Как измерить сопротивление изоляции
Безопасность в процессе эксплуатации электрооборудования и быстрое устранение проблем в проводке невозможны без своевременной и грамотной диагностики. Для этого нужно знать, как измерить сопротивление изоляции по определенной методике. Тестируемая величина относится к главным параметрам состояния защитного слоя.
Для выполнения подобных мероприятий есть несколько способов. Каким прибором измеряют сопротивление изоляции для получения наиболее достоверной информации? Сегодня мы поговорим о применении самых популярных устройств, используемых для этих целей.
Как измерить сопротивление изоляции мультиметром
Большой диапазон вариантов использования мультиметра обусловлен особенностями его конструкции. Устройство с достаточной точностью справится с тестированием самых разных типов деталей и предохранителей, катушек и конденсаторов.
Расположение обозначений на корпусе варьируется в зависимости от модели, но для нашего случая обязательно должен быть символ «Ω», соответствующий измеряемому сопротивлению. На панели указано несколько пределов для проводимого тестирования и переключатель ручного формата. Все обозначения – это буквенные или цифровые символы.
Основные показатели в процессе измерения
Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.
Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека.
В чем особенности данного процесса
Некоторые аспекты работы влияют на корректность полученной информации:
- при тестировании впаянных деталей необходимо один вывод отсоединить от платы;
- проверить щупы на отсутствие дефектов и повреждений способом их прикладывания друг к другу;
- выполнить демонтаж многовыводных деталей для гарантии правильного определения их исправности;
- аккумуляторный источник питания в тестере при разрядке искажает данные измерений.
Все указанные в таблицах или маркированные параметры имеют определенный диапазон допусков, обычно в пределах ± 10%. Приведем пример – для элемента с номинальными характеристиками сопротивления 1 Мом хорошими будут все результаты от 990 кОм до 1,1 Мом.
Как происходит проверка изоляции
Такую процедуру выполняют только в помещениях с плюсовой температурой или в теплую погоду. Это обусловлено возможностью появления кристалликов льда во внутренней части оплетки кабеля. Такие образования относятся к не обладающим проводимостью диэлектрикам. Тестеры их просто не учитывают, а ведь после оттаивания появившаяся влага отрицательно сказывается на состояние кабеля.
Цифровые модели мультиметров имеют несколько секций, выбор которых осуществляется вручную. Подбирается нужный предел измерения после ориентировочной оценки параметров проверяемой цепи. Самые популярные модификации T83x, M83x, MAS83x оснащены пятью вариантами тестирования.
Как измерить сопротивление изоляции мегаомметром
В состав любого образца прибора входят генератор в токовыпрямителем и предназначенный для измерений специальный механизм. Мегаомметры классифицируются по категориям согласно номинальным характеристикам напряжения.
Для устройств любого типа необходимо придерживаться определенных условий на подготовительной стадии:
- контрольная проверка прибора, выполняемая при находящихся в разомкнутом положении концах жил, при этом указатель находится у значка бесконечности. Замыкании проводов сопровождается приближением стрелки к цифре 0;
- специальным устройством подтверждается отключение напряжения;
- обязательное заземление токопродника, снимающееся после установки мегаомметра.
Категорически запрещено прикосновение к токоведущим участкам.
Несколько моментов требуют повышенного внимания в отношении изоляционного слоя элементов, предназначенных для эксплуатации в режиме до 1000 В:
- Изоляция защитных и рабочих нулевых проводников должна равняться аналогичному показателю фазных элементов.
- Выполняется отсоединение нулевых проводников от заземляющих элементов со стороны приемника и источника питания.
Вращение ручки устройства происходит со скоростью 120 об/мин для обеспечения устойчивого положения стрелки.
Для проводников более 1000 В избежать потенциальных неточностей тестирования из-за присутствия на изоляционном слое токов утечки можно способом накладки экранных колец на измеряемый участок.
Устройство подсоединяется со стороны проверки к жилам после завершения мероприятий, предназначенных для снятия напряжения. Согласно рекомендациям ПУЭ с другой стороны нужно развести жилы на определенное правилами расстояние. Для обеспечения безопасности в этой зоне находится один из работников, а по периметру работ вывешиваются предупредительные плакаты.
Затем поочередно проверяется каждая жила подсоединением к ней одного щупа мегаомметра, второй при этом подключен к заземлению. Пара свободных от проверки жил заземляется. Рекомендованная длительность тестирования – 1 минута.
Кабельные контрольные системы
Единственное отличие применяемой в этом случае технологии от вышерассмотренных, заключается в определении наличия напряжения в токопроводнике на предварительном этапе и проверке прибора в диапазоне 500-2500 вольт. Для этого свободные жилы соединяются и подсоединяются к заземлению, а выходы прибора подключаются к концевой части кабеля и заземляющему контуру.
Периодичность проведения проверок соответствует прописанным для оборудования периодам .
Измерение сопротивления изоляции кабеля — ООО «ПрофЭнергия»
Измерение сопротивления изоляции кабеля – необходимый шаг в ходе проверки работоспособности токопроводящих жил из металла. Этот показатель влияет на качество сигнала, который передаётся по проводнику. Когда сопротивление изоляции достигает слишком низкого показателя, на линии появляются помехи, наводки и утечки. В критических случаях слишком низкая изоляция проводников приводит к полному обрыву электрического сигнала (короткому замыканию).
Любая металлическая жила, использующаяся для передачи электрического сигнала (иными словами – по которой течет ток), испытывает воздействие со стороны окружающей среды либо других металлических жил, проложенных в непосредственной близости. В качестве диэлектрического материала изоляции могут быть использованы:
- Резина
- Пластмасса
- Бумага
- Комбинация этих материалов
Под сопротивлением изоляции жил кабеля понимают величину сопротивления постоянному току, которое возникает в цепи между отдельно взятой токопроводящей жилой и грунтом, или другой жилой, или прочими источниками.
Инженерный центр «ПрофЭнергия» имеет все необходимые лицензии измерения сопротивления изоляции, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если Вы хотите заказать замер сопротивления изоляции, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34.
Когда и зачем замеряется сопротивление изоляции?
Допустимое сопротивление изоляции определено и прописано в ГОСТах и других нормативных документах. Работоспособность всей системы, частью которой является токопроводящий кабель, в значительной мере зависит от состояния и качества слоя изоляционного материала. Оно может изменяться в ходе производства кабеля в заводских условиях, при транспортировке и хранении оборудования/кабелей, при монтаже схемы и при эксплуатации кабеля. Со временем изоляционные материалы могут стареть и терять свойства, разрушаться под действием внешней среды и физического воздействия. Изменение параметров изоляционного материала нужно регулярно сравнивать с допустимыми нормами во избежание внезапного выхода всей системы из строя.
Электрические проверки выявляют дефекты изоляции, на основании которых специалист делает вывод о пригодности кабеля к работе и обозначить гарантии на его эксплуатацию в дальнейшем. Есть два способа проверок:
- Измерения:
осуществляются до начала монтажа кабеля в электросхему для того, чтобы избежать ситуации, когда команда монтажников тратит время и силы на укладку неисправного кабеля и его последующий демонтаж. Также измерения проводят после монтажа токопроводящих жил, чтобы оценить качество монтажных работ и вовремя выявить возможные повреждения кабеля в их ходе. В процессе эксплуатации систем тоже могут проводиться периодические измерения: они выявляют изменения характеристик с профилактическими целями. - Испытания:
проводятся командой монтажников после укладки кабеля перед подключением схемы в работу, а также в ходе эксплуатации – если в этом возникает необходимость.
Как замерить сопротивление изоляции
Методика замера сопротивления изоляции предполагает использование мегаомметров. Это специализированные приборы, работать с которыми без особой подготовки опасно! Измерительные работы для определения сопротивления изоляции проводятся в таких условиях:
- На кабеле и окружающем оборудовании не должно быть напряжения, чтобы на схему замера не влияли наведенные электрополя.
- Кабель нужно отключить со всех сторон. В ином случае вы измерите сопротивление изоляции не только жил этого кабеля, но всей подключенной схемы – показатели будут ложными.
- Нужно быть осторожными при измерении сопротивления длинных кабелей вблизи включенного высоковольтного напряжения, так как они могут иметь остаточный заряд с опасной для человека энергией, либо может возникать емкостной заряд.
Измерение сопротивления изоляции между соседними жилами кабеля
Рассмотрим пример с коротким кабелем, который не расположен под наведенным напряжением. Ход измерения сопротивления между его жилами будет проходить по такому алгоритму:
- Осмотр схемы. Специалист должен удостовериться, что на жилах отсутствует напряжение.
- Жилы разводят в стороны, чтобы они не касались друг друга либо иных предметов.
- Одним концом мегаомметр подключают к той фазе, по отношению к которой мы будем замерять сопротивление. Второй провод по очереди соединяется с остальными фазами. Важно перебрать все возможные комбинации соединения разных жил.
- Все данные о проверке сохраняются в документальном виде: дата, измерительные приборы, температура, схема подключения, условия процедуры, все собранные электрические данные.
Нормы и допустимые значения сопротивления изоляции
Нормы сопротивления изоляции электропроводки заложены в ГОСТ либо ТУ, которые регулируют производство кабельной продукции различного назначения. К примеру, для кабеля связи нормативы приводятся с условием температуры среды +20 градусов и длины кабеля в 1 км. В случае, если участок кабеля длиннее 1 км, норматив необходимо разделить на его длину. Если длина меньше – умножить. Поправка на температуру и влажность также обязательно учитывается.
Нормы для распространенных типов кабеля приведены в таблице:
Тип кабеля |
Норма сопротивления изоляции |
Силовые кабели с напряжением в сети от 1000 В |
>10 Мом/км |
Силовые кабели с напряжением в сети до 1000 В |
>0,5 Мом/км |
Городские низкочастотные кабели связи |
>5 000 Мом/км |
Коаксиальные и магистральные кабели |
10 000 Мом/км |
Контрольные кабели |
>1 Мом/км |
Кабели связи с полиэтиленовой изоляцией |
6500 Мом/км – с оконечными устройствами, 1000 Мом/км – без оконечных устройств |
Кабели с алюминиевой оболочкой и шланговым полиэтиленовым покрытием |
>20 Мом/км (сопротивление между кабелем и землей) |
Кабели связи с кордельно-бумажной изоляцией |
10 000 Мом/км – с оконечными устройствами, 3000 Мом/км – без оконечных устройств |
Кабели связи с трубчато-бумажной и пористо-бумажной изоляцией |
8000 Мом/км – с оконечными устройствами, 1000 Мом/км – без оконечных устройств |
Измерение сопротивления изоляции кабелей и проводов
Доброе время суток, друзья!
Я заметил, что есть много вопросов по измерениям изоляции кабеля. Поэтому сегодняшняя статья будет посвящена этой теме.
Следует разделять кабели, провода и шнуры на напряжение до 1000В и кабели на напряжение выше 1000В.
Первые в свою очередь делятся на силовые и контрольные.
В соответствии с ГОСТ 15845-80
Силовой кабель: кабель для передачи электрической энергии токами промышленных частот.
Кабель управления: кабель для цепей дистанционного управления, релейной защиты и автоматики.
Контрольный кабель: кабель для цепей контроля и измерения на расстоянии электрических и физических параметров.
Сопротивление изоляции – отношение напряжения приложенного к диэлектрику к протекающему сквозь него току (току утечки).
Ненормированная измеряемая величина – величина, абсолютное значение которой не регламентировано нормами.
Состояния изоляции, считают удовлетворительным, если каждая цепь с соединенными электроприемниками имеет сопротивление изоляции не менее соответствующего нормативного значения, приведенных ниже:
Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм.
Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. (Возможность ввода кабеля на напряжение выше 1000В в работу определяется по величине тока утечки при испытании изоляции повышенным выпрямленным напряжением и отсутствием пробоев изоляции).
Измерение следует проводить до и после испытания кабеля повышенным напряжением (ПУЭ изд.6 пп. 1.8.37(2)).
В необходимых случаях перед измерением концы испытуемого изделия должны быть разделаны.
Для повышения точности измерения допускается на концевых разделках устанавливать охранные кольца, которые должны быть при измерении заземлены или присоединены к экрану измерительной схемы.
Время выдержки образцов перед проведением испытаний при температуре окружающей среды должно быть не менее 1 ч, если в стандартах или технических условиях на конкретные кабельные изделия не указано другое время выдержки.
Выполнение измерений мегаомметром ЭС0202/2г (М4100/3(4,5)).
При выполнении измерений выполняют следующие операции:
Установить переключатель измерительных напряжений в нужное положение в соответствие с величиной требуемого испытательного напряжения, а переключатель диапазонов в положение «1».
При вращении рукоятки генератора начинает светиться индикатор ВН, что свидетельствует о наличии выходного напряжения на клеммах прибора.
Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rх». При необходимости экранировки, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э».
Для проведения измерений вращать рукоятку генератора со скоростью (120 ¸140) оборотов в минуту. После установления стрелочного указателя, сделать отсчет значения измеренного сопротивления. При необходимости переходить на другой диапазон.
Порядок измерения сопротивления изоляции для кабелей приведен ниже:
В условиях действующих электроустановок отключать силовые кабели от коммутационных аппаратов не обязательно, исключение составляют случаи когда отключение связано с обеспечением безопасных условий работ – технические мероприятия при подготовке рабочего места. Принцип измерения сопротивления изоляции состоит в том, чтобы произвести измерение между каждыми парными проводниками кабеля и (в случае если кабель бронированный) между каждым проводником и бронёй. Иными словами необходимо измерить сопротивление изоляции между фазными проводниками, между каждым фазным проводником и нулевой жилой, между каждым проводником кабеля и РЕ- проводником (бронёй). Если в кабеле существует и РЕ-проводник и броня одновременно, то их можно считать одним проводником при измерении сопротивления изоляции. В случае, если в кабеле нет пятой жилы и нет брони, за РЕ-проводник можно принимать металлические конструкции РУ, заземление и заземлённых частей электрооборудования. Таким образом, можно выявить нарушение изоляции нулевой жилы и общей изоляции или оболочек кабеля.
Измерение сопротивления изоляции контрольных кабелей проводят аналогично. При измерении разрешается объединять все проводники вместе и измерять затем сопротивление изоляции всего пучка относительно одного, затем отсоединять следующий и т.д . Проводник, у которого изоляцию уже измерили, необходимо подключить к общему пучку проводников. Второй конец контрольного кабеля также должен быть «разделан» и все жилы разведены в воздухе. Таким образом, постепенно измеряется сопротивление изоляции каждой жилы кабеля относительно земли и других жил.
Если контрольный кабели уже установлен и все жилы его подключены к оборудованию, то сопротивление изоляции этого кабеля измеряют вместе с сопротивлением изоляции самого оборудования. Иными словами отключение кабеля от цепей оборудования не производится.
На этом сегодня все… Если у Вас возникли вопросы, задавайте. Отвечу в новых статьях.
Как проверить изоляцию проводов 🚩 для чего нужен мегаомметр 🚩 Квартира и дача 🚩 Другое
Вам понадобится
- — мегаомметр;
- — электрик с группой безопасности III или IV.
Инструкция
Для того чтобы проверить изоляцию проводов, найдите опытных специалистов-электриков с группой по электробезопасности не ниже III или IV. При проведении всех работ руководствуйтесь Правилами устройства электроустановок (ПУЭ) и Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).
Подберите подходящий прибор. Для измерения сопротивления изоляции кабеля сечением менее 16 кв. мм возьмите мегаомметр на 1000 В, для более толстого или бронированного кабеля – на 2500 В. Изоляцию любого провода можно измерить мегаомметром на 1000 В.Чтобы проверить изоляцию электропроводки с сопротивлением изоляции менее 1 МОм, испытайте их переменным током напряжением 1 кВ промышленной частоты. Для того чтобы результаты измерений носили официальный характер, приборы должны пройти ежегодную поверку в органах Госстандарта РФ.
Обратите внимание, измерения должны проводится при температуре изоляции выше +5⁰С и при низкой степени увлажненности. Чтобы узнать степень увлажненности, рассчитайте коэффициент абсорбции, разделив измеренное сопротивление изоляции через минуту после приложения напряжения прибора на сопротивление изоляции через 15 секунд. Этот коэффициент не должен отличаться от заводских данных более, чем на 20%.
Подсоединяйте мегаомметр к проводу при помощи гибких проводов с ограничительными кольцами перед щупами контакта и рукоятками на концах для изоляции. Чем меньше будут соединительные провода, тем точнее будут измерения, сопротивление их изоляции не должно быть менее 10 МОм.
Перед началом измерений проверьте испытываемый объект, на нем должно отсутствовать напряжение. Если есть необходимость, проведите заземление (после подключения прибора).
В месте подсоединения прибора очистите изоляцию от грязи и пыли. Подсоедините провод к гнездам мегаомметра. Выберите выходное напряжение, которое будет соответствовать испытываемому проводу или кабелю.
Если вы измеряете сопротивление изоляции при помощи прибора генераторного типа, вращайте рукоятку генератора со скоростью 120-140 оборотов в минуту. Для начала работы цифрового измерителя достаточно нажать кнопку.
Снимите показания прибора и запишите. Если измерений несколько, после каждого снимайте емкостной заряд, заземляя те части объекта, на которые подавалось напряжение.
Замер сопротивления изоляции электропроводки
Содержание:
- Необходимость проведения замеров
- Чем измеряется сопротивление изоляции
- Как проводятся измерения
- Периодичность замеров сопротивления
Перед вводом объекта в эксплуатацию в обязательном порядке проводятся приемо-сдаточные работы, в ходе которых осуществляются все необходимые проверки. Одной из таких проверок является замер сопротивления изоляции электропроводки. Данное мероприятие должно проводиться через определенные промежутки времени, в соответствии с установленными нормами и правилами, а также после того как был выполнен ремонт электросетей системы освещения. В этих случаях замеряется сопротивление изоляции между фазными и нулевыми проводниками. Отдельно выполняется проверка между фазой, нулем и заземляющим проводом. Проведение подобных замеров позволяет установить, в каком состоянии находится изоляция.
Пониженное сопротивление может привести к пожару и электротравмам обслуживающего персонала. Именно поэтому и требуется периодический контроль, чтобы своевременно предупредить возникновение аварийных ситуаций.
Необходимость проведения замеров
Проведение регулярных замеров сопротивления изоляции электропроводки, позволяет установить степень износа защитного покрытия проводов, предотвратить потери тока в электрической сети. Кроме того, обеспечиваются безопасные условия труда для специалистов-электриков, устойчивая и надежная работа оборудования.
С течением времени в процессе эксплуатации качество изоляции проводов постепенно снижается и в конце концов она становится непригодной для дальнейшего использования. Основная причина заключается в том, что в изоляционных оболочках кабелей и проводов используются различные типы диэлектриков, отличающихся составом, характеристиками и возможностью работы в том или ином режиме эксплуатации.
Если кабельно-проводниковая продукция используется неправильно, подвергается незапланированным нагрузкам, в таких случаях наступает интенсивное снижение изоляционных свойств. В результате, нормативные сроки службы также сокращаются. Даже при правильном выборе эксплуатационного режима изоляция все равно постепенно изнашивается в течение определенного периода времени.
Факторы, влияющие на состояние изоляции:
- Рабочие режимы, определяемые токовой нагрузкой на сеть и проводники.
- Значение напряжений приемников электроэнергии.
- Всевозможные механические повреждения.
- Работа симметричной системы напряжения.
- Негативное воздействие окружающей среды – перепады температур, влажность и другие.
Снижение сопротивления изоляции до отметки 0,5 Мом и менее, вызывает утечку тока в электрической сети. В свою очередь, это приводит к нагреву проводников, последующему замыканию и возгоранию. Для того чтобы предотвратить возможные негативные последствия, необходимо регулярное проведение замеров сопротивления изоляции кабелей и проводов.
Во время проведения замеров помимо сопротивления учитывается степень внутренних и внешних повреждений, а также загрязнение и увлажненность, снижающие рабочие свойства изоляции. Поэтому измерения должны выполняться только специализированной организацией, имеющей квалифицированный персонал.
Чем измеряется сопротивление изоляции
Измерение сопротивления изоляционного слоя осуществляется с помощью мегаомметра. Принцип работы этого устройства заключается в замерах токов утечки, которые могут иметь место между какими-либо двумя точками, расположенными в электрической цепи. Показания замеров напрямую связаны с состоянием изоляционного слоя: если токи утечки повышаются, то сопротивление изоляции, соответственно, понижается. Отсюда следует, что такие электроустановки требуют принятия дополнительных мер по устранению обнаруженных недостатков.
В современных условиях для проведения замеров используются два типа мегаомметров. Существуют магаомметры со встроенным генератором, а также устройства, работающие от аккумулятора. По номинальному напряжению мегаомметры разделяются на приборы в 100, 500, 1000 и 2500 вольт. Приборами с минимальным номиналом проводятся измерения электроустановок, напряжением до 50В. То или иное устройство применяется в зависимости номинальной нагрузки электрической цепи. К самостоятельной работе с мегаомметром допускаются специалисты, имеющие третью группу допуска по электробезопасности и выше.
Как проводятся измерения
Перед началом измерительных работ мегаомметр обязательно проверяется на работоспособность. С этой целью выводы устройства нужно коротко замкнуть между собой. Далее путем вращения ручки генератора устанавливается наличие электрической цепи в соответствии с показаниями прибора. Затем выводы разделяются друг с другом и изолируются, после чего с прибора нужно снять данные о максимально возможных показаниях. Основная суть данного метода заключается в измерениях соотношения между приложенным постоянным напряжением изоляции и током, протекающим сквозь нее.
В начале измерений проводится визуальный осмотр целостности электропроводки и распределителей, в которых соединяются провода. Далее исследуются места непосредственного подключения проводов к оборудованию. Проведение замеров начинается только после обесточивания всей линии и отключения потребителей. В устройствах с напряжением не более 400 вольт, сопротивление изоляции должно быть не менее 0,5 мОм. Все данные измерений фиксируются в протоколе. Для замеров должны использоваться только проверенные, лицензированные приборы.
В однофазной сети замеры выполняются между проводниками фазы и нуля, а затем между ними же и защитным проводом. Количество измерений должно соответствовать количеству проводов, имеющихся в данной цепи. Минимально допустимое значение сопротивления составляет не менее 0,5 мОм. Если измерения указывают на более низкие параметры, в этом случае вся электрическая цепь разбивается на отдельные участки. После этого проводятся замеры изоляции на каждом из них, начиная от распределительного щита. Обнаруженный провод с неисправной изоляцией подлежит обязательной замене.
Перед началом замеров нужно обязательно проверить температуру окружающей среды. При наличии отрицательных температур наступает превращение в лед водяных частичек, содержащихся в электропроводке. В результате, свойства проводника изменяются и показания прибора становятся неточными.
По итогам измерений составляется протокол, в котором фиксируются полученные результаты. В трехфазных сетях выполняется не менее 10 замеров, в однофазных вполне достаточно и трех. В самом конце протокола указывается соответствие проведенных измерений требованиям ПУЭ.
Периодичность замеров сопротивления изоляции электропроводки
В электроустановках, установленных снаружи и во взрывоопасных помещениях измерения должны проводиться 1 раз в год, а во всех остальных случаях – 1 раз в течение 3 лет. Сопротивление изоляции кабелей, установленных в кранах и лифтах, измеряется ежегодно. Такой же срок установлен и для электрических плит.
Измерения сопротивления в трехфазных сетях проводятся в той же последовательности, что и в однофазных. Единственным отличием является количество фаз, участвующих в замерах.
Нормы приемо-сдаточных испытаний силовых кабельных линий / Справка / Energoboard
Объем приемо-сдаточных испытаний.
В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний силовых кабельных линий включает следующие работы.
- Проверка целостности и фазировки жил кабеля.
- Измерение сопротивления изоляции.
- Испытание повышенным напряжением выпрямленного тока.
- Испытание повышенным напряжением промышленной частоты.
- Определение активного сопротивления жил.
- Определение электрической рабочей емкости жил.
- Измерение распределения тока по одножильным кабелям.
- Проверка защиты от блуждающих токов.
- Испытание на наличие нерастворенного воздуха (пропиточное испытание).
- Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.
- Контроль состояния антикоррозийного покрытия.
- Проверка характеристик масла.
- Измерение сопротивления заземления.
Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13.
Силовые кабельные линии напряжением выше 1 кВ и до 35 кВ — по п.п.1-3, 6, 7, 11, 13, а напряжением 110 кВ и выше — в полном объеме, предусмотренным настоящей инструкцией.
Проверка целостности и фазировки жил кабеля.
Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.
Технология «прозвонки» с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил «прозвонкой» будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для «прозвонки» используют низкоомные телефонные трубки, а в качестве источника питания — батарейку от карманного фонаря.
После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),
Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1). Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.
Измерение сопротивления изоляции.
Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.
Методика измерения сопротивления и приборы, используемые при этом, представлены испытаниях изоляции электрооборудования повышенным напряжением.
Перед началом измерения сопротивления изоляции на кабельной линии необходимо:
- Убедиться в отсутствии напряжения на линии.
- Заземлить испытуемую цепь на время подключения прибора.
После окончания измерения, прежде чем отсоединять концы от прибора необходимо снять накопленный заряд путем наложения заземления.
Разрядку кабеля необходимо производить при помощи специальной разрядной штанги сначала через ограничительное сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.
При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания мегаомметра следует отмечать только после окончания заряда кабеля.
Категорически запрещается измерять сопротивление изоляции на кабельной линии, если она хотя бы на небольшом участке проходит вблизи другой линии, находящейся под напряжением.
Испытание повышенным напряжением выпрямленного тока.
Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.
Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.
Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей
Тип кабеля | Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ | Продолжительность испытания, мин | |||||||
2 | 3 | 6 | 10 | 10 | 35 | 110 | 220 | ||
Бумажная | 12 | 18 | 36 | 60 | 100 | 175 | 300 | 450 | 10 |
Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД | — | 6 | 12 | — | — | — | — | — | 5 |
Пластмассовая | — | 15 | — | — | — | — | — | — | 10 |
Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.
При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ — со скоростью не более 0,5 кВ/с.
В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.
Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.
При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.
Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.
При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.
Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.
После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.
Испытание повышенным напряжением промышленной частоты.
Испытание повышенным напряжением промышленной частоты допускается
производить для линий 110-220 кВ взамен испытания повышенным напряжением выпрямленного тока.
Величины испытательного напряжения промышленной частоты приведены в табл. 6.
Таблица 6. Величины испытательного напряжения промышленной частоты
Рабочее напряжение кабеля, кВ | Испытательное напряжение кВ | Испытательное напряжение по отношению к земле, кВ | Продолжительность испытания, мин |
110 | 220 | 130 | 5 |
220 | 500 | 288 | 5 |
Методика испытания и установки для испытания изоляции повышенным напряжением промышленной частоты приведены испытаниях изоляции электрооборудования повышенным напряжением.
Определение активного сопротивления жил.
Производиться для линий напряжением 35 кВ и выше.
Активное сопротивление жил кабельной линии постоянному току, приведенные к 1 мм сечения, 1 м длины и температуре + 20 С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.
Активное сопротивление жил кабелей постоянному току представлены в табл. табл. 7, 13.8.
Методики измерения и необходимые приборы приведены.
Таблица 7. Активное сопротивление жил кабелей постоянному току при температуре +20°С
Сечение, мм | Сопротивление, Ом/км | Сечение, мм | Сопротивление, Ом/км |
16 | 1,15/1,95 | 95 | 0,194/0,33 |
25 | 0,74/1,26 | 120 | 0,153/0,26 |
35 | 0,52/0,88 | 150 | 0,122/0,207 |
50 | 0,37/0,63 | 185 | 0,099/0,168 |
70 | 0,26/0,44 | 240 | 0,077/0,131 |
Примечание: в числителе указано для медной, а в знаменателе для алюминиевой жилы.
Таблица 8. Активное сопротивление жил маслонаполненных кабелей постоянному току при температуре +20°С
Сечение, мм | Сопротивление, Ом/км* | Сечение, мм | Сопротивление, Ом/км* | ||
Низкого давления | Высокого давления | Низкого давления | Высокого давления | ||
120 | 0,1495 | 0,1513 | 400 | 0,04483 | 0,04453 |
150 | 0,1196 | 0,1209 | 500 | 0,03587 | 0,03575 |
185 | 0,09693 | 0,09799 | 550 | 0,03260 | 0,03295 |
240 | 0,07471 | 0,07601 | 625 | 0,02869 | 0,02846 |
270 | 0,06641 | 0,06593 | 700 | — | 0,02562 |
300 | 0,05977 | 0,06040 | 800 | 0,02242 | — |
350 | 0,05123 | — | — | — | — |
Определение электрической рабочей емкости жил.
Производиться для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5%.
Измерение емкости кабельных линий производится методом амперметравольтметра или по мостовой схеме.
Метод амперметра-вольтметра. позволяет с большой точностью определять емкости со значениями C≥0,1 мкФ, что соответствует параметрам кабелей. Схема измерения по данному методу представлена на рис. 2.
По результатам измерения напряжения и тока емкость, мкФ, вычисляется по формуле
где: I — емкостной ток, А; U — напряжение на кабеле, В; f — частота напряжения в сети, Гц.
По данным измерения определяется удельная емкость кабеля, мкФ/км
В том случае, когда измерение методом амперметра-вольтметра требует специального оборудования и приборов, желательно применение мостового метода.
При измерении мостовым методом используются мосты переменного тока типа МД-16, P5026, P595 и др. Измерения производятся по перевернутой схеме (о порядке измерения следует руководствоваться указаниями). При выборе средств измерения следует учитывать, что удельные погонные емкости кабелей 35 кВ и выше составляют десятые доли мкФ/км, а пределы измерения емкости мостами переменного тока находятся в диапазонах:
мост Р5026 на напряжении 3-10 кВ — 10 ÷1 мкФ, на напряжении менее 100 В — 6,5·10-4÷5·102 мкФ;
мост МД-16 на напряжении 6-10 кВ – 0,3·10-4 ÷0,4 мкФ, на напряжении 100 В — 0,3 · 10-3 ÷100 мкФ;
мост P595 на напряжении 3-10 кВ –3·10-5 ÷1 мкФ, на напряжении менее 100 В – 3 · 10-4 ÷102 мкФ.
Измерение распределения тока по одножильным кабелям.
Неравномерность в распределении токов на кабелях не долина быть более 10%. Измерения производятся переносными приборами или токоизмерительными клещами.