Соединение звезда – 14. Преимущества трехфазных систем. Трех- и четырехпроводные системы. Основные определения. Соединение фаз потребителя по схеме «Звезда» и «Треугольник» (схемы и основные соотношения).

Содержание

§60. Схема соединения «звездой»

Схема «звезда с нулевым проводом». При соединении фазных обмоток источника трехфазного тока (например, генератора) по схеме «звезда с нулевым проводом» концы его трех обмоток соединяют в общий узел 0, который называется нулевой точкой, или нейтралью источника (рис. 206). Приемники электрической энергии объединяют в три группы ZA, ZB и Zc (фазы нагрузки), концы которых также соединяют в общий узел 0′ (нулевая точка, или нейтраль нагрузки). Обмотки источника соединяют с фазами нагрузки четырьмя проводами. Провода 1, 2 и 3, присоединенные к началам фазных обмоток (А, В, С), называют линейными. Провод 4, соединяющий нулевые точки 0 и 0′, называют нулевым, или нейтральным. Напряжения uА, uв и uс между началами и концами обмоток отдельных фаз источника или фаз нагрузки ZA, ZB и Zc называют фазными. Они равны также напряжениям между каждым из линейных проводов и нулевым проводом. При отсутствии потери напряжения в обмотках источника (при холостом ходе) фазные напряжения равны соответствующим э. д. с. в этих обмотках. Фазными токами i

A, iB, ic называют токи, протекающие по обмоткам источника или фазам нагрузки ZA, ZB и Zc. Напряжения uAB, uBC, uCA между линейными проводами и токи, проходящие по этим проводам, называют линейными.

Примем условно за положительное направление токов iA, iB и ic в фазах источника — от конца соответствующей фазы к ее началу,

Рис. 206. Схема «звезда с нулевым проводом», направление в ней линейных и фазных токов и напряжений

Рис. 207. Векторные диаграммы напряжений для схемы «звезда с нулевым проводом»

в фазах нагрузки — от начала к концу, а в линейных проводах — от источника к приемнику. Будем считать положительными напряжения uА, uB и uC в фазах источника и нагрузки, если они направлены от начала фаз к концам, а линейные напряжения uАВ, uBC, uСА — если они направлены от предыдущей фазы к последующей.

Из рис. 206 следует, что в схеме «звезда» линейные токи равны фазным

, т. е. Iл = Iф, так как при переходе от фазы источника или нагрузки к линейному проводу нет каких-либо ответвлений. Мгновенные значения напряжений согласно второму закону Кирхгофа:

uАВ = uА – uB; uBC = uB – uС; uСА = uС – uА.

Переходя от мгновенных значений напряжений к их векторам, имеем:

?АВ = ?А – ?B; ?BC = ?B – ?С; ?СА = ?С – ?А.

Следовательно, линейное напряжение равно разности векторов соответствующих фазных напряжений

. По полученным векторным уравнениям можно построить векторную диаграмму (рис. 207, а), которую можно преобразовать в диаграмму (рис. 207,б). Из этой диаграммы видно, что в симметричной трехфазной системе векторы линейных напряжений ?AB, ?ВС, ?СА образуют равносторонний треугольник ABC, внутри которого расположена симметричная трехлучевая звезда фазных напряжений ?А, ?В, ?С. В равнобедренных треугольниках АОВ, ВОС и СОА основание равно Uл две другие стороны — Uф и острый угол между этими сторонами и основанием составляет 30°. Следовательно,

Uл = 2Uф

cos 30° = 2U ?3 / 2 = ?3 Uф

Таким образом, в трехфазной системе, соединенной по схеме «звезда с нулевым проводом», линейное напряжение больше фазного в ?З раз. Величина ?З = 1,73 положена в основу шкалы номинальных напряжений переменного тока: 127, 220, 380 и 660 В. В этом ряду каждое следующее значение напряжения больше предыдущего в 1,73 раза.

В нулевом проводе проходит ток i0, мгновенное значение которого равно алгебраической сумме мгновенных значений токов, проходящих в отдельных фазах: i0 = iA+iB+ic.

Переходя от мгновенных значений токов к их векторам, имеем:
?0=?A+?B+?C.

Векторы токов ?А, ?В

и ?С сдвинуты относительно векторов соответствующих напряжений ?A, ?B, ?С на углы ?A, ?B, ?C (рис. 208, а). Значения этих углов зависят от соотношения между активным и реактивным сопротивлениями, включенными в данную фазу. На этой же диаграмме показано сложение векторов ?А, ?В и ?C для определения вектора тока ?0. Обычно ток ?0 меньше токов

Рис. 208. Векторные диаграммы напряжений и токов в отдельных фазах для схемы «звезда с нулевым проводом» при неравномерной (а) и равномерной (б) нагрузках фаз

IA, 1В и IC в линейных проводах, поэтому нулевой провод имеет площадь поперечного сечения, равную или даже несколько меньшую площади сечения линейных проводов.

В схеме «звезда с нулевым проводом» приемники электрической энергии можно включать на два напряжения: линейное Uл (при подключении к двум линейным проводам) и фазное UФ (при подключении к нулевому и одному из линейных проводов).

Схема «звезда без нулевого провода». При равномерной или симметричной нагрузке всех трех фаз, когда во всех фазах включены одинаковые активные и реактивные сопротивления (RA =RB = RC и ХAВС), фазные токи iA, iB и iC будут равны по величине и сдвинуты от соответствующих фазных напряжений на равные углы. В этом случае получаем симметричную систему токов, при которой токи i

A, iB, iC будут сдвинуты по фазе друг относительно друга на угол 120°, а ток i0 в нулевом проводе в любой момент времени равен нулю (рис. 208,б).

Очевидно, что при равномерной нагрузке можно удалить нулевой провод и передавать электрическую энергию источника к приемнику по трем линейным проводам 1, 2 и 3 (рис. 209). Такая схема называется «звезда без нулевого провода». При трехпровод-ной системе передачи электрической энергии в каждое мгновение ток по одному (или двум) проводу проходит от источника трехфазного тока к приемнику, а по двум другим (или одному) протекает обратно от приемника к источнику (рис. 210). Векторная диаграмма напряжений для схемы «звезда без нулевого провода» при равномерной нагрузке фаз будет такая же, как и для схемы «звезда с нулевым проводом» (см. рис. 207). Такими же будут и соотношения между фазными и линейными токами и напряжениями:

Iл = IФ и Uл = ?3 UФ

Следует отметить, что схема «звезда без нулевого провода» может быть применена только при равномерной нагрузке фаз. Практически это имеет место лишь при подключении к источникам трехфазного тока электрических двигателей, так как каждый трехфазный электродвигатель снабжен тремя одинаковыми обмотками, которые равномерно нагружают все три фазы. При неравномерной нагрузке напряжения на отдельных фазах нагрузки будут различными. На некоторых фазах (с меньшим сопротивлением) напряжение уменьшится, а на других увеличится по сравнению с нормальным, что является недопустимым.

Рис. 209. Схема «звезда без нулевого провода»

Практически неравномерная нагрузка фаз возникает при питании трехфазным током электрических ламп, так как в этом случае распределение тока между всеми тремя фазами не может быть гарантировано (отдельные лампы могут включаться и выключаться в индивидуальном порядке). Особенно опасны в схеме «звезда без нулевого провода» обрыв или короткое замыкание в одной из фаз. Можно показать путем построения соответствующих векторных диаграмм, что при обрыве в одной из фаз напряжение в других двух фазах уменьшается до половины линейного, вследствие чего лампы, включенные в эти фазы, будут гореть с недокалом. При коротком замыкании в одной из фаз напряжение в других фазах увеличивается до линейного, т. е. в ?З раз, и все лампы, включенные в этих фазах, перегорят. Поэтому при схеме «звезда с нулевым проводом» во избежание разрыва цепи нулевого провода в ней не устанавливают предохранители и выключатели.

Рис 210. Кривые изменения токов в линейных проводах (а) при трехпроводной системе и направление в них токов в различные моменты времени (б в, г)

Соединение звездой Википедия

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)Россия, ЕС (ниже 1000 В)ГерманияДания
АL1L1R
BL2L2S
CL3L3T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трёхфазных цепей

Звезда

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины

Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=IF;UL=3×UF{\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}

Несложно показать, что линейное напряжение сдвинуто по фазе на π/6{\displaystyle \pi /6} относительно фазных:

uLab=uFa−uFb=UF[cos⁡(ωt)−cos⁡(ωt−2π/3)]=2UFsin⁡(−π/3)sin⁡(ωt−π/3)=3UFcos⁡(ωt+π−π/3−π/2){\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}

uL=3UFcos⁡(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}

Мощность трёхфазного тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Несмотря на это, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}

Мощность трёхфазного тока при соединении треугольником

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Распространённые стандарты напряжений

СтранаЧастота, ГцНапряжение (фазное/линейное), Вольт
Россия [2]50220/230 [3] (бытовые сети)
230/400, 380/660, 400/690, 380, 400, 220/380, 3000, 6000, 10000 (промышленные сети)[источник не указан 518 дней]
Страны ЕС50230/400,
400/690 (промышленные сети)

660

450

Япония50 (60)120/208
США60120/208,
277/480
240 (только треугольник)

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования — фазировка (чередование фаз, то есть очерёдность протекания токов по фазам) принципиальна, так как от неё зависит направление вращения трёхфазных двигателей, правильная работа управляемых трёхфазных выпрямителей и некоторых других устройств. В разных странах маркировка проводников имеет свои различия, однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Трёхфазная двухцепная линия электропередачи

Цвета фаз

Каждая фаза в трёхфазной системе имеет свой цвет. Он меняется в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

СтранаL1L2L3Нейтраль / нольЗемля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), КитайБелыйЧерныйКрасныйГолубойЖёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина, Россия с 2009КоричневыйЧёрныйСерыйГолубойЖёлто/зелёный (в полоску)[4]
Европейский союз до апреля 2004[5]КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая ЗеландияКрасный (или коричневый)[6]Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый)Чёрный (или голубой)Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[7]КрасныйЧёрныйГолубойБелый или серыйЗелёный или цвета меди
Канада (в изолированных трехфазных установках)[8]ОранжевыйКоричневыйЖёлтыйБелыйЗелёный
США (альтернативная практика)[9]КоричневыйОранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

ЖёлтыйСерый или белыйЗелёный
США (распространённая практика)[10]ЧёрныйКрасныйГолубойБелый или серыйЗелёный, жёлто/зелёный (в полоску),[11] или провод цвета меди
НорвегияЧёрныйБелый/серыйКоричневыйГолубойЖёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди

См. также

Примечания

  1. ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. ↑ Согласно ГОСТ 29322-2014
  3. ↑ Согласно ГОСТ 29322-2014
  4. ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
  5. ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
  6. ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
  7. ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
  8. Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
  9. ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
  10. ↑ See Paul Cook: Harmonised colours and alphanumeric marking Архивная копия от 4 марта 2016 на Wayback Machine. IEE Wiring Matters, Spring 2006.
  11. ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.

Ссылки

Расчёт схемы звезда – звезда без нулевого провода

Расчёт такой же, как и для схемы звезда — звезда с нулевым проводом. Только будет отсутствовать комплексная проводимость нулевого провода Y0, так как нет нулевого провода (рис. 21).

Рис. 21. Схема соединений звезда – звезда без нулевого провода

Для этой схемы

(47)

Если нагрузка неравномерная, тои на фазах нагрузки будут разные напряжения:

AO`=ÉА -ÚO,ÚВO`=ÉВ -ÚO,ÚСO`=ÉС -ÚO(48)

А токи в фазах нагрузки будут найдены:

; (49)

; (50)

; (51)

Линейные токи по отношению друг к другу могут находиться под любым углом, т. е. образуют несимметричную систему векторов. По первому закону Кирхгофа их сумма должна равняться нулю:

A+ÍB+ÍC= 0. (52)

Если нагрузка равномерная, то:

(53)

так как 1 + а­2 + а = 0

В этом случае линейные токи ÍA,ÍB,ÍCобразуют симметричную систему векторов:

;;; (54)

Естественно, что:

0 =ÍA+ÍB+ÍC= 0. (55)

Расчёт схемы, когда нагрузка соединена звездой и известны линейные напряжения (рис. 22)

Сюда подходят схемы соединений треугольник – звезда и звезда – звезда без нулевого провода.

Рис. 22. Электрическая схема

По первому закону Кирхгофа можно записать:

A+ÍB+ÍC= 0 (56)

Токи в фазах нагрузки можно записать через фазные напряжения нагрузок ÚA,ÚB,ÚCи комплексные проводимости нагрузок:

A = ÚAYA; ÍВ = ÚВYВ; ÍС = ÚСYС; (57)

Подставим (57) в (56):

AYA+ÚВYВ+ÚСYС = 0 (58)

Фазные напряжения ÚВ иÚС могут быть выражены черезÚА и заданные линейные напряженияÚАВ иÚСА:

АВ=ÚА -ÚВ;ÚВ=ÚА -ÚАВ; (59)

СА=ÚС –ÚА;ÚС=ÚА +ÚАВ; (60)

Подставим (59) и (60) в (58):

AYA+ (ÚА –ÚАВ)YВ+ (ÚА +ÚАВ)YС = 0.

Отсюда

(61)

Теперь фазные напряжения ÚАиÚСвыразим черезÚВ и заданные линейные напряженияÚАВ иÚВС:

АВ=ÚА -ÚВ;ÚА=ÚВ +ÚАВ; (62)

ВС=ÚВ –ÚС;ÚС=ÚВ -ÚВС; (63)

Подставим (62) и (63) в (61):

(ÚВ +ÚАВ)YA+ÚВYВ+ (ÚВ -ÚВС)YС = 0.

Отсюда

(64)

Аналогично выразим ÚАиÚВвыразим черезÚС и заданные линейные напряженияÚСА иÚВС:

СА =ÚС –ÚА;ÚА=ÚС –ÚСА; (65)

ВС=ÚВ –ÚС;ÚВ=ÚС +ÚВС; (66)

Подставим (66) и (65) в (64):

(ÚС –ÚСА)YA+ (ÚС +ÚВС)YВ+ÚСYС = 0.

Отсюда

(67)

Расчёт схемы, когда нагрузка соединена треугольником и известны линейные напряжения (рис. 23)

Сюда подходят схемы соединений треугольник – треугольник и звезда – треугольник.

Рис. 23. Электрическая схема

Так как заданные линейные напряжения ÚAB,ÚBС,ÚСА напрямую подключаются к сопротивлениям нагрузкиZ­ab,Z­bc,Z­ca, то легко найти фазные токи нагрузокÍab,Íbc,Íca:

(67)

Токи в линейных проводах определяются по первому закону Кирхгофа для узлов a,b,c:

А+Ícа-Íab= 0;ÍА=Íаb–Íca; (68)

В+Íаb-Íbc= 0;ÍВ=Íbc–Íab; (69)

С+Íbc–Íca= 0;ÍС=Íca–Íbc; (70)

Если на выводах несимметричной трёхфазной нагрузки, соединённой треугольником, заданы фазные напряжения источника ÚA,ÚB,ÚC, обмотки которого соединены в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений:

AB=ÚA–ÚВ;ÚBС=ÚB–ÚС;ÚСА =ÚС–ÚС; (71)

Далее задача сводится к только что рассматриваемому случаю.

Расчёт трёхпроводной трёхфазной схемы, когда в линейных проводах включены сопротивления

Когда между генератором и нагрузкой большое расстояние, то необходимо учитывать сопротивления линейных проводов. Линейные провода обладают активным и индуктивным сопротивлениями.

Рассмотрим расчёт схемы соединений треугольник – треугольник (рис. 24).

Рис. 24. Схема соединения треугольник — треугольник

Будем считать, что нагрузка неравномерная. На схеме рис. 24 обозначено:R– активное сопротивление линейного провода,L– индуктивность линейного провода.

Ни один из выше рассмотренных методов расчёта напрямую не подходит для расчёта данной схемы.

Перед расчётом известны все линейные ЭДС генератора Е́АВ, Е́ВС, Е́СА, комплексные сопротивления нагрузок и линейных проводов.

Расчёт любой трёхфазной цепи начинается с написания систем трёх линейных и трёх фазных напряжений генератора. Предположим, что Е́АВ= 380В. Что бы не ошибиться, желательно строить векторную диаграмму линейных и фазных напряжений.

Вектор Е́АВнаправлен по вещественной оси комплексной плоскости (рис. 25)

Рис. 25. Векторная диаграмма

Вектор Е́ВСотстаёт от вектора Е́АВна 120°. В результате получилась следующая система:

Е́АВ = 380 В

Е́ВС= 380j120°= -190 –j329,09 В (72)

Е́СА = 380j120° = -190 –j329,09 В

Теперь запишем систему трёх фазных ЭДС генератора. Из векторной диаграммы рис. 25 видно, что ЭДС Е́Аотстаёт от Е́АВ ­на 30°. Треугольник линейных ЭДС равносторонний, все углы по 60°. Фазные ЭДС делят эти углы пополам. Кроме того известно, что фазные ЭДС в раз меньше линейных:

Поэтому для фазной ЭДС генератора можно записать:

Е́А= 220j30°= 190,526 –j100 В

Фазная ЭДС Е́В отстает от Е́А на 120°:

Е́В= 220j150°= -190,526 –j100 В

Фазная ЭДС Е́С опережает от Е́А на 120°:

Е́С= 220j90°=j220 В

Запишем теперь систему трёх фазных ЭДС генератора:

Е́А= 220j30°= 190,526 –j100 В

Е́В= 220j150°= -190,526 –j100 В (73)

Е́С= 220j90°=j220 В

Пользуемся ли мы системой трёх линейных ЭДС или трёх фазных ЭДС генератора, потенциалы точек А, В, С одинаковый в обоих случаях.

Для расчёта схемы рис. 24 воспользуемся системой трёх фазных ЭДС (73).

Далее следует преобразовать треугольник нагрузок в эквивалентную звезду. Обозначим через Z­a,Z­b,Z­cсопротивления эквивалентной звезды. Формулы для расчёта точно такие же, как и на постоянном токе, только расчёт ведётся в комплексных числах. На рис. 26 показана эквивалентная схема.

Рис. 26. Эквивалентная схема

Эквивалентные сопротивления звезды рассчитываются по следующим формулам:

(74)

(75)

(76)

В результате от исходной схемы рис. 24 треугольник – треугольник мы перешли к эквивалентной схеме звезда – звезда без нулевого провода, расчёт которой выше рассмотрен. Эта эквивалентная схема нужна, что бы найти линейные токи ÍA,ÍВ,ÍС.

Запишем сначала фазные сопротивления Z­А,Z­В,Z­С:

А= R + jXL +a; (77)

В= R + jXL +b; (78)

С= R + jXL +c; (79)

Далее найдем напряжение ÚO`O:

(80)

А потом найдем линейные токи:

; (81)

; (82)

; (83)

Теперь надо вернуться к исходной схеме рис. 24 и найти потенциалы точек a,b,c:

ϕ́а = Е́А–ÍA­(R+jXL) (84)

ϕ́b= Е́B–ÍB­(R+jXL) (85)

ϕ́c= Е́С–ÍС­(R+jXL) (86)

Далее в схеме рис. 24 найдем фазные токи нагрузок

(87)

(88)

(89)

Балансы активных и реактивных мощностей и векторную диаграмму следует делать по исходной схеме рис. 24.

Векторная диаграмма начинается с построения системы трёх линейных ЭДС генератора Е́АВ, Е́ВС, Е́СА. Далее следует построить векторы токов, чтобы на диаграмме выполнялись следующие соотношения:

A+ÍB+ÍC= 0; (90)

А=Íаb–Íca; (91)

В=Íbc–Íab; (92)

С=Íca–Íbc; (93)

Далее следует посчитать падения напряжений на всех элементах схемы и построить их на диаграмме, чтобы выполнялись следующие соотношения

Е́АВ= -ÍBR–ÍBjXL+ÍabZab+ÍAjXL+ÍAR; (94)

Е́CВ= -ÍCR–ÍCjXL+ÍbcZbc+ÍBjXL+ÍBR; (95)

Е́CA= -ÍAR–ÍAjXL+ÍcaZca+ÍCjXL+ÍCR; (96)

Так будет построена полная векторная диаграмма трёхфазной цепи

рис.24.

29

Соединение фаз потребителей электроэнергии в звезду

Схема соединения фаз электроприемников «звезда» получила очень широкое распространение в электроэнергетике. Принципиальная схема соединения звездой показана ниже:

soedinenie-faz-elektropriemnikov-v-zvezdu

Из схемы видно, что фазные напряжения приемника Ua, Ub, Uc не равны линейным напряжениям Uab, Ubc, Uca. Если применить к контурам aNba, bNcb, cNac второй закон Кирхгофа получим соотношение для фазных и линейных напряжений:

sootnosheniya-mezhdu-faznymi-i-linejnymi-napryazheniyami

Если сопротивления нейтрального провода и линейных проводов не учитывать, то можно предположить, что напряжение на клеммах генератора и электроприемника равны. Вследствие указанного равенства векторные диаграммы для источника и приемника электрической энергии будут одинаковы.

vektornaya-diagramma-pri-soedinenii-elektropriemnikov-zvezdoj-i-simmetrichnoj-nagruzke

Фазные и линейные напряжения приемника, как и источника, будут образовывать две симметричные системы напряжений. Соответственно между фазными и линейными значениями напряжений будет существовать определенная зависимость:

sootnoshenie-mezhdu-faznymi-i-linejnymi-znacheniyami-napryazhenij-dlya-simmetrichnoj-zvezdy

Далее будет показано, что соотношение (2) будет справедливо лишь при определенных условиях, а также в случае отсутствия нулевого провода, то есть в трехпроводной сети.

Исходя из указанного выше соотношения (2) можно сделать вывод, что соединение звездой лучше применять в случае, когда каждая фаза трехфазного электроприемника или однофазные приемники рассчитаны на напряжение вkoren-s-trex раз меньше, чем номинальное линейное напряжение сети.

Также из схемы соединения звезда (смотри схему выше) видно, что при соединении приемников звездой фазные токи будут равны линейным:

sootnosheniya-mezhdu-faznymi-i-linejnymi-tokami

Применив первый закон Кирхгофа можно получить соотношение между токами при соединении электроприемников звездой:

sootnoshenie-mezhdu-tokami-pri-soedinenii-elektropriemnikov-zvezdoj

Зная фазные токи с помощью формулы (4) можно вычислить ток нейтрального провода IN. В случае отсутствия нейтрального провода справедливо будет выражение:

v-sluchae-otsutstviya-nejtralnogo-provoda-spravedlivo-budet-vyrazhenie

Симметричная нагрузка при соединении приемников звездой

Нагрузка считается симметричной тогда, когда реактивные и активные сопротивления каждой фазы будут равны, то есть выполняется равенство:

uslovie-simmetrichnosti-nagruzki-pri-soedinenii-priemnikov-zvezdoj

Условие симметричности также может быть выражено через комплексные сопротивления Za = Zb = Zc.

Симметричная нагрузка в сети возникает при подключении трехфазных электроприемников. Будем считать, что данная система имеет нейтральный провод.

В отношении любой из фаз при симметричной нагрузке будут справедливы все формулы, полученные для однофазной сети, например для фазы А:

sootnoshenie-dlya-odnoj-fazy-pri-simmetrichnoj-nagruzke

Так как в четырехпроводной цепи Ua = Ub = Uc = Uлkoren-s-trex , то при симметричной нагрузке:

sootnosheniya-trexfaznoj-cepi-pri-simmetrichnoj-nagruzke

Векторная диаграмма при симметричной активно-индуктивной нагрузке приведена выше. Из приведенных выражений и векторной диаграммы следует, что при симметричной нагрузке образуется симметричная система токов, поэтому ток в нейтральном проводе будет равен IN = Ia + Ib + Ic = 0.

Отсюда можно сделать вывод, что при симметричной нагрузке отключение нейтрального провода не приведет к серьезным нарушениям работы электроприемников, то есть не произойдет изменение фазных напряжений, углов сдвига, токов, мощностей.

Из сказанного выше следует, что при симметричной нагрузке в нейтральном проводе нет необходимости, и довольно часто в симметричных системах нейтральный провод не применяется.

Мощность трехфазного приемника электрической энергии при симметричной нагрузке можно выразить формулами:

moshhnost-trexfaznoj-cepi-pri-simmetrichnoj-nagruzke

Как правило, для трехфазных приемников электрической энергии в качестве номинальных параметров указываются линейные напряжения и токи. Исходя из этого, целесообразней выражать мощность трехфазной цепи тоже через линейные напряжения и тока, поэтому подставим в формулу (6) линейные значения и получим:

moshhnost-simmetrichnoj-trexfaznoj-cepi-vyrazhennaya-cherez-linejnye-napryazheniya-i-toki

Пример

К трехфазной электрической цепи с линейным напряжением Uл = Uab = Ubc = Uca = 380 В необходимо подключить трехфазный электроприемник, каждая фаза которого рассчитывается на фазное напряжение в 220 В и имеет активное сопротивление rф = 10 Ом и индуктивное сопротивление хф = 10 Ом, которые соединены последовательно. Необходимо определить мощности, углы сдвига между токами и напряжениями (cos φ) и фазные токи.

Решение

Каждая фаза потребителя электрической энергии рассчитана на напряжение в koren-s-trexраз меньше номинального, то фазы потребителя нужно соединять в звезду. Поскольку нагрузка в данном случае симметричная, то нулевой провод (нейтраль) к потребителю можно не подводить.

Фазные тока, углы сдвига cos φ, а также полны сопротивления фаз будут иметь вид:

primer-rascheta-trexfaznoj-simmetrichnoj-seti1

Активная, реактивная и полная мощности  приемника, а также любой фазы будут равны:

primer-rascheta-trexfaznoj-simmetrichnoj-seti2

Векторная диаграмма для данной системы приводилась выше.

Несимметричная нагрузка при соединении приемников звездой

Нагрузка трехфазной электрической сети будет считаться несимметричной, если хотя бы одно из фазных сопротивлений не равно другим. Проще говоря, сопротивления фаз не равны, например: ra = rb = rc, xa = xb ≠ xc. В общем случае  считают, что несимметричная нагрузка возникает при отключении одной из фаз.

Возникает не симметрия чаще всего при подключении к трехфазной сети однофазных электроприемников. Они могут иметь различные мощности, режимы работы, различное территориальное расположение, что тоже влияет на величину фазной нагрузки.

В случае, когда необходимо подключить однофазные потребители электрической энергии, для более равномерной загрузки их делят на три примерно одинаковые по мощности группы.

nesimmetrichnoe-podklyuchenie-elektropriemnikov-zvezdoj

Один вывод однофазных потребителей подключают к одной из трех фаз, а второй вывод подключают к нейтральному проводу. Так как все электроприемники рассчитываются на одно напряжение, то в пределах каждой фазы они соединяются параллельно.

Главной особенностью электрической сети несимметричной нагрузкой является то, что она должна в обязательном порядке иметь нейтральный провод. Это объяснимо тем, что при его отсутствии величины фазных напряжений будут в значительной степени зависеть от величины не симметрии сети, то есть от величин и характера сопротивления каждой из фаз. Поскольку сопротивления фаз могут варьироваться довольно в широких пределах в зависимости от количества подключенных электроприемников, также широко будет варьироваться и напряжения на потребителях электрической энергии, а это недопустимо.

Для иллюстрации выше сказанного ниже приведена векторная диаграмма для трехфазной несимметричной цепи при наличии нейтрального провода:

vektonaya-diagramma-nesimmetrichnoj-trexfaznoj-cepi-s-nulevym-provodom

Ниже приведена приведена векторная диаграмма для этой же цепи, но при отсутствии нулевого рабочего (нейтрального) провода:

vektonaya-diagramma-nesimmetrichnoj-trexfaznoj-cepi-bez-nulevogo-provoda

Также можно посмотреть видео, где объясняется, что может произойти в электрической цепи при обрыве нулевого провода:

Необходимость нулевого провода станет еще более очевидной, если представить, что вам необходимо подключить однофазного потребителя к одной из фаз, при этом остальные две подключать нельзя, так как приемник рассчитан на фазное напряжение 220 В, а не на линейное 380В, как в таком случае получить замкнутый контур для протекания электрического тока? Только использовать нулевой рабочий проводник.

Для повышения надежности соединения электроприемников в цепь нулевого рабочего проводника не устанавливают коммутационную аппаратуру (автоматические выключатели, предохранители или разъединители).

Фазные токи, углы сдвига, а также фазные мощности при несимметричной нагрузке будут различными. Для вычисления их фазных значений можно применить формулу (5), а вот для вычисления трехфазной мощности формула (6) уже не подходит. Для определения мощностей необходимо пользоваться выражением:

moshhnost-trexfaznoj-cepi-pri-nesimmetrichnoj-nagruzke

Если существует необходимость определения тока нейтрального провода, то необходимо решать задачу комплексным методом. Если существует векторная диаграмма, то определить ток можно по ней.

Пример

В осветительной электрической сети с напряжением в 220 В в фазе А включено 20 ламп, фазе В – 10 ламп, а в фазе С – 5 ламп. Параметры лампы Uном = 127 В, Рном = 100 Вт. Необходимо определить ток нейтрального провода и каждой лампы.

Решение

Если учесть, что лампы накаливания имеют только активное сопротивление (реактивное слишком мало и им пренебрегают), то по формуле мощности определим ток лампы, а по закону Ома ее сопротивление:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti1

Зная число и сопротивление ламп нетрудно определить сопротивления фаз, а также фазные токи:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti2

Для определения тока в нейтральном проводе IN решим задачу комплексным методом. Так как при сделанных ранее допущениях комплексные напряжения приемника равны комплексным ЭДС источника, получим:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti3

Где комплексные значения фазных сопротивлений будут равны Za = 8,05 Ом, Zb = 16,1 Ом, Zс = 32,2 Ом.

Комплексные значения токов, а также действующее значение тока нейтрального провода будут иметь вид:

primer-rascheta-trexfaznoj-nesimmetrichnoj-seti4

Соединение звездой и треугольником формулы

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120 o , создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120 o . В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120 o . Запишем мгновенные значения и комплексы действующих значений ЭДС.

Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

Соответственно

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы — последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу. Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

2. Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Рис. 6.1

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом. Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

(7.1)

На рис. 6.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Рис. 6.2

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного в √3 раз.

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Соединение звездой и треугольником формулы

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Соединение звездой и треугольником формулы

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – I ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:

  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

Соединение звездой и треугольником формулы

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем

Соединение по схеме звезды имеются важные преимущества:

  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Соединение звездой и треугольником формулы

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Соединение звездой и треугольником формулы

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

Как подключить электродвигатель правильно – знает опытный электрик.

Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

Определение типа способа соединения

Выбор того или иного подсоединения зависит от:

  • надежности энергосети;
  • номинальной мощности;
  • технических характеристик самого двигателя.

Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

Соединение звездой и треугольником формулы

Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.

Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

Зависимость выбора от напряжения

Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

Так электромотор прослужит долго и проработает без сбоев.

Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

Соединение звездой и треугольником формулы

Как снизить пусковые токи электродвигателя?

Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

Соединение звездой и треугольником формулыОпасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

Соединение звездой — это… Что такое Соединение звездой?


Соединение звездой

Wikimedia Foundation. 2010.

  • Соединение (в астрономии)
  • Соединение множеств

Смотреть что такое «Соединение звездой» в других словарях:

  • соединение звездой — jungimas žvaigžde statusas T sritis automatika atitikmenys: angl. Y connection; star connection; wye connection vok. Y Schaltung, f; Sternschaltung, f rus. соединение звездой, n pranc. connexion en étoile, f; connexion étoile, f ryšiai: sinonimas …   Automatikos terminų žodynas

  • соединение звездой — žvaigždinis jungimas statusas T sritis fizika atitikmenys: angl. connection in star; star connection; star grouping vok. Sternschaltung, f rus. соединение звездой, n pranc. connexion en étoile, f; couplage en étoile, m …   Fizikos terminų žodynas

  • СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ — способы соединений, применяемые в трехфазной электрической цепи (рис. С 15). При соединении звездой концы обмоток трех фаз генератора (трансформатора, электродвигателя) соединяют в общую нейтральную точку, а начала обмоток присоединяют к трем… …   Металлургический словарь

  • ЗВЕЗДОЙ, СОЕДИНЕНИЕ — (Star connection) способ соединения генератора и приемников трехфазного тока, при котором все три фазные обмотки имеют один конец в общей точке (нулевой точке), другие же концы выводятся наружу, от них берется в сеть получаемый от генератора… …   Морской словарь

  • СОЕДИНЕНИЕ — (1) деталей, изделий, конструкций способы механического скрепления или сочленения составных частей для образования из них машин, агрегатов, механизмов, приборов, а также сборных элементов в строительных конструкциях с целью выполнения ими… …   Большая политехническая энциклопедия

  • Треугольником и звездой соединения —         в электротехнике, способы соединения элементов электрических цепей (См. Электрическая цепь), при которых ветви цепи образуют соответственно треугольник и трехлучевую звезду (см. рис.). Наибольшее распространение Т. и з. с. получили в… …   Большая советская энциклопедия

  • звезда — соединение звездой — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы соединение звездой EN wye …   Справочник технического переводчика

  • линейный ток — Ток, протекающий в линейном проводнике трехфазной электрической цепи, соединяющем источник и приемник электрической энергии. EN phase current, I value of the current flowing in each phase of an electrical distribution system [IEC 61557 12, ed.… …   Справочник технического переводчика

  • фазный ток — Ток, протекающий в фазной обмотке (фазе) источника или приемника электрической энергии. Четырехпроводная система трехфазного тока Нейтраль (N) общая точка соединенных концов фазных обмоток генератора (источника питания). То же самое относится и к …   Справочник технического переводчика

  • СИСТЕМА ТОКА — один из способов включения потребителей электрической энергии в распределительную сеть и способы питания сети в зависимости от рода тока (переменного или постоянного). Широко применяются следующие С. т.: а) двухпроводная постоянного тока, в… …   Большая политехническая энциклопедия

Соединение приемников электроэнергии звездой

Приемник энергии, т.к. и обмотки генераторов могут соединяться звездой, при этом получается четырехпроводная или трехпроводная система.

Линейный и фазный ток это один и тот же ток, поэтому .

Если нагрузка симметричная, т.е. токи в фазах равны, то ток в нейтральном проводе равен нулю.

Для точки О’ мгновенное значение

, т.е. необходимость в нейтральном проводе отпадает.

Если же нагрузка не симметричная, т.е. сопротивление фаз, а следовательно – и токи, различны, то в нейтральном проводе появляется ток.

Ток в нейтральном проводе согласно первому закону Кирхгофа. Следовательно, между нулевыми точками генератора и потребителя возникает напряжение, которое называется смещением нейтрали. Это напряжение можно определить методом узлового напряжения.

Напряжение на отдельных фазах приемника можно определить

В результате, если , то при несимметричной нагрузке напряжение на отдельных потребителях будет неодинаковым.

Для выравнивания напряжений стремятся уменьшить до нуля, аэто можно сделать двумя способами:

1. выровнять нагрузки отдельных фаз, тогда

2. нейтральный провод выполнить с очень малым сопротивлением, т.е.

Обычно ток в нейтральном проводе в 2-3 раза меньше, чем в линейных проводах, поэтому его можно выполнить с меньшим сечением. Обрыв нейтрального провода при несимметричной нагрузке вызывает изменение фазных токов и напряжения, поэтому предохранители в нейтральном проводе не устанавливаются.

Соединение приемников энергии треугольником

За положительное на-правление тока в линейных проводах принимают направле-ние от источника нагрузки, а за поло-жительное направле-ние в фазах приемника принимают направле-ние от начала фазы к концу, т.е. от

к , отки отки соответственно обозначают линейные токи:

фазные токи:

Определим соотношения между линейными и фазными токами:

т.А’;

т.В’;

т.С’;

Фазные токи в приемниках можно определить по закону Ома:

Из треугольников токов очевидно, что .

Порядок расчета трехфазной системы

При соединении звездой

Эти же формулы справедливы и при соединении треугольником.

Схемы соединения приемников на зависят от схем соединения обмоток генератора. Приемник должен быть включен так, чтобы на зажимах каждой фазы было номинальное фазное напряжение.

Пример:

.

На электродвигателях указывают /- 380/220.

Получение вращающегося магнитного поля

Для получения вращающегося магнитного поля необходимо:

1. фазные обмотки должны быть смещены по окружности статора на угол 1200;

2. токи в фазах должны быть смещены также на угол 1200.

Если ток положительный, считаем, что он направлен от начала фазы к концу, а если он отрицательный, то он направлен от конца фазы к началу.

Принцип действия асинхронного двигателя

Вращающееся магнитное поле, пересекая стержни ротора, наводит в них ЭДС электромагнитной индукции, направление которой можно определить по правилу правой руки.

Под действием этой ЭДС в к.з. обмотке ротора возникает ток. Взаимодействие вращающегося магнитного поля статора и проводников с током обмотки ротора создает электромагнитную силу, направление которой определяют по правилу левой руки.

Под действием силы возникает вращающий момент, и ротор будет вращать в том же направлении, что и поле статора. Ротор будет вращаться со скоростью, меньшей, чем поле статора, т.к. в противном случае поле статора не будет пересекать проводники обмотки ротора, и ток в них исчезнет. Поэтому двигатель называют асинхронными, т.к. всегда.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *