Солнечные батареи из чего сделаны: Из чего сделаны солнечные батареи: их разновидности, принцип работы – Как делают солнечные элементы

Содержание

Из чего сделаны солнечные батареи: их разновидности, принцип работы

С того момента, когда в далеком 1839 году французский ученый Александр Беккерель случайно наткнулся на непонятное явление, связанное с воздействием света на некоторые материалы, произошло много событий. И наткнувшись на старую публикацию в физическом журнале, немецкий физик Генрих Герц уже не случайно проводит опыты, облучая ультрафиолетовым светом цинковые разрядники резонатора.

Его исследования привели к открытию того, что сейчас называется «внешний фотоэффект». Далее эстафету принял русский ученый Александр Столетов, который, исследуя это явление, сделал несколько важнейших открытий и вывел первый закон фотоэффекта. В начале ХХ века Альберт Эйнштейн, взяв за основу гипотезу Макса Планка, дал принципиальное объяснение фотоэффекта.

С тех пор многие выдающиеся ученые занимались изучением фотоэффекта, надеясь найти этому явлению практическое применение. И решение было найдено. Вначале итальянец Джакомо Луджи Чамичан создает прототип, а уже в 1954 году американская компания Bell Laboratories объявила о том, что ее специалистами создана первая в мире солнечная батарея, вырабатывающая электрический ток под воздействием солнечного света. Это и был фотоэффект в действии.

Так что же это такое, из чего сделаны солнечные батареи, как они работают.

Как правило, когда говорят «солнечная батарея», подразумевают, что это один или несколько фотопреобразователей, которые, будучи облучены солнечным светом, преобразовывают его в электричество. Главный элемент преобразования солнечного излучения в электричество – это, конечно же, материал, который, будучи освещенным, преобразовывает поток света в электроэнергию. Материал этот – полупроводник.

В электротехнике, электронике используются, как правило, два полупроводника – германий (Ge) и кремний (Si). В фотовольтаике в большинстве своем используется кремний как наиболее распространенный и дешевый. Германий – редкий элемент, дорогой, поэтому он используется в исключительных случаях.


Структура солнечной батареи

Для изготовления солнечных фотопреобразователей используются два вида кремния – монокристаллический и поликристаллический. Как уже явствует из характеристик, монокристаллические фотопреобразователи изготавливаются из кристаллов кремния, выращенных искусственно.

Эти кристаллы затем по специальной технологии нарезаются на тонкие пластины, из которых изготавливаются сами фотопреобразователи. Нарезанные пластины тщательнейшим образом проверяются на точность нарезки, толщину самой пластины, отсутствие физических дефектов.

Этот контроль необходим для последующей сборки самого солнечного модуля, так как малейшее отклонение параметров хотя бы одного элемента влечет за собой значительные потери мощности всего солнечного модуля. Пластины монокристаллического кремния окрашены в равномерный темно-серый цвет – это естественный цвет кристаллов кремния.


Кремниевые фотоэлементы
Поликристаллический (слева), монокристаллический (справа)

В отличие от монокристаллов, поликристаллические фотопреобразователи изготавливаются методом литья. Такие фотопреобразователи более просты и доступны. Если солнечные элементы из монокристаллического кремния представляют собой восьмиугольники строго выдержанного размера (допуск ± несколько микрометров), то поликристаллические элементы – как правило, прямоугольной формы с голубовато-синим отливом. К кремнию для получения особых свойств добавляют определенное количество мышьяка (As) и бора (B).

Преобразование света в электричество

Это и есть практическое применение фотоэффекта – прямое преобразование энергии света в энергию электрическую. Собственно, реакция материала на облучение светом зависит от кристаллической структуры полупроводника. Структурно каждый фотоэлемент состоит из двух слоев. Один слой в кристаллической решетке имеет переизбыток электронов и называется областью электронов.

Второй слой, соответственно испытывает недостаток электронов и называется дырочной областью (в электронике места, в которых должны быть электроны, но они там отсутствуют, называются дырками). Граница между этими слоями называется электронно-дырочный p-n переход. В зависимости от типа полупроводника свойства перехода могут быть другими. Тогда он называется дырочно-электронный n-p переход.


Принцип работы фотоэлемента

Под воздействием света эти два слоя начинают взаимодействовать, электроны из одного слоя начинают замещать дырки в другом слое. При этом возникает электродвижущая сила, превращая, по сути, эти два слоя в электроды обычной батарейки.

Теперь, чтобы использовать эту электрическую энергию, остается только подпаять к поверхности каждого слоя тонкие проводники и подключить нагрузку. Следует отметить, что этот процесс не вызывает никаких химических реакций в полупроводнике, а, следовательно, солнечная батарея, набранная из таких фотопреобразователей, может служить очень долго.

Во многих странах, в исследовательских центрах проводятся работы, которые призваны решить проблему повышения эффективности солнечных батарей. Пробуются комбинации различных материалов для использования их в качестве фотоэлементов. В тонкослойные кремниевые элементы добавляют в различных пропорциях галлий, мышьяк, медь, кадмий. Причем эти присадки могут быть как в чистом виде, так и в комбинациях материалов, например, арсенид галлия (GaAs).

Кроме того, на эффективность солнечных батарей большое влияние оказывает если не совпадение, то максимальная схожесть как физических (размеры), так и электрических (вольт-амперные характеристики) элементов, входящих в один солнечный модуль. В процессе эксплуатации солнечных батарей может возникнуть ситуация, при которой один или несколько фотопреобразователей могут быть затенены.

Таким образом, они на какой-то промежуток времени исключаются из рабочей конфигурации модуля. Но, будучи включенными в общую цепь, они могут разогреваться и, как следствие, выйти из строя. Отвод тепла от фотопреобразователей, постоянно облучаемых солнцем, также является достаточно серьезной проблемой, над решением которой работают многие ученые.

Разновидности солнечных батарей

Существуют несколько наиболее широко распространенных типов солнечных батарей. В первую очередь это, конечно же, солнечные панели, собранные на базе кремниевых фотопреобразователей. Наиболее высокая эффективность у модулей, изготовленных на базе монокристаллического кремния.


Монокристаллический модуль

Коэффициент полезного действия таких модулей по последним данным в некоторых случаях может достигать 23%. В среднем же достигается значение эффективности, равное 18%. Более дешевые панели собраны на базе поликристаллического кремния.

Эффективность таких фотопреобразователей ниже и средний показатель ее не превышает 16%. Однако за счет того, что поликристаллические элементы имеют прямоугольную форму, они более полно заполняют корпус модуля. Поэтому значения мощностей, вырабатываемых модулями на базе монокристаллического и поликристаллического кремния, будут отличаться друг от друга на весьма незначительную величину.


Поликристаллический модуль

Наиболее дешевые гелиевые батареи выполнены на базе аморфного кремния. Эти модули имеют наименьшую эффективность – порядка 8%, но и стоимость производимого электричества у этих устройств также самая низкая.


Модуль на базе аморфного кремния

Следует также отметить гелиевые панели на базе теллурида кадмия (CdTe), выполненные по тонкопленочной технологии. Пленка толщиной в несколько сотен микрометров из этого полупроводника наносится на панель. Производство этих панелей является наименее вредоносным по сравнению с производством панелей других видов. Эффективность этих батарей достигает 12%.


Модуль на базе теллурида кадмия

В последнее время получают распространение гелиевые модули на основе полупроводникового соединения, в состав которого входят индий, галлий, медь и селен (CIGS). Эти модули, как и модули из теллурида кадмия, изготавливаются по тонкопленочной технологии. Их эффективность достигает 15%.


Модуль на базе CIGS

Разумеется, потребителю вовсе не обязательно знать, как устроена и работает его домашняя солнечная электростанция. Ведь никого не интересует, как устроен, скажем, телевизор. Мы просто смотрим передачи. Но, покупая телевизор, мы уже знаем его характеристики, знаем фирму, которая его выпускает, слышали отзывы о нем.

А вот, чтобы выбрать себе оборудование для домашней электростанции, нужно иметь хотя бы приблизительное представление о том, что именно вы собираетесь приобрести и как это будет работать. И нет сомнений в том, что элементарные знания об устройстве тех или иных элементов помогут вам сделать правильный выбор.

Из чего делают солнечные батареи: изготовление, конструкция, разновидности.

Область применения солнечных батарей.

Человечество научилось пользоваться солнечной энергией во многих областях своей жизни, но вот какие из них самые интересные:

  1. Электроника – уже давно во всем мире делают портативные устройства вроде калькуляторов, карманных фонариков и пр.
  2. Авиация – в данной области не так давно произошел прорыв: в Швейцарии создан самолет, использующий лишь солнечную энергию, запасая ее в батареи аккумулятора. Первый полет прототипа продолжался 26 часов.
  3. Электромобили – здесь применение солнечной энергии малоэффективно, КПД на уровне 10–15%. Поэтому много электричества для аккумулятора автомобиль запасти не может, к тому же солнце светит не всегда, сокращая тем самым суточный пробег.
  4. Энергообеспечение зданий – крыши домов некоторых тропических стран оборудованы солнечными батареями. Так значительно экономится электричество.
  5. Дороги – в 2014 открылась велодорожка в Голландии, выложенная солнечными панелями. Проект оказался недостаточно эффективен, но сейчас рассматривается строительство проезжих частей из солнечных батарей во Франции. По таким дорогам электромобили смогут передвигаться без подзарядки.
  6. Космос – здесь солнце светит постоянно и без помех для солнечного модуля, поэтому на космических аппаратах они устанавливаются повсеместно.
  7. Медицина – учеными из Южной Кореи была разработана солнечная батарея, вживляемая под кожу. Она тоньше волоса в 15 раз, ее цель – обеспечить имплантированное в тело оборудование бесперебойным электричеством.

Устройство и принцип работы солнечных батарей.


Составные части солнечной батареи называются фотоэлементами. Соединение между ними параллельное и последовательное, а располагают их на каркасе из материалов, не проводящих электричество. Полупроводники работают благодаря фотогальваническому эффекту, означающему трансформацию лучистой энергии солнца в электричество.

Принцип работы солнечной батареи.Из чего делают солнечные батареи.

Для изготовления солнечных батарей используют кремний, это второй по распространенности химический элемент на Земле. У него высокая электропроводимость и хорошая способность притягивать солнечные лучи. Однако обычный кремний для данного производства не годится, его преобразовывают в пригодный, по специальной технологии. Изготовление такого кремния – очень дорогой и сложный процесс.

Бывают два вида фотоэлектрических преобразователей: на основе монокристаллического и поликристаллического кремния. Их производят по разной технологии. КПД первого равен 17,5%, а второго – менее 15%. Конструкция состоит из отдельных модулей, подключаемых между собой блоками.

Из чего делают солнечные батареи зависит от ее наиболее значимого параметра – полезной мощности. Расчет экономичности всей установки зависит именно от нее. Полезная мощность определяется по напряжению и силе тока на выходе, на которые влияет интенсивность лучей солнца.

В итоге электроэнергия переходит на хранение в аккумуляторы и накапливается там. Аккумулятор – это химический источник тока, который заряжается при контакте с потенциалом больше его собственного напряжения. Слабый солнечный свет снижает интенсивность заряда батареи аккумулятора, тогда она отдает энергию электроприемнику. Получается, что аккумуляторная батарея всегда функционирует в режиме разрядки и подзарядки.

Следить за этими процессами можно при помощи специального контроллера. Циклический заряд требует постоянного напряжения или постоянного заряда тока. Когда заряд батареи полон, к ней еще подключают резистор, поглощающий избыточную мощность.

Изготовление солнечной батареи своими руками.

Изготовление солнечных батарей.

Расчет собственной солнечной электростанции не должен сразу быть грандиозным и масштабным. Достаточно будет в первый раз сделать пробную панель небольшой площади, а потом, используя те же схемы, нарастить на конструкцию остальные элементы.

  1. Изготовление каркаса. Здесь расчет максимально простой, а материалом служат алюминиевые уголки, либо уже готовые рамы со стеклом. Покрытие может быть прозрачным и с минимальной пропускной способностью ИК-спектра, чтобы не спровоцировать нагревание кремниевых элементов. Менее подходящий – поликарбонат, а наиболее доступным можно считать стекло, оптимальное решение – плексиглас.
  2. Монтаж корпуса батареи. Необходимо включить в расчет дополнительное расстояние между модулями, около 3 мм. Схема требует предварительного изготовления рамы, соединение выполняют при помощи метизов. Чтобы расчет долговечности батареи оправдал себя, должна быть обеспечена максимальная герметичность конструкции. В раму закладывается лист прозрачного материала, прижимается и фиксируется, все должно хорошо просохнуть, чтобы испарения герметика не создали пленку на элементах. Соединение углов проводится согласно схемы метизами и шурупами.
  3. Пайка солнечных элементов. Кропотливый и сложный процесс, но если произвести расчет, самодельная солнечная батарея обойдется в 4 раза дешевле заводской панели. Сэкономить средства поможет покупка в интернете элементов с дефектами, которые не потеряли своей функциональности. Однако внешний вид всей конструкции несколько пострадает. Сперва необходимо припаять контакты, нужно быть аккуратным, так как солнечные элементы довольно хрупкие. Нужно изготовить картонную заготовку и по ней нарезать проводники. Ориентируйтесь схемы, на пайку уйдет много времени.
  4. Сборка солнечной панели. Соединение элементов проще проводить на разметочной подложке, в расчет площади нужно добавить 3–5 мм между каждой частью батареи. За основу можно взять лист фанеры, маркировать уголки на нем и закрепить элементы поочередно на монтажную ленту. Герметизация не нужна, однако такой способ крепления в полевых условиях не обеспечит долгую службу панели. Электрическая схема пайки подразумевает расположение «плюсовых» дорожек на лицевой, а «минусовых» на обратной стороне элементов. Далее следует нанесение флюса и припоя, а затем аккуратная пайка серебряных контактов. Клемма выводится на внешнюю сторону рамы. Соединение токовыводящих проводов должно быть изолировано, для этого могут быть использованы трубки для капельницы.

Интересное:

Сборка солнечных батарей своими руками.
Солнечная батарея из алюминиевых банок своими руками.
Изготовление солнечной панели своими руками.

Солнечная батарея на крыше.

Добросовестный расчет, качественное оборудование, четкая схема и усидчивость обеспечат долгое функционирование самодельной солнечной батареи для домашних нужд.

Недостатки и преимущества источников солнечной энергии.

Устройство солнечной батареи можно охарактеризовать как с положительной, так и с отрицательной стороны.

Плюсы:

  • все оборудование весит относительно немного;
  • отсутствие необходимости прокладывания к опорам кабеля;
  • расходы на установку и обслуживание панелей сведено к минимуму;
  • оборудование при работе не издает абсолютно никакого шума;
  • энергия солнца экологически чистая;
  • общедоступность и неисчерпаемость;
  • солнечные батареи способны прослужить довольно долго.

Минусы:

  • процесс сборки и расчет требуют большого труда;
  • ночью батареи не вырабатывают электричество;
  • солнечные панели очень громоздкие;
  • низкий КПД – в электричество преобразуется около 20% энергии, остальное рассеивается в виде тепла;
  • эффективность работы панелей снижается при пасмурной погоде;
  • оборудование чувствительно к загрязнениям и механическим повреждениям.

Интересное: 7 мифов об альтернативной энергии.

Солнечная энергия.

Факторы, которые необходимо учитывать при конструировании солнечных батарей:

  • региональные особенности солнечной активности;
  • расчет угла наклона солнечной панели и возможность ее слежения за солнцем;
  • насколько энергоемко оборудование, которое будет питать солнечная батарея;
  • важно, из чего изготовлены панели (оргстекло, кремний, стекло и т.д.).

Из чего делают солнечные батареи?

Из чего делают солнечные батареи? Для тех, кому интересны способы замены привычных электростанций альтернативными источниками энергии, расскажем подробнее о механизме действия солнечных батарей, их составе и производительности.

Из чего же, из чего же, из чего же…?

В России к солнечным батареям многие люди до сих пор относятся с долей недоверия и даже с некоторой опаской. Между тем в развитых странах Европы и Америки число жителей, заменяющих привычные электростанции альтернативными источниками энергии, чтобы не зависеть от изменений цен на электроэнергию, растет день ото дня. Установка солнечной батареи изрядно опустошит ваш кошелек, но в долгосрочной перспективе затея многократно себя окупает.

Солнечная батарея представляет собой набор параллельно и последовательно соединенных полупроводников – фотоэлементов, преобразующих солнечную энергию в электричество. Фотоэлементы для солнечных батарей чаще всего производятся на основе кремниевых пластин, которые зарекомендовали себя среди пользователей долголетием и высоким КПД.

Срок службы такой пластины может достигать 30 лет, а потеря эффективности за весь срок эксплуатации составляют не более 20 %. Но и стоимость такой пластины в сравнении с конкурентами высока. Приобретение пленочных элементов на основе полимеров обойдется покупателю значительно дешевле, но заменить пришедший в негодность элемент придется быстрее. В таблице 1 представлена краткая сравнительная характеристика существующих элементов солнечных батарей.

Таблица 1. Сравнительная характеристика солнечных батарей

Вид батареи

КПД

Срок службы

Этапы производства

Отличительные черты

Кремниевые:

 

до 30 лет

  • Очистка сырья (кварца).
  • Выращивание кристаллов.
  • Формирование пластины.
  • Добавление доп. элементов.
  • Сборка готовой батареи.
  • технологически сложное производство;
  • высокая себестоимость выпуска;
  • возможно производство гибридов;
  • доступность сырья для производства;
  • экологичность

Монокристаллические

18–24%

Поликристаллические

12–18%

Аморфные

5-6%

Пленочные

 

до 18 лет

  • Подготовка пленки-основы.
  • Нанесение на пленку фотоэлемента.
  • Резка в размер.
  • крупные габариты готовой пластины;
  • низкая себестоимость;
  • гибкость и легкость элемента;;
  • экологичность.

основа – теллурид кадмия

10-12%

основа – селенид меди-индия

15-20%

основа – полимеры

5-6%

Солнечная батарея является основным звеном в процессе переработки солнечной энергии в электрическую. Для создания полноценного источника энергии одной солнечной батареи будет недостаточно, необходимо будет приобрести аккумулятор, инвертор, контроллеры. Прежде чем тратить немалые деньги на покупку и установку подобной системы, рекомендуем вам учесть следующие нюансы:

  • электрическая станция работает круглыми сутками, а солнечная батарея по ночам или в пасмурные дни оказывается не у дел;
  • некоторые фотоэлементы содержат опасные вещества;
  • пластины батареи могут перегреваться, необходим монтаж системы охлаждения.

Если говорить о положительных сторонах применения солнечных батарей, то следует отметить экологичность процесса, доступность сырья (солнечного света) и полную независимость владельца системы от динамики цен на электричество.

Теперь, зная о видах батарей, сроке их службы и отличительных особенностях, решить вопрос о выборе наилучшего варианта не составит для вас особого труда.

Конструкция солнечной батареи: из чего она состоит

Сегодня солнечная энергия используется практически во всех сферах жизни, от зарядки телефонов и питания детских игрушек до энергообеспечения частных (и даже многоквартирных!) домов. Преимущества гелиопанелей уже общеизвестны, а вот конструкция солнечной батареи и многие ее рабочие особенности по-прежнему малознакомы большинству людей. А между тем, в строении и особенностях работы таких устройств нет ничего непостижимого.

Как правило, подобные батареи нередко путают с гелиоколлекторами. Это достаточно распространенная ошибка, притом что эти устройства очень непохожи. Общее у них только одно – использование энергии солнца. Но если батареи преобразовывают эту энергию в электричество за счет явления фотоэффекта, то в коллекторах лучи нагревают внутренний жидкий теплоноситель и вырабатывают тепловую энергию. Отсюда и различие в сферах применения: коллекторы устанавливают для подогрева воды (реже — для отопления небольших домов), а батареи – для энергообеспечения домов и подзарядки техники.

Что такое «солнечная батарея»

Каждая серийная солнечная батарея – это набор соединенных определенным образом кремниевых фотоячеек, помещенных в защитный корпус с прозрачной лицевой частью. Фотоячейки отвечают за преобразование энергии солнца в электричество (иными словами – за выработку фототока), а корпус защищает их от внешних воздействий.

Кроме того, он обязательно снабжается специальными клеммами, через которые солнечные батареи соединяются между собой в гелиополя и подключаются к другому оборудованию (инверторам, аккумуляторам и т.д.). Подобное устройство позволяет и эффективно преобразовывать энергию солнца (с минимально возможными для серийных панелей потерями), и избегать порчи хрупких фотоячеек.

Фотоячейки

Фотоячейки в серийных солнечных батареях используются кремниевые, причем они бывают трех типов: из поликристаллов, из монокристаллов и из напыленного кремния. Первые два вида представляют собой кристаллические ячейки, они образуются либо при поли-, либо при монокристаллизации кремния. Третий же тип – это тонкопленочная ячейка, которая состоит из напыленного на гибкую тонкую подложку кремниевого слоя.

Каждый из этих видов имеет свои особенности и преимущества. Так, у моноячеек самый высокий КПД, гибкие ячейки можно устанавливать на криволинейных поверхностях, а поличейки отличаются более низкой стоимостью при достаточно высокой производительности (хоть и меньшей, чем у монокристаллов).

Корпус

Конструкция корпуса солнечной батареи включает в себя, помимо самих фотоячеек, несколько элементов:

  • Защитную алюминиевую рамку. Она придает корпусу жесткость и предохраняет торцы от проникновения влаги;
  • Стекло. Стекло используется закаленное, антибликовое, оно обеспечивает более эффективное поглощение солнечного спектра и защищает фотоячейки;
  • Ламинирующие слои. Они располагаются сверху и снизу фотоячеек и обеспечивают герметизацию конструкции в сочетании с удалением зазоров между стеклом и фотоячейками;
  • Заднюю стенку. Обычно ее изготавливают из легкого, но прочного материала, вплоть до толстой PET-пленки;
  • Клеммную коробку. Коробка включает в себя соединительные клеммы для интеграции солнечной батареи в общую структуру.

Причем качество этих составных элементов у разных производителей (особенно – малоизвестных) может сильно отличаться, и зачастую не в лучшую сторону. Поэтому при выборе солнечной батареи репутации производителя нужно уделить особое внимание. Дело в том, что некачественные корпуса очень быстро выходят из строя, в результате чего гелиопанель не сможет выполнять свои функции.

Как работают гелиобатареи

Работают все солнечные батареи по одному принципу – фотоэффекту, иными словами, образованию тока под действием солнечных лучей в определенных материалах (полупроводниках с разными примесями). Лучи солнца, попадая на поверхность двухслойной полупроводниковой пластины, передают электронам верхнего слоя дополнительную энергию. В результате этого электроны начинают движение и переходят в нижний, второй слой. Таким образом, слои полупроводников играют роль своеобразных электродов, между которыми возникает ток.

Но подобная конструкция солнечных батарей подразумевает и несколько нюансов. Например, полупроводники должны быть разного типа проводимости (один — так называемого «дырочного», с избытком положительных зарядов, второй – «электронного», с избытком отрицательного заряда). Кроме того, ширина зоны перехода электронов должна быть не больше определенной величины, чтобы электроны могли ее преодолеть. Именно поэтому принцип действия одинаков для всех солнечных ячеек.

Подключение и установка фотобатарей

Подключение солнечных панелей выполняется по нескольким схемам и зависит от определенных факторов.

Соединение отдельных батарей

Отдельные батареи соединяются между собой последовательно, параллельно или же последовательно-параллельно. Это позволяет получить гелиополе с нужными параметрами выходных тока и напряжения. Так, при последовательной коммутации увеличивается общее напряжение, при параллельной – сила тока. Смешанное же соединение позволяет гибко подбирать оба этих параметра.

Подключение к энергосистеме дома

Состав домашней энергосистемы и методика подключения солнечных батарей определяются нуждами потребителей и типом нагрузки. Так, если от гелиопанелей запитывается энергосберегающая нагрузка (12-вольтная), то использовать инвертор не нужно. Дело в том, что солнечные батареи генерируют постоянный ток, который и использует энергосберегающая нагрузка. Обычная же техника потребляет переменный ток, для получения которого понадобится инвертор. Также состав схемы должен включать в себя аккумулятор (если подразумевается потребление солнечной энергии в пасмурные дни или ночью) и контроллер заряда для регулировки этих процессов.

Нюансы установки

Монтируют солнечные батареи главным образом на крышах, хотя возможна и установка на стене здания или отдельно стоящих опорах. Также нужно иметь в виду, что верхние ряды не должны затенять нижние, для чего между ними необходимо выдерживать определенные интервалы. Ориентируют панели преимущественно на юг, а угол их наклона в идеале должен совпадать с географической широтой местности.

Какие бывают типы, виды солнечных батарей и панелей

 

Не так давно в нашу жизнь вошли альтернативные источники питания. Наиболее распространенными и экологически чистыми считаются солнечные батареи. Их легко можно поставить на крышу и черпать электроэнергию света. Сейчас рассмотрим все особенности и нюансы подобных энергетических установок.

Блок: 1/18 | Кол-во символов: 289
Источник: https://batareykaa.ru/solnechnye-batarei-dlya-doma-i-dachi/

Разделы статьи

Кремниевые солнечные батареи

Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?

Блок: 2/12 | Кол-во символов: 534
Источник: https://www.solnpanels.com/vidy-solnechnyh-batarej/

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Блок: 2/6 | Кол-во символов: 1902
Источник: http://www.stroy-podskazka.ru/solnechnye-batarei/gibkie—paneli/

Солнечные батареи: характеристики

  • Фотоэлемент. Портативные солнечные батареи способны работать на кристаллическом или аморфном фотоэлементе. Первые имеют высокий КПД (от 8 до 14%), но при этом хрупкие и тяжелые, тогда как устройства на основе аморфного фотоэлемента характеризуются низким весом, пластичностью, гибкостью, но у них и КПД, который в редких случаях достигает отметки в 8%. Понятно, что более привлекательным для туриста будет вариант с кремниевым элементом: поликристаллические батареи (синего цвета) или монокристаллические (черные). Последние стоят дороже, но имеют максимальную производительность.
  • Мощность. Параметр, который определяется размером рабочей поверхности и разновидностью фотоэлемента. Чем мощнее будет устройство, тем оно дороже, поэтому при выборе того или иного варианта важно оценивать потребности, чтобы не переплачивать за воздух. Как определить оптимальную мощность портативной солнечной батареи для туриста? Исходя из следующих параметров: для зарядки одного power bank или пары смартфонов понадобится порядка 7 Вт. В два раза больше мощности потребуется для зарядки ноутбука на день. Видеокамера или фотоаппарат в зависимости от модели потребуют от 10 до 20 Вт.
  • Функционал. Речь идет о комплектации устройств и возможностях. Самые простые модели способны справиться с зарядкой смартфона, другие обеспечат зарядку техники, универсальных аккумуляторов и так далее. Так как мы говорим о переносных солнечных батареях для туризма, по умолчанию подразумевается, что эксплуатироваться устройства регулярно будут в неблагоприятных погодных условиях — при повышенной влажности, в широком температурном диапазоне, в пыльной среде и прочее.
  • Цена. Стоимость солнечных батарей на мировом рынке варьируется в широком диапазоне. Портативные устройства не стали исключением: цена зависит от множества факторов — это и ценовая политика компании-производителя, это и тип фотоэлемента, это и соотношение мощности с весом и габаритами, это наличие дополнительных функций. Словом, несложно найти вариант на любой вкус, цвет и кошелек.

 Переносные солнечные батареи для туризма: особенности выбора

Важно. Большой выбор хорош только тогда, когда вы точно знаете, что хотите получить в результате. Поэтому не стоит спешить: потратьте несколько часов или даже дней на анализ рынка в нужном вам направлении, сравните модели батарей между собой, чтобы суметь подобрать вариант, который устроит по всем параметрам, начиная от эксплуатационных характеристик и заканчивая стоимостью.

Блок: 2/4 | Кол-во символов: 2436
Источник: https://altenergiya.ru/sun/perenosnye-solnechnye-batarei-dlya-turizma.html

Монокристаллические солнечные батареи

 Переносные солнечные батареи для туризма: особенности выбора

Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.

Блок: 3/12 | Кол-во символов: 689
Источник: https://www.solnpanels.com/vidy-solnechnyh-batarej/

Использование

Портативная электроника

 Переносные солнечные батареи для туризма: особенности выбора

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

Для подзарядки электромобилей.

Авиация

Одним из проектов по созданию самолета, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий

 Переносные солнечные батареи для туризма: особенности выбора

 Переносные солнечные батареи для туризма: особенности выбора

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование.

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Дорожное покрытие

В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.

В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учета отопления)

.

В феврале 2017 года в нормандской деревне французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни Tourouvre-au-Perche. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.

Использование в космосе

 Переносные солнечные батареи для туризма: особенности выбора

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство.

Блок: 3/10 | Кол-во символов: 3730
Источник: https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B0%D1%82%D0%B0%D1%80%D0%B5%D1%8F

Типы и технические характеристики солнечных батарей

На данный момент выделяют несколько вариантов, о которых речь пойдет ниже.

Что такое солнечная батарея для дома?

По сути это модули, захватывающие энергию солнца и преобразующие ее в электричество. Обычно их можно наблюдать в виде прямоугольных листов размером с шифер.

Кремниевые солнечные батареи

Это усовершенствованные элементы питания на основе аморфного кремния. К подобным видам относятся тонкопленочные кремниевые солнечные батареи.

Аморфный кремний

Упомянутый выше кремний — это парообразующий гидрид. Ему можно придать разную форму. Раскалённые пары задерживаются на подложке, а обычные кристаллы не создаются. Это позволяет заметно снизить затраты на производство.

Разница между аморфным и кристаллическим кремнием

Отличие в том, что аморфным батареям не нужны прямые солнечные лучи. Они отлично собирают рассеянное освещение в тот момент пока солнце закрыто тучами.

Имея великолепную гибкость позволяют укрепить на них полупроводниковые элементы. Такие кремниевые пластины для солнечных батарей позволяют выполнять работу в ильном смоге. Или на предприятии где полно аэрозольных испарений.

На данный момент запущено уже третье поколение аморфных солнечных батарей.

Разновидности поколений:

  1. Первый подобный элемент питания имел один переход. Но выдавал всего 5% КПД. Работал около 10 лет.
  2. Имел один переход, но работал 20 лет. КПД стал 8%.
  3. У третьего поколения КПД поднялся до 12%. Работают больше 2-х предыдущих.

Технология позволяет выполнять напыление кремния на гибкое и жесткое основание.

Солнечные батареи из аморфного кремния способны активно реагировать на слабое освещение. Используются часто на территориях где преобладает пасмурная погода.

Основные преимущества солнечных кремниевых батарей

  1. Теряют мало мощности при затенении.
  2. На домах их практически не видно. При желании можно тщательно замаскировать.
  3. В момент повышения температуры они мало нагреваются. Перерабатывают больше электричества. У кристаллических батарея мощность при увеличении температуры снижается.
  4. Производство достаточно упрощенное поэтому брак минимален.
  5. Вырабатывают больше электричества в момент слабого освещения. В условиях пасмурной погоды они способны накапливать энергии на 10-20% больше чем кристаллические.

Единственный минус подобных источников питания — это КПД. Он будет немного ниже. В течение 10 лет работы их мощность понизится всего на 10%.

Перовскитные солнечные батареи

Данные элементы питания изготавливают из минерала с названием перовскит. Он способен заменить кремниевые батареи, так как более экономически выгоден. На данный момент КПД установок из этого элемента достигает 20,9%.

Перовскитные СБ

Он был открыт больше 100 лет назад. Иначе его называют титанат кальция. Был найден на Урале Густавом Розе еще в 1839 году.

Когда-то давно это вещество использовалось как диэлектрик для конденсаторов.

В научных кругах известно, что кремниевая пластинка обладает параметрами в 180 микрон. Перовскит же толщиной в 1 микрон способен поглощать столько же световых лучей сколько и кремний толщиной в 180 мкр.

Световой спектр у титана кальция выше. В итоге получается так что энергия, получаемая в результате действия этих пластин будет значительно дешевле.

Состав этого уникального вещества:

  1. Титан.
  2. Кальций.
  3. Водород.

Они имеют определенное расположение в кристаллической решетке. Собирая световые лучи они быстро их поглощают. Единственная проблема заключается в том, что у них нарушается стабильность при повышении температуры. Ученым пришлось серьезно поработать над этой проблемой и в итоге вышел инновационный материал. Они создали две тандемные ячейки. Теперь можно помещать в них 2-а вещества без замыкания.

Основные преимущества

  1. Стабильны к температурным колебаниям.
  2. На каждой пластике имеются электроды из углерода.
  3. Способны максимально отдавать электроэнергию. Подобного удалось достичь за счет добавления марганца.

На данный момент эти солнечные панели способны проработать всего 1-2 года. Но исследования по модернизации продолжают вестись. Поэтому будем надеяться, что в ближайшем будущем на свет появятся эффективные и долговечные солнечные батареи.

Складная солнечная батарея

Данный тип позволяет использовать энергию света в походах, на даче, в путешествиях, для рыбалки. Их вполне возможно поместить в рюкзак. Это позволит в любой момент воспользоваться энергией, например, для зарядки мобильника, ноутбука, планшета или еще чего-нибудь.

Данные СБ можно складывать

В продаже можно отыскать подобные батареи, состоящие из 6 модулей в каждом из которых имеется по 3 кремниевых пластинки.

Органические солнечные батареи

Это гибкие элементы, в состав которых включены органические полимеры. Их можно без проблем печатать на принтере и получать выгодный источник энергии.

Орг СБ

Гибкая солнечная батарея может производиться в виде масштабных листов пластика. Минусом является малый коэффициент преобразования света в электрический ток.

Основные плюсы тонкопленочных солнечных батарей
  1. Экологически чистые.
  2. Низкая цена.
  3. Можно сэкономить ресурсы, даваемые природой.
  4. Низкое негативное воздействие на здоровье людей.
  5. Энергетически эффективные.

Такие полимерные солнечные батареи могут быть выполнены в виде любой формы. Их можно изготавливать в форме листа шифера у которого будет сохранена текстура. В итоге потребитель получит и электричество, и защиту от осадков в одном флаконе! Так же рулонными батареями можно оснастить фонари в саду.

Поликристаллические и монокристаллические солнечные батареи

Данные элементы являются наиболее распространенными.

Монокристаллические

Они имеют множество квадратов из-за особой кремниевой решетки и их углы слегка подрезаны. При создании применяется всего 1-н кристалл. В конечном итоге получается изделие цилиндрической формы. В последующем его разрезают на тонкие пластины. Подобный вид позволяет значительно сэкономить пространство. Однотипный цвет говорит о том, что используется кремний высокого качества на 99,99%.

Моно

После первичного изготовления все детали плотно укладывают в одну панель. С боков она окружена пластиковыми барьерами. Теперь батарея готова к использованию.

Основные преимущества:

  1. Работоспособны в минусовых температурах.
  2. Могут проработать долго до 25 лет.
  3. Обладают высоким КПД.
  4. Занимают небольшую площадь.

Но производство достаточно дорогостоящее на выращивание кристаллов уходит много времени и средств.

Поликристаллические

Здесь уже используется больше одного кристалла. И выращивать ничего не нужно.

поли

Сначала плавят кремний и ждут, когда он остынет. При охлаждении он превращается в твердое вещество. В итоге этой процедуры получаем кремниевую фигуру в виде прямоугольника. После этого выполняется нарезка. Каждая пластина будет толщиной меньше 1 мм.

Батареи, которые уже отслужили свой срок прекрасно подойдут для создания из них поликристаллического источника питания.

Созданные фотоэлементы легко наклеиваются на специальный лист. А дальше их помещают в крепкую раму, которую затем окрашивают. Так же над ней проводят процедуру герметизации.

Положительные черты:

  1. С легкостью выдерживают капризы погоды.
  2. Изготавливают с использованием дешевых технологий.
  3. Выпускаются в разных формах.
  4. Неравномерная поверхность позволяет показывать неплохой результат в неблагоприятную погоду.

Чем отличается монокристаллическая солнечная батарея от поликристаллической?

Разница между двумя модулями заключается в наличие кристаллов и сложности производства. Первые выполнить значительно сложнее, так как приходится выращивать нужные элементы. Поликристаллы же появляются в процессе нагревания и остывания. Такое отличие имеют эти пластины.

Минусы батарей имеющих монокристаллы и поликристаллы

  1. КПД у поли – 17%, у моно – 22%. Для целей космоса КПД доходит до 38%.
  2. Для работоспособности потребуется АКБ.
  3. Очень хрупкие. Если треснет, то работать не будет.
  4. Очень зависимы от погоды.
  5. После 25 лет работы поли теряют 30% эффективности, моно 20%.
  6. Данный продукт достаточно дорогой.

Приобретать установки на основе этих кремниевых пластин следует после тщательного обдумывания.

Прозрачные солнечные батареи

На данный момент научились создавать прозрачные источники питания. Иногда их можно заметить в виде окна с черными точками. Но на дынный момент уже встречаются элементы, которые не отличишь от стекла.

Прозр СБ

Они используют невидимый спектр лучей светила инфракрасную и ультрафиолетовую часть. Нагрев таким панелям не грозит так как они способны поглощать ИК свечение.

Их можно без проблем нанести на гибкую пленку или твердую поверхность стекла. Изготавливаются они из материала по типу пластика. Помещение освещают на 70%.

Второй вариант — это нанесение на стекло.

Солнечные батареи жалюзи

Здесь все просто! Берутся обычные кремниевые пластины и крепятся на оконные жалюзи. Если свет мешает человек слегка закрывает окна и панели, повернутые к солнцу, начинают захватывать лучи.

Батареи жалюзи

Гетероструктурные солнечные батареи

Это элементы питания, выполненные по технологии гетероперехода с внутренними тоненькими пленочками. Пленка эта имеет аморфный кремний. Эта технология позволяет концентрировать в центре кристалла больше энергии.

гетероструктурные СБ

По сути это гибрид монокристаллического и пленочного типа солнечных батарей.

Основные плюсы:

  1. Высокий КПД.
  2. Стойкие к темным дням.
  3. Очень медленно изнашиваются.
  4. Лучше улавливают рассеянный свет.
  5. Стабильно работают в температурных колебаниях.

Гелевые солнечные батареи

В действительности это словосочетание ошибочное, так как таких панелей не существует. Люди так говорят потому что подразумевают связку с гелевым аккумулятором. Этот АКБ способен прослужить около 10-15 лет, а для солнечной станции это очень значимо. Поэтому если у вас имеются средства, лучше всего брать именно гелевый накопитель энергии.

Советские солнечные батареи

Впервые в СССР данные элементы были установлены в Ташкенте в 1933 году. Батареи были поставлены на дома советских ученых. Испытания проводились еще в 1928 году в местной лаборатории.

Тогда 1-й рамы на квадратный метр считалось хватит на 5-6 жильцов.

Солнечные батареи Тесла

Данные элементы питания позволяют выполнить кровлю с встроенными солнечными элементами. То есть на вид это будет самая обычная кр

История солнечных батарей

Фотовольтаика – это прямое преобразование световой энергии солнца в энергию электрическую. История солнечных батарей берет начало в первой половине XIX века, когда в 1839 году было открыто лежащее в ее основе явление фотоэлектрического эффекта. Но тем не менее с тех пор прошло более ста лет, прежде чем произошло первое преобразование энергии света в электричество.

Открытие

Впервые с фотоэлектрическим эффектом столкнулся в 1839 году французский физик Александр Эдмон Беккерель. Он проводил эксперименты с электролитическими элементами, используя платину в качестве электродов – анода и катода.


Александр Эдмон Беккерель (1820–1891)

Измеряя при этом ток, протекающий между электродами, ученый заметил, что при свете его величина незначительно возрастает по сравнению с величиной тока в темноте. Так было открыто явление фотоэлектрического эффекта. Но, хотя открытие и состоялось, практическое применение ему было найдено только через несколько поколений.

Фундаментальные исследования

В 1873 году английский инженер-электрик Смит Уиллоуби, проводя опыты по определению проводимости селена, обнаружил, что при освещении этот проводник изменяет сопротивление. Открытие повлекло за собой целый ряд серьезных исследований по этой тематике.


Смит Уиллоуби (1828-1891)

В 1876 году Уильям Гриллс Адамс вместе со своим учеником Рихардом Эвансом Дэем обнаружили, что селен способен сам вырабатывать электричество, если его осветить достаточно мощным источником света. И хотя селен не пригоден к тому, чтобы вырабатывать электричество достаточной мощности, это исследование показало, что можно получать электроэнергию непосредственно из твердых материалов, без использования тепловой или механической энергии.

В 1883 году житель Нью-Йорка Чарльз Фриц создал первый в мире модуль из селеновых элементов. Этот модуль стал предшественником современных модулей фотовольтаики. Однако все фундаментальные работы по исследованию фотоэлектрического эффекта вызывали у многих ученых того времени большое сомнение в серьезности и перспективности этого открытия.

В 1884 году Юлий Элстер совместно с Гансом Фридрихом Гайтелем представили большую монографию, посвященную исследованию фотоэффекта. В 1887 году немецкий физик Генрих Рудольф Герц открыл новые свойства элементов, которые он назвал «внешний фотоэффект».


Генрих Рудольф Герц (1857–1894)

Тщательное исследование этого явления он поручил своему ученику Вильгельму Людвигу Францу Гальваксу. В том же году независимо от Гальвакса итальянский физик Риги Аугусто проводит аналогичные исследования, результаты которых практически совпали с результатами Гальвакса.

С 1888 по 1891 год исследованием внешнего фотоэффекта вплотную занимался выдающийся русский ученый Александр Григорьевич Столетов. На основании своих исследований он создал первый в мире фотоэлемент, в основу действия которого был положен внешний фотоэффект. Изучая зависимость силы тока от интенсивности излучения, попадающего на фотокатод, Столетов вывел первый закон фотоэффекта, который получил имя ученого – закон Столетова.


Александр Григорьевич Столетов (1839 – 1896)

Совместно с Гальваксом в 1889 году было открыто явление старения фотоэлементов – так называемое фотоэлектрическое утомление. Являясь основоположником количественных методов исследования, Столетов дал последующим поколениям ученых мощный инструмент для изучения и углубленного исследования фотоэффекта.

Этим инструментом успешно пользовались в дальнейших исследованиях лауреаты Нобелевской премии – немецкий физик Филипп Эдуард Антон Ленард и английский физик Джозеф Джон Томсон. В 1907 году Альберт Эйнштейн разработал теоретическое обоснование фотоэлектрического эффекта. За эту работу Эйнштейну в 1921 году была присуждена Нобелевская премия по физике.


Альберт Эйнштейн (1879 – 1955)

В 1912 – 1916 годах американский физик Роберт Эндрюс Милликен сумел экспериментально подтвердить теорию Эйнштейна. За это и ряд других работ, связанных с измерением заряда электрона, в 1923 году был удостоен Нобелевской премии по физике.

Следующий важный и логический шаг в развитие полупроводниковой техники и фотовольтаики был сделан в 1916 году польским ученым Яном Чохральским, который открыл процессы кристаллообразования, названные впоследствии его именем.


Ян Чохральский (1885 – 1953)

Дальнейшее развитие его работы получили в сороковые годы ХХ века, а в пятидесятые годы резко возросли потребности в полупроводниковых элементах, которые стали широко применяться в различных сферах техники и радиоэлектроники.

Фотоэлементы

В 1934 году проводились исследования с тонкой пленкой оксида меди, которая наносилась на медный анод в качестве полупроводника. Катод в этой электрической цепи также был покрыт полупрозрачной медной пленкой. Работая с такой схемой преобразования энергии света в энергию электрическую, ученые рассчитали, что при горизонтальном расположении пластин в перспективе можно получить мощность порядка 26 ватт на один квадратный метр.

В 1940 году Рассел Ол, сотрудник лаборатории Белла, проводил опыты с образцами на кремниевой основе и имеющих различные химические составы. Один образец при охлаждении дал трещину. Его распилили и проводили опыты по уже нерегламентированной программе. И вот здесь Рассел Ол неожиданно обнаружил, что если образец осветить, то электроизмерительные приборы, подключенные в цепь, показывают изменения тока и напряжения. Дальнейшие работы с кремнием уже носили целенаправленный характер. При исследовании кремниевых образцов с различными присадками были выведены общие закономерности, которые в конечном итоге привели к открытию p-n перехода в полупроводниках.

В 1948 году была разработана первая концепция полупроводниковых фотоэлектрических преобразователей на диодах Шоттки. В 1950 году Уильям Брэдфорд Шокли разработал теоретическую модель p-n перехода, создав тем самым базу для разработки современных солнечных батарей. За эту работу в 1956 году Уильяму Шокли была присуждена Нобелевская премия по физике.


Уильям Шокли (1910 – 1989)

В те годы лаборатория Белла в Нью Джерси была одним из самых лучших научно-исследовательских центров в мире. В 1953 году ученые этой лаборатории Дэрил Чапин, Кэлвин Фуллер и Джеральд Пирсон изготовили первые в мире кристаллические кремниевые солнечные элементы. Каждый из этих элементов имел площадь активной поверхности около двух квадратных сантиметров.

Эффективность самых первых фотоэлементов была всего 4%. Вдохновленные полученными результатами ученые продолжали работу над своим творением, и уже вскоре были получены элементы с эффективностью 6%.


Кэлвин Фуллер (1902 – 1994), Джеральд Пирсон (1905 – 1987), Дэрил Чапин (1906 – 1995)

25 апреля 1954 года газета «Нью-Йорк Таймс» на первой полосе поместила материал о сенсационном достижении ученых. Через некоторое время была достигнута эффективность 11%, и в 1955 году эти элементы были применены в качестве источника питания для телефонных усилителей. Совершенствовалась технология изготовления фотоэлементов, и вот уже в 1958 году в США, а через два месяца в СССР на орбиту вокруг Земли выводятся спутники, аппаратура которых частично питается от солнечных батарей.

Солнечная энергетика с тех пор сделала не один, а много качественных скачков. Сейчас очень трудно найти такую отрасль, где не используются солнечные батареи. От космических станций и мощнейших, в сотни мегаватт электростанций до наручных часов и детских игрушек. Освещение улиц, электроснабжение домов, сельскохозяйственных ферм, электромобили, велосипеды, яхты, самолеты на солнечных батареях – это уже не фантастика, а наша действительность.

Какие бывают типы, виды солнечных батарей и панелей

Содержание:

  1. Кремниевые солнечные батареи
  2. Плёночные солнечные батареи
  3. Что такое концентрационные солнечные модули
  4. Фотосенсибилизированные батареи
Какие бывают виды солнечных панелей?

Сегодня различные типы солнечных панелей набирают всё больше и больше популярности. И не зря, ведь помимо того, что население планеты Земля начинает задумываться об экологических источниках энергии, солнечные панели ещё и становятся всё более и более энергоэффективными. Конечно, самое основное что входит в любую солнечную систему энергообеспечения — это панели или батареи, поэтому важно разбираться что к чему. Конечно, система намного сложнее и в неё входят всякие стабилизаторы, инверторы и прочее, однако это не основной момент.

Какие бывают виды солнечных батарей или панелей?

На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему.

Кремниевые солнечные батареи

Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?

Монокристаллические солнечные батареи

Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.

Поликристаллические солнечные панели

Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу:

Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:

ФакторМонокристаллыПоликристаллы
Разница в структуреКристаллы направлены в одну сторону, зёрна параллельныКристаллы направлены в разную стороны, не параллельны
Стабильность работыВысокаяМеньше
СтоимостьДорогостоящие батареиТакже дорогостоящие, но дешевле
Окупаемость2 годадо 3х лет
КПДдо 22%до 18%
Технология производстваСовершеннее, сложнее, точнееПроще, отсюда и низкая стоимость

Аморфные солнечные панели или батареи из аморфного кремния

  • Данный вид солнечных батарей можно отнести как к кремниевым (потому что материал изготовления — кремний) так и к плёночным, ведь изготовлены они по принципу производства плёночных батарей. Но всё же отличия есть.
  • Здесь используются не кристаллы кремния, а так называемый силан (кремневодород). Его наносят на подложку, внутри батарей. КПД у такого вида солнечных батарей намного ниже — около 5%. Но всё не так плохо! Есть и преимущества, среди которых можно назвать: намного лучшее поглощение (в 20 раз лучше), лучше работает при отсутствии прямого солнца, когда пасмурно, эластичность панелей.
  • Также бывают сочетания моно и поликристаллических панелей с аморфными. Такое сочетание позволяет соединить преимущества двух различных типов. Например, батареи лучше работают, когда солнца недостаточно для обычных кристаллических батарей.

Плёночные солнечные батареи

Плёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности.

Плёночные батареи на основе теллурида кадмия

  • Кадмий — это материал, который обладает высоким уровнем светопоглощения, открытый как материал для солнечных батарей в 70-х годах. На сегодняшний день, этот материал применяется уже не только в космосе, на околоземной орбите, но и активно используется в качестве материала для солнечных панелей обычного, домашнего пользования.
  • Самой главной проблемой в использовании такого материала является его ядовитость. Однако исследования говорят о том, что уровень кадмия. который уходит в атмосферу, слишком мал, чтобы наносить вред здоровью человека. Также, несмотря на низкий КПД в районе 10%, стоит единица мощности в таких батареях меньше, чем у аналогов.

Плёночные панели на основе селенида меди-индия

Тип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%.

Полимерные солнечные панели

Вид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью.

Сравнительная таблица: виды солнечных батарей и уровень КПД

Напоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.

КПДв процентах
Монокристаллические17-22%
Поликристаллические12-18%
Аморфные5-6%
Теллурид кадмия10-12%
Селенид меди-индия15-20%
Полимерные5-6%

Что такое концентрационные солнечные модули?

Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года.

Фотосенсибилизированные батареи

Фотосенсибилизирующий краситель опять-таки помогает оптимизировать приём солнечной энергии, но при этом солнечные панели работающие по этому принципу, скорее напоминают процесс фотосинтеза в природе. Впрочем, пока что это только концептуальная идея, не имеющая воплощения. Кто знает, может пока Вы соберётесь покупать солнечные панели, она уже будут вовсю продаваться на рынке.

Ну что, разобрались какие бывают солнечные батареи? Надеемся, эта статья поможет Вам определиться, какую батарею поставить для дома, но если после прочтения у Вас возникло ещё больше вопросов — милости просим на наш сайт, где Вы найдёте всю информацию про солнечные батареи и источники питания, работающие на солнечной энергии а также про различные виды солнечных панелей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *