как можно применять проводники намного меньшего сечения для передачи тока такой же мощности. Для питания потребителей электроэнергией применяют более низкое напряжение. Снижают напряжения используя понижающие трансформаторы.

Для получения однофазного тока вторичную обмотку понижающего трансформатора обычно соединяют в схему под названием «звезда». При таком соединении начала фаз служат выводами трансформатора. На началах фаз, при работе трансформатора, появляется напряжение. К началам фаз присоединяют фазные проводники. Фазные проводники служат для подачи электрической энергии потребителю.

Схема соединения обмоток трехфазного трансформатора звездой с нулевым выводом

Концы же фаз соединяют в одну общую точку. Эта точка называется средней, нулевой точкой, нулем или нейтралью. Проводник присоединяемый к этой точке называется нулевым проводником или нулем . Нулем такая точка и проводник называются потому, что на графике изменения переменного тока они представлены именно в виде нулевой оси графика. Считается что теоретически в этой точке переменный ток имеет нулевые значения характеристик и не имеет направления течения.

Нулевая точка (ноль) переменного тока на графике

Нулевой проводник и проводник одной из фаз служат для питания однофазных потребителей. Считается, что однофазный электрический переменный ток течет от нулевой точки к началу фазы источника питания. От начала фазы к потребителю. От потребителя, через нулевой проводник, к нулевой точке. А затем проделывает тот же путь обратно. И так 100 раз в секунду.

Также нулевой проводник в трехфазной сети нужен для устранения перекоса фаз. На каждой из трех фаз, в одно и тоже время, может быть разное количество потребителей с разной потребляемой мощностью. Подобное положение может вызвать перекос фаз и выход из строя источника тока. Для стабилизации этой ситуации и нужен нулевой проводник.

Однофазные потребители подключены к разным фазам электросети. Это может привести к дисбалансу. Для стабилизации этой ситуации и нужен нулевой проводник

Таким образом, между двумя любыми разными фазами существует линейное напряжение. Линейное напряжение составляет 380-400 вольт. Между каждой фазой и нулевой точкой существует фазное напряжение. Фазное напряжение составляет 220-230 вольт.

Разница потенциалов между землей и нулем

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Служит для превращения замыкания на корпус в замыкание на землю с целью уменьшения напряжения на корпусе относительно земли до безопасной величины.

Заземлить – означает металлически надежно, с помощью проводов, не имеющих изоляции, или шин, соединить с заземлителями подлежащие защите элементы или части оборудования. Заземлители бывают естественные и искусственные.

Естественные заземлители – металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей (трубопроводы, элементы конструкции зданий, баки для воды).

Искусственные заземлители – любые металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей, специально закладываемые в землю для целей заземления (трубы, уголки, профили, пруты).

Естественные и искусственные заземлители соединяют друг с другом металлической стальной шиной, сечение которой обуславливается значением токов замыкания на землю и механической прочностью заземлителей.

Заземляющим проводником называют провод, соединяющий защищаемое оборудование с находящимся в земле заземлителем.

Качество заземлителя определяется значением сопротивления заземления и изменением напряжения относительно земли. Под сопротивлением заземления заземлителя понимают сопротивление между заземлителем (у места соприкосновения с грунтом) и землей. Значение сопротивления заземления определяется как отношение полного напряжения относительно земли к полному току замыкания на землю. Под полным напряжением относительно земли понимается напряжение, возникающее в цепи тока замыкания на землю между заземлителем и землей (зона нулевого потенциала).

Физическая сущность защитного заземления показана на рисунке, где слева изображен любой трехфазный электроприемник (электродвигатель, трансформатор, прибор), справа – источник электроэнергии, нейтраль которого наглухо заземлена. На этом же рисунке представлена зависимость изменения напряжения U от L, где L – расстояние между заземлителем и зоной нулевого потенциала.

Принципиальная схема заземления для защиты от напряжения, возникшего на корпусе оборудования. 1 – электроприемник; 2, 3 – заземлители; 4 – источник элктроэнергии; zчел – полное сопротивление тела человека; Uп – полное напряжение относительно земли; Uпр – напряжение прикосновения; Uшаг – напряжение шага; r – активное сопротивление изоляции; с – емкость провода относительно земли.

Если изоляция электроприемника повредилась, то его токоведущая часть электрически соединилась с незаземленным металлическим корпусом технологического оборудования или защитного устройства. Коснувшись такого корпуса или же поддерживающей его конструкции, оставленной без заземления, человек оказывается под напряжением прикосновения, значение которого равно фазному или близко к нему. Таким образом, сущность защиты с помощью устройства заземлений заключается в создании такого заземления, которое обладало бы сопротивлением, достаточно малым для того, чтобы падение напряжения на нем (а именно оно и будет поражающим) не достигло значения, опасного для человека. В поврежденной цепи необходимо обеспечить такое значение тока, которое было бы достаточным для надежного срабатывания защитных устройств, установленных на источнике питания.

Нормирование сопротивления заземления. Для сетей напряжением ниже 1000 В на основании статистических данных “Правилами устройства электроустановок” определено лишь верхнее численное значение допустимого предела сопротивления заземления, а именно 40 м.

6. Зануление (заземляющая система с нулевым заземленным проводом).

Занулением называется защитное мероприятие, применяемое только в сетях с заземленной нейтралью напряжением ниже 1000 В, предназначенное для защиты людей от напряжения, возникающего на металлических частях оборудования, нормально не находящихся, но могущих оказаться под напряжением при тех или иных повреждениях изоляции, и заключающееся в создании в поврежденной цепи значения тока, достаточного для надежной работы защиты.

Занулить – это значит металлически (электрически) надежно соединить подлежащие защите части оборудования с нулевым проводом. Зануление требует применения заземлителей для присоединения к ним нулевого провода. Но значение этих заземлителей иное, чем при заземлении.

Принципиальная схема зануления для защиты людей от напряжения, возникающего на корпусе оборудования при повреждении изоляции. 1 – электроприемник; 2, 3 – заземлители; 4 – источник электроэнергии; 5 – распределение Uпр при отсутствии заземления; 6 – то же при его наличии; zчел – полное сопротивление тела человека; Rз,n – сопротивление повторного заземления; Rзм – сопротивление заземлителя нейтрали генератора; Uо – падение напряжения на нулевом проводе; Uпр – падение напряжения при отсутствии повторного заземления; Uпр – то же при его наличии.

Физическая сущность защиты в системе зануления поясняется на рисунке, на котором представлена принципиальная схема зануления с одним электроприемником. Показано соединение нейтралей источника электроэнергии с корпусом электроприемника; приведена диаграмма, характеризующая изменение напряжения относительно земли, возникающего при повреждении изоляции в двух случаях:

– нулевой провод имеет единственное заземление у источника электроэнергии;

– нулевой провод имеет повторное заземление у электроприемника.

В первом случае напряжение прикосновения увеличивается в сторону электроприемника и достигает максимального значения у его корпуса; численно это напряжение будет равно падению напряжения на нулевом проводе при коротком замыкании, возникающем в электроприемнике между фазным и нулевым проводом. Если сопротивление фазного провода rф будет равно сопротивлению нулевого провода r, то напряжение прикосновения в момент короткого замыкания на корпусе электроприемника при отсутствии повторного заземлителя будет равно половине фазного. Если же сопротивление нулевого провода будет больше сопротивления фазного, то напряжение прикосновения будет больше половины фазного. Уменьшить напряжение прикосновения можно двумя путями: увеличив сечение нулевого провода или устроив повторные заземлители.

Вывод: физическая сущность защиты посредством системы зануления заключается в снижении напряжения прикосновения путем уменьшения сопротивления нулевого провода и перераспределения напряжения прикосновения между основным (нейтраль трансформатора) и повторным (у электроприемника) заземлителями с помощью повторных заземлителей, численные значения сопротивлений которых роли не играют.

7. Защитное отключение.

Защитное отключение – это система защиты, основанная на автоматическом отключении электроприемника, если на металлических частях его, нормально не находящихся под напряжением, появляется напряжение, значение которого опасно для человека.

Такую систему, предназначенную для сети с изолированной нейтралью, принципиально можно использовать и для сети с заземленной нейтралью.

Принципиальная схема защитного отключения.

1 – корпус электроприемника; 2 – оттягивающая пружина; 3 – защелка, удерживающая ножи отключателя; 4 – отключающая катушка; 5, 6 – заземлители.

При защите человека от напряжения, возникающего на корпусе одиночного электроприемника вследствие повреждения его изоляции, возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.

Первому случаю соответствует рисунок (I) – контакт с заземлителем разомкнут. На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель. Далее ставят сам отключатель или защитный выключатель. На рисунке все элементы этого выключателя для наглядности принципа действия разобщены. Защитный выключатель (отключатель) имеет катушку, разрывающую цепь при подаче на нее напряжения. Он может иметь и включающую катушку, позволяющую производить включение нажатием кнопки. Отключающая катушка удерживает выключатель в замкнутом включенном состоянии с помощью защелки. Один конец катушки подсоединен к корпусу электроприемника, второй – к выносному заземлителю. В случае повреждения изоляции, между корпусом электроприемника и выносным заземлителем появляется фазное напряжение. Отключающая катушка окажется под напряжением, и через нее пойдет ток. Ее сердечник втянется и освободит удерживающую защелку. Пружина оттянет ножи выключателя, и цепь разорвется. Напряжение прикосновения на корпусе электроприемника пропадет, соприкосновение с ним станет безопасным.

Если корпус электроприемника заземлен, то разъединитель заземлителя будет включен. При повреждении изоляции на корпусе электроприемника появится напряжение, но оно уже не будет равно фазному. Значение возникшего напряжения определит падение напряжения на заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. В этом случае катушка выключателя должна быть рассчитана на действие от меньшего напряжения. Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника. Чем меньше время действия отключающего устройства, тем надежнее система защиты. Одним из преимуществ защитного отключения является то, что оно может срабатывать и не при полном замыкании, а уже в начале развития повреждения. Это его существенное преимущество.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8526 — | 8113 — или читать все.

В электротехнике существует два понятия – заземление и зануление, при практическом применении которых большинство пользователей электроприборов впадают в заблуждение, ставя между ними знак равенства. На самом деле они принципиально отличаются друг от друга. Сегодня мы расскажем о том, в чем заключается эта разница.

Откуда появился ноль, и каким он бывает

Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:

  1. Земная твердь, имеющая отрицательный потенциал.
  2. Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
  3. Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.

Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.

Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.

Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.

Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.

Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:

  1. Присоединившись к земной тверди, отчего и произошло понятие «заземление».
  2. Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
  3. Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.

Заземление, зануление и нейтраль

Перечисленные выше способы получения электрического нуля используются в трех разных целях:

  1. Обеспечение безопасности людей.
  2. Защиты электроустановок.
  3. Обеспечение нормальной работы электроустановок.

Заземление

Это система, состоящая из заземлителя – любой металлической детали, имеющей непосредственный контакт большой площади с физической землей, а также соединительного проводника, передающего условно нулевой потенциал на детали электроустановки, которые не имеют непосредственного контакта с токоведущими частями. Последний в электротехнике называется «нулевой защитный проводник», на схемах он обозначается литерами РЕ.

Применяется исключительно для защиты людей от поражения электрическим током за счет свойства, который имеет электрический заряд. Он распространяется только по пути наименьшего сопротивления. У защитного проводника и заземлителя оно не превышает единиц Ом, а тело человека, даже по кратчайшему пути прохождения тока, имеет электрическое сопротивление 1 кОм.

Используется в линиях напряжением до 1 тыс. вольт, подключенных к силовым трансформаторам по схеме глухозаземленной нейтрали – выходные обмотки соединены звездой, а общая точка (N) дополнительно подключена к заземлителю.

Защитные проводники подключаются только к корпусам однофазных электроприборов.

Нейтраль и рабочее заземление

Нейтраль – это проводник, являющийся общим для трех обмоток (схема «звезда») на выходе силового трансформатора. Разность потенциалов между ним и фазным проводником равна 220 вольт. На схеме обозначается буквой N.

В однофазной сети переменного тока нейтраль используется для обеспечения работы электроустановок. Она делает цепь замкнутой, по ней течет ток. Второе ее предназначение – защита техники. При пробое изоляции или случайном касании проводников происходит короткое замыкание – мгновенное возрастание силы тока в десятки и сотни раз, что приводит к срабатыванию приборов защиты. Например, автоматических выключателей.

То, что по ней протекает ток, позволяет косвенно использовать её и для защиты людей. Для этого в схему питания электроустановки включается УЗО, работающее на принципе измерения разницы токов в фазном и нейтральном проводнике (дифференциальный трансформатор). Если человек прикасается к токоведущим частям, заряд уходит через него на землю, поскольку общее электрическое сопротивление тела меньше, чем электроустановки.

Баланс токов нарушается и УЗО отключает питание. То же самое происходит, если в результате пробоя изоляции фаза оказывается на корпусе прибора, к которому подключен защитный заземляющий проводник РЕ. В последнем случае вероятность электрической травмы существенно снижается или исключается полностью. Подробнее об устройстве и принципе работы УЗО читайте здесь, а о правильных способах подключения тут.

ВНИМАНИЕ! Категорически нельзя объединять проводники, обозначенные на схемах литерами PE и N, ведь у них разные задачи!

Ярким примером того, что между нейтралью и заземлением есть разность потенциалов, является схема подключения автомобильного генератора. По своей физической сущности он является трехфазной машиной переменного тока, статорные обмотки которого соединены звездой.

К выводу их общей точки подключается якорь реле, которое гасит лампочку «заряд» на панели приборов, после того, как генератор начинает вырабатывать ток. Происходит это потому, что между нейтралью и корпусом автомобиля возникает разность потенциалов, равная пяти вольтам.

Рабочее заземление на массу в сетях переменного тока напряжением свыше 127 вольт применяется только при выполнении специальных работ. Например, сварочных, когда требуется поджечь электрическую дугу. И является основным способом обеспечения функционирования установок постоянного тока, если соединение с физической землей невозможно.

На этом принципе построена электрическая схема автомобиля. Минусовая клемма аккумулятора замыкается на кузов, чем обеспечивается необходимая разность потенциалов.

Зануление

При подключении трехфазных электроустановок нередко возникает вопрос: «Зачем в кабеле четвертый, нулевой, провод, если напряжение 220 вольт не используется?» Эта жила может играть две роли:

  1. Защитного проводника PE при отсутствии общей точки подключения трансформаторов (схема «треугольник»).
  2. Технической нейтрали N, если выходные обмотки трансформатора соединены звездой.

В последнем случае нулевой провод подключается к металлическому корпусу электроустановки. Это и называется занулением. Оно предназначено лишь для защиты электротехники. Причем исключительно трехфазной и особенно той, которая из-за особенностей конструкции не имеет надежного соединения с физической землей.

Например, передвижных генераторов, ленточных пилорам с перемещаемым рабочим органом. Рабочий персонал зануление от электротравмы не спасает, поскольку между нейтралью и физической землей всегда существует разница потенциалов.

Заземление и нейтраль – это проводники, условно имеющие потенциал, равный нулю. При общем сходстве они выполняют разные задачи. Первый защищает человека от электротравмы. Второй обеспечивает работу электроустановки. Поэтому их нельзя объединять или подменять одно другим.

Обратимся к примеру электрической цепи, показанной на рис. 1.24.

Спросим себя, нарушится ли распределение токов в цепи, если мы заземлим какую-нибудь одну точку нашей цепи, например точку 1?

Чтобы дать правильный ответ на этот вопрос, надо помнить, что электрический ток возникнет лишь в замкнутой цепи. Заземление одной точки цепи, т. е. присоединение ее к проложенным в земле трубам или к забитым в землю железным стержням, не создает нового замкнутого пути для тока.

Рис. 1.24, Электрическая цепь, одна точка которой заземлена. Справа показан график, иллюстрирующий изменение потенциала цепи

При соединении с землей одной точки цепи ток в землю ответвляться не будет, если вся остальная часть цепи имеет достаточно хорошую изоляцию.

Другое дело, если заземляются одновременно две точки электрической цепи: в этом случае создается параллельная цепь и распределение токов может измениться.

Потенциал.

Напряжение между какой-нибудь точкой электрической цепи и землей называют потенциалом этой точки.

Очевидно, что потенциал заземленной точки равен нулю. Определим потенциалы других точек, обозначенных на схеме цифрами.

Напряжение генератора равно разности между его ЭДС и потерей напряжения в нем:

Значит, потенциал точки 2, т. е. напряжение точки 2 относительно земли,

Потенциал точки 3 меньше на величину потери напряжения в сопротивлении

Если мы теперь вернемся в точку 1, то должны по-прежнему полагать, что потенциал в ней должен быть меньше, чем в точке 3, как раз на величину напряжения, приходящегося на средний провод:

Потенциал точки 1 равен нулю.

Как раз из этого положения мы исходили при нашем расчете.

Ответ подтверждает правильность наших выкладок.

Из приведенных расчетов мы можем сделать такой вывод:

потенциал точек цепи понижается, если мы идем в направлении тока.

Иными словами, на участках цепи, не содержащих источников ЭДС, разность потенциалов двух точек равна напряжению между этими точками.

Потенциал представляет собой алгебраическую величину, т. е. может иметь не только конкретное значение, но и знак. Поэтому напряжение между отдельными точками электрической цепи может превышать потенциал некоторой точки.

Какую цель преследуют, заземляя одну из точек цепи? На практике к заземлению какой-нибудь точки цепи прибегают с целью уменьшить опасность поражения электрическим током.

При нечаянном прикосновении к какой-нибудь точке электрической установки тело человека окажется под напряжением, равным потенциалу точки соприкосновения. Во многих случаях этот потенциал по своему значению меньше максимального напряжения, действующего в электрической цепи. Более подробно этот вопрос мы рассмотрим в гл. 7, посвященной трехфазному току.

Напряжение на нулевом проводе

Я-то учёл, а вот вы так и не понимаете, что при неразрывном токе бОльшая часть энергии дроссельтранса так и остаётся в зазоре его сердешного, а не предаётся в нагрузку, в то время как в прямоходе оная энерхия представлена дрищавым током хихи. Плюс к этому, доп комм. потери на включение, когда рассасывается выпр. диод, буде оный на p-n переходе, или заряжается емкостина Шоттки, буде оный низковольт, а ежели высоковольт, то поимеете то же рассасывание. Про геморр с демпфером, ограничивающим «пук» на ключике я даже не говорю. Что касаемо жёсткости ВАХ резонансера, то в соседней веточке люди убеждаются в том, что оная ВАХ зело лучшее чем у нерезонансера, при одинакой паразитной индуктивности первичек-вторичек, поскольку резонансер направляет энерхию индухтивности рассеяния в нагрузку. Ну, а буде оная индухтивность шибко мелкая, то ваш усь задолбают индуктивные и кондуктивные помехи, вследствие крутости фронтов тока через ключеги и диодеги. Телевизорам, кои полюбляют обратноходы, на эти помехи посрать, бо оне работают в шибко высокочастотном диапазоне, а нынче так вообще с цифирой. А вот аналоговым усям шумящие питальники категорицки противопоказаны.

Публикации по теме:

  • Азия цемент отзывы

    Азия Цемент Некоторым работникам дирекции из Пензы приходится за свой счет ездить на завод. Это…

  • Искра коттеджный поселок

    Коттеджный посёлок «Берег-Деревня»Если Вы мечтаете купить дом в Самарской области, недалеко от города, в районе…

  • Цветаевский пирог с творогом

    Цветаевский яблочный пирог — интересные идеи приготовления знаменитого десертаПо легенде цветаевский яблочный пирог готовили сестры…

  • Makita 9565c

    Угловая шлифовальная машина Makita 9565CVПочти за вековую историю существования японская компания Makita прекрасно зарекомендовала себя…

Разница между заземлением и нулем


от простого до сложного метода

Монтаж нового оборудования с частичной заменой электрической проводки или без нее обязательно включает четкое определение проводов с фазой, «нулем» и заземлением. С поиском фазы вопросов нет: воспользуйтесь отверткой со встроенным индикатором. Если на объекте применяется проводка с двумя жилами, то автоматически понятно — первая является «фазой», вторая — «нулем». Сложности возникают при работе с системами, состоящими из трех токоведущих кабелей, поэтому ниже рассказано о том, как отличить «ноль» от заземления.

Проблемы связаны с фактически одинаковыми электрическими параметрами двух проводников. Именно поэтому не пытайтесь отличить «ноль» от «земли», используя обычную лампочку: светиться она будет в обоих случаях. Приблизительно идентичными будут значения напряжения при замере с помощью мультиметра на парах фаза-ноль и фаза-земля (около 220 В). Впрочем, данный метод все же актуален для определенных ситуаций.

Контрольная лампа на 220Вк содержанию ↑

Определяем фазу

Чтобы найти «фазу», достаточно воспользоваться индикаторной отверткой — простым инструментом, который должен быть у любого хозяина. Прикоснитесь жалом к каждому проводнику, одновременно удерживая палец на верхней, металлической части рукоятки отвертки. Когда световой индикатор внутри отвертки загорится, значит, вы коснулись фазного провода. Однако помните, что при выполнении соответствующих операций электрическая сеть не обесточивается.

Поиск фазного провода индикаторной отверткойк содержанию ↑

Методы определения

Существует несколько способов, позволяющих отличить «ноль» от «земли».

Цветовая маркировка проводов

Профессиональные и добросовестные электрики никогда не будут монтировать проводку без соблюдения цветовой маркировки. При условии, что монтаж осуществлялся с соблюдением основных правил ПУЭ, каждый проводник имеет определенный цвет в зависимости от выполняемой функции:

  1. Синяя/голубая оболочка используется для маркировки нулевого проводника.
  2. Желто-зеленая оболочка (полосками) применяется для обозначения заземляющей жилы.
  3. С фазным проводом сложнее, поскольку он может иметь оболочку белого, черного, красного, оранжевого и других цветов. Независимо от выбранного цвета «фазы» такой монтаж будет правильным.
Синим маркируется ноль, зелено-желтым – земля, красным – фаза

Помните: даже если были обнаружены жилы соответствующих цветов, по которым можно определить «фазу», «ноль» и «землю», не стоит спешить с выводами. Быть полностью уверенным в правильности монтажа можно исключительно при условии, что вы выполнили его самостоятельно. В остальных ситуациях подобный метод поиска «ноля» и «земли» будет некорректным. Поэтому переходите к остальным способам.

к содержанию ↑
Дифференциальный ток

Намного проще отличить «ноль» от «земли», если на обслуживаемом участке имеется устройство защитного отключения (УЗО) либо дифференциальный автомат. Воспользуйтесь лампой с проводами, подключите прибор к фазе и одному из двух проводников. Если защита не сработала, то лампочка подключена правильно — к паре фаза-ноль. Если сработало УЗО и ветка оказалась обесточенной, то была задействована пара фаза-земля.

Если УЗО не сработало в обоих случаях, то возможны проблемы с функциональностью оборудования. О работоспособности устройства дифференциальной защиты можно судить по проведенному испытанию. На любом подобном оборудовании есть кнопка «Тест». Нажмите на нее.

Примечание. Защитное устройство может не сработать по другой причине: если протекающий через лампу ток ниже номинального дифференциального значения (при котором оборудование должно выполнять обесточивание цепи). К примеру, лампа накаливания пропускает ток около 20-40 мА. Если используется УЗО на 100 мА, то логично, что прибор не сработает.

к содержанию ↑
Заземляющие контакты на розетках

Этот способ подходит для любого объекта, на котором используются двухполюсный вводный автомат и заземляющие розетки. Отключите автомат, что гарантирует отсутствие связи между «нолем» и «землей». Сделайте аналогичное со всеми бытовыми приборами. Возьмите мультиметр, активируйте режим «Прозвонка» и выполните процедуру между заземляющим контактом на розетке и двумя неизвестными проводами.

Когда заземляющий контакт розетки будет соединен с «нолем», на мультиметре будет показано огромное сопротивление, с «землей» — приближенное к нулевому значению. Данный метод поможет убедиться в правильности подключения заземляющих розеток.

к содержанию ↑
Использование мультиметра

Перед проверкой токоведущих жил с помощью мультиметра следует зачистить проводку. Не забывайте о мерах предосторожности и обязательно выполните обесточивание электрической сети на обслуживаемом объекте.

Если электрическая проводка не имеет цветовой/символьной маркировки либо монтаж выполнялся неизвестным мастером, тогда воспользуйтесь мультиметром. Однако сперва при помощи индикаторной отвертки определите «фазу». Настройте мультиметр, выбрав диапазон замера переменного напряжения более 220 В. Можно взять измерительный прибор любого типа. Не имеет значения конкретный размер диапазона: главное — выставить его выше 220 В.

На паре фаза-земля напряжение будет меньше

Соедините через мультиметр «фазу» с одним, а затем — другим проводником. На паре фаза-ноль значение напряжения будет ненамного выше, чем на паре фаза-земля. Это позволит отличить «ноль» от «земли».

Примечание. Определение «земли» при помощи мультиметра актуально для более старых электрических сетей, построенных по конфигурации ТТ. Для современных топологий TN-C-S метод неактуален. Во втором случае нулевой и заземляющий проводники разделяются уже внутри здания, поэтому электрически являются идентичными и связанными между собой. У них одинаковое сопротивление, а, значит, при использовании мультиметра на обеих парах будет равная разница потенциалов.

Не подходит мультиметр для поиска заземляющего проводника в электрической сети TN-S. «Ноль» и «земля» разделены от источника энергии до потребителя. Из-за разной длины проводов будет совершенно иное сопротивление, которое обуславливает полученную разницу в напряжении. Может оказаться, что разница потенциалов на паре фаза-земля будет выше, нежели на паре фаза-ноль.

к содержанию ↑
Отключение нулевого провода (электрический щиток)

Убедитесь, что электрические приборы были отключены от сети, благодаря чему ток гарантированно не будет поступать на нулевой проводник. Загляните в распределительный щиток, расположение которого регламентируется правилами ПУЭ, отсоедините нулевой провод (открутите зажимы, вытащите кабель из вводного автомата и заизолируйте). Либо удалите проводник с нулевой шины, которая используется для дальнейшего разветвления нейтрали. В квартире или частном доме останутся два работающих проводника — заземляющий и фазный.

Вновь возьмите в руки мультиметр, измерьте напряжение между фазой (определяется индикаторной отверткой) и двумя другими проводниками. Напряжение появится исключительно между «фазой» и «землей», поскольку нулевой провод отключен от щитка.

Примечание. Существует такое понятие, как «наведенное напряжение». Не вдаваясь в подробности, отметим, что вследствие него при измерении пары фаза-ноль мультиметр покажет вольтаж, отличный от «0» (обычно не более 10 В).

к содержанию ↑
Метод прозвонки

Прозвонка — один из самых популярных методов, использующихся мастерами для поиска мест обрыва электропроводки. Он подходит для определения «ноля» и «земли». Данный способ актуален при условии, что вы знаете расположение нулевого и заземляющего проводников на одном из концов. Например, когда прозвонка осуществляется от распределительного щитка, но по какой-то причине на другом конце провода имеют другую цветовую маркировку (либо одинакового цвета).

Произведите полное обесточивание. Прозвонка может выполняться профессиональными приборами (на любых моделях мультиметра имеется соответствующая функция) или обычной схемой из лампочки, батарейки и проводов.

Если длина измеряемых проводников небольшая, то воспользуйтесь куском кабеля, подсоединив отрезок к концам участка. Если требуется прозвонить проводник, идущий от распределительного щитка до розетки в дальней комнате, то лучше воспользоваться известной жилой: до обесточивания индикаторной отверткой определите и промаркируйте «фазу» (на обоих концах).

Один щуп мультиметра (или самодельного прибора) подключите к отмеченному фазному проводу, другой — к одному, а затем — другому неизвестному проводнику. Переходите к противоположному концу линии. Подключите поочередно два конца неопределенных жил к промаркированному фазному кабелю. Обозначьте их.

к содержанию ↑

Разница между нулем и землей

Последствия неправильной коммутации нулевого и заземляющего проводников могут быть разными:

  1. Неправильная работа приборов учета электроэнергии в меньшую или большую сторону. Соответственно в первом случае, когда компания-поставщик найдет ошибку, может быть начислен огромный штраф.
  2. Некорректная работа устройств защитного отключения и дифференциальных автоматов: при существенных перепадах напряжения будет постоянно перегорать бытовая техника.
  3. Отсутствие защиты человека от поражения током. Более того, неправильная схема может стать основной причиной удара.

В статье были рассмотрены способы, позволяющие отличить нулевой и заземляющий проводники в трехжильных системах. Расположены они в порядке возрастания сложности действий. Только правильный монтаж электрической проводки гарантирует корректную работу УЗО, дифференциальных автоматов и розеток с заземляющим контуром. Если есть малейшие сомнения, лучше обратиться за помощью к квалифицированному специалисту, предоставляющему акт о проведении ремонтных работ.

Как отличить ноль от заземления: от простого до сложного метода

Разница между заземлением и заземлением со сравнительной таблицей

Одно из основных различий между заземлением и заземлением состоит в том, что при заземлении токоведущая часть соединяется с землей, тогда как при заземлении нетоковедущие части соединяются с землей. Другие различия между ними объясняются ниже в виде сравнительной таблицы.

Содержание: Заземление V / S Заземление

Сравнительная таблица

Основа для сравнения Заземление Заземление
Определение Токоведущая часть соединена с землей. Корпус оборудования заземлен.
Расположение Между нейтралью оборудования и землей Между корпусом оборудования и землей, расположенной под поверхностью земли.
Символ
Нулевой потенциал Нет Есть
Защита Защита оборудования энергосистемы. Защитите человека от поражения электрическим током.
Приложение
Обеспечьте обратный путь к току. Он отводит электрическую энергию на землю.
Типы Три (сплошное, резистивное и реактивное заземление) Пять (трубное, пластинчатое, стержневое заземление, заземление через отвод и ленточное заземление)
Цвет провода Черный Зеленый
Используйте Для балансировки несбалансированной нагрузки. Во избежание поражения электрическим током.
Примеры Нейтраль генератора и силового трансформатора заземлена. Корпус трансформатора, генератора, двигателя и т. Д. Заземлены.

Определение заземления

При заземлении токоведущие части напрямую соединены с землей. Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает оборудование энергосистемы от повреждений.

Когда в оборудовании возникает неисправность, ток во всех трех фазах оборудования становится несимметричным. Заземление отводит ток короткого замыкания на землю и, таким образом, уравновешивает систему

Заземление имеет несколько преимуществ, например, исключает перенапряжение, а также разряжает перенапряжение на землю. Заземление обеспечивает большую безопасность оборудования и повышает надежность обслуживания.

Определение заземления

«Заземление» означает соединение нетоковедущей части оборудования с землей.Когда в системе возникает неисправность, возрастает потенциал обесточенной части оборудования, и когда какой-либо человек или бродячие животные коснутся корпуса оборудования, они могут получить электрический ток.

Заземление отводит ток утечки на землю и, следовательно, защищает персонал от поражения электрическим током. Он также защищает оборудование от ударов молнии и обеспечивает путь разряда для разрядника, разрядника и других устройств.

Заземление достигается путем соединения частей установки с землей с помощью заземляющего проводника или заземляющего электрода в тесном контакте с почвой, размещенной на некотором расстоянии ниже уровня земли.

Ключевые различия между заземлением и заземлением
  1. Заземление определяется как соединение нетоковедущей части, такой как корпус оборудования или корпуса, с землей. При заземлении токоведущая часть, такая как нейтраль трансформатора, напрямую связана с землей.
  2. Для заземления используется провод черного цвета, а для заземления зеленого цвета — провод.
  3. Заземление уравновешивает несимметричную нагрузку, тогда как заземление защищает оборудование и людей от поражения электрическим током.
  4. Заземляющий провод помещается между нейтралью оборудования и землей, в то время как при заземлении заземляющий электрод помещается между корпусом оборудования и заземляющей ямой, которая находится под землей.
  5. При заземлении оборудование физически не связано с землей, и ток не равен нулю на земле, тогда как при заземлении система физически связана с землей и имеет нулевой потенциал.
  6. Заземление пропускает нежелательный ток и, следовательно, защищает электрооборудование от повреждений, в то время как заземление снижает высокий потенциал электрического оборудования, вызванный неисправностью, и, таким образом, защищает человеческое тело от поражения электрическим током.
  7. Заземление подразделяется на три типа. Это твердое заземление, заземление по сопротивлению и заземление по реактивному сопротивлению. Заземление может быть выполнено пятью способами: заземление трубопровода, пластинчатое заземление, стержневое заземление, заземление через кран и ленточное заземление.
Технические характеристики заземляющих электродов
  1. Электрод заземления нельзя размещать вблизи здания, система установки которого заземлена на расстоянии более 1,5 м.
  2. Сопротивление заземляющего провода не должно быть более 1 Ом.
  3. Проволока, используемая для электрода и цепи, должна быть из одного материала.
  4. Электроды следует располагать вертикально так, чтобы они касались слоев земли.

Размер жилы не должен быть меньше 2,6 мм. 2 или половина проволоки, используемой для электропроводки. Для заземления используется неизолированный медный провод. Зеленая 6 THHN (провод с термопластичным покрытием с высоким тепловыделением) и медная проволока различных размеров, например 2,4,6,8 и т. Д.также используются для заземления и заземления.

.

В чем разница между нейтралью, землей и землей?

Основное различие между нейтралью, землей и землей?

Чтобы понять разницу между нейтралью, землей и землей, мы должны сначала понять необходимость этих вещей.

Нейтраль

Нейтраль — это обратный путь для цепи переменного тока, которая должна проводить ток в нормальных условиях. Этот ток может возникать по многим причинам, в первую очередь из-за дисбаланса фазных токов, а иногда также из-за 3-й и 5-й гармоник.

Могут быть и другие причины, но величина этого тока является долей фазного тока, а в некоторых случаях может быть даже вдвое больше фазного тока. Таким образом, предполагается, что нейтральный провод всегда заряжен (в активной цепи). Этот нейтральный провод подключается к земле (путем заземления), чтобы второй вывод нейтрального провода находился под нулевым потенциалом.

Земля или земля

Земля или земля предназначен для обеспечения безопасности от утечки или остаточных токов в системе через путь наименьшего сопротивления.В то время как фаза и нейтраль подключены к основной силовой проводке, заземление может быть подключено к корпусу оборудования или к любой системе, которая в нормальном состоянии не проводит ток, но в случае некоторого нарушения изоляции должна пропускать небольшой ток.

Этот ток исходит не напрямую от провода под напряжением или фазы, а от вторичных звеньев, которые не были связаны с системой под напряжением в нормальном состоянии. Этот ток обычно намного меньше, чем ток основной линии или фазный ток, и в большинстве случаев имеет порядок мА.Но этого тока утечки достаточно, чтобы убить кого-нибудь или вызвать пожар. Такой ток проходит по пути с низким сопротивлением и направляется на землю через заземляющий провод.

Из-за разницы в применении мы никогда не смешиваем заземление нейтрали и земли. Однако оба они обоснованы (конечно, процесс может быть другим). Если оба они будут смешаны, то заземляющий провод, который не должен пропускать ток в нормальном состоянии, может иметь некоторые заряды и станет опасным.

Полезно знать:

Разница между заземлением и заземлением.

Нет разницы между заземлением и заземлением, но это те же самые термины, которые используются для заземления или заземления.

Заземление — это слово, обычно используемое для заземления в североамериканских стандартах , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских , странах Содружества и стандартах B ritain, таких как IS и IEC и т. д.

Проще говоря, Заземление и Заземление являются синонимами.Оба слова используются для обозначения одного и того же

Вы также можете прочитать:

.

В чем разница между сигнальной землей, землей шасси и землей ??

Все они связаны с одним и тем же местом, точкой нулевого напряжения, но с разными целями:

Сигнальная земля — ​​это контрольная точка, от которой измеряется этот сигнал, из-за неизбежного падения напряжения, когда ток течет в цепи, некоторая «земля». ‘точки будут немного отличаться от других. В цепи может быть несколько сигнальных заземлений. Представьте, что у вас есть усилитель с коэффициентом усиления 100 по напряжению и вы усиливаете крошечный сигнал, если земля для сигнала была выше всего на 0.01V выход будет неправильным на 1V. Обычно заземление сигнала представляет собой соединение с тем же каскадом схемы, к которому был подключен сигнал.

Заземление шасси — это коробка или рама, в которой построена цепь. Обычно его заземляют, чтобы создать барьер между пользователем и внутренними цепями, чтобы предотвратить поражение электрическим током или защитить от помех или излучения. В некоторых сильноточных приложениях он используется в качестве проводника для передачи тока, например, в автомобиле, где протянуть много толстых проводов к батарее было бы непрактично, но подключение к шасси легко практически в любом месте.Заземление корпуса должно быть связано с другими заземлениями, обычно это делается в точке, близкой к источнику питания.

Земля — ​​теоретический ноль. Это возможность идеально проводить Землю под вашими ногами, но, очевидно, она сильно варьируется в зависимости от того, где вы находитесь. Я живу на горе, где на несколько сантиметров ниже поверхности есть твердые породы, в сухую погоду у меня очень плохая Земля, в сырую погоду не так уж и плохо. Соединение с Землей обычно осуществляется через кабели источников питания или стержень, вбитый в землю, а иногда и то, и другое.Предполагается, что это обратный путь для тока в случае короткого замыкания в ваших линиях электропередачи переменного тока, но он также используется в радиоприложениях в качестве «нулевого» эталона для считывания сигналов антенны.

Брайан.

.

Как должны быть связаны друг с другом земли и общие?

Мы уже вкратце рассмотрели заземление (если таковое имеется), заземление шасси и общие земли (часто ошибочно называемые «землей»). Они не существуют как несвязанные связи в системе. Вопросы, связанные с подключением общего пользования и земли, являются предметом бесчисленных статей, научных статей, заявлений поставщиков, анекдотов и даже книг.

Существует множество правил относительно того, как подключать общие цепи друг к другу, к заземлению шасси (если оно есть) и к заземлению (опять же, если оно есть).Каждое из этих правил имеет множество законных исключений, что означает, что окончательное решение определяется нормативными требованиями, передовой инженерной практикой и целями производительности.

  • Какая связь между принципиальной схемой и физическими соединениями?

Есть небольшая связь. На схеме показаны физические соединения, но не схема или фактическая конфигурация. Он показывает, что вы получите, если проверите соединения с помощью тестера непрерывности.Однако для земель и общин большая часть истории заключается в том, как и где они связаны друг с другом, какими средствами, на каком расстоянии и т. Д. Схема показывает мало или совсем не показывает этой информации.

  • В чем ключевое различие между наземной / общей топологией схематической диаграммы и реальной реализацией?

В принципе, земля является эквипотенциальной плоскостью, и она имеет нулевое сопротивление постоянному току и полное сопротивление переменного тока при измерении между любыми двумя точками.В реальном мире всегда будет некоторое сопротивление между двумя точками, протекание тока и, как следствие, падение напряжения. Помните, что более точным термином для того, что мы называем «напряжение», на самом деле является «разность потенциалов», и он имеет значение только между двумя определенными точками. Всякий раз, когда есть ток и падение напряжения, заземление больше не является идеей. Следовательно, реальные пути проводов, дорожек на печатной плате и областей на плате будут только приблизительно соответствовать идеальной плоскости нулевого сопротивления.

Также имейте в виду, что любые токи, протекающие в земле или в общей цепи, могут откуда-то и уходить куда-то, их не существует в цепи «вакуум».Земля или общий вывод являются частью обратного пути для тока, протекающего от источника питания и шин, через цепь и обратно к источнику питания. Таким образом, следует отметить следующие вопросы: «Откуда идет ток земли?» И «Куда он идет?»

  • Как обычно связаны общие точки и их пути?

В общем, все общие аналоговые цепи должны быть соединены вместе, но только в одной точке, в так называемой «звездообразной» топологии, Рисунок 1 ; аналогично общие цифровые цепи обычно также подключаются к этой уникальной точке.Задача дизайнера и макета состоит в том, чтобы определить путь, по которому каждый из этих объектов достигает точки звезды. Пути должны быть короткими, прямыми и независимыми от других путей. Как правило, заземление и общие пути не должны проходить параллельно друг другу, так как они могут наводить поперечные токи.

Рис. 1: Цифровые токи, протекающие в аналоговом обратном пути, создают ошибочные напряжения. (от Analog Devices)

  • Следует ли всегда подключать точки заземления и общего пользования?

Опять же, рекомендации по подключению заземления и общего пользования являются только рекомендациями, а не абсолютными.Хотя обычно ответ — «да», есть много важных исключений. Например, при использовании электрически изолированной цепи для измерения напряжения на верхней батарее в стеке (, рис. 2 ) важно, чтобы общая часть измерительного входного каскада и общая часть остальной схемы — независимо от того, была ли она заземлена. не — не быть связанными друг с другом, так как это полностью разрушит критическую изоляцию.

Рис. 2: Мониторинг аналогового напряжения одиночной батареи в верхней части последовательного стека батарей требует особого внимания к заземлению и безопасности; в большинстве случаев требуется изоляция переднего конца со стороны батареи от остальной системы, поэтому любое соединение между их двумя «общими» точками не допускается.(от Analog Devices)

Всякий раз, когда существует разность потенциалов между двумя концами заземляющего / общего пути или между двумя заземленными / общими точками, которые соединены вместе, результирующий ток и напряжение представляют собой то, что называется контуром заземления. В общем, контуры заземления могут вызывать проблемы, потому что этот поток тока противоречит требованиям хорошего заземления / общей среды. Во многих случаях используются соединения с низким импедансом или даже изолирующие цепи (без омического / гальванического пути между двумя точками), которые используются для минимизации или даже разрыва контуров заземления.

  • А как насчет систем с питанием от сети переменного тока?

Эта потребность в соединении общих и заземляющих элементов во многих (но не во всех) конструкциях также применима к системам с питанием от переменного тока. Хотя подключение заземления переменного тока к заземлению шасси и различных общих источников является нормальной практикой и часто является обязательным, во многих случаях заземление переменного тока необходимо держать отдельно (например, медицинские системы из-за опасений по поводу крошечных токов утечки и безопасности пациента) . Эта изоляция переменного тока обычно реализуется с помощью трансформатора между двумя секциями.

  • Каким образом делается окончательное определение «наилучшего» или «правильного» способа соединения земли и общего пользования?

Если задействована линия переменного тока или более высокие напряжения / токи, топология начинается с нормативных требований и требований безопасности для топологии и физической реализации, включая ключевые размерные параметры, такие как путь утечки и зазоры, Рисунок 3 . Многие инженеры продолжают использовать общепринятые рекомендации, не забывая при этом о противоречивых требованиях, которые они предъявляют при использовании в сочетании с другими ограничениями схем и систем.Кроме того, эти рекомендации могут фактически противоречить друг другу, в зависимости от заявки автора и личного опыта. \

Рис. 3: Определение и минимальные размеры для требований пути утечки и зазоров зависят от рабочего напряжения и определяются различными регулирующими органами и агентствами по безопасности. (из руководства PCB Design Tech Guide)

Использование или, по крайней мере, начало использования проверенного, протестированного эталонного проекта с подробными файлами макета — это шаг, который также учитывают многие инженеры, чтобы они могли, по крайней мере, увидеть, что успешно выполнила другая группа разработчиков.Реальность такова, что для принятия решения и заключения о том, что и где подключать, требуются как наука, так и искусство, а также опыт и знание нормативных требований — отчасти из-за неопределенности относительно того, где будет течь ток, как это диктуется уравнениями Максвелла.

Список литературы

(Существует бесчисленное множество рекомендаций по качеству любой длины и технического уровня; это лишь некоторые из них.)

  1. «Оставаясь хорошо заземленным» (Analog Devices)
  2. AN-42036, «Система заземления печатных плат и высокопроизводительные преобразователи постоянного тока в постоянный ток FAN2001 / FAN2011» (Fairchild / ON Semiconductor)
  3. Указания по применению 1681, «Методы заземления» (Intersil Corp.)
  4. «Изоляция при мониторинге высоковольтных батарей на транспорте» (Analog Devices)
  5. «Рекомендации по заземлению и соединению» (Cisco)
  6. «Техническое руководство по проектированию печатных плат»
.

Как замерить сопротивление заземления и проверить розетки

Современный дом насыщен электроприборами. Чтобы их работа была эффективной и безопасной, выполняется заземление. Это несложное устройство обеспечит надежную защиту дома и живущих в нем людей от поражений электрическим током. Ввиду чего очень важно понимать устройство электросистемы дома и на какие аспекты следует обратить внимание при проверке ее работоспособности. Так, к примеру, многих домашних мастеров довольно часто интересует вопрос, как проверить заземление в розетке, дабы удостовериться в ее работоспособности.

Для чего заземляют электроприборы

Основное назначение заземляющего контура — защита человека от поражения электрическим током. Хотя практически любое исправное оборудование в этом плане безопасно, но от возникновения аварийной ситуации оно не застраховано. В стиральной или посудомоечной машине потек сальник, от вибрации перетерлась защитная оболочка провода, пробило изоляцию на электродвигателе или в конденсаторе.

В любом из этих случаев опасное для жизни напряжение может оказаться на металлических частях электрооборудования. Стоит коснуться кожуха той же стиральной машины, как через тело человека пойдет ток, значение которого даже в 60—100 мА представляет угрозу жизни. Практически каждая домохозяйка знакома с ситуацией, когда стиралка или мясорубка «бьются током». Это в лучшем случае. В худшем — просто убьет.

Но если кожух электрического прибора загодя соединить с землей, то появившееся на нем напряжение аварийной утечки сразу же уйдет в землю и не сможет угрожать жизни людей.

Прикосновение к неисправному, но заземленному оборудованию абсолютно безопасно.

Таким образом, заземляя электроприбор, вы обеспечиваете безопасность — как свою, так и своих близких. Именно поэтому к проверке наличия и качества заземляющего контура в своем доме необходимо отнестись со всей серьезностью.

Зануление — фальшивое заземление

Бытует мнение, что подключив кожух прибора к нулю, вы обеспечиваете его заземление. Это мнение совершенно ошибочное. Ноль действительно соединен с землей, но в лучшем случае на домовом щите, расположенном в десятках метров от ваших розеток. Поскольку нулевой провод выполняет функции питающего через него течет ток всех потребителей дома. Любой провод имеет сопротивление, между нулем в вашей розетке и землей может возникать падение напряжения, достигающее десятков вольт.

Занулите бытовой прибор и эти вольты окажутся на кожухе прибора. В случае обрыва нулевого провода где-нибудь на участке подстанции — ваша квартира, фаза через потребителя «перебежит» на все нулевые клеммы ваших розеток, а значит и на корпуса всех зануленных электроприборов. Тут, вообще, вся квартира превращается в сплошной электрический стул. Ввод: зануленный прибор гораздо опаснее своего незаземленного собрата.

При обрыве нулевого провода все шасси зануленных приборов оказываются под напряжением.

Способы проверки заземления в розетке

От наличия заземления в вашем доме зависит безопасность людей, поэтому крайне важно знать в каком состоянии находится заземляющий контур в квартире и есть ли он вообще. Все контрольные работы, которые придется проводить в связи с этим, можно свести к трем пунктам:

  1. Визуальный осмотр.
  2. Косвенные измерения.
  3. Прямые измерения.
  4. Испытания под нагрузкой.

Проверка визуальным осмотром

Прежде всего, придется разобрать все розетки. У них должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода — коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

Такая схема исключительно опасна и при таком включении добавляется еще одна угроза. Достаточно поменять местами фазу и ноль на вводе в дом или квартиру (во время ремонтных работ всякое бывает), как все заземляющие клеммы в розетках окажутся под напряжением. Если вы обнаружите в розетках такое безобразие, немедленно его прекратите. В идеале внутренности розетки должны выглядеть так: подводятся три провода — фазный, нулевой и заземляющий.

Если с розетками все в порядке, загляните в этажный щиток. Ввод в вашу квартиру тоже должен иметь три провода, причем заземляющий должен быть надежно прикручен прямо к металлическому шасси щита или к шине, которая электрически соединена с ним. Если все так и есть, то можно считать, что визуальный осмотр закончен, поскольку все этажные щиты должны быть подключены к заземляющему домовому контуру.

Проверка косвенными измерениями

К сожалению, визуальный метод не может дать стопроцентной гарантии. Любая из нижеприведенных причин сведет все результаты осмотра на нет:

  1. «Щит должен быть заземлен» и «щит заземлен» — далеко не одно и то же. Среди профессиональных электриков тоже есть халтурщики.
  2. Вы можете просто ошибиться, приняв, к примеру, зануляющую шину в щите за заземляющую.
  3. Визуально все в порядке, но заземляющий домовой контур где-нибудь в подвале давно спилили и сдали в металлолом.
  4. Вы банально не смогли разобраться в мешанине щитовых проводов, особенно если оборудование старое, а «специалистов» по электрооборудованию в доме — в каждой квартире.

Поэтому придется на время стать электриком. На этом этапе проверки вам понадобятся указатель напряжения (отвертка-индикатор) и обычный вольтметр переменного тока с пределом измерения не ниже 500 В. Подойдет, к примеру, китайский тестер (мультиметр).

Напряжение в домовой электросети можно измерить обыкновенным тестером, выставленным на соответствующий предел измерения.

При помощи указателя найдите в розетке фазу и убедитесь, что на остальных клеммах, включая заземляющую, напряжения нет. Теперь нагрузите домашнюю электросеть, включив в любую из розеток потребитель мощностью 1—2 кВт. Измерьте напряжение между точками фаза — ноль и фаза — заземляющий контакт. Перед началом измерения не забудьте выставить на приборе необходимый предел! Напряжения должны немного (максимум до 10 В) отличаться друг от друга, поскольку нулевой провод является питающим и находится под нагрузкой, а заземляющий нет.

Если напряжения абсолютно равны, то, скорее всего, заземляющая клемма подключена к нулю либо где-то в квартирных распределительных коробках, либо в этажном щите. В любом случае придется выяснить, где и зачем это сделано. Если нулевой и заземляющий провода просто соединены между собой, то ничего страшного. Намного хуже, если заземляющий провод подключен к нулевой шине, а не к заземляющему контуру. В этом случае он лишь изображает заземляющий, но, по сути, является зануляющим. Конечно, эту проблему придется устранить.

Если разброс напряжения больше 10—15 В, то это означает, что сопротивление заземляющего контура слишком велико и его нужно считать неисправным.

Возможен и вариант, когда между фазой и заземляющей клеммой напряжения нет вообще. Это говорит о том, что провод заземления либо отсутствует (проверяется визуально), либо не подключен к контуру, либо оборван где-нибудь в стене или распределительной коробке.

Измерение сопротивления контура

Этот метод, к сожалению, не только требует специального оборудования, но и трудновыполним в высотных домах. Зато он самый надежный. Суть его измерение сопротивления между заземляющей клеммой ваших розеток и реальной землей. Для проведения работ понадобится высокоточный мостовой омметр и огромное количество проводов. Проверка заземления мультиметром в этом случае, увы, невозможна — не та точность.

Если вы имеете доступ к подобному оборудованию, то раздобудьте три провода любого сечения. Один провод должен соединить прибор и заземляющий контакт розетки (он должен быть минимальной длины). Еще два — прибор и металлические штыри из комплекта, забитые в землю на расстоянии 5—10 м друг от друга.

В зависимости от напряжения в вашей сети показания прибора не должны превышать указанные ниже значения:

  • однофазное 127 В или трехфазное 220 В — 8 Ом;
  • однофазное 220 В или трехфазное 380 В — 4 Ом;
  • однофазное 380 В или трехфазное 660 В — 2 Ом.

Испытание нагрузкой

Если у вас нет мостового омметра или вы живете в высотном доме на последних этажах, то испытать контур можно путем нагрузки. Метод этот достаточно прост, но вполне надежен. Для проведения испытания понадобится электроприбор мощностью не менее 1 кВт (утюг, электрочайник, электрическая плита и т. п. ), указатель напряжения (индикатор) и вольтметр переменного тока (тестер). Если в вашем распоряжении тестера не окажется, можно воспользоваться контрольной лампой на напряжение 220 В и мощностью до 100 Вт. Ее нетрудно сделать из обычной осветительной.

Самодельная контрольная лампа

Теперь посмотрим, как проверить заземление тестером под нагрузкой. Измерьте напряжение между фазной и заземляющей клеммами розетки, показания запишите. Подключите параллельно вольтметру нагревательный прибор. При этом напряжение должно упасть не более чем на 10 В. Если в вашем распоряжении вольтметра нет, то воспользуйтесь контрольной лампой. При подключении нагрузки яркость ее свечения должна уменьшиться совсем незначительно. Сам нагревательный прибор во время испытаний будет работать как ему и положено — полноценно нагреваться. Сильное падение напряжения под нагрузкой говорит о том, что контур имеет слишком большое сопротивление и должен считаться неисправным.

Если ваша квартира оборудована теми или иными устройствами защиты от тока утечки — дифференциальными автоматами или УЗО, — то эта методика проверки не сработает. Защита примет ток нагрузки, подключенной к заземляющей клемме, за ток утечки и аварийно отключит напряжение. С одной стороны, срабатывание УЗО подтвердит, что у вас в доме именно заземление, а не зануление, но с другой — вы так и не выясните, сможет ли контур выдержать ток короткого замыкания при возникновении серьезной аварии.

Впрочем, если у вас стоит защита, которая отлично срабатывает даже от тока утечки, она разъединит аварийную цепь еще до того, как ток короткого замыкания станет критическим. Но если вы все же хотите провести полноценные испытания контура под нагрузкой, то устройства защиты придется временно отключить.

Все переключения и измерения необходимо проводить с соблюдением правил техники электробезопасности и под наблюдением второго лица, не участвующего в работах. Напряжение в домовой сети опасно для жизни!

Разница потенциалов между землей и нулем

1. Возникновение разности потенциалов между нулем и землей в доме это нормально при схеме заземления ТТ внутри дома (когда защитное заземление берется от своего контура и не соединяется с нулевым проводником). el-line.ru/shems_TT.shtml – ссылка про систему TT.

2. Если сопротивление контура меньше 4 Ом, то возможно нулевой проводник соединить с таким контуром и использовать схему заземления TN-C-S. el-line.ru/shems_zazemlen.shtml – ссылка про системы TN.

3. К примеру у меня, когда дом был подключен к системе с хреновыми проводами, где были частые КЗ фазы на ноль на воздушной линии – у меня была система ТТ. Сейчас в целях повышения безопасности (обрыв нуля), перешел на систему TN-C-S. Недостаток TN-C-S – в случае КЗ фазы на ноль Вы получаете опасный потенциал на время до сработки автоматов на корпусах электроприборов относительно земли (скажем другого проводника забитого в землю). Плюс TN-C-S – он относительно неплохо защищает от пропадения ноля, еще плюс – обычно между нейтралью и землей в такой системе разность потенциалов около нуля.

4. Проверьте электронагреватель – по хорошему электронагреватель на воду должен включаться через УЗО, чтобы избежать любую возможность утечки «в воду». Если есть утечка (выбивает УЗО), ремонтируйте электроустановку. Если-же утечек на трубы из приборов нет, то причиной электрокоррозии стать разница потенциалов между нулем и землем не может. Аналогично с циркуляционными насосами и прочим электрохозяйством, которое соединяется с водой.

5. Возможно у Вас иные причины коррозии или то не коррозия вовсе. У меня к примеру радиаторы стальные, в системе все равно присутствует немного воздуха. И. Вода серая в системе с налетом на трубах, признаков электрокоррозии не вижу.

  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

Доброго всем!
Сегодня сделал железный забор возле своего участка и чтобы железо просто так не гуляло решил вывести с него заземление! так на все случаи жизни.
Штыри – 3 метра проф. труба (везде забита в землю по 1 метру) в итоге 15 шт. труб + 2 полосы между ними и п – образная обвязка сверху (что б вода не попадала. оцинковка) + лист оцинкованный профильный по всей длине.
итого мы имеем = 15 метров трубы забитой в землю! (высота собственно 6-эт. дома.)

при замере напряжения = фаза + нуль = 220 вольт, фаза + заземление = 220 вольт,
а вот между нулём и заземлением выплыло аж 2 (2.5) вольта эт что за фигня.
заземление что ли голимое? хотя 15 метров в землю! 1.5 метра между столбами.
сомневаюсь. поискал в нете! фигни писано не переписано. каждый умничает, а бестолку!

Вопрос: так должно быть? разность потенциалов собственно небольшая, но всё таки.
между нулём и заземлением сопротивление не мерил! омметра толково – правильного нет,
а китайский уже 4 ома щуп до щупа показывает!
Спасибо.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Doc
  • –>
  • Не в сети
  • Администратор
  • Сообщений: 2441
  • Репутация: 34
  • Спасибо получено: 102

15 метров – у Вас очень много свободного времени!

2.5 вольта это очень хорошо! Это напряжение наводимое, ибо от ближайшей точки «зануления» до Вас может быть до 20-30 Км. В идеале конечно должен быть «ноль» , но в реале это отнюдь не так , померил дома 6.4В (и это Москва и свежая многоэтажка). В одной конторе где я работал светилась лампа накаливания в 220в (было примерно 60-80В).
можете либо оставить так и поставить УЗО (на всякий случай) , но помоему оно тока при такой разнице не увидит . у меня при 6.4 вспыхивает лапа накаливания на 2.5В после чего отключается УЗО

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Rrenovatio
  • Автор темы –>
  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Светлана
  • –>
  • Не в сети
  • Живу я здесь
  • Сообщений: 396
  • Репутация: 11
  • Спасибо получено: 22

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Николай Петрович
  • –>
  • Не в сети
  • Живу я здесь
  • Сообщений: 1115
  • Репутация: 9
  • Спасибо получено: 46

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Опции темы
Отображение
  • Линейный вид
  • Комбинированный вид
  • Древовидный вид

Напряжение между PE и N

Доброго времени суток. Дабы не плодить темы, да и вопрос схожий, отпишусь здесь.
В общем решил ремонт частичный в квартире сделать. Ремонту подверглись кухня и коридор. Так же решил начать менять проводку по комнатно, по мере прохождения ремонтов в других местах квартиры. Поставили мне новый щит – автоматы – вводной на 25А, 16А на розеточную группу и 10А на свет. Там же 2 шины – нулевая и заземления. Щит запитан от этажного щита проводом ВВГнг-LS 3х4. Провод заземления ни куда не подключен, т.к. проводка старая двужильная (дом кирпичный, щиты на этаже.). Проводка розеточная – 3х2,5, освещение – 3х1,5. Две распаечные коробки, все соединения выполнены ваговскими клемниками. А теперь внимание вопрос – откуда могло появиться напряжение между между землей и нулем? Земля подключена только к шине в новом щитке, а шина в свою очередь ни с кем больше не контактирует. Напряжение не слабое – было и 70В, и 96В. При чем при включении/отключении нагрузки просадок не замечено. Отключил везде электричество, прозваниваю ноль с землей – не контактирует. Куда смотреть?

P.S. В одной из комнат, где осталась старая проводка, подключен пилот. Розетка с заземл. контактами, но они не подключены. Мерюю напругу между нулем и заземляющим контактом – 60 В. Как.

Если ваше оборудование пробивает на корпус (а именно он подключается к заземляющему контакту штепсельной вилки), то там появляется потенциал. Если бы шина PE (земля) была заземлена или соединена с шиной нуля, то потенциал бы ушел в землю, а так он сидит там и ждет, когда кто-нибудь прикоснется к корпусу оборудования.

Соединение шин PE (земля) и N (ноль) в шитке ИМХО меньшее зло, чем соединение их в розетке или неприсоединение шины ни к чему вообще.
По хорошему, шины PE и N должны соединяться и присоединяться в этом месте к заземлителю.
Если в цепи фаза+ноль стоит УЗО, то разветвление нуля на рабочий и защитный (разделение PEN на PE и N) должно делаться перед входом нуля в УЗО, чтобы ток утечки приходящий по PE проводнику (земли) прошел мимо УЗО и УЗО бы сработало.

Последний раз редактировалось ЭлектроАС; 27.04.2011 в 19:41 .

Про оборудование и пробой на корпус изоляции я и сам первым делом подумал. Только вот незадача в том, что с полностью отключенными потребителями (включая освещение) напряжение между РЕ и N сохранилось. Провел я ряд замеров – мегометром Sonel MIC-3 мерял всю проводку (правда не рассоединял клемники в распайках), при 1000В и минуте по большенству жил – от 130 до 250 МОм, в зависимости между чем мерять. Меня несколько насторожило. Как прокладывался кабель я видел, визуально механических повреждений не обнаружил. Для нового кабеля я считаю это мало. Имея доступ к лабораторным приборам, неоднакратно мерял друзьям и новую и старую проводку. Изоляция новой проводки практически всегда уходила за предел измерения прибора (>3000 МОм). Было несколько случаев порчи кабеля ножами монтажников, но прибор сразу показывал очень малое значение, да и не выходил на испытательное напряжение. Так что не понятно откуда у меня такие плохие (пускай и больше нормативных 0,5 МОм) значения. Может кабель бракованный? Может от шткутарки слегка промокший.
Вторым делом померял петлю фаза-нуль. В общем ток к.з. – 183А, напряжение 236В. Тоже несколько удивился малым током к.з. Пошел в подъезд, отключил себя и померял от пакетника – почти тоже самое. У соседей (на других фазах) схожий результат. В нашем этажном щите вроде как все контакты затянуты. Причины? Плохой ноль? Может ли это являться причиной моих проблем?
Ну и самое интересное – то что отсоединив во всех распайках и щите PE, но оставив его подключенным в розетках, проблема не исчезла. Отключая последовательно каждую розетку от РЕ (скорее наоборот) пытался найти бракованную розетку, но увы таковой не нашлось. После отсоединения напряжение между РЕ и N в розетке около 2В. Однако воткнув стиралку (месяц отроду, пробег небольшой) и померяв напряжение между барабаном и смесителем, увидел 76В – терпимо, но ощущения неприятные. Сразу оговорюсь – стиралка не при делах, т.к. это происходит с любым элетроприбором с евророзеткой.

Так на кого же грешить? на ноль?

Фаза, ноль, заземление. Как их определить и что это такое

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Какое сопротивление между землей и нейтралью?

Зачем нужно заземление нейтрали?

Резисторы заземления нейтрали используются для ограничения тока короткого замыкания в трансформаторах. Когда происходит замыкание фазы на землю, ток замыкания ограничивается только сопротивлением почвы.

Этот ток, который может быть очень высоким, может повредить обмотки.

Почему земля соединена с нейтралью?

В трехфазной цепи нейтраль делится между всеми тремя фазами. Обычно нейтраль системы подключается к нейтрали на питающем трансформаторе.… Соединение между нейтралью и землей позволяет при любом замыкании фазы на землю развивать ток, достаточный для «срабатывания» устройства максимальной токовой защиты цепи.

Почему нейтраль заземлена?

Заземленный провод питания называется «нейтральным» проводом, потому что он не опасен для открытых металлических частей или водопровода. «Горячий» провод получил свое название потому, что он опасен. Заземление нейтрального провода не связано с работой электрооборудования, но необходимо из соображений безопасности.

Можно ли прикоснуться к нейтральной шине?

Если бы главный выключатель был включен, все открытые ножки для шины будут проводить электричество. Так что вы не захотите ничего из этого трогать. Нейтраль также является потенциальной точкой удара при включенном питании. Старайтесь не прикасаться к входящим служебным линиям.

Пропускает ли нейтральный провод ток?

Нейтральный провод определенно проводит ток. Он используется в переменном токе для обратного пути или, вы можете сказать, для полной цепи.

Какое сопротивление между нейтралью и землей?

Сопротивление заземления оборудования должно быть менее 6 Ом, чтобы даже имелась возможность отключения выключателя во время короткого замыкания. Для типичной схемы оно должно быть не более 1 Ом. Когда вы проверяете электрические и заземляющие соединения, просто убедитесь, что вы отключили все элементы в этой цепи, чтобы вы могли исключить это.

Какое напряжение между нейтралью и землей?

Нормальное ли напряжение между нейтралью и землей или может быть неисправность? Практическое правило, используемое многими в отрасли, заключается в том, что напряжение 2 В или менее между нейтралью и землей на розетке — это нормально, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.

Что произойдет, если нейтральный провод заземлен?

Электрический ток, протекающий через ваше устройство, также течет через нейтральный провод. … Если нейтраль обрывается, подключенные устройства приведут к тому, что нейтраль приблизится к «горячему» напряжению. При подключении заземления к нейтрали это приведет к тому, что корпус вашего устройства будет находиться под «горячим» напряжением, что очень опасно.

Почему можно дотронуться до нулевого провода?

При правильной проводке без ухудшения характеристик нейтральный провод безопасен, поскольку он имеет тот же потенциал, что и клемма заземления.Это правда, что он проводит ток, но поскольку нет разницы в напряжении относительно земли, ток не проходит, когда вы касаетесь его.

В чем разница между нейтралью и заземлением?

Основное различие между ними заключается в том, что заземление обеспечивает точку заземления, а нейтраль обеспечивает точку возврата для потока электричества… .Разница между заземлением и нейтралью: Земля Нейтраль Не пропускает ток. Во время любых отключений электричества в нем будет слабое электричество.Он всегда проводит ток. Еще 3 ряда

Можно ли соединить землю и нейтраль?

Заземление и нейтраль могут быть соединены вместе, но не в розетке, так как любой сбой проводки представляет серьезную опасность. Если нейтральный провод где-нибудь отсоединится, корпус устройства окажется под напряжением. Нейтраль и земля — ​​это одно и то же.

Сколько Ом имеет хорошее заземление?

5,0 Ом В идеале заземление должно иметь нулевое сопротивление.Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

Измерения заземления и сопротивления заземления электроэнергетической системы



__3. Выбор системы заземления

Как обсуждалось ранее, обычно используются различные методы заземления: глухозаземленный, заземленный по сопротивлению, заземленный по реактивному сопротивлению и замыкание на землю нейтрализатор заземлен.Необоснованная система, в полном смысле этого слова, заземлен, потому что зарядная емкость от фазного проводника к земле действует как точка заземления. Существуют различные способы заземления. показанный на фиг. 7.

Выбор системы заземления должен основываться на следующих системные факторы:

Величина тока короткого замыкания

Переходное перенапряжение

Молниезащита

Применение защитных устройств для селективной защиты от замыканий на землю

Типы обслуживаемой нагрузки, например, двигатели, генераторы и т. Д.

Ограничения по применению и руководство по различным методам заземления для Учет вышеперечисленных факторов отражен в TBL. 1 и обсуждались в следующих разделах.


РИС. 7 Способы заземления нейтрали системы. а) надежно заземлены; (б) сопротивление заземлено; (c) реактивное сопротивление заземлено; (d) нейтрализатор замыкания на землю.

=======

ТБЛ. 1 Методы заземления для систем низкого и среднего напряжения

Замечания по практике заземления системы Система среднего напряжения (2,400-13,800 V) Генератор в системе с соединением звездой Используйте заземляющий резистор с низким сопротивлением. Позволяет использовать молниеотводы нейтрального типа, если X0 / X1 = 3 X0 / X1 = 10 для ограничения переходных перенапряжений Трансформатор, соединенный звездой на система Используйте заземляющий резистор с низким сопротивлением R Не допускает использования молниеотводов нейтрального типа Для ограничения переходных перенапряжений, R0 / X0 = 2 Система незаземлена (т.е., генераторы или трансформаторы не подключены звездой) Используйте заземляющий трансформатор с резистором Зигзагообразный трансформатор R Некоторые комментарии как для трансформатора, соединенного звездой Система низкого напряжения (120-600 В) Соединение звездой генератор в системе Используйте низковольтное реактивное сопротивление относительно заземления нейтрали генератора Ток замыкания на землю должен быть не менее 25% от тока трехфазного замыкания. Соединение звездой Система питания трансформатора Земля нейтраль трансформатора надежно заземлен; Ток замыкания на землю может быть равен трехфазному замыканию. ток (или больше на вторичной обмотке трансформатора, соединенного треугольником) Система незаземленная (т.е., трансформатор не соединен звездой) Используйте заземляющий трансформатор глухо заземленный Зигзагообразный трансформатор Ток замыкания на землю должен быть равен не менее 25% от тока трехфазного короткого замыкания R G

=======

__3.1 Система с глухим заземлением

Система с глухим заземлением — это система, в которой генератор, трансформатор или заземление нейтрали трансформатора напрямую заземлено на землю или станцию земля.

Поскольку реактивное сопротивление источника (генератора или трансформатора), импеданс равно включенная последовательно с нейтралью, эта система не может считаться цепь с нулевым сопротивлением.Почти во всех заземленных системах желательно иметь ток замыкания на землю в диапазоне 25% -110% от трехфазного ток короткого замыкания, чтобы предотвратить развитие высоких переходных процессов Напряжение. Чем выше ток замыкания на землю, тем меньше переходный процесс. перенапряжения.

В этой системе могут быть применены молниеотводы с заземлением и нейтралью. при условии, что ток замыкания на землю составляет не менее 60% от трехфазного замыкания Текущий. Другой способ выразить это значение — выразить реактивное сопротивление и соотношениями сопротивлений:

… где X0 — реактивное сопротивление нулевой последовательности, X1 — реактивное сопротивление прямой последовательности. реактивное сопротивление R0 — сопротивление нулевой последовательности

Обычно прямое заземление генератора нежелательно, так как ток замыкания на землю может превышать ток трехфазного замыкания.Поскольку генератор рассчитан на максимальный трехфазный ток короткого замыкания, нежелательно иметь более высокие токи замыкания на землю, чем ток трехфазного замыкания.

Следовательно, большинство заземленных систем с генераторами заземлены через низкие значения реактивного сопротивления для поддержания токов замыкания на землю менее трех фаз ток короткого замыкания. Как правило, низковольтные системы (т.е. ниже 600 В) надежны. заземлен. Системы среднего напряжения могут быть как монолитными, так и с низким сопротивлением. заземлен.

__3.2 Заземление с низким сопротивлением

При заземлении с низким сопротивлением нейтраль заземляется через сопротивление низкого омического значения. Причины использования системы резистивного заземления следующие:

Для снижения тока замыкания на землю для предотвращения повреждения распределительного устройства, двигателей, кабели и т.п.

Для минимизации магнитных и механических напряжений

Для минимизации паразитных токов замыкания на землю для безопасности персонала

Для уменьшения мгновенных провалов сетевого напряжения путем устранения замыканий на землю

Напряжение между фазой и землей, которое может существовать при возникновении неисправности, может быть таким же высоким, как напряжение в незаземленных системах.Однако временный перенапряжения не такие уж и высокие. Если система правильно заземлена сопротивлением, нет опасности разрушительного перенапряжения.

__3.3 Заземление с высоким сопротивлением

В этой системе нейтраль заземлена через высокоомное сопротивление. стоимость. Линейное напряжение неповрежденных фаз при замыкании на землю почти равно линейному напряжению. Если была выбрана система утепления для заземленной системы он будет подвержен состоянию перенапряжения во время замыкания на землю.

Ток замыкания на землю, доступный в этом типе системы, очень мал, обычно 25 А или меньше. Следует помнить, что при использовании этой системы ток замыкания на землю никогда не должен быть меньше зарядного тока.

Причем молниеотводы для этой системы должны быть незаземленными. тип. Этот тип системы подвержен следующим типам перенапряжения. условия:

Тип феррорезонанса, то есть резонансные эффекты последовательно индуктивно-емкостного типа. схемы;

Ограниченные переходные условия перенапряжения;

Условия перенапряжения из-за прямого подключения к более высоким напряжениям;

Причины использования заземления с высоким сопротивлением аналогичны причинам для низкоомное заземление, за исключением того, что в этой системе ток замыкания на землю ограничено очень маленьким значением.

__3.4 Реактивное заземление

В системе, заземленной по реактивному сопротивлению, цепь нейтрали заземлена через реактор. Обычно для заземления генератора используется реактивное заземление. нейтралов. Стоимость выбранного реактора обычно такова, что земля ток короткого замыкания составляет не менее 25% от тока трехфазного замыкания для предотвращения серьезные переходные перенапряжения при устранении замыкания на землю. Значение X0 должно быть меньше или равно 10-кратному значению X1 для этого типа системы.

__3.5 Нейтрализаторы замыкания на землю (с резонансным заземлением)

В этой системе реактор со специально подобранным высоким значением реактивного сопротивления соединен нейтралью с землей. Ток, протекающий через реактор во время замыкания на землю равен и 180 ° не совпадает по фазе с зарядным током, протекающим в двух неисправных фазах. В этом случае два тока отменяются, оставляя ток короткого замыкания. только из-за сопротивления.Поскольку резистивный ток находится в фазе с напряжение, ток повреждения гасится, когда и напряжение, и неисправность ток проходит через нулевую ось.

Меры предосторожности, необходимые в этой системе, заключаются в том, чтобы следить за тем, чтобы нейтрализатор замыкания на землю настроен на емкость системы. Если какое-либо переключение выполняется для отключения цепей, значения реактивного сопротивления нейтрализатора должны быть поменял регулировкой метчиков нейтрализатора. Нейтрализаторы замыканий на землю были используются лишь в ограниченной степени и не так распространены, как другие системы заземления.

__4. Общие сведения о сопротивлении заземления

Термин «земля» определяется как проводящее соединение, с помощью которого цепь или оборудование подключено к земле. Соединение используется для установления и поддерживая как можно более близкий потенциал Земли на цепь или подключенное к ней оборудование. Земля состоит из заземления проводник, соединительный элемент, его заземляющий электрод (-ы) и почва контактирует с электродом.

Grounds имеет несколько основных защитных приложений. Для естественного явления, такие как молния, заземление используются для обеспечения пути разряда для тока, чтобы уменьшить опасность поражения персонала электрическим током и предотвратить повреждение к оборудованию и имуществу.

Для индуцированных потенциалов из-за неисправностей в электроэнергетических системах с заземлением возвраты, основания помогают в обеспечении быстрой срабатывания реле защиты за счет обеспечения путей тока короткого замыкания с низким сопротивлением.Это предусматривает максимально быстрое снятие наведенного потенциала. Земля должна истощите наведенный потенциал до того, как персонал получит травму, а питание или система связи повреждена.

В идеале, чтобы поддерживать опорный потенциал для безопасности прибора, для защиты от статического электричества и ограничить заземляющее напряжение оборудования для безопасность оператора, сопротивление заземления должно быть 0 Ом. На самом деле, как объяснено в этом тексте это значение не может быть достигнуто.Однако низкое сопротивление заземления требуется NEC, OSHA и другими нормами и стандартами электробезопасности.

__4.1 Сопротивление заземляющего электрода

РИС. 8 Заземляющий электрод. Заземляющий стержень и зажим; Связаться с сопротивлением между стержнем и почвой; Концентрические оболочки земли


РИС. 8 показан заземляющий стержень (электрод). Сопротивление заземление состоит из следующих компонентов:

1. Сопротивление самого электрода и соединения с ним

2.Контактное сопротивление окружающей земли к электроду

3. Сопротивление земли, непосредственно окружающей заземляющий электрод. или удельное сопротивление земли, которое часто является наиболее значимым фактором

заземляющие электроды обычно изготавливаются из очень проводящего металла (медь или покрытый медью) с соответствующим поперечным сечением, чтобы общее сопротивление незначительно. Сопротивление между электродом и окружающим земля незначительна, если электрод не покрыт краской, жиром или другим покрытие, и если земля плотно утрамбована.

Единственный оставшийся компонент — это сопротивление окружающей земли.

Электрод можно представить как окруженный концентрическими оболочками. земли или почвы одинаковой толщины. Чем ближе раковина к электрод, тем меньше его поверхность; следовательно, тем больше его сопротивление. Чем дальше оболочки от электрода, тем больше поверхность оболочки; следовательно, тем ниже сопротивление. В конце концов, добавление оболочек на расстоянии от заземляющего электрода перестанет заметно влиять общее сопротивление заземления вокруг электрода.Расстояние на возникает этот эффект, называется эффективной площадью сопротивления. и напрямую зависит от глубины заземляющего электрода.

Когда ток замыкания на землю течет от заземляющего стержня к земле, он течет в во всех направлениях через серию концентрических сфер или оболочек, обычно называются эффективными цилиндрами земли, окружающими стержень. Сопротивление сферы, ближайшей к заземляющему стержню, является самым высоким, потому что это самая маленькая сфера.

По мере увеличения расстояния от заземляющего стержня сопротивление становится равным меньше, потому что сфера становится больше. В конце концов, расстояние от электрод достигается, когда сопротивление сферы становится равным нулю. Следовательно, при любом измерении сопротивления заземления только часть сопротивления заземления считается, что составляет основную часть сопротивления. Теоретически сопротивление заземления системы заземления следует измерять до бесконечности расстояние от заземляющего стержня.Однако для практических целей эффективный цилиндр земли (снаряды), который составляет большую часть земли сопротивление в два раза превышает длину заземляющего стержня.

Теоретически сопротивление заземления можно вычислить по общей формуле:

… где…

R — сопротивление заземления

r — удельное сопротивление грунта

L — длина заземляющего электрода

А площадь

Эта формула показывает, почему оболочки концентрической земли уменьшаются в сопротивление, чем дальше они от заземляющего стержня: толщина оболочки; Удельное сопротивление почвы; площадь; R

В случае сопротивления земли — однородное удельное сопротивление земли (или почвы) предполагается во всем объеме, хотя в случае природа.Уравнения для систем электродов очень сложные и часто выражается только как приближение. Наиболее часто используемая формула для одинарного заземления электродные системы, разработанные профессором Х. Р. Дуайтом из Массачусетса Технологический институт:

R — сопротивление заземляющего стержня к земле (или грунту) (Ом) L — длина заземляющего электрода r — радиус заземляющего электрода r — среднее удельное сопротивление (Ом-см) грунта

__4.2 Влияние размера и глубины заземляющего электрода на сопротивление

Размер: Увеличение диаметра стержня существенно не уменьшает его сопротивление. Удвоение диаметра заземляющего стержня снижает сопротивление менее чем на 10%, как показано на фиг. 9.


РИС. 9 Сопротивление заземления в зависимости от размера заземления.


РИС. 10 Сопротивление заземления в зависимости от глубины заземляющего стержня.

=======

ТБЛ. 2 Удельное сопротивление различных грунтов

Удельное сопротивление (Ом-см) Минимум Средний Максимум Зола, шлак, рассол, отходы 590 2,370 7,000 Глина, сланец, гумбо, суглинок 340 4,060 16,300 То же, с песок и гравий различной пропорции 1020 15 800 135 000 Гравий, песок, камни с мелкой глиной или суглинком 59,000 94,000 458,000

========

Глубина: когда заземляющий стержень вбивается глубже в землю, его сопротивление существенно снижается.Как правило, удвоение длины стержня снижает сопротивление еще на 40%, как видно на фиг. 10. NEC требует минимум 8 футов (2,4 м) для контакта с почвой. Самый распространенный представляет собой цилиндрический стержень длиной 10 футов (3 м), соответствующий нормам NEC. Минимальный диаметр 5/8 дюйма (1,59 см) требуется для стальных стержней и 1/2 дюйма (1,27 см) для медные или плакированные медью стальные стержни. Минимальный практический диаметр для вождения ограничения для штанг 10 футов (3 м) составляют 1/2 дюйма (1.27 см) в средней почве 5/8 дюйма (1,59 см) во влажной почве 3/4 дюйма (1,91 см) в твердой почве или более глубина проходки более 10 футов

__4.3 Влияние удельного сопротивления грунта на сопротивление заземляющего электрода

Формула Дуайта, приведенная ранее, показывает, что сопротивление заземления электроды к земле зависит не только от глубины и площади поверхности заземления электроды, но и удельное сопротивление грунта. Удельное сопротивление почвы — ключ к успеху коэффициент, определяющий сопротивление заземляющего электрода. быть, и на какую глубину его необходимо загнать, чтобы получить низкое сопротивление заземления.Удельное сопротивление почвы сильно различается по всему миру и меняется. сезонно. Удельное сопротивление почвы во многом определяется содержанием в ней электролитов, состоящий из влаги, минералов и растворенных солей. Сухая почва имеет высокую удельное сопротивление, если оно не содержит растворимых солей, как показано в TBL. 2.

__4.4 Факторы, влияющие на удельное сопротивление почвы

Два образца почвы при тщательном высушивании могут стать очень хорошими. изоляторы, имеющие удельное сопротивление более 109 Ом-см.Удельное сопротивление образца почвы меняется довольно быстро до тех пор, пока примерно Достигнута влажность 20% или более, как указано в TBL. 3.

На удельное сопротивление почвы также влияет температура. TBL. 4 показывает изменение удельного сопротивления супеси, содержащей 15,2% влаги, при изменении температуры от 20 ° С до -15 ° С. В этом температурном диапазоне видно, что удельное сопротивление колеблется от 7 200 до 330 000 Ом-см.

=====

ТБЛ.3 Влияние влаги на удельное сопротивление почвы Содержание влаги (% от масса) Удельное сопротивление (Ом-см) Верхний слой почвы Супеси

=====

ТБЛ. 4 Влияние температуры на удельное сопротивление грунта Температурное сопротивление (Ом-см)

=====


РИС. 11 Сезонное изменение сопротивления заземления с электродом 3/4 дюйм трубы в каменистой глинистой почве. Глубина электрода в земле составляет 3 фута для кривой 1 и 10 футов для кривой 2.

======

ТБЛ.5 Влияние содержания соли на удельное сопротивление добавленной в почву соли (% от массы влаги) Удельное сопротивление (Ом-см)

=======

ТБЛ. 6 Влияние температуры на удельное сопротивление почвы, содержащей сальту Температура (° C) Удельное сопротивление (Ом-см)

======


РИС. 12 Номограмма, показывающая зависимость глубины заземляющего электрода от заземляющего электрода сопротивление.

1. Выберите необходимое сопротивление по шкале R

2.Выберите кажущееся сопротивление по шкале P

3. Положите линейку на шкалы R и P и дайте ей пересечься со шкалой K.

4. Точка шкалы Mark K

5. Положите линейку на шкалу K по шкале точек и диаметров (DIA) и позвольте пересекаться со шкалой D

6. Точкой на шкале D будет глубина стержня, необходимая для сопротивления по шкале R

======

Поскольку удельное сопротивление почвы напрямую зависит от влажности и температуры, разумно предположить, что сопротивление любой системы заземления будет варьируются в зависимости от времени года.Такие вариации показанный на фиг. 11. Поскольку температура и влажность становятся больше устойчив на больших расстояниях от поверхности земли, он следует что система заземления должна быть всегда максимально эффективной с заземляющим стержнем, опущенным на значительное расстояние ниже поверхности земли. Наилучшие результаты достигаются, если заземляющий стержень достигает воды. Таблица.

В некоторых местах удельное сопротивление земли настолько велико, что низкое сопротивление заземление можно получить только при значительных затратах и ​​тщательно продуманных условиях. система заземления.В таких ситуациях может быть экономичным использовать заземление. стержневую систему ограниченного размера и периодически снижать удельное сопротивление грунта. увеличение содержания растворимых химикатов в почве. TBL. 5 показаны существенные снижение удельного сопротивления супеси за счет увеличения химическое содержание солей.

Химически обработанный грунт также подвержен значительным колебаниям удельного сопротивления. при изменении температуры, как показано в TBL. 6. Если применяется солевое лечение, Конечно, необходимо использовать заземляющие стержни, устойчивые к коррозии.

===

ТБЛ. 7 типичных значений сопротивления заземления подстанций для различных Установки Тип установки Максимальное сопротивление заземления подстанции Значения

a Коммерческие металлические здания = 25 Ом (по NEC), мокрые колодцы и т. Д.

Дома Промышленные Общие помещения 5 Ом Химические 3 Ом Компьютеры

<1-3 Ом Скоростные загрузочные устройства для химикатов

<1 Ом Электроэнергетика Генераторные станции 1 Ом a Большие подстанции 1 Ом Районные подстанции 1.5-5 Ом Малые подстанции 5 Ом a Для глухозаземленных системы.

===

__4.5 Влияние глубины заземляющего электрода на сопротивление

При определении приблизительной глубины заземляющего стержня, необходимой для получения желаемой сопротивления, можно использовать номограмму заземления. Номограмма, показанная на ИНЖИР. 12, указывает на то, что для получения сопротивления заземления 20 Ом в грунт с удельным сопротивлением 10 000 Ом-см, стержень с внешним диаметром 5/8 дюйма должен быть забит 20 футов.Обратите внимание, что значения, указанные на номограмме, основаны на предположение, что грунт однороден и, следовательно, имеет одинаковое удельное сопротивление. Значение номограммы является приблизительным.

__5. Значения сопротивления заземления

Код NEC гласит, что сопротивление заземления не должно превышать 25 Ом. Это максимальное значение сопротивления заземления и в большинстве приложений требуется гораздо меньшее сопротивление заземления.

«Насколько низким должно быть сопротивление заземления?» Произвольный ответ на этот вопрос сложно.Чем ниже сопротивление заземления, тем безопаснее, а для надежной защиты персонала и оборудования стоит усилие стремиться меньше 1 Ом. Как правило, нецелесообразно достигать такое низкое сопротивление в распределительной системе или линии передачи или на небольших подстанциях.

В некоторых регионах сопротивление 5 Ом или меньше может быть получено без много хлопот. В других случаях может быть трудно вызвать сопротивление ведомых земли ниже 100 Ом.

Согласно принятым отраслевым стандартам, передающие подстанции должны быть спроектированным таким образом, чтобы сопротивление не превышало 1 Ом. На распределительных подстанциях, максимальное рекомендуемое сопротивление составляет 5 Ом или даже 1 Ом. В большинстве случаях подземная электросеть любой подстанции обеспечит желаемый сопротивление.

В легкой промышленности или в центральных телекоммуникационных центрах 5 Ом часто принимаемое значение. Для молниезащиты разрядники должны быть соединенным с максимальным сопротивлением заземления 1 Ом.TBL. 7 показывает типичный значения сопротивления заземления для различных типов установок.

Номограмма заземления:

Эти параметры обычно достигаются при правильном применении основных теория заземления. Всегда будут существовать обстоятельства, которые заставят трудно получить сопротивление заземления, требуемое NEC или другим стандарты безопасности. Когда эти ситуации развиваются, несколько методов опускания можно использовать сопротивление заземления.К ним относятся системы параллельных стержней, системы стержней с глубоким забиванием, использующие секционные стержни и химическую обработку почвы. Дополнительные методы, обсуждаемые в других опубликованных данных, скрытые пластины, скрытые проводники (противовес), электрически связанные строительная сталь и железобетонная сталь с электрическими соединениями.

Электрическое подключение к существующим системам водоснабжения и газораспределения часто считалось, что оно дает низкое сопротивление заземления; однако недавний дизайн изменения, связанные с использованием неметаллических труб и изоляционных соединений, сделали это метод получения заземления с низким сопротивлением сомнительный и во многих случаях неприемлемый.

__6. Измерения сопротивления заземления

Для поддержания достаточно низких значений сопротивления систем заземления их требуется периодическое тестирование. Тестирование включает в себя измерения для обеспечения что они не превышают проектных ограничений. Методы измерения и тестирования сопротивление грунта и удельное сопротивление грунта следующие:

Двухточечный метод • Трехточечный метод • Метод падения потенциала • Коэффициент метод • Четырехточечный метод • Измерение потенциала прикосновения • Метод зажима

Измерение сопротивления заземления может производиться только с помощью специальных разработанное испытательное оборудование.Самый распространенный метод измерения сопротивления заземления использует принцип падения потенциала переменного тока (AC) 60 Гц или более высокая частота, циркулирующая между вспомогательным электродом и проверяемый заземляющий электрод; показания будут даны в омах и представляет сопротивление заземляющего электрода окружающим земля. Кроме того, один производитель недавно представил зажим для заземления. тестер сопротивления.

__6.1 Двухточечный метод

Этот метод может использоваться для измерения сопротивления одиночного подключенного заземления. стержень.В нем используется вспомогательный заземляющий стержень, сопротивление которого либо известно, либо можно измерить. Значение сопротивления вспомогательного заземляющего стержня также должно быть очень маленьким по сравнению с сопротивлением ведомого заземляющего стержня. так что можно предположить, что измеренное значение полностью зависит от ведомый заземляющий стержень. Например, этот тест может применяться при измерении сопротивления одиночного ведомого заземляющего стержня для жилого помещения или в перегруженных области, где найти место для привода двух вспомогательных тяг может быть проблемой.

В этом случае можно принять муниципальный металлический водопровод. в качестве вспомогательного заземляющего стержня, сопротивление которого составляет примерно 1 Ом или менее.

Это значение довольно мало по сравнению со значением одиночного пробиваемого заземления. стержень, значение которого составляет порядка 25 О. Полученное значение таково, что из двух оснований последовательно. Также будут измерены сопротивления проводов. и должны быть вычтены из окончательных измерений. Этот метод обычно адекватно там, где требуется испытание, не требующее сдачи.Соединения для этот тест показан на фиг. 13.

===


РИС. 13 Двухточечный метод измерения сопротивления заземления.

Уровень земли Общий полюс Заземляющий провод Заземляющий стержень Клеммы закорочены с перемычкой Вспомогательный стержень (Y-Z закорочен) Затыльник

===

__6.2 Метод трех точек

Этот метод аналогичен двухточечному методу, за исключением того, что он использует два вспомогательных стержни. Для получения точных значений измерения сопротивления сопротивление вспомогательных электродов должно быть примерно равно или меньше электрод тестируемого.Связи для трехточечного метода показаны на фиг. 14.

РИС. 14 Трехточечный метод испытаний и его эквивалентная схема.

Для проведения этого теста можно использовать переменный ток 60 Гц или постоянный ток. Преимущество использования переменного тока заключается в том, что он сводит к минимуму влияние паразитных токов на измерения чтения. Однако если паразитные токи имеют одинаковую частоту, ошибка будет внесена в показания. Использование DC для этого Испытание полностью устранит паразитные токи переменного тока.Однако случайный DC и образование газа вокруг электродов приведет к ошибке в показаниях при использовании постоянного тока для этого теста. Влияние паразитных DC можно свести к минимуму снятие показаний при токе в обратном направлении. Среднее значение два показания дадут точное значение теста. Применять только токи достаточно долго, чтобы снимать показания.

Значение сопротивления испытательного электрода можно рассчитать следующим образом. Пусть ….

__6.3 Метод падения потенциала

Этот метод измерения сопротивления заземляющего электрода основан на принципе падения потенциала через сопротивление. Также используются два вспомогательных электрода. (один токовый стержень, а другой — потенциальный стержень), которые размещены на достаточном расстояние от тестовых электродов; пропускается ток известной величины через тестируемый электрод и один из вспомогательных электродов (ток стержень). Падение потенциала между испытуемым электродом и второй вспомогательный электрод (потенциальный стержень) измеряется.Соотношение вольт падение возраста (V) до известного тока (I) укажет сопротивление цепь заземления. Для подключения можно использовать источник постоянного или переменного напряжения. проводя этот тест.

При использовании этого метода можно встретить несколько проблем и ошибок, например поскольку (i) паразитные токи в земле могут привести к тому, что показания вольтметра будут либо высокое или низкое и (ii) сопротивление вспомогательного электрода и электрического Провода могут вносить ошибки в показания вольтметра.Эта ошибка может быть сводится к минимуму за счет использования вольтметра с высоким значением импеданса.

Этот метод можно использовать либо с отдельными вольтметром и амперметром, либо с один прибор, который обеспечивает показания непосредственно в омах (см. РИС. 15). Для измерения сопротивления заземляющего электрода токовый электрод размещается на подходящем расстоянии от заземления

Тестируемый электрод

. Как показано на фиг. 16, разность потенциалов между стержни X и Y измеряется вольтметром, а ток между стержнями X и Z измеряются амперметром.(Примечание: X, Y и Z могут относиться к как X, P и C в трехточечном тестере или C1, P2 и C2 в четырехточечном тестере. тестером.) По закону Ома E = RI или R = E / I. По этой формуле мы можем получить сопротивление заземляющего электрода R. Если E = 20 В и I = 1 А, то …


РИС. 15 Прибор для измерения сопротивления заземления методом падения потенциала.


РИС. 16 Метод падения потенциала.

__6.3.1 Положение вспомогательных электродов при измерениях

Целью точного измерения сопротивления заземления является размещение вспомогательный токовый электрод Z достаточно далеко от заземляющего электрода под проверьте, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективные площади сопротивления (эффективный цилиндр земли) как земли электрод и вспомогательный токовый электрод.Лучший способ узнать если вспомогательный потенциальный стержень Y находится за пределами эффективных областей сопротивления заключается в перемещении его между X и Z и снятии показаний в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или в оба, если они перекрываются, как на фиг. 17а), смещая его, снятые показания будет заметно отличаться по стоимости. В этих условиях нет точного значения для сопротивление заземления может быть определено.

С другой стороны, если вспомогательный потенциальный стержень Y расположен снаружи эффективных площадей сопротивления, как на фиг.17b, когда Y перемещается назад и в дальнейшем вариация чтения минимальна. Снимаемые показания должны быть относительно близко друг к другу и являются лучшими значениями сопротивления заземления. земли X. Показания должны быть нанесены на график, чтобы убедиться, что они в области «плато», как показано на фиг. 17b. Регион часто называется площадью 62%, которая обсуждается в следующем разделе.

====


РИС. 17 Области эффективного сопротивления (цилиндры земли) (а) перекрытие и (б) не перекрываются.(a) (b) Расстояние X-Y Эффективные области сопротивления (без перекрытия) Вариация показаний Сопротивление Y_ Y XZ Y_ Расстояние X-Y Эффективное области сопротивления (перекрывающиеся) Вариация показаний Сопротивление

====


РИС. 18 Метод падения потенциала, показывающий потенциальное местоположение стержня на 62% расстояние от тестируемого электрода.

====


РИС. 19 Перекрытие эффективных областей сопротивления.

Тестируемый заземляющий электрод Вспомогательный потенциальный электрод XYZ Вспомогательный токовый электрод Перекрытие эффективных областей сопротивления Расстояние от Y к заземляющему электроду Сопротивление

====


РИС.20 эффективных зон сопротивления не перекрываются.

Расстояние от Y до заземляющего электрода Сопротивление заземляющего электрода 62% от D 38% от D D Сопротивление вспомогательного токового электрода Эффективное сопротивление области не перекрываются Вспомогательный токовый электрод Вспомогательный потенциальный электрод Тестируемый заземляющий электрод Сопротивление XYZ

===

__6.3.2 Измерение сопротивления заземляющих электродов (метод 62%)

Метод 62% является расширением метода падения потенциала и имеет был принят после графического рассмотрения и после реальных испытаний.Его самый точный метод, но он ограничен тем, что земля проверена это единое целое.

Этот метод применяется только тогда, когда все три электрода находятся на прямой линии. а земля представляет собой одиночный электрод, трубу, пластину и т. д., как показано на рисунке. на фиг. 18.

Рассмотрим фиг. 19, на котором показаны эффективные площади сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Эффективные цилиндры земли стержней X и Z перекрываются.Если показания были сняты перемещением вспомогательного потенциального электрода Y в сторону X или Z, разница в показаниях будет большой, и нельзя будет получить значение в разумных пределах допуска. Чувствительные области перекрываются и действовать постоянно для увеличения сопротивления по мере удаления Y от X.

Теперь рассмотрим фиг. 20, где электроды X и Z достаточно разнесены чтобы области эффективного сопротивления не пересекались. Если мы построим измеренного сопротивления, мы обнаруживаем, что измерения сбиваются, когда Y размещены на 62% расстояния от X до Z, и что показания на любом сторона начальной настройки Y, скорее всего, будет в пределах установленного полоса допуска.Этот диапазон допуска определяется пользователем и выражается в процентах от начального показания: ± 2%, ± 5%, ± 10% и т. д.

===

ТБЛ. 8 Приблизительное расстояние (футы) до вспомогательного

Электроды

с использованием метода 62% от глубины до оси Y Расстояние до З 64572 85080 10 55 88 12 60 96 18 71 115 20 74 120 30 86140

===

ТБЛ. 9 Расстояние между системами с несколькими электродами (футы) Максимальное расстояние сетки; Расстояние до Y Расстояние до Z

===

__6.3.3 Расстояние между вспомогательными электродами

Нет определенного расстояния между X и Z, так как это расстояние относительно диаметра испытуемого электрода, его длины, однородности исследуемого грунта и, в частности, эффективных площадей сопротивления. Однако, приблизительное расстояние можно определить по TBL. 8, который дан для однородный грунт и электрод диаметром 1 дюйм. (Для диаметра 1/2 дюйма, уменьшите расстояние на 10%; для диаметра 2 дюймаувеличивать расстояние на 10%.) Рекомендуется проводить тест на сопротивление заземляющего электрода для каждого времени года. Данные должны сохраняться для каждого сезона для сравнения и анализа. Серьезное отклонение тестовых данных за предыдущие годы, кроме сезонных колебаний, может средняя коррозия электрода.


РИС. 21 Многоэлектродная система (заземляющая сетка).


РИС. 22 Проверка на паразитные напряжения.

__6.3.4 Система с несколькими электродами

Электрод заземления с одним приводом — экономичное и простое средство создание хорошей системы заземления. Но иногда одного стержня недостаточно. низкое сопротивление, и несколько заземляющих электродов будут подключены и подключены параллельно кабелем. Очень часто, когда два, три или четыре заземляющих электрода используются, движутся по прямой; когда используются четыре или более, используется конфигурация с полым квадратом, а заземляющие электроды все еще соединены параллельно и на равном расстоянии друг от друга, как показано на фиг.21.

В многоэлектродных системах расстояние между электродами метода 62% не может дольше применяться напрямую (см. TBL. 9). Расстояние вспомогательного электроды теперь основаны на максимальном расстоянии сетки (т. е. в квадрате, диагональ; в строке общая длина, например, квадрат со стороной 20 футов будет иметь диагональ примерно 28 футов).

Чрезмерный шум. Чрезмерный шум может помешать тестированию из-за длинные выводы, используемые для проверки падения потенциала.Вольтметр может использоваться для выявления этой проблемы. Подключите кабели X, Y и Z к вспомогательные электроды как для стандартного испытания сопротивления заземления. Использовать вольтметр для проверки напряжения на клеммах X и Z, как показано на ИНЖИР. 22. Показание напряжения должно быть в пределах допуска паразитного напряжения. приемлемо для используемого наземного тестера. Если тест превышает это значение, попробуйте следующие методы:

1. Скрутите вспомогательные кабели вместе.Это часто приводит к отмене из синфазных напряжений между этими двумя проводниками.

2. Если предыдущий метод не помог, попробуйте изменить выравнивание вспомогательного кабели так, чтобы они не были параллельны линиям электропередач выше или ниже земля.

3. Если удовлетворительное значение низкого напряжения все еще не получено, используйте экранированных кабелей может потребоваться. Щит защищает внутреннее проводник, захватив напряжение и опустив его на землю, как показано на фиг.23.

Чрезмерное сопротивление вспомогательного стержня. Собственная функция падения потенциала тестер заземления предназначен для ввода постоянного тока в землю и измерения падение напряжения с помощью вспомогательных электродов. Чрезмерное сопротивление одного или обоих вспомогательных электродов может препятствовать этой функции. Это вызвано высоким удельным сопротивлением почвы или плохим контактом вспомогательного электрода и окружающая грязь. Чтобы обеспечить хороший контакт с землей, проштампуйте вниз в почву непосредственно вокруг вспомогательного электрода, чтобы удалить воздушные зазоры образуется при вставке стержня.Если сопротивление почвы является проблемой, залейте вода вокруг вспомогательных электродов. Это снижает контактное сопротивление без влияния на измерение.

=====


РИС. 23 Использование экранированных кабелей для минимизации паразитных напряжений.

X 1742 X Y Z Y электрод Поплавковый экран Поплавковый экран Подключите все три экрана вместе Z-электрод Заземляющий стержень Заземляющий экран Заземляющая полоса

=====


РИС.24 Использование экранов в качестве вспомогательных электродов. Штанга заземления

====

Гудрон или бетонный мат. Иногда необходимо провести испытание заземляющего стержня. который окружен смолой или бетонным матом, где вспомогательные электроды нельзя легко водить. В таких случаях можно использовать металлические экраны и воду. используются для замены вспомогательных электродов, как показано на фиг. 24. Разместите экраны на полу на таком же расстоянии от тестируемого заземляющего стержня, как и вспомогательные электроды при стандартном испытании на падение потенциала.Налить воду экраны и дайте ему впитаться. Теперь эти экраны будут выполнять та же функция, что и вспомогательные электроды.

__6.4 Метод соотношения

В этом методе для измерения серии используется мост Уитстона или омметр. сопротивление заземляющего электрода и вспомогательного электрода. Тест соединения показаны на фиг. 25. Потенциометр скользящей проволоки используется с мост Уитстона для этого теста. Потенциометр подключен к проверяемый заземляющий электрод и первый вспомогательный электрод.В скользящий контакт потенциометра подключен ко второму вспомогательному электрод через детектор для определения нулевой точки. Сопротивление испытательного электрода и первого вспомогательного электрода измеряется сначала мост Уитстона или омметр. Затем с помощью потенциометра и Уитстона мост, новая нулевая точка определяется вторым электродом в тестовая схема.

Сопротивление заземляющего электрода равно сопротивлению испытательного электрода. сопротивление к общему сопротивлению двух последовательно.Процедура и уравнения следующие:

Измерьте Rx + Ry с помощью моста Уитстона или омметра. от потенциометра соотношение RA / (RA + RB) Вставьте второй вспомогательный электрод (Rz) в испытательной цепи и получить нулевую точку

__6.5 Измерение удельного сопротивления почвы (четырехточечное измерение)

Измерение удельного сопротивления грунта преследует три цели. Во-первых, такие данные используются для проведения подземных геофизических исследований в качестве помощи в идентификации рудные местоположения, глубина до коренных пород и другие геологические явления.Второй, удельное сопротивление оказывает прямое влияние на степень коррозии в подземных условиях. трубопроводы. Снижение удельного сопротивления связано с увеличением коррозии. активности и, следовательно, диктует необходимость использования защитного лечения. В третьих, удельное сопротивление почвы напрямую влияет на конструкцию системы заземления и Именно на эту задачу и направлено данное обсуждение. При проектировании обширного системы заземления, желательно найти зону с наименьшим удельным сопротивлением грунта. чтобы добиться наиболее экономичной установки заземления.

Два типа измерения удельного сопротивления — двухточечный метод и четыре точечный метод. Двухточечный метод — это просто сопротивление, измеренное между два очка. Для большинства приложений наиболее точным методом является четырехточечный метод. Четырехточечный метод, как следует из названия, требует вставки четырех электродов, расположенных на одинаковом расстоянии друг от друга, в испытательную зону.

Известный ток от генератора постоянного тока пропускается между крайние электроды.Падение потенциала (как функция сопротивления) затем измеряется на двух внутренних электродах. Удельное сопротивление земли основан на формуле, приведенной ниже, и счетчик откалиброван для чтения прямо в ом.


РИС. 25 Коэффициентный метод измерения сопротивления заземления.

Это значение представляет собой среднее удельное сопротивление грунта на эквивалентной глубине. на расстояние A между двумя электродами.

… где A — расстояние между электродами (см) B — электрод глубина (см) R — значение омического сопротивления, измеренное четырехконтактным тестером заземления. Если A> 20B, формула принимает следующий вид:

() p = 2 дюйм см AR A r

() = 191.5 дюймов AR A r

= Удельное сопротивление грунта в Ом (-см) r

__6.6 Измерение потенциала прикосновения

Основная причина проведения измерений сопротивления заземления — это обеспечить электробезопасность персонала и оборудования. Периодический заземляющий электрод или измерения сопротивления сети рекомендуются, когда:

1. Электрод / сетка относительно небольшие, и их можно легко отсоединить.

2. Предполагается коррозия, вызванная низким удельным сопротивлением почвы или гальваническим воздействием.

3.Замыкания на землю очень маловероятны вблизи земли при испытании

.

В некоторых случаях степень электробезопасности можно оценить по другая перспектива. Градиент напряжения — серьезная проблема безопасности. распределительные устройства и подстанции высокого напряжения. Таким образом, система наземной сети этих объектов разработан, чтобы гарантировать, что градиенты напряжения из-за чтобы индуцированные токи или токи короткого замыкания оставались на низком уровне и не представляли опасности к персоналу или оборудованию.Максимальный предел напряжения для этих градиентов определяется следующим образом:

Потенциал прикосновения: Потенциал прикосновения — это разница напряжений между рука и ноги человека, вызванные градиентом напряжения из-за неисправности или индуцированный ток. Предполагается, что ток проходит через сердце и поэтому этот потенциал должен быть сведен к нулю, чтобы обезопасить персонал. кто может случайно соприкоснуться с оборудованием и конструкциями в распределительное устройство или подстанции.

Потенциал ступени: Потенциал ступени — это разность напряжений между человеческими футов, вызванного градиентом напряжения из-за повреждения или индуцированного тока.

Предполагается, что ток проходит по ножкам и, следовательно, это потенциал должен быть близок к нулю, чтобы обезопасить персонал.

Измерение потенциала прикосновения рекомендуется при следующих факторах: присутствуют.

1. Отключить заземление физически или экономически невозможно. для тестирования.

2. Можно разумно ожидать замыкания на землю вблизи земли. или рядом с тестируемым оборудованием, заземленным на землю.

3. Площадь заземленного оборудования сопоставима с размером земля для тестирования. (След — это контур части оборудования. контактирует с землей.) При измерении потенциала прикосновения, Используется четырехполюсный тестер сопротивления заземления. Во время теста прибор вызывает замыкание на землю низкого уровня в некоторой близости от объекта земля.На приборе отображается потенциал прикосновения в вольтах на ампер ток короткого замыкания. Затем отображаемое значение умножается на наибольшее ожидаемое значение. ток замыкания на землю, чтобы получить потенциал прикосновения в наихудшем случае для данного монтаж.

Например, если прибор показывает значение 0,100 при подключении к системе, где максимальный ток короткого замыкания должен был быть 5000 А, максимальный потенциал касания будет 500 В.

Измерения потенциала прикосновения аналогичны измерениям падения потенциала. в том, что оба измерения требуют размещения вспомогательных электродов в или на земле.Расстояние между вспомогательными электродами при потенциале касания измерения отличаются от расстояния между электродами падения потенциала, как показано на фиг. 26.

===


РИС. 26 Измерение потенциала прикосновения. C1 P1 1742 Соединения с забором, Предполагаемая точка разлома, проложенный кабель 1 м; Штанги заземляющие приводные P2 C2

===

Рассмотрим следующий сценарий. Если скрытый кабель, показанный на фиг. 26 произошел пробой изоляции возле показанной подстанции, неисправность токи будут проходить через землю к земле подстанции, создавая градиент напряжения.Этот градиент напряжения может быть опасным или потенциально опасным. смертельно опасно для персонала, соприкасавшегося с поврежденной землей.

Чтобы проверить приблизительные значения потенциала прикосновения в этой ситуации, выполните следующие действия. следующее. Подключите кабели между ограждением подстанции и С1 и P1 четырехполюсного измерителя сопротивления заземления. Поместите электрод в заземление в точке, в которой ожидается замыкание на землю, и подключите его к C2.

По прямой между ограждением подстанции и предполагаемой неисправностью точку, поместите вспомогательный электрод в землю на 1 м (или длины) от ограждения подстанции и подключите его к P2.Повернуть прибор включен, выберите диапазон тока 10 мА и наблюдайте за измерением. Умножьте отображаемое значение на максимальный ток короткого замыкания ожидаемого вина.

Путем размещения электрода P2 в различных положениях вокруг ограждения рядом с предполагаемой линией разлома может быть получена карта градиента напряжения.

__6.7 Измерение сопротивления заземления клещами

Этот метод измерения является новым и совершенно уникальным. Он предлагает возможность измерить сопротивление без отключения заземления.Этот тип измерение также предлагает преимущество включения заземления и общие сопротивления заземляющих соединений.

__6.7.1 Принцип работы

Обычно система с заземлением общей распределительной линии может быть смоделирована как простая базовая схема, показанная на фиг. 27, или эквивалентную схему как показанный на фиг. 28. Если напряжение E приложено к любому измеренному полюсу заземления Rx через специальный трансформатор, по цепи протекает ток I, тем самым устанавливая следующее уравнение:


РИС.27 Простая принципиальная схема распределительной заземленной системы.


РИС. 28 Эквивалентная схема простой распределительной системы с заземлением.

Следовательно, E / I = Rx устанавливается. Если I обнаружен с постоянным E, можно получить измеренное сопротивление полюса заземления.

Снова обратимся к фиг. 27 и 11.28. Ток подается на специальный трансформатор. через усилитель мощности от генератора постоянного напряжения 1,6 кГц. Этот ток обнаруживается трансформатором тока обнаружения (CT).Только 1.6 Частота сигнала кГц усиливается фильтрующим усилителем перед подачей в аналогово-цифровой (A / D) -конвертер и после синхронного выпрямления он отображается на жидкокристаллическом дисплее (LCD).

Фильтр-усилитель используется для отключения тока заземления на промышленной частоте. и высокочастотный шум. Напряжение измеряется катушками, намотанными на инжекционная КТ, а затем усиленная и выпрямленная для сравнения по уровню компаратор.Если зажим не закрыт должным образом, сигнализатор открытых губок появляется на ЖК-дисплее. Накладной прибор для измерения сопротивления заземления показан на фиг. 29.

__6.7.2 Измерения в полевых условиях

Ниже приведены примеры измерения сопротивления заземления в типичных условиях. полевые ситуации:

Трансформатор на опоре: удалите все молдинги, закрывающие провод заземления, и обеспечьте достаточно места для зажимов тестера заземления.Зажимы должны иметь возможность легко смыкаться вокруг проводника. Челюсти могут размещать вокруг самого заземляющего стержня.

Примечание: Зажим должен быть размещен так, чтобы губки находились на пути электрического тока. от нейтрали или заземляющего провода системы к заземляющему стержню или стержням в качестве схема обеспечивает.

Выберите диапазон тока A. Зажмите заземляющий провод и измерьте ток заземления. Максимальный диапазон составляет 30 А. Если ток заземления превышает 30 А, измерение сопротивления заземления невозможно.»Не продолжать далее с измерением. »Отметив ток заземления, выберите диапазон сопротивления заземления Ом и измерьте сопротивление напрямую.

Показания, которые вы измеряете с помощью тестера заземления, указывают не только на сопротивление стержня, но соединения с нейтралью системы и все соединения между нейтралью и штоком.

Обратите внимание, что на фиг. 30 имеется как затыльник, так и заземляющий стержень.

В этой схеме необходимо расположить клещи тестера выше облигацию так, чтобы оба основания были включены в тест.Для дальнейшего использования, Обратите внимание на дату, показания в омах, текущее показание и номер полюса. Заменять любые молдинги, которые вы могли снять с проводника.

Примечание: высокое значение указывает на одно или несколько из следующего:

Плохой заземляющий стержень.

Открытый заземляющий провод.

Соединения с высоким сопротивлением на стержне или соединениях проводника; следить за заглубленные разъемные стыки, зажимы и ударные соединения.


РИС. 29 Накладной прибор для измерения сопротивления заземления.

Служебный вход или счетчик: следуйте в основном той же процедуре, что и в первый пример. Обратите внимание, что на фиг. 31 показывает возможность множественного заземления стержни и на фиг. 32 штанги заземления заменены на водопровод. земля. Вы также можете использовать оба типа в качестве основания. В этих случаях, необходимо провести измерения между сервисной нейтральностью и обе точки заземления.


РИС. 30 Измерение сопротивления заземления полюсного трансформатора.Полезность полюс Уровень земли Заземляющий стержень Заземляющий провод

Затыльник


РИС. 31 Измерение сопротивления заземления служебного входа, имеющего несколько заземляющие стержни.

Уровень земли Стержни заземления Сервисный счетчик Стена здания Напольный трансформатор

Сервисный ящик


РИС. 32 Измерение сопротивления заземления служебного входа с водой заземление трубы. Сервисный счетчик, Водопровод, Стена здания, Напольный трансформатор; Сервисный ящик; Трансформатор на подставке

Примечание: Никогда не открывайте корпуса трансформаторов.Они являются собственностью электрические сети. Если необходимо провести наземный тест с помощью утилиты трансформатора, согласовать с персоналом коммунального предприятия для такого испытания.

«Соблюдайте все требования безопасности — присутствует опасно высокое напряжение». Найдите и пронумеруйте все стержни (обычно присутствует только один стержень). Если земля стержни находятся внутри корпуса, см. РИС. 33 и если они снаружи корпус, см. фиг. 34. Если в ограждении найден один стержень, измерение следует проводить на проводнике непосредственно перед приклеиванием заземляющий стержень.Часто к этому зажиму подключается более одного заземляющего провода, возвращение в корпус или нейтраль.


РИС. 33 Измерение сопротивления заземления трансформатора, установленного на площадке, с заземляющие стержни внутри корпуса. Открытая дверь Корпус Шина Концентрическая нейтраль Штанга заземления Open door Service

Подземная служба:

Во многих случаях наилучшие показания можно получить, зажимая инструмент. на сам заземляющий стержень, ниже точки, когда заземляющие проводники прикреплены к стержню, так что вы измеряете цепь заземления.Следует позаботиться о том, чтобы найти проводник только с одним обратным путем к нейтральный.

Как правило, очень низкое значение измерения указывает на то, что вы на петле и нужно проверить ближе к стержню. На фиг. 34, земля стержень находится вне корпуса. Зажмите при указанном измерении точку, чтобы получить правильные показания. Если в разных уголков вольера, надо будет определить, как они подключен, чтобы правильно измерить сопротивление заземления.


РИС. 34 Измерение сопротивления заземления трансформатора, установленного на подставке, с заземляющие стержни вне корпуса. Стержни заземления; Корпус; Под землей сервис

__6.7.3 Передаточные башни

«Соблюдайте все требования безопасности — присутствует опасно высокое напряжение». Найдите заземляющий провод в основании башни.

Примечание : Существует множество различных конфигураций. При поиске следует соблюдать осторожность для заземляющего проводника.ИНЖИР. 35 показывает единственную опору, установленную на бетоне. площадка с внешним заземляющим проводом. Точка, в которой вы зажимаете Тестер заземления должен быть прежде всего сростками и соединениями, которые позволяют несколько удилищ, приклада или затыльника.

__6.7.4 Расположение центрального офиса

Главный заземляющий провод из окна заземления или заземляющего слишком большой, чтобы его можно было зажать. Из-за практики проводки в центральном офис, есть много мест, где можно посмотреть на водопровод или противовес изнутри здания.Эффективное местоположение обычно на шине заземления в силовой или рядом с резервным генератором.

Измеряя в нескольких точках и сравнивая показания, вы будете возможность определения нейтральных петель, хозяйственных площадок и площадок центрального офиса. Тест эффективен и точен, потому что заземленное окно подключено к общему заземлению только в одной точке, в соответствии со стандартной практикой.


РИС. 35 Измерение сопротивления заземления опоры электропередачи с помощью одиночного ножка устанавливается на бетонную площадку с внешним заземляющим проводом.Конкретный колодка заземляющий стержень, опора

__7. Измерения целостности сети заземления

Ни измерения сопротивления заземления, ни измерения потенциала прикосновения предоставить информацию о возможности заземления проводов и соединений для безопасного отвода токов замыкания на землю на землю. Опыт показал, что ток замыкания на землю может нанести большой ущерб оборудованию и вызвать угроза безопасности персонала, когда он не находит путь с низким сопротивлением к заземляющей сети и, следовательно, к материнской земле.Следовательно, имеет смысл периодически проверять и проверять целостность соединений сети заземления.

Целью данного измерения является определение того, заземления каркаса, конструкций или корпуса подключаются к заземлению электрод или заземляющая сетка с низким сопротивлением. Значение сопротивления таких ожидается, что соединения будут очень низкими (100 мкОм или меньше). Лучший путь для проведения испытаний на целостность заземляющих электросетевых соединений следует использовать большой но практический ток и некоторые средства обнаружения падения напряжения вызвали этим течением.Доступен тестовый набор для проведения этого измерения с использованием Переменный ток. Этот метод тестирования известен как метод сильноточного тестирования. Этот метод заключается в пропускании 300 А через сеть заземления между опорная земля (обычно нейтраль трансформатора) и земля (провод и соединения) для проверки. Падение напряжения и величина тока и направление контролируются для проверки целостности заземляющих соединений.

Испытательный комплект GTS-300 показан на фиг.36. Тестовые соединения для проведения этот тест показан на фиг. 37.

Приведенные ниже рекомендации предлагаются при использовании сильноточного метода. проверки целостности заземляющих сетей и заземлений. Однако следует имейте в виду, что это всего лишь рекомендации, так как каждое основание должно рассматриваться по существу по сравнению с другими основаниями в ближайшем будущем окрестности.


РИС. 36 Комплект для проверки целостности сети заземления ГТС-300.


РИС. 37 Сильноточный метод проверки целостности сети заземления. [Amps High-current источник Вольт P1 Амперметр-клипса Амперметр-клипса Аппаратура подстанции Амперметр-клипса амперметр Амперметр с зажимом Эталонное заземление Тестовое заземление Потенциальный провод Потенциал Токоподвод Токопровод P2 C2 C1]

1. Падение напряжения сети заземления увеличивается примерно на 1 В для каждого 50 футов по прямой от опорной точки.

2. На оборудовании с одинарным заземлением заземление можно считать удовлетворительным. если падение напряжения соответствует пункту 1 выше и расход не менее 200 А к проверяемому заземляющему проводу в сеть.

На большинстве оборудования этого типа ток 300 А в сеть; однако в в некоторых случаях ток также будет проходить через фундаментные болты и / или трубопроводы.

3. На оборудовании с несколькими заземлениями заземление можно считать удовлетворительным. если падение напряжения соответствует пункту 1 выше и расход не менее 150 А к проверяемому заземляющему проводу в сеть.

Если ток в сеть меньше 150 А, заземление должно быть отключено. от оборудования и снова нужно пропустить 300 А через землю.Если земля проходит через 300 А и падение напряжения больше не увеличивается чем на 0,5 В выше предыдущего уровня, заземление можно считать удовлетворительным.

«Внимание! Перед удалением заземления с оборудования убедитесь, что параллельно с временной землей 2/0 CU, например с землей грузовика или другие основания до отключения «.

4. Для проверки нейтрали трансформатора или контрольной точки пропустите 300A через нейтраль трансформатора в точке выше уровня земли, но ниже любых заземляющих соединений или зажимы на баке.Если на сеть заземления подается не менее 150 А, то эталонный балл можно считать удовлетворительным.

5. Установите опорное заземление, предпочтительно нейтраль трансформатора. Из Сильноточный источник переменного тока (GTS-300) подключите один измерительный провод к заземлению испытано, как показано на фиг. 37. Подключите испытательный провод к точке над уровнем земли. но ниже склеивающих соединений или хомутов. Пропустить 300 А через землю сетке и запишите падение напряжения в сети. С помощью накладного амперметра измерить количество испытательного тока, протекающего выше (к оборудованию) и ниже (к сетке) тестовый провод на тестируемой земле.Напряжение падение должно производиться в соответствии с пунктом 1 выше. Испытательные амперы должны соответствовать пунктам 2 и 3 этого списка.

Почему заземление, зачем тестировать? | Fluke

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.

Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже о приборных ошибках, гармонических искажениях, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм.Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей. Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.

OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборное общество Америки) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »

Хорошее заземление — это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования.Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за разряда молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.

Зачем тестировать наземные системы?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.

Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть исправлена ​​путем замены или добавления заземляющих стержней в систему заземления.

Что такое земля и для чего она нужна?

В статье 100 Национального электротехнического кодекса NEC заземление определяется как «соединение (соединение) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.

  1. Заземление: намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.
  2. Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.

Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Что такое хорошее значение сопротивления заземления?

Существует много путаницы относительно того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения. Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Поговорите со специалистом

Статьи по теме

Информационные материалы

Заземление

Десять лет назад это было бы редко кто говорит о важности низкого резистивное заземление и соединение, кроме случаев, когда основной блок компьютерные системы, телекоммуникационное оборудование или обсуждались военные объекты.Сегодня мы жить в мире, управляемом микропроцессорами так низко заземление через сопротивление в настоящее время имеет решающее значение и является популярным тема разговора.

Система электрического заземления в большинство объектов — это электрический служебный вход земля. Раньше было нормально просто соответствовать минимальным требованиям Национального электротехнического Код (NEC). Сегодня требования NEC должны быть только отправной точкой для систем заземления и склеивание.

Основным направлением деятельности NEC является безопасность жизни и правильная эксплуатация оборудования. NEC и большинство местных кодексов требуют установки одного или двух Штанги заземления 8-10 футов с намерением заземления полное сопротивление стержней не более 25 Ом. В NEC не занимается заземлением или склеиванием. требования чувствительных сетевых систем или тестирование систем заземления. NEC не требует так называемый «электрический заземление ».Эти спецификации чаще всего производителей оборудования, качество электроэнергии консультанты или инженеры-электрики, знакомые с требования к заземлению чувствительного оборудования.

Эволюция микропроцессоров и нетворкинг — основная причина сегодняшних интерес к заземлению. Продолжающийся рост сетевых системы и оборудование находится в центре внимания потребности в низком сопротивление заземления, а также связанная мощность проблемы с качеством.Микропроцессор произошел от транзистор в интегральные схемы с миллионами транзисторы в корпусах считаются невозможными лишь немногие много лет назад. Эти новые корпусные транзисторы широко известны поскольку компьютерные микросхемы работают от 3 или 5 вольт постоянного тока (прямое текущий) и очень чувствительны к проблемам, возникающим в результате из-за высокого сопротивления или плохого грунта. Проблемы связанные с землями лучше оставить другим областям этот отчет, но помните, для правильной работы сетевые микропроцессоры с низким сопротивлением «чистая» земля обязательна.

Земля, большинство электрических или электронные определения, это ссылка «0». Более формальные определения: положение или часть электрическая цепь, имеющая нулевой потенциал относительно к земле, и, большое тело проводимости, такое как Земля, используемая как возврат для электрических токов, которые произвольный нулевой потенциал.

Заземление к электрической системе должен иметь нулевой потенциал и быть высокопроводящий путь для электрической энергии.В сопротивление пути к этой ссылке «0» должен быть низким, иметь достаточную пропускную способность и обеспечивать обработка широкого частотного спектра энергии.

Сегодня наиболее распространены спецификация, в которой задействовано чувствительное оборудование, чтобы наземное поле (стержни, решетки, пластины и т. д.) было сопротивление не более 5 Ом. Многие военные и важные коммуникационные узлы существенно указывают ниже 1 Ом. Если необходимо установить чувствительное оборудование, оно очень важно, чтобы система заземления была совместим с требованиями к оборудованию.

Большинство коммерческих зданий указано с помощью NEC или другого кодового заземления, а не на низком уровне стандарты сопротивления. Сопротивление этой кодовой земли рассчитан на 25 Ом или меньше, но редко проверяется. Для проверки сопротивления земли чаще всего протестировано с приборами, использующими падение потенциала метод обученным специалистом.

В местах, подверженных ударам молний, ​​земля следует проверять чаще, чем большинство коммерческих установки, требующие только ежегодного тестирования.Расположение электрических щитов, заземляемого оборудования и др. факторы должны входить в расчет требуемых размер провода. Расчет сечения проводника и метод установки лучше оставить инженерам или профессионалы в области заземления.

Заземление — основа эффективная защита всех сетевых систем. Мощность переменного тока, безопасность, безопасность жизни, компьютер, видео, спутник, телекоммуникации и др.все системы полагаются на землю для операция. Кроме того, защитные устройства, используемые для защитить эти системы, такие как системы ИБП, питание кондиционеры, регуляторы напряжения, ограничители перенапряжения, и т. д., будут неэффективны при подключении к неправильная проводка или неисправное заземление.

Электрораспределительные системы надежно заземлен для ограничения напряжения относительно земли во время нормального эксплуатации и для предотвращения чрезмерного напряжения из-за молния, скачки напряжения в сети или непреднамеренный контакт с линии более высокого напряжения при нормальной работе.В целом случаях, система заземляющих электродов должна быть общий и прочно связанный с каждой системой согласно NEC.

Национальный Электрический кодекс (NEC) Требования к заземлению

Код

требует заземления одного токоведущий провод в системе распределения, где напряжение составляет от 50 до 1000 вольт или где одно из служебные провода не изолированы. Заземленный проводник обозначается белым или светло-серым цвет в конечных точках и обычно упоминается как нейтральный проводник.Оборудование-заземление проводник — это нетоковедущий проводник , который основная функция — безопасность . Дирижер должен иметь адекватную емкость тока и достаточно низкий импеданс, чтобы активировать устройства защиты от перегрузки по току (автоматические выключатели). или предохранители), на стороне питания цепи должен незаземленный провод может соприкасаться с любыми незащищенными металлическая часть распределительной системы или оборудования. Оба нейтральный провод и провод заземления оборудования соединены вместе в одной точке через соединительную перемычку.(Чаще всего это основное отключение или шина заземления входа нейтрали / земли.) точка также связана с землей через заземляющий электрод. проводник, соединяющий систему с заземлением электродная система. Панель, на которой размещается склеивание перемычка (или соединительная шина) называется главной панелью (главный распределительный щит) или может быть служебным входом главный выключатель. Все последующие панели и отключения питаемые с этого момента, называются субпанелями, распределительные панели или разъединители.

Одноточечное соединение при обслуживании вход имеет решающее значение для безопасности жизни и требуется код (NEC). Это может происходить более одного раза между сервисами вход и первая панель, в которой находится отключающий такое устройство, как предохранитель или автоматический выключатель; однако это по-прежнему считается единым местом. Нейтраль и земля может быть повторно соединен только на выходах отдельно производные системы, такие как трансформаторы, генераторы и некоторые системы ИБП.Самый важный аспект сингла точка соединения заключается в том, что он удерживает ток от оборудование-заземлитель.

Электрические панели обычно поставляется с перемычкой в ​​виде винта который связывает нейтральную шину с корпусом панели. Если электрик, устанавливающий панель, не снимает винт до завершения установки, заземляющий провод на стороне питания панель будет проводить нежелательный нейтральный ток.Случайное соединение в распределительном здании или филиале электрическая схема заставит нейтральный ток течь в система заземления. Строительная сталь, водопровод и многое другое. другие металлопроводящие системы, которые требуются согласно нормам соединение с землей также будет проводить этот ток. (Ссылка: Межсистемный шум земли)

Результаты измерения межсистемного шума грунта от протекания тока по заземляющему проводнику. Эта земля шум возникает из-за разницы в импедансе различные компоненты грунта внутри здания.Случайное соединение нейтрали с землей также делает его невозможно предсказать и / или защититься от последствий токов, наведенных молнией внутри здания. Любой ток на земле разделится на наименьшее сопротивление путь обратно к служебному входу размещение на земле разные части системы заземления при разном напряжении потенциалы. (Ссылка: Контуры заземления)

Требования к заземлению

NEC требует обратного пути к заземление от цепей, оборудования и открытого металла корпуса:

  1. быть постоянным, надежным и непрерывный.
  2. имеют достаточную вместимость безопасно провести любой ток короткого замыкания, который может наложено на него: и
  3. имеют достаточно низкий импеданс для ограничения напряжения относительно земли и:
  4. для облегчения работы цепи защитных устройств в цепи.

Все компоненты, образующие заземляющий провод для данной цепи; то есть: панели, дорожка качения, кабелепровод, провода, зажимы, фитинги, кронштейны, и т.п., должны выдерживать токи короткого замыкания, способные отключение защитных устройств цепи (автоматические выключатели или предохранители), питающие незаземленные проводники в этой цепи не вызывая значительного нагрева ни в одном из этих составные части.

Очень часто проблемы возникают со временем при соблюдении всех вышеперечисленных требований. Эти потенциальные проблемы можно разделить на пять областей.

  1. Материалы : Земля преемственность должна поддерживаться через то, что может быть сотни или тысячи в больших зданиях, из компоненты, которые могут быть из разных материалов.то есть: стальные кабельные каналы, электрические панели, разъединители, трансформаторы, кабелепровод, гибкий кабелепровод, фитинги, соединители, втулки и т. д. кроме того, многие из них имеют покрытия, которые можно сделаны из десятков разных материалов.
  2. Первоначальное качество изготовления : В зависимости от качества исходный дизайн, выбор материала и качество изготовления проблема свободная жизнь зданий электрическая Система распространения может сильно различаться.
  3. Последующая работа или Дополнения к оборудованию : Модификации и дополнения к системе распределения электроэнергии распространены через несколько лет после того, как здание завершено. Модификации, которые не следуют рекомендации NEC и хорошее заземление принципы могут создать проблемы для должным образом установленная часть.
  4. Возраст : Без профилактики обслуживание и проверка электрического система распределения ухудшится резко.Со временем компоненты изнашиваются. выходят из строя, выходят из строя, перегреваются и т. д. При необходимости не предпринято корректирующих действий результат износ системы, ржавчина, коррозия, покраска, и ненадлежащее использование схемы, которое все взять свое. Ремонт и ненадлежащее обслуживание внутренних систем, таких как отопление оборудование вентиляции и кондиционирования может вызвать значительную электрическую распределительную систему проблемы.то есть: если в здании нет адекватная и положительная вентиляция кондиционированных воздуха, то на металлической поверхности может образоваться конденсат. части системы распределения электроэнергии и вызывают значительную коррозию. Это приведет к в потере непрерывности и пониженной допустимой нагрузке система распределения электроэнергии.
  5. Не имеет прямого отношения к NEC, тем не менее значительный, строит использование.Обычно в здании несколько собственников или арендаторов в течение его обычной жизни. Использование этих арендаторов, вероятно, будет иметь изменилась по сравнению с первоначальной конструкцией. то есть: Использование микропроцессоров сегодня по сравнению с использованием пишущие машинки и счетные машины в 1970 году. потребности и требования электрического система распределения кардинально изменилась, но была ли система обновлена ​​в соответствии с потребностями из этих устройств? Было ли когда-нибудь заземление проверено или обновлено?

Достаточная емкость (токовая нагрузка) банка может быть обеспечено только путем тестирования, однако нет требование в коде относительно тестирования адекватность цепи заземления после первоначального монтаж.Может потребоваться только одно неисправное соединение в длинная цепь, чтобы исключить возможность выключателя или предохранитель срабатывает во время повреждения. Это может занять только один удар молнии для «глазури» заземляющего стержня (ей) и сделать их неэффективными или увеличить их сопротивление существенно. Проблема безопасности в том, что неисправные соединения могут сжечь и оставить открытые части оборудования в это короткое замыкание при высоком напряжении относительно Земли. Этот оставляет опасность поражения электрическим током для операторов оборудования и делает бесполезными защитные устройства оборудования.Воспоминание, импеданс также будет зависеть от состава, длина различных компонентов, качество оборудование и качество сборки, техническое обслуживание вопросы в сторону.

Технология подавления перенапряжения установленный на неисправной цепи может не только не работают так, как ожидалось, но также могут перенаправлять вредную энергию в защищаемый груз. Как минимум, высокий импеданс земля отрицательно повлияет на подавление перенапряжения технологии в некоторой степени.

Заземление Электроды и заземляющие проводники

Низкоомное соединение с землей необходимо для предотвращения чрезмерного напряжения из-за молния. Эта связь с Землей обеспечивается система заземляющих электродов.

Если возможно, все следующие должны быть соединены вместе, чтобы сформировать заземление электродная система:

  1. Металлическая труба подземного водопровода находится в прямом контакте с землей на десять футов или больше.
  2. Металлический каркас или конструкционный члены здания.
  3. Электроды в бетонном корпусе. Арматурные стержни или стержни не менее 20 футов длинный и не менее дюйма в диаметре.
  4. Кольцо заземления. Медь проводник, не менее меди №2 и при не менее 20 футов в длину, что погребено не менее 30 дюймов в глубину, которая окружает здание.

Когда ни один из вышеперечисленных электродов доступны, или когда доступен только водопровод, изготовленные электроды, такие как заземляющие стержни с медным покрытием, должны быть приводится в качестве дополнения к системе заземляющих электродов. Несколько электроды должны быть соединены вместе независимо от их расстояние друг от друга.

После того, как отдельные компоненты система заземляющих электродов соединена вместе, одиночный провод заземляющего электрода служит для соединения электрическую систему на заземляющий провод (нейтраль) и провод заземления оборудования одной или нескольких служб питание здания.(Важно отметить, что нейтральный земля.) Индивидуальные услуги по одно здание не может ссылаться на разные основания. Размер и требования ко всем компонентам заземления указаны в разделах 250 и 800-820 NEC.

Распространенная ошибка как в компьютерная и телекоммуникационная промышленность отдельные заземляющие стержни в качестве точки крепления к земле для «изолированное заземление» без подключения к соединение нейтрали между входом в здание и землей точка.Это отсутствие связи является явным нарушением NEC и на самом деле значительно увеличивает риск повреждение из-за молнии.

Телефонные линии связи и Линии коаксиального кабеля CATV (кабельного телевидения) требуются по кодам для выполнить подключение к заземляющему электроду здания система. Телефонные системы требуют основного освещения средства защиты на служебном входе. (FCC требуется) Если для удобство при установке слива оборудование, этот стержень должен быть прикреплен к зданию электродная система с подходящим проводником.Кабель и экраны спутникового коаксиального кабеля, а также металлическая опора конструкции, также должны быть прикреплены к строительному электроду система в точке входа в здание. Опять таки, любые отдельные заземляющие стержни, приводимые в действие с целью заземление этого оборудования должно быть прикреплено к зданию электродная система с минимум медным проводом №6. При определении соединения и заземления всегда обращайтесь к разделы 250 и 800-820 в НЭК.

Дополнение Штанги заземления

Установщики оборудования допускаются код для дополнения существующей наземной системы за счет вождения дополнительные заземляющие стержни и соединение этих стержней через дополнительный провод заземляющего электрода к шасси оборудования.Это очень распространено при переключении телефона оборудование. В нескольких ссылках указано, что это можно сделать. однако для снижения шума Кодекс требует, чтобы только тогда, когда существующий контур, который питает это устройство должным образом заземлено.

Причина этой надбавки в код должен предусматривать установку дополнительные заземляющие стержни для внешних конструкций, которые электрически подключен к источнику переменного тока строительство.Хороший пример того, где дополнительная земля стержни могут помочь объекту будут огни парковки. В дополнительные заземляющие стержни рассеиваются на Землю прямым удар молнии, а не миграция в строительная площадка. Если дополнительная штанга приводится в часть оборудования, размещенного в здании, существующая цепь заземления служит связующим звеном между дополнительный стержень и заземляющий электрод здания система.Казалось бы, это противоречит раздел NEC, в котором говорится, что любые дополнительные стержни должен быть соединен как минимум медным проводом № 6. В корпус дополнительной штанги, существующее оборудование заземляющий провод цепи служит связующим звеном между двумя наземными системами и не обязательно должен быть номером 6 медный проводник. Риск здесь в том, что дополнительная стержень может быть источником энергии молнии, а не помогать.Контуры заземления могут образовываться между разными заземлениями. потенциалы. Встречая букву кода, это все еще формула катастрофы для подключенных к сети оборудование. (Ссылка: контуры заземления) Все стержни заземления должны быть правильно связаны, чтобы сформировать единую ссылку, так как вы не хотите, чтобы на здание в результате удара молнии.

Причина и необходимость склеить отдельные заземления или заземляющие электроды просто.Почва — очень плохой проводник и энергия молнии то, что проводится в него, генерирует кольца напряжения потенциально вокруг точки удара молнии Земля. Стержни заземления в разных местах могут быть тысячи вольт друг от друга. Если эти стержни не связаны прочно, этот потенциал напряжения может попытаться уравнять в части оборудования, где есть являются двумя землями или над проводниками между ними.В самая простая установка, самые распространенные примеры это повреждение телефона и модема или повреждение тюнера кабельного ТВ. В мире микропроцессоров это повреждение сетевое оборудование, подключенное к портам данных. Этот действие обозначается как разность потенциалов или контур заземления .

Сеть и кабели связи

Инсталляционная конфигурация сетевые и коммуникационные кабели и качество качество изготовления, используемое для их установки, напрямую связано с способность подключенного оборудования выдерживать тяжелые переходные процессы.Связь между этими кабелями и земля также имеет решающее значение для выживания подключенных оборудование тоже. Различные кабельные платформы имеют разные характеристики и разные уровни невосприимчивость к помехам на земле.

  1. Неэкранированная витая пара Кабель Ethernet и сетевые карты не имеют заземления соединения и изоляция на 1500 вольт спецификация между любым кабельным штырем и любой частью карты.
  2. Coax Ethernet не имеет физического соединение между кабелем и картой, если заземленный терминатор делает умышленное связь. Коаксиальный кабель также имеет изоляцию на 500 вольт. спецификация между центральным штифтом и любым часть карты, которая контактирует с материнская плата компьютера.
  3. Кабельная проводка Token Ring не имеет спецификация изоляции и может или не может сделать любое прямое соединение с корпусом компьютера в зависимости от того, используется ли экранированный кабель.
  4. RS-232, 422, 432, AUI, последовательный и параллельные кабели имеют одно или несколько заземлений. штифты и, следовательно, не имеют изоляции между кабели и компьютеры или периферийные устройства, которые соединить.

Всегда есть риск перемычки две параллельные цепи с заземлением на одной из них кабели. Любая значительная разница в импедансе два заземления переменного тока могут вызвать протекание тока в сети заземление кабеля, которое, по крайней мере, потенциально может разрушить карты с обоих концов.По этой причине оптоволоконный кабели предпочтительнее, когда возможность разницы в сопротивлении заземления (контур заземления) может присутствовать. Оптический изоляция часто не переносит передачу данных по линии скорость, но в установках, где это будет, оптический изоляторы — недорогое решение разницы в сопротивление заземления.

Заземление И почвенные условия

Сетки заземления установлены в грунт и состав почвы (тип почвы, солесодержание и содержание влаги) повлияет на сопротивление заземляющая сетка.Кроме того, срок службы заземляющей сети будет определяться фактором pH почвы. PH почвы — это мера кислотности или щелочности почвы.

Большинство материалов сетки заземления состоит из меди, стали с медным покрытием и оцинкованной стали сталь, сталь, нержавеющая сталь или алюминий. Кислые почвы легко разъедают медь и цинк, но все же быть устойчивы в алкалоидных почвах. Алюминий не подвержен влиянию по кислым почвам; но он травлен алкалоидами.Очень основной тест почвы может быть выполнен с использованием некоторого количества почвы с дистиллированная вода (равные части) в водной полосе бассейна / спа pH-тестер. Это простой, но эффективный тест, и Стоимость оборудования минимальна.

Можно измерить сопротивление почвы используя четырехточечное падение потенциального оборудования. Этот тестирование лучше всего доверить обученному, опытному специалисту с калиброванным оборудованием.

Заземление Проверка и проверка правильного заземления

Нет процесса проверки требуется NEC для проверки качества заземления система во время или после установки.В лучшем случае код определяет подходящие материалы и поощряет хорошие мастерство с фразами типа «связи должны быть гаечный ключ «. Процесс проверки, участвующий в получение разрешения на получение разрешения на проживание на здание обычно проводится только для визуального осмотра. Осмотр после того, как стены были закрыты, может быть почти невозможно; в зависимости от материала, из которого изготовлен наземная система.

Правильная проверка заземления Система электродов для определения сопротивления состоит из двух этапов.В заземляющая сеть (заземляющие стержни, соединения и т. д.) проверяется на сопротивление Земле. Ответвительные цепи проверены на сопротивление на розетках.

Сетка заземления (стержни) должна быть протестировано с использованием метода падения потенциала обученным, опытный, квалифицированный техник. Используемое оборудование должно быть в текущей калибровке и изготовитель оборудования инструкции должны выполняться. Профессионал должен быть заключил контракт на выполнение этого тестирования.

Стандарты для «нетто» сопротивление заземляющей сети будет изменяться. Предпочтительный спецификация для чувствительного оборудования менее 5 Ом и чем ниже сопротивление, тем лучше. NEC призывает к Сопротивление 25 Ом, но не требует тестирования или снятия учитывая потребности чувствительного оборудования.

Проверка сопротивления параллельной цепи может быть выполнено с использованием ответвления SureTest модель анализатора ST-1D или ST-THD.Эти тестеры также будут выполнить ряд других тестов для анализа способность цепи правильно нести нагрузку. Один такой тест — это проверка изолированной цепи заземления, очень часто критично для чувствительного оборудования. Преимущество этих Тестеры — это их способность тестировать цепь под напряжением. Наиболее другие испытания цепей требуют их отключения и оборудование отключено.

В старом (пред микропроцессор) В качестве заземляющего проводника часто использовался трубопровод зданий.Такой способ заземления совершенно неприемлем для чувствительное оборудование. Совместная работа, возраст, коррозия и десятки других факторов делают эти наземные системы неэффективно. Текущий NEC не допускает заземления кабелепровода, поскольку приемлемая практика. Использование медной проволоки в качестве провод для заземления бесконечно более желателен из-за тот факт, что заделки медного провода происходят внутри металлические или пластиковые рабочие ящики, в которых размещаются емкости и переключатели, делающие суставы доступными.

Стандарты для параллельных цепей ясны и были определены IEEE (Институтом Инженеры по электротехнике и электронике) и NEC.

Измерение Заземление

Заземление должно быть в хорошем состоянии соединения и их измерение может быть выполнено с стандартные измерители низкого диапазона. Одним из таких инструментов является Fluke. Модель 8012A с опцией 01 может измерять до.001 Ом, (один миллиом). Этот измеритель дает возможность обнулить сопротивление проводов с помощью элемента управления на передней панели.

Примечание: Сайты с телефоном системные батареи используют +48 вольт на землю, и вы можете испытывать небольшую проблему с сопротивлением измерения. Счетчик нередко прочитал отрицательные омы. Это связано с возвратом токи, вызывающие падение напряжения на земле соединение измеряется.Переворачивание выводов счетчика сделает чтение положительным. Истинное чтение алгебраическая сумма двух чтений.

Земли и частота

Истинное сопротивление земли подключение к сети переменного тока является наиболее важным измерение, но индуктивное значение пути заземления может сыграть решающую роль.Радиочастотная энергия и быстрое время нарастания удара молнии требует низкого индуктивность заземляющих путей. Сотовый телефон и радиовышки поражаются чаще, чем большинство конструкций, так как они высокий и сделанный из проводящего металла. Энергия в Удар молнии — это энергия широкого спектра. Когда высокий частотная энергия перемещается по проводнику, по которому проходит, или возле поверхности проводника. Это называется «скин-эффект» и тенденция к высокому частотная энергия должна проводиться только на или рядом с поверхность проводника.Ниже этой поверхности большая часть материала проводника не используется. Этот означает, что соединения или проводники, не имеющие большая площадь поверхности будет более индуктивной и будет иметь более высокую сопротивление (сопротивление) потоку высокой частоты токи.

Земля Размер и тип проводника

NEC очерчивает заземляющий провод требования для соответствия коду.Размер проводника подробно обозначены, а допустимая токовая нагрузка проводника функция размера. Тип проводника не указывается. в НЭК. Где только возможно, когда высокая частота энергия должна обрабатываться, предпочтительно использовать многожильные проводник против твердого проводника. Площадь поверхности многожильный провод больше, чем у сплошного проводник и поэтому лучше справляется с высокими частотная энергия. Заземляющий провод не может быть слишком большим а в случае заземляющих проводов, чем больше, тем лучше.

Заземление и разнородные металлы

Использование разнородных металлов должно по возможности избегать. Где невозможно избежать их связи важно принять меры для предотвращения коррозия или электролиз между разнородными металлами.

При низком сопротивлении соединения, которые могут быть из разнородных металлов, это важно использовать совместный состав, такой как T&B Копр-щит СР-8 (для медных стыков) или Алюмашилелд (для алюминиевые соединения).Это предотвратит коррозию и должно также практиковаться, когда соединения будут подвергаться воздействию влага.

Общий Нейтраль и заземляющий провод

Нейтраль — сток в фазу проводник так же, как фаза, как водопроводный кран подводящая труба в системе водоснабжения и слив — это сливная труба.Это означает, что нейтраль — это сила (коммунальная) земля предприятия.

Общие нейтрали в параллельных цепях соответствует требованиям NEC, но не рекомендуется для чувствительных оборудование используется. Также не рекомендуется, когда цепь питает нелинейные нагрузки. Нелинейные нагрузки являются «импульсными источниками питания», как указано в компьютеры и другая микропроцессорная продукция.

Теория использования общих нейтрали действительно только при линейных нагрузках.Линейные нагрузки имеют единичный коэффициент мощности, а нагрузки в режиме переключения — нет. Теоретически трехфазная система сбалансирована, поскольку каждая фаза напряжение на 120 градусов отстает от фазы перед Это. Фазные токи также разделены на 120 градусов. Если каждая фаза имеет одинаковый ток (10 ампер как пример), эквивалентные токи будут гасить друг друга поскольку они объединяются в нейтрали для возврата к источнику. Результат может быть представлен математически и алгебраически. чтобы не было (0 ампер) тока нейтрали.

Реально предыдущий пример предполагает, что электрическая система питает линейные нагрузки что система резистивная по своей природе, что она работа при единичном коэффициенте мощности, и, кроме того, что система работает в состоянии равновесия. В реальном мире, трехфазные системы никогда не находятся в таком состоянии, даже хотя электрики стараются уравновесить нагрузки. Лифты, компрессоры и кондиционеры работают в цикле. операция.Компьютеры, фонари, копировальные аппараты и т. Д. постоянно включается или выключается. Эти меняющиеся условия создают естественные дисбалансы в трехфазной распределительная система. Как только токи станут несбалансированное гашение нейтральных токов прекращается. В виде нейтральный ток начинает течь, физические законы вступают во владение и поток через полное сопротивление нейтрали проводник создает падение напряжения, которое можно измерить со ссылкой на землю.Амплитуда напряжения будет прямо пропорционально количеству нейтральных ток и полное сопротивление нейтрального проводника. Результат: напряжение между нейтралью и землей часто называют общим. режим напряжения.

Длина параллельной цепи, индуцированная и кондуктивные напряжения все ударные напряжения между нейтралью и землей, но наиболее частая причина описана выше. Совместное использование нейтрали, в которых задействованы импульсные источники питания, не рекомендуется, потому что они вносят большой вклад в дисбаланс.События между нейтралью и землей (общий режим) могут вызвать значительные нарушения в работе микропроцессорное оборудование. Эти устройства постоянно Измерьте логическое напряжение относительно «нулевого напряжения». справка «ЗЕМЛЯ ЖИЗНИ. Микропроцессор. ожидает увидеть менее 0,5 вольт между нейтралью и земля.

Это обычная практика и соответствует NEC должна иметь общие заземляющий и нейтральный проводники в Ответвительные цепи на 120 вольт (в большинстве случаев).Это не хорошо практика иметь общих проводников по нескольким причинам. Те, которые относятся к нейтральному и заземляющему проводнику будет кратко объяснено.

Заземляющий провод (не нейтральный) это опорная точка заземления шасси оборудования и техники безопасности для стандартной (120 В) ответвленной цепи. Другой оборудование использует землю как «нейтраль» или дренаж провод предназначен для ответвления на 120 вольт. Один этап (208 и 240 вольт) оборудование часто подключается; фаза (горячий), фазовый (горячий) и заземленный.Эффективность оборудование определит, сколько энергии не используется этим оборудованием. Неиспользованная энергия использует землю провод как сток. Эта результирующая энергия сбрасывалась на заземляющий провод может очень негативно повлиять на чувствительные оборудование, опирающееся на одну и ту же землю. Шум, блуждающий напряжения и другие аномалии не подходят для чувствительных сетевое оборудование.

Изолированный Цепи заземления

Приведенные ниже стандарты должны быть руководство по правильному монтажу ответвлений.В размер провода, тип розетки и т. д. следует выбирать в соответствии с NEC и требования к оборудованию. Нижеприведенное стандарты для 120 В переменного тока 15 ампер и 20 ампер ответвления схемы. Все цепи низкого напряжения должны соответствовать требования к заземлению ниже.

Информация о расчетах резистора заземления нейтрали

Просмотр резисторов заземления нейтрали

Введение

Резисторы заземления нейтрали используются для уменьшения таких проблем, как пробой изоляции, вызванный переходными перенапряжениями, вызванными дуговым замыканием на землю в незаземленных системах и повреждением двигателей и распределительное устройство, вызванное дуговым разрядом в глухозаземленных системах.

Два основных метода заземления нейтрали системы — это низкое сопротивление и высокое сопротивление.

Низкое сопротивление

Система отключится в случае замыкания на землю.

Резистор заземления нейтрали ограничивает замыкание на землю максимумом от 100 до 1000 А (см. Примечание ниже). Трансформаторы тока нулевой последовательности и реле защиты от замыканий на землю обнаруживают неисправность и срабатывают при 5–20% максимального тока замыкания на землю.

Резистор обычно рассчитан на 10 секунд с максимальным повышением температуры до 760 ° C.

Максимальный ток замыкания на землю, допускаемый резистором, должен быть достаточно большим для положительного срабатывания реле замыкания на землю.

Резисторы заземления нейтрали номиналом от 200 до 400 А обычно используются в системах от 6,9 кВ до 34,5 кВ (см. Примечание ниже).

Резисторы заземления нейтрали номиналом от 100 до 400 А обычно используются в системах от 2,4 до 4,16 кВ (см. Примечание ниже).

После определения номинального тока рассчитывается сопротивление или омическое значение резистора путем деления напряжения между фазой и нейтралью на номинальный ток.

, то есть для резистора заземления нейтрали системы 4,16 кВ номиналом 400 А. Напряжение линии на нейтраль будет 4,16 кВ / √ (3) = 2400 В. Требуемое сопротивление будет 2400/400 = 6 Ом.

Высокое сопротивление

Система подаст сигнал, но не отключится в случае замыкания на землю. Он рекомендуется для систем, в которых перебои в подаче электроэнергии в результате отключения одиночной цепи по замыканию на землю наносят ущерб процессу.

Резистор заземления нейтрали ограничивает замыкание на землю максимумом от 5 до 10 А.Трансформаторы тока нулевой последовательности и реле защиты от замыканий на землю обнаруживают неисправность и подают сигнал тревоги при 10–20% максимального тока замыкания на землю.

Резистор рассчитан на продолжительный режим работы с максимальным повышением температуры до 375 ° C.

Максимальный ток замыкания на землю, допускаемый резистором, должен превышать общую емкость по отношению к зарядному току заземления системы, а векторная сумма зарядного тока системы плюс ток резистора не должна превышать 8 А. Расчет)

После определения номинального тока сопротивление или омическое значение резистора рассчитывается путем деления линейного напряжения нейтрали на номинальный ток.

, то есть для резистора заземления нейтрали системы 480 В номиналом 5 А. Напряжение линии на нейтраль будет 480 В / √ (3) = 277 В. Требуемое сопротивление будет 277/5 = 55,4 Ом.

Примечание

В шахтных энергосистемах среднего напряжения Низкое сопротивление обычно используется с заземляющим резистором нейтрали, который ограничивает замыкание на землю максимум от 25 до 50 А. Это необходимо для ограничения напряжения прикосновения до 100 V или меньше. Трансформаторы тока нулевой последовательности и реле защиты от замыканий на землю обнаруживают неисправность и срабатывают при менее чем одной трети номинала резистора.Резистор рассчитан на продолжительный режим работы с максимальным повышением температуры до 375 ° C.

Современные шахтные энергосистемы могут иметь значительную емкость распределенной системы, и, как и все резисторы заземления нейтрали, максимальный ток замыкания на землю, допускаемый резистором, должен превышать общую емкость по отношению к зарядному току заземления системы и векторную сумму системы. зарядный ток плюс ток резистора не должен превышать 8 А. (см. Расчет емкости системы относительно заземления)

Ссылки

«Промышленные энергосистемы» Шоаиб Хан, Шиба Хан, Гариани Ахмед

«Сопротивление нейтрали системы Заземление »Ларри А.Прайор, ЧП, старший специалист по спецификациям GE

«Вредное влияние емкости на распределительные системы шахт с заземлением с высоким сопротивлением» Джозеф Соттил, старший член, lIEEE, Стив Дж. Гнапрагасам, Томас Новак, научный сотрудник, IEEE, и Джеффри Л. Колер, Старший член IEEE

Резисторы заземления нейтрали

Резисторы заземления нейтрали (NGR) используются для ограничения тока короткого замыкания и обеспечения безопасности оборудования и персонала в промышленных системах.

При твердом заземлении система напрямую заземлена, и ток короткого замыкания ограничивается только сопротивлением почвы.Ток короткого замыкания может быть очень высоким, что может привести к повреждению трансформаторов, генераторов, двигателей, проводки и другого оборудования в системе. NGR вставляются между нейтралью и землей, чтобы увеличить сопротивление сети в случае замыкания на землю и ограничить ток до безопасного уровня.

Преимущества NGR включают:

  • Уменьшите токи однофазного короткого замыкания и защитите каждую единицу оборудования в электрических сетях среднего напряжения,
  • Снижает переходные перенапряжения, которые могут возникнуть во время замыкания на землю, и может контролироваться и использоваться для активации реле замыкания на землю,
  • Повышенная защита генераторов, трансформаторов и сопутствующего оборудования,
  • Снижение затрат на эксплуатацию / техническое обслуживание,
  • Повышенная безопасность,
  • Обеспечить простые, надежные и избирательные средства защиты,
  • Позволяет использовать оборудование и, в частности, кабели с более низким уровнем изоляции, чем для сценария с изолированной нейтралью.
  • Уменьшить ступенчатое напряжение

Значение тока повреждения должно быть ограничено значением, которое может безопасно обрабатываться машиной или трансформатором.Он также должен быть достаточно высоким, чтобы его могли опознавать реле защиты от замыканий на землю. Если значение сопротивления NGR слишком велико, ток короткого замыкания будет очень низким и не сможет активировать реле защиты от замыкания на землю в условиях замыкания на землю.

В трехфазном соединении звездой емкости образуются с землей. В случае замыкания на землю эти емкости могут заряжаться линейным напряжением и вызывать переходные перенапряжения.NGR должен иметь значение, позволяющее пропускать ток, который позволяет емкостям разряжаться.

Сопротивления также классифицируются по времени, в течение которого они могут выдерживать ток короткого замыкания. Типичная продолжительность составляет 5-10 секунд. Резисторы с увеличенным номинальным сроком службы используются в системах, где надежность системы имеет решающее значение, например нефтяная промышленность, шахты и т. д. В этих ситуациях используются высокие сопротивления, позволяющие выдерживать длительные периоды замыкания на землю. Когда в одной фазе происходит замыкание на землю, генерируется аварийный сигнал.Однако система продолжает работать до следующего запланированного выключения.

Резисторы заземления нейтрали

Hilkar предназначены для поглощения большого количества энергии без превышения температурных ограничений, определенных в IEEE 32. Hilkar NGR можно использовать как в помещении, так и на улице. Нейтральная точка подсоединяется к фарфоровой втулке или кабелю высокого напряжения (XLPE), обычно (минимальное поперечное сечение = 70 мм2 меди или 95 мм2 алюминия) снизу, сверху или сбоку. Наиболее распространенная степень защиты, предпочтительная для NGR, — IP 23, поскольку она позволяет элементам резистора легче охлаждаться.Поскольку элементы резистора полностью изготовлены из нержавеющей стали, они способны выдерживать экстремальные условия окружающей среды и, следовательно, подходят как для морского побережья, так и для пустыни. NGR поставляются с инструкциями по обслуживанию и установке, которые включают рекомендуемые настройки реле. Hilkar предоставляет полную техническую помощь, чтобы удовлетворить ваши требования или условия на объекте.

Опции NGR

  • Для обеспечения дорожного просвета и безопасности предусмотрены приподнятые опорные стойки
  • Устройства, специально разработанные для опасных и экстремальных зон (взрывозащищенные, сертифицированные ATEX)
  • Корпуса из нержавеющей стали или алюминия по запросу
  • Монтаж трансформаторов напряжения
  • Установка реле защиты
  • Входные втулки из фарфора могут быть установлены сверху или сбоку корпуса
  • Установка заземляющего трансформатора
  • Моторизованные или ручные однополюсные выключатели-разъединители, выключатели нагрузки, вакуумные контакторы, автоматические выключатели, ограничители перенапряжения и нагреватели в резисторах заземления нейтрали

Электрические испытания на горячую, нейтраль и землю

Электрические испытания на наличие напряжения, нейтрали, земли и т. Д.

Связанные страницы: Какой тип тестера ?, Таблица тестеров

Разделы страницы:

В порядке ли устройство / приспособление?

Розетка исправна? Лучше всего включить хорошую лампу или прибор и посмотреть. Неоновый тестер, тестер розеток или вольтметр может быть удобнее, но они не потребляют достаточный ток, чтобы гарантировать стабильное напряжение.

Свет работает? Вкрутите лампочку, которая, как вы знаете, недавно сработала. Люминесцентный светильник с более чем одной лампой требует абсолютно новых ламп для надежной проверки.

Переключатель работает? Если переключатель не может включить исправную лампочку, выключите прерыватель, отсоедините провода от переключателя (и проследите, как они были подключены), соедините эти провода друг с другом и включите прерыватель. Если элемент теперь работает, вероятно, переключатель (или другой трехпозиционный переключатель) или его соединения с проводами неисправны. В противном случае предположите, что переключатель в порядке.

Лампа хорошая? Попробуйте в заведомо исправной розетке. В противном случае проверьте снятую лампу накаливания с помощью омметра: 4-200 Ом — хорошая лампа, но некоторые хорошие галогены указывают на отсутствие обрыва цепи.Тестеры непрерывности различаются и могут не ответить на этот вопрос для ламп любой мощности.

Исправен ли предохранитель? Лучше всего снять предохранитель и проверить его с помощью тестера целостности цепи или омметра; любая существенная непрерывность означает, что предохранитель исправен. Если круглый предохранитель должен быть проверен, находясь в держателе, протяните один щуп неонового тестера вдоль предохранителя, а другой — на ладонь. Если он загорается, предохранитель исправен, ЕСЛИ это цепь на 120 В И ЕСЛИ этот предохранитель предназначен для горячего, а не для нейтрали; нейтралы в некоторых старых домах были объединены.Для предохранителя в форме картриджа, доступного при нахождении на месте, прикоснитесь щупами неонового тестера к концам предохранителя; если свет не горит, предохранитель исправен, в противном случае — нет — при условии, что хотя бы один конец предохранителя горячий — поэтому сначала проверьте это.

Хорош ли выключатель? Если этот вопрос возникает из-за потери питания в цепи, короткое замыкание, перегрузка или обрыв более вероятны, чем неисправный выключатель. Если с включенным выключателем работает больше вещей в доме, то с выключателем все в порядке; у вас есть открытый.Убедитесь, что выключатель не сработал просто так. Плотно установите его в положение полного выключения, а затем плотно включите. Вы можете повторить это, отключив провод от выключателя, особенно если выключатель не остался включенным или вы слышали гудение или жужжание, когда включаете его (если выключатель без провода теперь остается включенным, а не раньше, это нормально и отвечал на короткую). Если у вас отключен провод, вы также можете выполнить этот тест: если винт включенного выключателя показывает высокую температуру для неонового или вольтметра, это, вероятно, хорошо, особенно если лампочка или тестер Виггинса срабатывают при подключении между ними. винт и заземление в панели (а то выключатель плохой).Но лучший универсальный тест — это временно переставить провод выключателя на новый или другой выключатель, отключив оба при перемещении. С этим выключателем, если проблема исчезла, предположите, что старый выключатель неисправен; в остальном это хорошо. Еще один тест — выключить прерыватель, снять его, установить в положение «Вкл.» И проверить с помощью точного омметра между его винтом и зажимом для шины. Скорее всего плохо, если он читает больше 5 Ом. Наконец, одна из причин, по которой выключатель может выйти из строя, — это искрение из-за плохого контакта с токоведущей шиной под ним; в этом случае новый выключатель следует установить в другом месте панели.


Есть ли жар в устройстве, приспособлении, коробке или проводе?

Достигает ли жара определенный сосуд или свет? Если ваша цель электрических испытаний — личная безопасность для работы над вашей проблемой, бесконтактный вольтметр предупредит вас, если есть немного тепла. (Одно исключение — когда вы проверяете подземный провод или кабель, который вы обнаружили.) Когда ваша цель — проверить протяженность цепи или открытого горячего сигнала, неоновый тестер слегка загорится на предмет наличия чего-то горячего.Держите один из его датчиков на ладони. Бесконтактный тестер напряжения, вставленный в те же гнезда розеток или розеток, также укажет на перегрев. Вольтметр укажет на температуру чего-либо и даже покажет, насколько он горячий, но только в том случае, если другой датчик касается того, что, как вы знаете, заземлено. Ни один из этих тестов не скажет вам, имеет ли розетка или свет хорошая нейтраль или заземление.

Достигает ли жара определенную электрическую коробку или клемму? Сняв крышку, вы можете прикоснуться неоновым или бесконтактным тестером к боковым винтовым клеммам любых переключателей или розеток, но для более глубокой проверки в коробке бесконтактный тестер будет проще всего. вы ослабляете любые устройства на пути.У выключателя один неоновый щуп на винте выключателя, а другой в вашей ладони загорится, если там жарко. Не доверяйте бесконтактному вольтметру помощь в работе с выключателем, так как многие находящиеся поблизости предметы также нагреваются. Эти тесты не говорят вам, присутствуют ли хорошие нейтралы или основания.

Может ли определенная горячая или нейтральная передача выдерживать нагрузку? Иногда тестеры показывают хорошее напряжение между горячим и нейтральным током, в то время как включение лампы или присоединение розетки и лампы к горячему и нейтральному току покажет вам, что горячее или нейтральное напряжение неадекватно для работы в реальных условиях.Какой из них бедный? Если вы не доверяете заземлению заземляющего провода, подключите нагрузку (по крайней мере, на лампочку) между ним и горячим; если это запускает лампочку, нейтраль плохая; иначе горячо.

Какой провод горячий? Лучше всего использовать неоновый тестер с одним проводом на ладони. Если он немного загорается, когда вы дотрагиваетесь им до металла проволоки, по крайней мере, этот провод горячий, независимо от того, должен он быть или нет. Бесконтактный тестер не всегда может находиться рядом с одним проводом, не находясь рядом с другими.(Кроме того, он слишком часто считывает провод как горячий, который просто не заземлен и собрал некоторое «фантомное» напряжение от горячего провода, с которым он проходит через дом; например, незагоренный путешественник в системе трехпозиционного переключателя.) Когда нейтраль разомкнута где-то в цепи, белые провода в нерабочей области цепи часто могут считаться горячими — и в некоторой степени — в дополнение к истинно горячим. И, конечно же, коммутируемые провода нагреваются при включении, а не при выключении. Тот факт, что провод не горячий, не означает, что он всегда такой, или что он нейтральный.Тот факт, что провод черный, не означает, что он должен быть всегда горячим, а тот факт, что провод белый, не означает, что он не горячий, даже всегда.

Слишком высокое или низкое напряжение от горячего к нейтральному? Вольтметр будет касаться между горячим и нейтральным током. 120 вольт — это номинальное нормальное напряжение на нейтраль, обеспечиваемое энергокомпанией. Фактическое измеренное напряжение в вашем доме будет немного другим — примерно на 5% выше или ниже. Больше отклонений, чем это, ненормально.Это может быть что-то, что должна исправить энергетическая компания, или это может указывать на проблему с нейтральным подключением в одной из ваших цепей или в ваших основных проводах.

Имеет ли значение низкое, но ненулевое значение напряжения? Когда ожидается показание нуля или 120 вольт, но вольтметр показывает что-то среднее (5-100 вольт), это может означать, что соединение где-то плохое. Однако это могло произойти из-за фантомного напряжения; такое напряжение при замыкании на землю не дает искры, и его следует игнорировать.


Есть ли нейтраль или земля на устройстве, приспособлении, коробке или проводе?

Достигает ли «нейтральность» определенного приемника или света? Если вы доверяете горячему, включение лампы или ввинчивание хорошей лампочки покажет, в порядке ли нейтраль. Если горячая сторона сомнительна, поднесите хорошую горячую через удлинитель к проводам розетки, чтобы запустить лампочку, где вы можете подключить и его, и нейтраль, о которой идет речь. Менее надежным показателем того, что нейтраль исправна, является то, что тестер целостности или омметр показывает прочное соединение между ней и заземляющим проводом; это следует делать с выключенным выключателем.

Попадает ли нейтраль в определенную электрическую коробку? Подойдите к этому, как указано в предыдущем вопросе. Однако нейтрали в распределительных коробках часто менее доступны для контакта или присоединения. В таких случаях для проверки может потребоваться отсоединить соединители проводов. Прерыватель цепи (ей!), Включенной в коробку, должен быть выключен, пока все не будет готово для тестирования. Если нейтральные разделяются для проверки, это нормально, если подумать, что только один из этих белых затем проверяется как нейтральный.

Исправен ли провод заземления? Если розетка и лампочка, подключенные от горячего к нейтральному, работают и работают, подключенные от горячего к земле, заземление в порядке; если он работает от горячего к нейтральному, но не от горячего к земле, земля плохая. Розетка, неоновая лампа или вольтметр могут указывать на некоторую заземленность, но они не говорят вам наверняка, что заземление хорошее. Чтобы узнать, что делать с плохим или отсутствующим заземлением, вы можете обратиться к моему обсуждению результатов домашней инспекции.


Электрические испытания на короткое замыкание и замыкание на землю:

Короткое замыкание между горячим и нейтральным током? Сам выключатель — отключение — лучший тест на короткое замыкание.Видео. Если в цепи используется предохранитель, не заменяйте его повторно для проверки короткого замыкания, если только вы не используете главный выключатель или не отключите перед ним, чтобы восстановить короткое замыкание. Короткое замыкание приведет к повреждению патрона круглого предохранителя. Вопрос о том, является ли это нейтралью, на которую происходит короткое замыкание, можно определить, отсоединив нейтраль этой цепи от шины нейтрали панели, закрыв ее и убедившись, что короткое замыкание исчезло. Амперметр, зажатый вокруг горячего провода на выключателе или предохранителе, также может подтвердить, что он срабатывает / перегорает из-за высокого тока.Если он зажат вокруг нейтрали цепи, он также покажет, что короткое замыкание действительно переходит в состояние «горячий-нейтральный». Омметр, показывающий 0-5 Ом между предполагаемыми проводами, будет означать, что короткое замыкание все еще существует, но поскольку лампочки и двигатели в цепи могут давать такое низкое сопротивление, я не рекомендую придавать такому испытанию большое значение. По той же причине придавайте тестеру непрерывности еще меньший вес. Где применить этот тест в цепи.

Имеется ли короткое замыкание на массу? Если выключатель или предохранитель сработал / перегорел, это будет лучшим индикатором, и будет применяться процедура, соответствующая упомянутой выше в отношении короткого замыкания между горячим и нейтральным током.Однако вместо того, чтобы закрывать землю, когда она снята с нейтрального стержня, чтобы обезопасить вас и не допустить короткого замыкания, его следует оберегать от любого контакта с вами или любым видом оголенного металла — проводами или иным образом. . Также учтите, что некоторые замыкания на землю не будут использовать даже заземляющий провод цепи, а будут передавать ток в трубу или землю … Если короткое замыкание вызывает отключение только розетки GFCI, это лучший индикатор (где применить этот тест в цепь).

Имеется ли замыкание нейтрали на землю? Для этого не сработает обычный выключатель.Розетка GFI или прерыватель GFI подойдут, и это лучший способ продолжить тестирование. Если омметр показал сопротивление до 30 000 Ом от земли до нагрузки белого цвета (отключены от линии белого цвета), это МОЖЕТ означать, что неисправность все еще присутствует. Где применить этот тест в цепи.

Неисправна ли эта розетка из-за сработавшей розетки GFI? Розетка GFI (но не выключатель GFI) отключает как горячую, так и нейтраль при срабатывании. Таким образом, омметр или проверка целостности цепи между нейтральным слотом и заземляющим отверстием полностью мертвой розетки правильного вида покажет, является ли сработавшая где-то розетка GFI вероятной причиной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *