Соединение трехфазного двигателя в однофазную сеть: Подключение трехфазного двигателя к однофазной сети

Содержание

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).

Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.

Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

 

 

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

 

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

Определим емкость рабочего конденсатора:

Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

Теперь нам необходимо, применив навыки электротехники

, собрать из этих конденсаторов необходимую нам емкость.

Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


схемы соединения обмоток и конденсаторы, емкость, реверс

Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

  • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Пуск трёхфазного двигателя без конденсаторов: 4 схемы

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.

Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.

Содержание статьи

С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.

Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.

Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.

Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе

Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.

Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.

За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.

Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.

Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).

Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.

Максимальное введение сопротивления резистора R7 закрывает электронный ключ.

Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.

Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.

Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.

Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.

Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.

2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия

Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.

Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…

Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.

Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.

Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик

Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.

Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.

При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.

Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.

Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.

Рекомендации автора по сборке и наладке

Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.

На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.

При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.

Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.

Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами

Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.

На картинке ниже их полярность показана точками.

В этой ситуации создается больший крутящий момент для запуска ротора.

Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.

Рекомендации автора по наладке и работе не изменились.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.

Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.

Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.

Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.

Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:

  1. DD1 — К176ЛЕ5;
  2. DD2 — К176 ИР2.

Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.

Логическая часть

Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.

Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.

Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.

Таблица данных К176ИР2 и состояний регистров

Число разрядов

4х2

Входы

Выход

Сторона сдвига

Направо

C

D

R

Q0

Qn

Тип ввода

Последовательно

H

Н

H

Qn-1

Тип вывода

Параллельно

B

H

B

Qn-1

Тактовая частота

2,5MHz

X

H

Q1

Qn не меняется

Рабочая температура

-45÷+85

X

X

B

H

H

Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.

Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.

Силовая часть схемы, принципы ее управления и наладки

При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.

При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.

В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.

Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.

Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.

Емкость конденсаторов предварительно рассчитывают по формуле:

С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).

При номинальной частоте вращения ротора выставляют n=1.

Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.

Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.

Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.

Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.

Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.

Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.

Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.

Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.

Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.

Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.

Подключение трехфазного двигателя к однофазной сети

Способы подключения трехфазного двигателя к однофазной сети

Три обмотки асинхронного двигателя вставлены в пазы статора со сдвигом 120°. Вывода этих обмоток выведены в соединительную коробку. Концы обмоток соединяются по схеме “звезда” или “треугольник”. В трехфазной сети электромагнитное поле статора вращает ротор.

Трехфазный асинхронный электродвигатель

Если этот же электродвигатель включить в однофазную сеть, ротор вращаться не будет, так как нет электромагнитного поля со сдвигом 120°. Самым простым вариантом создать вращающееся магнитное поле – это использовать фазосдвигающий конденсатор. При таком подключении частота вращения ротора практически не меняется, а вот мощность падает от 30 до 50%, для разных схем подключения.

В однофазных сетях 220 В используют асинхронные электродвигатели марок А, АО2, АОЛ, АПН и другие с рабочим напряжением 380/220 B и 220/127 В. Первая цифра указана для схемы соединения обмоток “звезда”, а вторая для “треугольника”. Обычно используют электродвигатели по схеме “треугольник”, имеющие меньшие потери мощности чем схема “звезда”.

Если обмотки расключены по схеме “звезда” и выведено только 3 вывода для подключения, тогда есть два выбора. Первый, когда вы подключаете двигатель к однофазной сети как есть, со значительной потерей мощности по схеме “звезда”. Или разбираете электродвигатель и переключаете схему обмоток на “треугольник” с 30% потерей мощности.

Электродвигатели с рабочим напряжением 220/127 В “звезда” – “треугольник” собирают только на “звезду” (220 В), так как на “треугольнике” (127 В) обмотки сгорят. Если обмотки включены по схеме “треугольник” для двигателя 380/220 В, тогда остается только подключить рабочий и пусковой конденсаторы. При соединении схемы на “звезду”, можно легко ее переключить перемычками на схему “треугольника” (схема включения указывается на внутренней стороне крышки коробки соединений).

Схемы подключения трехфазного двигателя к однофазной сети

Самое продуктивное подключение трехфазного двигателя к однофазной сети будет по схеме “треугольник”, при которой сохраняется 70% полезной мощность электродвигателя. Здесь два вывода обмоток, подключаются к сети 220 В, а оставшуюся третью подключают через конденсатор на любой вывод сети.

Подключение асинхронного двигателя на клеммной колодке

Электродвигатель можно запускать на холостом ходу без нагрузки с одной рабочей емкостью, или под нагрузкой. Здесь запуск под нагрузкой будет более тяжелым, поэтому на время запуска подключают пусковой дополнительный конденсатор на 2 – 3 сек.

Специально для такого запуска двигателя используют кнопку с дополнительными отключающими контактами. Если установить двухпозиционный тумблер на обмотки электродвигателя, тогда можно менять направление вращения ротора. Если обмотки электродвигателя собраны по схеме “звезда”, тогда рабочая емкость рассчитывается по формуле:

Cр = 2800•I/U,

в случае “треугольника”

Cр = 4800•I/U, здесь рабочая емкость Cр в мкФ, ток в амперах, а напряжение в вольтах.

Рассчитать ток можно по формуле:

I = P/(1.73•U•n•cosф),

где Р – указанная на табличке мощность электродвигателя, cosф – коэффициент мощности также указан на табличке, 1,73 – соотношение линейного и фазного тока, n – КПД двигателя указан также на табличке.

Упростить расчёт можно по формуле:

C = 70•Pн,  Pн – мощность электродвигателя в кВт.

Эта формула показывает, что на каждый 100 Вт мощности двигателя ставят приблизительно 7 мкф емкости конденсатора. Более точную подгонку емкости рабочего конденсатора проводят при эксплуатации. Большая ёмкость вызовет перегрев электродвигателя, а маленькая снизит мощность.

Схемы подключения трехфазного двигателя от однофазной сети с тяжелым пуском и реверсом

Выбрать оптимальный режим работы электродвигателя для определенной нагрузки, нужно подбором рабочей емкости с измерением тока каждой обмотки токоизмерительными клещами. Токи всех обмоток должны быть по возможности близки. При таком подборе рабочей емкости электродвигатель будет работать с минимальными шумами и максимальной мощностью для данной нагрузки.

Двигатель под нагрузкой запускается тяжелее, поэтому для такого запуска нужно подключать C пуск – пусковую ёмкость. Обычно пусковую емкость берут в 2-3 раза превышающую рабочую емкость. Например, для рабочей емкости 50 мкФ подбирают Cпуск в пределах 100 – 150 мкФ.

Значение пусковой емкости зависит от величины нагрузки, для большой нагрузки Cпуск выбирают большой, а для малых нагрузок пусковая емкость может отсутствовать. Запуск электродвигателя происходит за короткое время 2 – 3 сек, поэтому для запуска применяют электролитические конденсаторы, которые предназначены именно для пуска электродвигателей.

Устанавливают рабочую емкость Ср с запасом по напряжению в пределах 350 – 400 В. Для подключения трехфазных электродвигателей используют конденсаторы марки МБГ, МБГО, КГБ, К75-12 в металлобумажном исполнении.

Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Подробное описание и схема подключения трехфазного двигателя к однофазной сети

Современный рынок предлагает однофазные и трехфазные электродвигатели. Но, как известно, бытовая сеть – однофазная, отсюда закономерный вопрос: осуществимо ли подключение трехфазного двигателя к однофазной сети?

Приведем несколько вариантов решения обозначенной задачи. Чаще предпочтение отдается методу подключение трехфазного двигателя через конденсатор – один из элементов является рабочим, другой – пусковым. Обозначения Ср и Сп. На схеме рассмотрены варианты включения «звезда» (а) и «треугольник» (б).

Рис.1

За счет действия элемента схемы Сп достигается увеличение пускового момента. После того, как двигатель запущен, Сп отключают. В ситуациях, когда пуск электродвигателя выполняется без нагрузки, необходимость включать в цепь конденсатор Сп отпадает.

Для успешной реализации задачи важно правильно определить емкость рабочего конденсатора. Используется закономерность:

Ср=К(1ном/U), где

Ср – рабочая емкость (мкФ), 1ном – сила тока по номиналу (А), U – напряжение в однофазной цепи (В), К – коэффициент, который зависит от того, какая схема подключения трехфазного двигателя выбрана. Показатель «К» для «звезды» — 2800, «треугольника» — 4800.

Показатели номинального тока и напряжения можно найти в технической документации (паспорте) к каждому виду электрических двигателей.

Подключение трехфазного двигателя через конденсатор чаще предусматривает применение недорогого электролитического конденсатора ЭП. После каждого включения такой конденсатор крайне важно разряжать.

Как показывает практика, подключение трехфазного двигателя к однофазной сети с помощью конденсаторов оправдано. Такая схема дает мощность в 65-85% от приведенных в паспорте данных. Проблемы могут возникнуть только с подбором нужного типа конденсатора. Чтобы не решать подобных задач, большое распространение получила схема подключения трехфазного двигателя с применением активных сопротивлений. 

Рис.2

Но необходимо учесть, что при помощи метода сопротивления часто не получается получить мощность силовой установки больше, чем половина ее номинала. 

Выполняя подключение трехфазного двигателя в однофазную сеть через конденсатор важно понимать, что номинал конденсаторов модификаций КБГ-МН и БГТ приводится на постоянном токе. При работе в условиях переменного тока, величины допустимых напряжений не должны превышать приведенных в таблице ниже показателей.

Номинальное напряжение постоянного тока, ВДопустимое напряжение переменного тока, В, при частоте 50Гц и емкости конденсатора, мкФ:
до 24-10
400

600

1000

1500

250

300

400

500

200

250

350

Определить величину пусковых активных сопротивлений можно, опираясь на величины, приведенные в таблице ниже. За основу принимаются мощности электрического двигателя в трехфазном режиме.

Мощность двигателя, кВтПусковое сопротивление, Ом
при включении по схеме Рис.2 (а)

0,6

1,0

1,7

2,8

4,5; 7,0

25-30

20-25

10-15

4-10

3-5

при включении по схеме Рис.2 (б)

0,6; 1,0

1,7; 2,8

4,5

8-15

3-4

1,5-3

В информационном разделе Дельта Привод вы также можете подробнее ознакомиться с вопросом включения двигателя постоянного тока в сеть 110/220 вольт.

Как правильно подключить трехфазных двигатель к однофазной сети

Бывают ситуации, когда нужно подключить электроприбор не так, как записано в его паспорте. К примеру, часто требуется подключение трехфазного двигателя к однофазной сети, что, хотя и снижает его мощность, иногда бывает вполне оправданным. Существуют основные схемы включения таких электродвигателей, которые широко и успешно применяются на практике. Также есть и некоторые нюансы, помогающие решать неожиданные трудности, связанные с отсутствием тех или иных материалов.

Работа такого двигателя в однофазной сети

Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.

Работа трехфазного двигателя

Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.

Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.

Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.

Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.

Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.

Расчет конденсаторов

Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.

Пример расчетов для конденсатора

I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.

Емкость пускового конденсатора берется из расчета 2–3 Сраб.

Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:

По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.

Модели конденсаторов

Лучше всего использовать металлобумажные конденсаторы. Если нет подходящих по емкости, их набирают из нескольких элементов. Но что, если нет и металлобумажных? Допустимо ли использование электролитических?

Для рабочих конденсаторов – однозначно нет. Электролитические емкости полярные, то есть, они для постоянного тока, и при подключении важно соблюдать полярность. В сети переменного тока, или при неправильном соединении, они попросту взрываются, забрызгивая бумагой и электролитом все окружающее пространство.

Но есть и свои хитрости. Что делать, если есть только электролиты, а запустить электродвигатель нужно прямо здесь и сейчас? Самая простая схема для превращения полярного элемента в неполярный:

Соединять необходимо отрицательными выводами. При этом стоит помнить, что при таком соединении их суммарная емкость будет в два раза ниже (если значения одинаковые, то можно просто разделить на два).

Но в нашей цепи присутствуют большие токи, поэтому предпочтительнее использовать другое соединение:

Применяется встречно – параллельное соединение, следовательно, нужно правильно посчитать результирующую емкость. Диоды также выбираются по току и напряжению.

Если двигатель будет работать на мощном станке, тогда подойдут металлобумажные элементы. Для пусковой емкости используют электролиты, но здесь важно не передержать кнопку пуска.

Данные двигателя

На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:

  • полезная мощность снижается до 70–80%,
  • при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
  • если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.

Реверс в однофазной сети

Чтобы сделать реверс такого двигателя, подключенного к однофазной сети, нужно пусковой конденсатор переключить на другую обмотку. Делать это необходимо при снятом напряжении питания, и включать его только после полной остановки ротора. Это самая простая схема реверсирования.

Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.

Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.

Control Engineering | Как правильно эксплуатировать трехфазный двигатель при однофазном питании

Итак, вы сказали соседу, что работаете с электрооборудованием, и теперь он думает, что вы можете решить его проблему, потому что он или она купил трехфазный двигатель, который не может работать от однофазной энергии. Когда вас просят переоборудовать этот двигатель, это уже кажется большим беспокойством, чем оно того стоит. Но это не совсем так. Есть несколько способов облегчить этот процесс.

Метод фантомной ноги

Трехфазное питание включает три симметричные синусоидальные волны, которые на 120 электрических градусов не совпадают по фазе друг с другом (см. Рисунок 1).Один из методов преобразования однофазной мощности, который хорошо зарекомендовал себя в течение десятилетий, заключался в подключении двух фаз к входящей однофазной мощности 220 В и создании «фантомного плеча» для третьей фазы с помощью конденсаторов для принудительного смещения между основной и вспомогательной обмотками. . В этом случае смещение составляет 90 электрических градусов.

Для этого метода конденсаторы должны иметь размер, соответствующий нагрузке. В противном случае ток будет несимметричным. Вместо сдвига фазы на 120 градусов, изображенного в нижней половине рисунка 1, неправильное соединение конденсатора и нагрузки может привести к большому отклонению.Чем больше расхождение, тем меньше крутящий момент.

Метод вращающегося фазового преобразователя

Другой жизнеспособный метод — вращающийся фазовый преобразователь (см. Рисунок 2). Например, деревообрабатывающий цех может использовать вращающийся фазовый преобразователь для работы нескольких трехфазных машин от однофазного источника питания. Одним из недостатков является то, что процесс может быть очень дорогостоящим в течение всего времени преобразования фазы вращения, независимо от того, используется ли какое-либо оборудование. Ток может быть сбалансирован, когда работает конкретное оборудование, но если работает несколько машин или все они сильно загружены, трехфазная мощность — ток и напряжение — резко несбалансирована.

«NEMA Stds. MG 1: Motors and Generators» требует, чтобы двигатели работали от напряжения, сбалансированного в пределах 1%. Если применяется правило 10x (процент дисбаланса тока может быть в 10 раз больше, чем процент дисбаланса напряжения) к двигателю, работающему с 1% дисбаланса напряжений, дисбаланс тока может составить 10%. Это полезно, потому что большинство трехфазных двигателей, работающих в системе, описанной выше, работают с дисбалансом тока от 15% до 50%. Даже с графиком снижения номинальных характеристик NEMA MG 1 (см. Рисунок 3) ни один двигатель не должен работать с таким большим дисбалансом тока.

Метод частотно-регулируемого привода

Преобразователь частоты (VFD) выпрямляет каждую пару фаз в постоянный ток и инвертирует постоянный ток в мощность для трехфазного выхода, что означает, что преобразователь частоты может использоваться с однофазным входом для управления трехфазным двигателем. Поддержка производителя варьируется, и осторожно рекомендуется снизить номинальные характеристики привода на 1, разделенную на квадратный корень из 3 (около 58%). Также обратите внимание, что номинальная мощность частотно-регулируемого привода в л.с. / кВт используется для удобства выбора приводов, поскольку они рассчитываются по току.Например, двигатель мощностью 10 л.с. (7,5 кВт) будет использовать частотно-регулируемый привод мощностью 15 л.с. (11 кВт). Пользователю настоятельно рекомендуется сотрудничать с производителем привода при выборе и подборе частотно-регулируемого привода для этого использования.

Компрессоры, механический цех, деревообрабатывающее оборудование и декоративные фонтаны — хорошие кандидаты для этого метода. Вместо того, чтобы покупать дорогой однофазный двигатель, менять элементы управления и решать проблемы управления скоростью и пусковым крутящим моментом, лучше использовать частотно-регулируемый привод для управления существующим двигателем от однофазного источника питания.Для многих приложений мощностью до 5 л.с. (4 кВт) подходящий частотно-регулируемый привод можно приобрести по цене, намного меньшей, чем стоимость перемотки трехфазного двигателя и обеспечение необходимых элементов управления для его работы.

Дополнительные преимущества заключаются в том, что трехфазный двигатель обычно дешевле покупать, органы управления не требуют замены или модификации, а частотно-регулируемый привод имеет дополнительный бонус в виде регулирования скорости. Лучше всего то, что вам не нужно портить выходные, помогая тому, кто не до конца понимает, что вы делаете.

Чак Юнг (Chuck Yung) — старший специалист по технической поддержке в Ассоциации обслуживания электроаппаратуры (EASA). EASA является контент-партнером CFE Media. Отредактировал Крис Вавра, редактор-постановщик CFE Media, [email protected].

ОНЛАЙН экстра

См. Дополнительные статьи EASA по ссылкам ниже.

Трехфазный источник

— обзор

7.2.3 Метод модуляции прямого матричного преобразователя

В этом разделе представлена ​​матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла.Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

где cos ( ϕ ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3. .

Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

(7.14) VimIimcosϕi = VomIomcosϕo.

Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , Eq. (7.15) определяется как

(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица T заполнения, которая удовлетворяет ограниченному условию продолжительности включения, как в уравнении. (7.11) рассчитывается с использованием уравнения. (7.16).

(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1′d2′d3′d2′d3′d1′d3′d1′d2 ′,

, где d , d 1 ′, d 2 ′ и d 3 ′ выражены в уравнении. (7.17).

(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

, где ω 1 и ω 2 составляют ω o ω i и ω o + ω i , соответственно, и p 1 и p 2 являются переменными управления коэффициентом мощности положительного и отрицательного направления, соответственно, которые выражены в формуле.(7.18).

(7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

(7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.

На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице скважности уравнения. (7.16).

Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q макс. = 0.866) с использованием синфазного напряжения в модуляции.

Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

, где v cm — синфазное напряжение, выраженное в уравнении . (7.21) как

(7.21) vcmt = −16cos3ωot + 36cos3ωit.

В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Кроме того, q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).

(7,23) 2qp⋅1 − signλ3 + sgnλ3≤1,

, где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).

(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p контролируется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . T матричного преобразователя.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольной формы. форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

(7.25) sAasAbsAc = 100,0≤vtri

, где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

Разница между однофазным и трехфазным двигателем —

Когда вы используете устройство, которое использует электричество, вы обычно видите тип источника питания. Стандартным источником питания для домов и предприятий является источник питания переменного тока.

В каждом источнике питания есть тип электрической фазы, на которую он подразделяется. Две категории — однофазные и трехфазные.

Хотя они обеспечивают электрический ток, однофазный и трехфазный двигатель не одно и то же.Давайте посмотрим, чем они отличаются друг от друга, и какой из них лучше всего подходит для ваших нужд.

Электричество по фазе

Электричество, включенное по фазе, — это ссылка на напряжение существующего провода. Термин «фаза» относится к типу распределительной нагрузки, с которой может справиться провод.

Если используется один провод, он будет иметь большую нагрузку. Если используются три провода, электрическая нагрузка распределяется равномерно. Это существенное различие определяет надежность получаемого вами электрического тока.

Однофазный двигатель

Однофазный двигатель — наиболее распространенный тип, который используется сегодня. В основном он используется для жилых домов и непромышленных предприятий.

Однофазные двигатели переменного тока используют двухпроводную схему. У вас есть фазный провод, по которому проходит ток, и нейтральный провод. Так что, если вы включаете телевизор или один из светильников в доме, вероятно, используется однофазный ток.

Трехфазный двигатель

Трехфазный двигатель вырабатывает электричество, как однофазный двигатель, но распределение нагрузки другое.Он работает с использованием трехпроводных двигателей переменного тока для разделения электричества на разные фазы.

Многие предприятия и производители используют трехфазные двигатели, потому что это снижает потребление электроэнергии и экономит деньги. Системы с трехфазным двигателем также вырабатывают в три раза больше мощности, чем однофазный двигатель, при этом требуется только один дополнительный провод.

Преимущества однофазного питания

Однофазное питание имеет свои преимущества. Опять же, он обеспечивает достаточное количество энергии для жилых домов.Таким образом, он может питать ваш холодильник, телевизор, свет и заряжать ваши устройства.

Конструкция однофазного двигателя также проста. Возможно, наступит время, когда вам нужно будет проверить свой ток. Так что вы сможете понять устройство, если помощь недоступна.

Преимущества трехфазного питания

Предприятия используют трехфазное питание, потому что они могут выдерживать более тяжелую энергетическую нагрузку, а также эффективно ее распределять. Трехфазные двигатели также не требуют дополнительного пускателя, как однофазные двигатели.Это означает, что энергии, вырабатываемой трехфазным двигателем, достаточно для самостоятельного запуска.

Трехфазный источник питания может быть более экономичным в долгосрочной перспективе. Отсутствие материалов, необходимых для передачи и распределения электрического тока, делает его отличным вариантом для предприятий, которым необходимо использовать большое количество электроэнергии.

Правая фаза двигателя — ключ к успеху

Теперь, когда вы знаете разницу между однофазным и трехфазным двигателем, электронные тормоза Ambitech могут помочь выбрать подходящий для ваших нужд.

Если вам нужна помощь с электродвигателем переменного тока или промышленным оборудованием, позвольте нам помочь. Свяжитесь с нами сегодня, если у вас есть другие вопросы по фазным двигателям.

Электрическое преобразование, однофазное, трехфазное питание

В дополнение к обеспечению того, чтобы частота генератора соответствовала частоте сети или устройств, также должны быть выполнены следующие условия:

(a) Выходное напряжение генератора должно соответствовать рабочему напряжению сети или устройств, питаемых от сети. генератор.
(b) Не должно быть разности фаз между напряжением сети и напряжением генератора.

Чтобы понять преобразование трехфазного генератора в однофазный и наоборот, давайте сначала кратко рассмотрим внутреннюю конфигурацию этих двух типов генераторов.

Однофазные генераторы:
В однофазном генераторе статор имеет ряд обмоток, соединенных последовательно, чтобы сформировать единую цепь, по которой генерируется выходное напряжение.

• Равное напряжение на всех обмотках статора синфазно друг с другом
Например, в 4-полюсном генераторе четыре полюса ротора равномерно распределены по раме статора. В любой момент времени каждый полюс ротора находится в том же положении относительно обмоток статора, что и любой другой полюс ротора. Следовательно, напряжения, индуцированные во всех обмотках статора, имеют одинаковое значение и амплитуду, а также в каждый момент времени находятся в фазе друг с другом.

• Последовательное соединение обмоток статора
Кроме того, поскольку обмотки соединены последовательно, напряжения, создаваемые в каждой обмотке, в сумме создают конечное выходное напряжение генератора, которое в четыре раза превышает напряжение на каждой из отдельных обмоток статора.

Однофазное распределение электроэнергии обычно используется в жилых районах, а также в сельской местности, где нагрузки небольшие и редкие, а затраты на создание трехфазной распределительной сети высоки.

Трехфазные генераторы:
В трехфазном генераторе три однофазных обмотки разнесены таким образом, что между напряжениями, наведенными в каждой из обмоток статора, существует разность фаз 120 °. Эти три фазы независимы друг от друга.

• Конфигурация «звезда» или «Y»
При соединении звездой или Y по одному выводу каждой обмотки соединяется с нейтралью. Противоположный конец каждой обмотки, известный как конечный конец, соединен с линейным выводом каждой. Это создает линейное напряжение, превышающее индивидуальное напряжение на каждой обмотке.

• Дельта-конфигурация
В дельта-конфигурации начальный конец одной фазы соединен с конечным концом соседней фазы.Это создает линейное напряжение, равное фазному напряжению. Электроэнергетические компании и коммерческие генераторы вырабатывают трехфазную энергию.

Преобразование фазы в генераторах:
(1) Изменение конфигурации подключения катушки
Трехфазный генератор можно преобразовать в однофазный, изменив соединение между его обмотками статора внутри или снаружи головки генератора. Например, в случае трехфазного генератора у вас будет 6 выводов. Генераторы большего размера обычно имеют 12 выводов от шести катушек, и все провода выходят из генератора, что упрощает настройку генератора различными способами, как показано ниже —

• Последовательное соединение катушек преобразует генератор в однофазный один.
• Последовательно соединив противоположные катушки, вы можете удвоить выходное напряжение.
• Параллельное соединение удвоит ток.

Сложная часть перенастройки генератора заключается в сопоставлении проводов, выходящих из генератора, с катушками, к которым они подключены. Необходимо наличие документов производителя. В противном случае вам нужно будет изучить, как ваш генератор в настоящее время подключен, и работать в обратном направлении.

(2) Однофазные нагрузки с центральным врезанием к трехфазным генераторам
Трехфазный генератор можно рассматривать как комбинацию трех однофазных блоков.Однофазные нагрузки могут быть подключены к трехфазному генератору одним из следующих способов —

• Подключить нагрузку между фазным проводом и нейтралью системы. Обычно это делается для маломощных нагрузок.
• Подключите нагрузку к двум токоведущим проводам в межфазном соединении. Обычно это делается для мощных нагрузок, таких как кондиционеры или обогреватели, и обеспечивает 208 В. Однако это может привести к снижению производительности, поскольку приборы, требующие для работы 240 В, будут работать при 75% своей номинальной мощности при 208 В.

(3) фазовых преобразователя:
Поворотный фазовый преобразователь (RPC) может быть напрямую подключен к однофазному генератору для создания трехфазного источника питания. Для этого требуется простая конфигурация, состоящая из двух входных соединений, известных как входы холостого хода от однофазного генератора. Напряжение создается на третьем выводе, который не подключен к однофазной сети. Индуцированное напряжение отличается по фазе от напряжения на двух других клеммах на 120 °.

(4) Приводы с регулируемой скоростью (VSD) / частотно-регулируемые приводы (VFD) / инверторы
Они похожи на поворотные фазовые преобразователи.Комбинация частотно-регулируемого привода с однофазным генератором наиболее эффективна в случаях, когда требуется менее 20 лошадиных сил.

Выбор между однофазными и трехфазными генераторами
Мощность однофазных генераторов обычно ограничивается 25 кВА. При более высоких номиналах дешевле получать однофазное питание от трехфазного генератора, чем покупать специальные однофазные блоки для более высоких нагрузок. Прочтите следующую статью «Советы по покупке бывших в употреблении генераторов», чтобы найти подходящий генератор для любой ситуации.

Выбор между однофазным и трехфазным выходом зависит исключительно от типа приложения, на которое будет подаваться питание. Однофазные генераторы лучше всего подходят для однофазного выхода, тогда как трехфазный генератор может легко обеспечивать как однофазное, так и трехфазное питание. Если все ваши приборы работают от однофазного источника питания, имеет смысл выбрать однофазный генератор. Если вам нужно управлять приборами, которые работают на разных фазах, лучше всего подойдет трехфазный генератор.Однако важно учитывать баланс нагрузки при переходе от однофазного генератора к трехфазному агрегату.

Подключение трехфазного двигателя в однофазную сеть. Трехфазный двигатель в однофазной сети без конденсаторов. Магнитный пускатель

В работе электриков общая задача — подключить двигатель, рассчитанный на три фазы, в однофазную сеть.Выполнить эту, на первый взгляд, непростую задачу без помощи дополнительных устройств сложно. Устройства, позволяющие двигателю с тремя фазами работать в сетях 220 В, являются различными фазосдвигающими элементами. Из их коллекторов чаще всего для этих целей выбирают емкость. Правильно подобрать конденсатор для трехфазного двигателя по схемам и простым формулам.

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства.Применяются для привода вентиляционных устройств, уборки навоза, приготовления пищи, водоснабжения. Популярность таких моторов обусловлена ​​рядом преимуществ:

Подключить трехфазный двигатель к 220В можно попробовать, зная отличия в схемах подключения обмоток. Количество фаз, на которые рассчитан двигатель, можно определить по количеству клемм в его клеммной коробке: трехфазных в нем будет 6 выводов, а в однофазных — двух или четырех.

Обмотки двигателя с тремя фазами соединяются по заданной схеме, называемой «звезда» или «треугольник».У каждого из них есть свои достоинства и недостатки. При подключении в звезду обмотки подключаются. В клеммной коробке эта составная схема будет отображаться с помощью двух перемычек между зажимами с обозначениями «C6», «C4», «C5». Если обмотка двигателя соединена с треугольником, то начало соединяется с каждым концом. В клеммной коробке будут использоваться три перемычки, которые соединят зажимы «C1» и «C6», «C2» и «C4», «C3» и «C5».

Потребность в элементах фазовращателя

При подключении трехфазного электродвигателя к сети 220 В пускового момента не возникает.Следовательно, возникает необходимость подключения пусковых устройств. Они создают фазовый сдвиг, позволяющий двигателю долго работать и работать под нагрузкой.

В качестве фазовращающих элементов можно использовать:

  • сопротивление;
  • индуктивность;
  • Вместимость
  • .

Из-за подключения трехфазного двигателя через конденсатор вала он начинает вращаться при подаче напряжения. Присоединение контейнера гарантирует не только запуск мотора, но и длительное удержание нагрузки.

Подключить трехфазный электродвигатель к сети 220 В. Можно только после изучения схемы подключения обмотки и назначения устройства, которое она будет активировать.

Присоединение конденсатора к обмоткам двигателя необходимо выполнять, соблюдая некоторые правила. Подключение трехфазного двигателя к однофазной сети выполняется по одной из двух стандартных схем: «Звезда» или «Треугольник».

В двигателях средней и большой мощности необходимо два бака — рабочий и пусковой.Рабочий конденсатор КП необходим для возникновения кругового поля при номинальном режиме работы. Пусковой конденсатор СП нужен для создания кругового поля при пуске с номинальной нагрузкой на валу.

Порядок подключения в «Звезде»:

Порядок подключения по схеме треугольник:

  • Подключите выводы обмоток двигателя в клеммной коробке, установив три перемычки между зажимами C1 и C6, C2 и C4, C6 и C5.
  • Присоедините конденсаторы к началу и концу одной и той же фазы (C1, C4 или C2, C5 или C3, C6).
  • Подвести ноль к клемме перемычки, свободной от емкости, а фазу — к любому другому зажиму.

Чтобы изменить направление вращения вала, вам потребуется напряжение или конденсаторы, которые будут подключены к другой фазе двигателя.

При выборе конденсатора необходимо предотвратить ситуацию, при которой фазный ток превышает номинальное значение.Поэтому подходить к расчетам нужно очень внимательно — неверные результаты могут привести не только к поломке конденсатора, но и обмотки обмоток двигателя.

На практике для запуска двигателей малой мощности мы используем упрощенный выбор, исходя из соображений, что на каждые 100 Вт мощности двигателя требуется 7 мкФ емкости при подключении к треугольнику. Когда обмотка соединена в звезду, это значение удваивается. Если однофазная сеть присоединена к однофазной сети мощностью 1 кВт, то конденсатор заряжается зарядом 70-72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае соединения звездой.

Расчет необходимого значения трудоспособности производится по формулам.

При соединении звездой:

Если обмотки образуют треугольник:

I — номинальный ток двигателя. Если по каким-то причинам его значение неизвестно, необходимо использовать формулу для расчета:

В данном случае подключено U = 220 В звездой, U = 380 В — треугольник.

P — мощность, измеренная в ваттах.

При запуске двигателя, при значительной нагрузке на вал, параллельно с рабочим объемом необходимо разрешить запуск.

Его значение рассчитывается по формуле:

СП = (2,5 ÷ 3,0) ср

Пусковая установка должна превышать рабочее значение в 2,5 — 3 раза.

Очень важен правильный выбор значений напряжения для конденсатора. Этот параметр, как и емкость, влияет на цену и габариты устройства. Если сетевое напряжение больше номинала конденсатора, пусковое устройство выйдет из строя.

Но и использовать аппаратуру с завышенным напряжением тоже не стоит.Ведь это приведет к неэффективному увеличению габаритов конденсаторной батареи.

Оптимальным считается значение напряжения конденсатора в 1,15 раза превышающее значение напряжения сети: UK = 1,15 U s.

Очень часто при включении двигателя с тремя обмотками в однофазную сеть используются конденсаторы КГБ-МН или БГТ (термостойкие). Они сделаны из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и емкости, указанные на приборе, указаны для постоянного тока.Поэтому при работе на переменном токе необходимо в 2 раза снизить показатели напряжения конденсатора.

Выбрать схему подключения

Обмотки одного двигателя могут быть соединены звездой или треугольником. Вам нужно выбрать схему подключения по нагрузке. Если трехфазный двигатель в однофазной сети будет приводить в движение какой-либо маломощный механизм, то можно выбрать схему подключения «звезда». При этом рабочий ток будет небольшим, но значительно уменьшатся габариты и цена конденсаторной батареи.

В случае большой нагрузки при работе или в момент запуска обмотка двигателя должна быть включена по схеме «Треугольник». Это обеспечит достаточный ток для длительной работы. К недостаткам можно отнести значительную цену и габариты конденсаторов.

Если после подключения конденсаторов и источника питания двигатель гудит, но не запускается, причин могут быть разными:

Громкий неприятный шум при включении двигателя и вращении вала свидетельствует о превышении емкости конденсатора.

Неплохо будет работать трехфазный двигатель в однофазной сети. Недостатком будет только развивающая мощность — не 100%, а 60-80% от номинала. Если мощность используется только для запуска, полезная мощность двигателя не будет превышать 60% от его номинальной мощности.


В различных любительских электромеханических машинах и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазное использование в быту — явление очень редкое, ведь для своего питания от обычной электросети любители используют фазосдвигающий конденсатор, что позволяет в полной мере воплотить силовые и пусковые свойства мотора. .

Асинхронные трехфазные электродвигатели, а именно их, в результате широкого распространения, которое часто приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием 120 электрических градусов в распределительной коробке убираются проводники обмоток, начало и концы которых уложены (С1, С2, С3, С4, С5 и С6).

Подключение «Треугольник» (на 220 вольт)

Коннект «Звезда» (на 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычки для подключения звездообразной схемы

Когда трехфазный двигатель включается в трехфазную сеть по его обмоткам в разное время, в свою очередь, начинает течь ток, создавая вращающееся магнитное поле, которое приводит к ротору, заставляя его вращать его. .Когда двигатель подключен к однофазной сети, крутящий момент, который может перемещать ротор, не создается.

Если можно подключить двигатель сбоку к трехфазной сети, то мощность не тяжелая. В разрыв одной из фаз ставим амперметр. Бегать. Показания амперметра Умножьте на фазное напряжение.

В хорошей сети это 380. Получаем мощность P = I * U. Взято% 10-12 по КПД. Получите действительно верный результат.

Для измерения оборотов есть меховые приборы.Хотя по слухам тоже можно определить.

Среди различных способов включения трехфазных электродвигателей в однофазную сеть наиболее распространенным является включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Скорость вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его подключении к трехфазной сети.Увы, заявить мощность, потери которой достигают значительных значений, невозможно. Четкие значения потери силы зависят от схемы включения, условий работы двигателя, величины емкости фазирующего конденсатора. Примерно трехфазный двигатель в однофазной сети теряет до 30-50% собственной мощности.

Не многие трехфазные электродвигатели готовы хорошо работать в однофазных сетях, но большинство из них справились с этой задачей вполне удовлетворительно — если не считать потерь мощности.В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на 2 номинальных напряжения сети — 220/127, 380/220 и т. Д., Электродвигатели с рабочим напряжением обмоток 380 / 220В (380В — для «Звезд», 220 — для «треугольник»). Наибольшее напряжение у «звезды», наименьшее — у «треугольника». В паспорте и на знаке двигателей, не считая других характеристик, указывают рабочее напряжение обмоток, схему их подключения и вероятность его изменения.

Таблетки трехфазных электродвигателей

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть соединены как «треугольником» (на 220В), так и «звездой» (на 380В). При подключении трехфазного двигателя в одноименную сеть лучше использовать схему «треугольник», так как в этом случае двигатель имеет меньшую мощность, чем при включении «звезды».

Название B информирует, что обмотки двигателя соединены по схеме «звезда», и вероятность их переключения на «треугольник» не учитывается (выходов не более 3-х) в разветвительной коробке.В этом случае остается либо посоревноваться с большой потерей мощности, подключив двигатель по схеме «Звезда», либо, заложив в обмотку электродвигателя, попытаться вывести недостающие концы для соединения обмоток по схеме схема треугольника.

В случае, если рабочее напряжение двигателя 220 / 127В, то подключать к однофазной сети к двигателю 220В можно только по схеме «Звезда». При включении 220В по схеме «Треугольник» двигатель горит.

Пусков и концов обмоток (разные варианты)

Вероятно, основная сложность включения трехфазного двигателя в однофазную сеть состоит в том, чтобы понять электрические трубопроводы, выходящие на распределительную коробку или, если последняя является скорее, просто производными от двигателя, направленного наружу.

Самый распространенный вариант, когда обмотка уже подключена по «треугольнику» в имеющемся двигателе на 380 / 220В. В этом случае необходимо просто подключить токовые электрические трубки и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если заводной двигатель подключен «звездой», и есть возможность поменять его на «треугольник», то такой случай тоже можно отнести к трудоемким. Необходимо просто поменять схему поворота обмоток на «треугольник», используя для этого перемычку.

Определение начала и конца обмоток. Ситуация усложняется, если в распределительной коробке выводится 6 проводов без указания их принадлежности к конкретной обмотке и обозначения начала и окончания.В данном случае дело сводится к решению 2-х задач (хотя надо попробовать поискать какую-то документацию на электродвигатель в сети. Можно описать, к чему относятся электрические трубы разных цветов :):

определение пары проводов, относящихся к одной обмотке;

нахождение начала и конца обмоток.

1-я задача решается по «прозвищу» всех проводов тестером (измерение сопротивления). Когда устройства нет, можно решить это лампочкой от фонарика и батареек, подключив имеющиеся электрические трубы в цепь поочередно с лампочкой.Если последний загорается, это означает, что два проверенных конца принадлежат одной обмотке. Этот метод определяет 3 пары проводов (A, B и C на рисунке ниже) с соотношением 3 обмоток.

Определение пары проводов, относящихся к одной обмотке

Задача вторая, нужно определить начало и конец обмоток, она будет несколько сложнее и потребуется наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подходит по инерции.Порядок определения концов и начала обмоток приведен на схемах 1И 2.

.

Нахождение начала и конца обмоток

К концам одной обмотки (например, а) подключается аккумулятор, к концам других (например, б) — стрелочный вольтметр. Теперь при обрыве контакта проводов и с аккумулятором стрелка вольтметра поплыла в какую-то сторону. Затем нужно подключить вольтметр к обмотке С и произвести такую ​​же операцию с разрывом контактов аккумулятора.При необходимости, изменяя полярность обмотки с (меняя концы С1 и С2), необходимо следить за тем, чтобы стрелка стрелы поворачивалась в том же направлении, что и в случае обмотки В. Таким же образом, обмотка А — с аккумулятором, подключенным к обмотке С или В.

В конечном итоге из всех манипуляций должно получиться следующее: при размыкании контактов АКБ хотя бы с некоторыми обмотками на 2-х других должен появиться электрический потенциал той же полярности (стрелка прибора качается в одну сторону).Выводы 1-й балки как начало (A1, B1, C1) осталось пометить (A1, B1, C1), а выводы другой — как концы (A2, B2, C2) и соединить их по Желаемая схема — «треугольник» либо «звезда» (при напряжении двигателя 220 / 127В).

Удаление отсутствия заканчивается. Наверное, самый сложный вариант — когда у двигателя сращивание обмоток по схеме «Звезда», и нет возможности переключить его на «треугольник» (в распределительной коробке выводится не более 3-х трубок — начало обмоток С1, С2, С3).

В этом случае для включения двигателя по схеме «Треугольник» необходимо вывести недостающие концы обмоток С4, С5, С6.

Цепи включения трехфазного двигателя в однофазной сети

Включить по схеме «Треугольник». В случае домашней сети, исходя из убеждения в получении большей выходной мощности, более целесообразным считается однофазное включение трехфазных двигателей по схеме «Треугольник». При этом их мощность имеет возможность достигать 70% от номинальной.2 контакта в разветвительной коробке подключены непосредственно к электропроводкам однофазной сети (220В), а 3-тоесть — через рабочий конденсатор СР хотя бы к некоторым из 2-х контактов или электрических проводов сети.

Обеспечить запуск. Работа трехфазного двигателя без нагрузки может осуществляться от рабочего конденсатора (подробнее ниже), но если электронное письмо имеет некоторую нагрузку, оно либо не запускается, либо становится очень медленным. Тогда для быстрого запуска потребуется вспомогательный рабочий конденсатор СП (расчет емкости емкости описан ниже).Пусковые конденсаторы работают только во время пуска двигателя (2-3 секунды, оборот не выполняется примерно на 70% от номинала), затем пусковой конденсатор необходимо выключить и разрядить.

Трехфазный двигатель удобно запускать специальным выключателем, одна пара которого замыкается при нажатии кнопки. При отпускании одни контакты блокируются, остальные остаются включенными — кнопка «Стоп» не нажимается.

Выключатель для пуска электродвигателей

Реверс.Направление вращения двигателя зависит от того, к какому контакту подключена третья фазная обмотка («фаза»).

Направление вращения можно контролировать, подключив последний через конденсатор к двухпозиционному переключателю, соединенному двумя контактами с первой и второй обмотками. В зависимости от положения переключателя двигатель повернется в ту или иную сторону.

На рисунке ниже представлена ​​схема с пусковым и рабочим конденсатором и ключом реверса, позволяющим комфортно управлять трехфазным двигателем.

Подключение трехфазного двигателя к однофазной сети, с реверсом и кнопкой подключения пускового конденсатора

Подключение по схеме «Звезда». Такая схема подключения трехфазного двигателя к сети напряжением 220В применяется для электродвигателей, у которых обмотки рассчитаны на напряжение 220 / 127В.


Конденсаторы. Требуемая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы включения на обмотках двигателя и других характеристик.Для подключения «звезды» емкость рассчитывается по формуле:

CP = 2800 I / U

Для соединения треугольником:

CP = 4800 I / U

Где CP — емкость рабочего конденсатора в МКФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = p / (1,73 un cosf)

где P — мощность электрического двигатель кВт; n — КПД двигателя; COSF — коэффициент мощности, 1,73 — коэффициент, определяющий соответствие между линейным и фазным токами.КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Традиционно их значение находится в диапазоне 0,8-0,9.

На практике значение емкости рабочего конденсатора при подключении «треугольника» можно рассматривать по упрощенной формуле C = 70 PN, где PN — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт необходимо около 7 мкФ рабочей емкости конденсатора.

Правильность подбора емкости конденсатора проверяется по результатам работы двигателя.В том случае, если его значение больше чем, это будет необходимо в этих условиях эксплуатации, двигатель будет иметь перевес. Если емкость требуется меньше, выходная мощность электродвигателя станет очень низкой. Есть повод искать конденсатор для трехфазного двигателя, начиная с небольшой мощности и постепенно увеличивая его значение до рационального. Если это возможно, гораздо лучше выбрать емкость для измерения тока в электрических трубопроводах, подключенных к сети и к рабочему конденсатору, например, с помощью токоизмерительных клещей.Текущее значение должно быть ближе. Измерения следует проводить в том режиме, в котором будет работать двигатель.

При определении пусковой мощности в первую очередь исходят из требований создания желаемой стартовой точки. Не путайте стартовую емкость с емкостью контейнера. На приведенных схемах пусковая емкость равна сумме емкостей рабочего (СР) и пускового (СП) конденсаторов.

В том случае, если в рабочих условиях пуск электродвигателя происходит без нагрузки, пусковая мощность традиционно принимается такой же рабочей, то есть пусковой конденсатор не нужен.В этом случае схема подключения упрощается и сокращается. Для такого упрощения и основного сокращения схемы можно организовать вероятность отключения нагрузки, например, дав возможность быстро и комфортно изменить положение мотора для опускания ременной передачи, или сделав снятие прижимного ролика, например, как у ременной муфты мотоблока.

Запуск под нагрузкой требует наличия достаточной мощности (SP) подключенного временного запуска двигателя.Увеличение отключенного контейнера приводит к увеличению начальной точки, и при определенном конкретном значении его значение достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному эффекту: начальная точка начинает уменьшаться.

Зачистка из условия запуска двигателя при нагрузке, наиболее близкой к номинальной, пусковая емкость обязана быть в 2-3 раза больше рабочей, то есть если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора требуется 80-160 мкФ, что обеспечит пусковую емкость (сумма емкостей рабочего и пускового конденсаторов) 160-240 мкФ.Хотя, если двигатель при запуске имеет небольшую нагрузку, емкость пускового конденсатора может быть для него меньше или вообще необходима.

Пусковые конденсаторы срабатывают кратковременно (всего несколько секунд на весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые ключевые электролитические конденсаторы, специально созданные для этой цели.

Обратите внимание, что двигатель, подключенный к однофазной сети через конденсатор, работающий при отсутствии нагрузки, на обмотке, питаемой через конденсатор, имеет на 20-30% больше номинала.Следовательно, в случае использования двигателя в режиме короткого замыкания емкость рабочего конденсатора должна быть минимизирована. Но тогда, если двигатель запустился без пускового конденсатора, последний может потребоваться.

Намного лучше применить не 1 большой конденсатор, а несколько гораздо меньшего размера, частично из-за возможности выбора хорошей мощности, подключения добавленных или отключения неадекватных, последние используются как пусковая. Требуемое количество микрофарад набирается параллельно соединению нескольких конденсаторов, отталкиваясь от того, что общая емкость при параллельном включении рассчитывается по формуле:

Определение начала и конца фазных обмоток асинхронного электродвигателя









Асинхронные трехфазные двигатели распространены в производстве и быту.Особенность в том, что их можно подключать как к трехфазной, так и к однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие есть способы подключения двигателя 380 вольт? Рассмотрим, как соединить обмотки статора в зависимости от количества фаз в электросети, с помощью иллюстраций и обучающего видео.

Базовых схем две (видео и схемы в следующем разделе статьи):

Преимущество подключения треугольник — работа на максимальной мощности.Но при включении электродвигателя в обмотках возникают большие пусковые токи, опасные для техники. Когда звезда подключена, двигатель запускается плавно, так как токи низкие. Но добиться максимальной мощности не получается.

В связи с вышесказанным двигатели при питании от 380 вольт подключаются только звездой. В противном случае высокое напряжение при включении треугольника способно развить такие пусковые установки, что блок выйдет из строя. Но при высокой нагрузке выходной мощности может не хватить.Затем прибегайте к хитростям: запустите звезду звезды, чтобы она благополучно включилась, а затем переключитесь с этой схемы на треугольник для набора большой мощности.

Треугольник и звезда

Прежде чем рассматривать эти схемы, договариваемся:

  • Статор имеет 3 обмотки, каждая из которых по 1 в начале и 1 в конце. Они выводятся в виде контактов. Поэтому для каждой обмотки их 2. Обозначим: обмотку — о, конец — к, начало — N. На схеме ниже 6 контактов пронумерованы от 1 до 6.Для первой обмотки начало — 1, конец — 4. Согласно принятым обозначениям это NO1 и K4. Для второй обмотки — NO2 и KO5, для третьей — but3 и CO6.
  • В электросети 380 вольт 3 фазы: A, B и C. Их условное обозначение оставим прежним.

При соединении обмоток электродвигателя звездой сначала подключаются все пуски: бут1, бут2 и н3. Затем K4, KO5 и CO6 соответственно получают питание от A, B и C.

При соединении асинхронного электродвигателя треугольником каждое начало соединяется с концом обмотки.Выбирайте порядковый номер обмоток произвольно. Может получиться: no1-ko5-n2-ko6-n3-ko2.

Соединения звезды и треугольника выглядят так:

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электроснабжения. Сразу возникает проблема с количеством проводов. В машинах, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а иногда и четыре. Что с ними делать, где их подключать? Те, кто пробовал опробовать разные варианты, убедились, что моторы просто не хотят крутиться.Возможно ли вообще однофазное подключение трехфазного двигателя? Да, можно добиться вращения. К сожалению, в этом случае падение мощности неизбежно почти вдвое, но в некоторых ситуациях это единственный выход.

Напряжение и их соотношение

Чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Напряжения хорошо известны — 220 и 380 вольт. Раньше еще было 127 Б, но в пятидесятые по этому параметру больше отказались.Откуда взялись эти «магические числа»? Почему не 100, 200 или 300? Кажется, что круглые числа считаются проще.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети, напряжение каждой фазы относительно нулевого провода составляет 220 вольт, как и в домашней розетке. Откуда берется 380 В? Это очень просто, достаточно рассмотреть равносторонний треугольник с углом 60, 30 и 30 градусов, который представляет собой векторную диаграмму напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на 30 ° COS.После нескоростных подсчетов можно убедиться, что 220 х Cos 30 ° = 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самыми распространенными из них являются «рабочие лошадки», составляющие большую часть электромеханических на любом предприятии — асинхронные машины мощностью 1 — 1,5 кВА. Как такой трехфазный двигатель работает в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства был русский ученый Михаил Осипович Доливо-Добровольский.Эта выдающаяся электротехника была сторонником теории трехфазного электроснабжения, которая в наше время стала доминирующей. Трехфазный работает по принципу индукции токов от обмоток статора по замкнутым проводникам ротора. В результате их протекания на короткозамкнутых обмотках в каждой из них возникает магнитное поле, которое стыкуется, взаимодействуя с силовыми линиями статора. Таким образом получается крутящий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120 °, таким образом, вращающееся поле, создаваемое каждой фазой, последовательно толкает каждую намагниченную сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазную сеть может быть включен двумя способами — с участием нулевого провода или без него. Первый способ называется «Звезда», в этом случае каждая из обмоток находится под (между фазой и нулем), равным 220 В. Схема подключения трехфазного двигателя «Треугольник» предполагает последовательное соединение трех обмоток и подавать на узлы коммутации линейные (380 В) напряжения. Во втором случае двигатель выдаст большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть на обратное. Для этого вам просто нужно поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звезды» аккуратно соедините три обмотки выходного провода вместе. «Треугольник» получается немного посложнее, но с ним справятся любые электротехники.

Фазос-сдвижные контейнеры

Итак, иногда возникает вопрос, как подключить трехфазный двигатель к обычной домашней розетке. Если вы просто попытаетесь подключить к вилке два провода, она не будет вращаться. Для того, чтобы дело пошло, нужно смоделировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120 °). Добиться этого эффекта можно, если использовать элемент фазового сдвига. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазную сеть включают с помощью латинской электрической буквы S.

Что касается применения дросселей, то это затруднительно из-за сложности определения их стоимости (если она не указана на корпусе прибора). Для измерения величины L требуется специальный прибор или собранная по этой схеме. Кроме того, выбор доступных дросселей обычно ограничен. Однако экспериментально подобрать любой элемент фазосдвига можно, но это хлопотно.

Что происходит при запуске двигателя? В одну из точек соединения подается ноль, в другую — фазу, а на третью — некоторое напряжение, смещенное на некоторый угол относительно фазы.Понятно и неспециалисту, что работа двигателя будет полной не из-за механической мощности на валу, а в некоторых случаях самого факта вращения. Однако при запуске могут возникнуть некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

Во время пуска вала требуются дополнительные усилия для преодоления сил инерции и трения. Для увеличения момента вращения необходимо установить дополнительный конденсатор, подключенный к схеме только на время пуска, а затем выключения.Для этих целей лучше всего использовать кнопку закрытия без фиксации положения. Подключение трехфазного двигателя с пусковым конденсатором показано ниже, это просто и понятно. В момент подачи напряжения нажмите кнопку «Пуск», и будет создан дополнительный фазовый сдвиг. После того, как двигатель наберет нужные обороты, кнопку можно (и даже нужно) отпустить, и на диаграмме останется только работоспособность.

Расчет величины резервуаров

Итак, мы выяснили, что для включения трехфазного двигателя в однофазную сеть требуется дополнительная схема подключения, в которой помимо кнопки пуска , два конденсатора включены.Вам нужно знать их величину, иначе система не сработает. Для начала определим величину электрического контейнера, необходимую для того, чтобы заставить ротор сдвинуться с места. При параллельном включении он представляет собой сумму:

С = от Арт + Ср, где:

С СТ — пуск дополнительного отключается после работоспособности;

С П — рабочий конденсатор, обеспечивающий вращение.

Нам еще нужно значение номинального тока I n (оно указано на табличке, прикрепленной к двигателю на заводе).Этот параметр также можно определить по простой формуле:

IH = p / (3 x U), где:

U — напряжение при подключении «звезды» — 220 В, а если «треугольник», то 380 В;

P — мощность трехфазного двигателя, иногда при пропадании тарелки определяются на глаз.

Итак, зависимости требуемой рабочей мощности рассчитываются по формулам:

С p = cp = 2800 i n / u — для «звезды»;

С p = 4800 i n / u — для «треугольника»;

Пусковой конденсатор должен работать в 2-3 раза больше.Единица измерения — микрофрейс.

Есть очень простой способ рассчитать вместимость: C = P / 10, но эта формула дает скорее порядковые номера, чем его значение. Впрочем, верить придется в любом случае.

Почему подходит

Приведенный выше метод расчета является приблизительным. Во-первых, номинал, указанный на корпусе электроконтейнера, может существенно отличаться от фактического. Во-вторых, в обиходе часто используются бумажные конденсаторы (вообще говоря, вещь не годная), и они, как и всякие другие предметы, подвержены старению, что приводит к еще большему отклонению от заданного параметра.В-третьих, ток, который будет потреблять двигатель, зависит от величины механической нагрузки на вал, поэтому оценить ее можно только экспериментально. Как это сделать?

Требуется немного терпения. В итоге получается довольно громоздкий набор конденсаторов, главное — после окончания работ все беременеет, чтобы припаянные концы от исходящих от мотора колебаний не отваливались. И тогда не лишним будет проанализировать результат и, возможно, упростить конструкцию.

Аккумуляторная сборка баков

Если в мастере нет специальных электролитических клещей, позволяющих измерять ток без размыкания цепей, то амперметр следует подключать последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети общее значение будет протекать, и при выборе конденсаторов следует стремиться к наиболее равномерной нагрузке обмоток. Следует помнить, что при последовательном подключении общая емкость уменьшается по закону:

Также нельзя забывать о таком важном параметре, как напряжение, на которое рассчитывается конденсатор.Он должен быть не меньше номинала сети, а лучше с запасом.

Разрядный резистор

Цепь трехфазного двигателя, включенная между той же фазой и нулевым проводом, иногда дополняется сопротивлением. Он служит для того, чтобы заряд остался на пусковом конденсаторе, оставаясь после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Чтобы обезопасить себя, необходимо подключить резистор с пусковой емкостью (электрики называют «оглушающими»).Величина его сопротивления велика — от половины мега до мега, а по размерам она мала, поэтому симпатична и наполовину насыщает мощность. Однако, если пользователь не боится быть «точным», то без этой детали вполне можно и обойтись.

Использование электролита

Как уже отмечалось, пленочные или бумажные электрокары дорогие, и не так-то просто привезти их столько, сколько хотелось бы. Сделать однофазное подключение трехфазного двигателя можно с помощью недорогих и доступных электролитических конденсаторов.При этом совсем дешевыми они не будут, так как должны выдерживать 300 вольт постоянного тока. Для безопасности их стоит оглушить полупроводниковыми диодами (например, Д 245 или Д 248), но при этом стоит помнить, что при пробое этих устройств на электролит падает переменное напряжение, и он очень сильно нагревается. , а затем он взорвется, громко и эффективно. Поэтому без особой надобности лучше использовать конденсаторы бумажного типа, работающие от напряжения хотя бы постоянного, а то и переменного.Некоторые мастера полностью разрешают использование электролитов в пусковых цепях. Из-за кратковременного воздействия на них переменного напряжения они могут не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к использованию электрических и электронных деталей, их приобретают? На барахолках и «барахолках». Вот они лежат, осторожно сброшенные кем-то (обычно пожилым) руками из старых стиральных машин, телевизоров и прочего строительного бытового и промышленного оборудования.У этих товаров советского производства много просят: продавцы знают, что если товар нужен, то купят, а если нет — и ничего не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) просто нет. И что делать? Без проблем! Придут резисторы и нужны только мощные, желательно керамические и глазурованные. Конечно, фаза идеального сопротивления (активная) не сдвигается, но в этом мире нет ничего идеального, и в нашем случае это хорошо. Каждое физическое тело имеет свою индуктивность, электрическую мощность и сопротивление, будь то крошечная пыль или огромная гора.Включение трехфазного двигателя в розетку становится возможным при замене его конденсатором с сопротивлением, номинал которого рассчитывается по формуле:

R = (0,86 х U) / ки, где:

ки — величина тока при трехфазном подключении, а;

У — наш верный 220 вольт.

Какие моторы подойдут?

Перед покупкой за немалые деньги мотор, который предполагается использовать в качестве привода круга для заточки, циркулярной пилы, сверлильного станка или другого полезного бытового устройства, не помешает задуматься о его применимости для этих целей.Не каждый трехфазный двигатель в однофазной сети вообще может работать. Например, серию МА (у него короткозамкнутый ротор с двойной ячейкой) следует исключить, чтобы не тащить значительный и бесполезный груз. В общем, лучше всего сначала поэкспериментировать или пригласить опытного человека, например электрика, и посоветоваться с ним перед покупкой. Асинхронный двигатель трехфазного ряда отходов, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских шильдиках.

В трехфазной сети обычно 4 провода (3 фазы и ноль). Может быть еще один отдельный провод «Земля». Но нулевого провода нет.

Как определить напряжение в вашей сети?
Очень просто.Для этого измерьте напряжение между фазами и между нулем и фазой.

В сетях 220/380 напряжение между фазами (U1, U2 и U3) будет 380 В, а напряжение между шумом и фазой (U4, U5 и U6) будет 220 В.
В сетях 380 / 660 В, напряжение между любыми фазами (U1, U2 и U3) будет равно 660 В, а напряжение между нулем и фазой (U4, U5 и U6) будет 380 В.

Возможные схемы обмоток двигателя

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе.Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначаются цифрой 1 начало обмотки и цифрой 2 — ее конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V — V1 и V2, а обмотка W — W1 и W2.

Однако старые асинхронные двигатели, произведенные в СССР и имеющие старую советскую маркировку, все еще находятся в эксплуатации. В них старты начинались С1, С2, С3, а концы — С4, С5, С6.Значит, первая обмотка имеет выводы С1 и С4, вторая — С2 и С5, а третья — С3 и С6.

Трехфазные электродвигатели могут подключаться по двум разным схемам: звезда (y) или треугольник (δ).

Подключение электродвигателя по схеме звезды

Название схемы подключения связано с тем, что при подключении обмоток по этой схеме (см. Рисунок справа) она визуально напоминает трехстороннюю звезду .

Как видно из схемы подключения электродвигателя, все три обмотки соединены между собой одним своим концом.При таком подключении (сеть 220/380 В) для каждой обмотки отдельно подходит напряжение 220 В, а для двух последовательно соединенных обмоток — напряжение 380 В.

Главное преимущество подключения электродвигателя по схеме звезды малые пусковые токи, так как напряжение питания 380 В (межфазное) потребляет сразу 2 обмотки, в отличие от схемы «Треугольник». Но при таком подключении мощность поставляемого электродвигателя ограничена (в основном из экономических соображений): обычно в звезду входят относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольника

Название этой схемы также происходит от графического изображения (см. Рисунок справа):

Как видно из схемы подключения электродвигателя — «Треугольник», обмотки соединены последовательно между собой: конец первой обмотки соединен с началом второй и так далее.

То есть на каждую обмотку будет напряжение 380 В (при использовании сети 220/380 В).В этом случае по обмоткам протекают большие токи, в треугольник обычно включаются двигатели большей мощности, чем при соединении звездой (от 7,5 кВт и выше).

Подключение электродвигателя к трехфазной сети на 380 В

Последовательность действий следующая:

1. Для начала выясняем, как рассчитывается наша сеть.
2. Позже посмотрим на пластину на электродвигателе, она может выглядеть так (звезда Y / треугольник Δ):

(~ 1, 220 В)


220 В / 380 В (220/380, Δ / Y)

(~ 3, y, 380 В)

Двигатель для трехфазной сети
(380 В / 660 В (Δ / Y, 380 В / 660 В)

3. После определения параметров сети и параметров электрического подключения электродвигателя (звезда y / треугольник δ) перейдите к физическому электрическому подключению электродвигателя.
4. Для включения трехфазного электродвигателя необходимо одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя — работа на двух фазах. Это может произойти из-за неисправного стартера или при перегрузке фазы (когда напряжение в одной из фаз намного меньше, чем в двух других).
Существует 2 метода подключения электродвигателя:
— С помощью автоматического выключателя или устройства защиты двигателя

Эти устройства при включении подавали напряжение сразу на все 3 фазы. Мы рекомендуем вам поставить автомат защиты двигателя серии MS, так как он может быть настроен точно на рабочий ток электродвигателя, и он будет чувствительно отслеживать его в случае перегрузки. Это устройство на время пуска позволяет некоторое время работать на повышенном (пусковом) токе, не выключая двигатель.
Обычную защиту автоматику требуется ставить при превышении номинального тока электродвигателя с учетом пускового тока (в 2-3 раза выше номинального).
Такой автомат может заглушить двигатель только в случае КЗ или раскрутить его, что зачастую не обеспечивает желаемой защиты.

Использование стартера

Стартер — это электромеханический контактор, замыкающий каждую фазу с соответствующей обмоткой электродвигателя.
Привод контакторного механизма осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пуска:

Магнитный пускатель прост и состоит из следующих частей:

(1) катушка электромагнита
(2) Пружина
(3) Мобильная рама с контактами (4) для подключения питания сети (или обмотки)
(5) Контакты еще для подключения обмоток двигателя (питание).

При питании катушки, рамка (3) с контактами (4), она опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с помощью стартера:


При выборе стартера следует обратить внимание на напряжение питания катушки магнитного пускателя и купить его в соответствии с возможностью подключения к конкретной сети (например, если у вас всего 3 провода и сеть 380 В, то катушку нужно брать на 380 В, если у вас Сеть 220/380 В, то катушка может быть 220 В).

5. Контроль, в правильном направлении вал вращается.
Если вы хотите изменить направление вращения вала электродвигателя, то вам просто нужно поменять местами любые 2 фазы. Это особенно важно при питании от центробежных электронасосов, имеющих строго определенное направление вращения рабочего колеса

Как подключить поплавковый выключатель к трехфазному насосу

Из вышеописанного становится ясно, что для управления трехфазным электродвигателем насоса в автоматическом режиме с помощью поплавкового выключателя невозможно просто разорвать одну и ту же фазу, как это делается с однофазными двигателями в однофазном режиме. фазовая сеть.

Проще всего использовать магнитный пускатель для автоматизации.
В данном случае поплавковый выключатель должен последовательно интегрироваться в цепь питания катушки стартера. При замыкании цепи цепь катушки стартера будет замкнута, а электродвигатель включен, при размыкании — питание электродвигателя будет отключено.

Подключение электродвигателя к однофазной сети 220 В

Обычно используются специальные двигатели для подключения к однофазной сети 220В, которая используется для подключения к такой сети, и их питание не происходит.Для этого достаточно просто вставить вилку (большинство бытовых насосов оснащено стандартной вилкой Шукука) в розетку

Иногда требуется подключить трехфазный электродвигатель к сети 220 В (если, например нельзя провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который может быть включен в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ — подключить электродвигатель через преобразователь частоты, рассчитанный на питание от сети 220 В.

Следует помнить, что преобразователь частоты на 220 В, он дает на выходе 3 фазы 220 В. То есть в трехфазную сеть можно подключить только электродвигатель, имеющий напряжение питания 220 В ( обычно двигатели с шестью контактами в распиленной коробке, обмотки которых можно соединять как звездой, так и треугольником). В этом случае нужно соединить обмотки треугольника.

Возможно, еще проще подключить трехфазный электродвигатель в сеть 220 В с помощью конденсатора, но такое подключение приведет к выходу электродвигателя из строя примерно на 30%.Третья обмотка запитана через конденсатор от любой другой.

Мы не будем рассматривать этот тип подключения, так как это нормально для насосов, этот способ не работает (либо при стартере двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование преобразователя частоты

В настоящее время преобразователи частоты достаточно активно используются для регулирования частоты вращения (оборотов) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для водоснабжения), но и управлять подачей объемных насосных насосов, переводя их в дозирующие (любые насосы объемного принципа работы).

Но очень часто при использовании преобразователей частоты не обращают внимания на некоторые нюансы их применения:

Регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей. (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ПЭ можно поднять частоту тока до 400 Гц, обычные подшипники при таких скоростей),
— При уменьшении скорости вращения встроенный электродвигатель вентилятора начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания на конструкцию установок на такие «мелочи», очень часто выходят из строя электродвигатели.

Для работы на низкой частоте необходимо установить дополнительный вентилятор принудительного охлаждения электродвигателя.

Вместо кожуха вентилятора установлен вентилятор принудительного охлаждения (см. Фото). В этом случае даже при уменьшении основного вала двигателя
дополнительный вентилятор обеспечит надежное охлаждение электродвигателя.

Имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото винтовые насосы с дополнительными вентиляторами на электродвигателях.

Эти насосы используются в качестве дозирующих насосов в пищевом производстве.

Надеемся, что данная статья поможет вам самостоятельно правильно подключить электродвигатель к сети (ну или хотя бы понять, что вы не электрик, а «специалист широкого профиля»).

Технический директор
ООО «Насосы ампика»
Моисей Юрий Васильевич.


Сравнение соединений звездой и треугольником в трехфазных системах

Соединения треугольником
Соединение звездой (Y или звезда) Соединение треугольником (Δ)
Соединение звездой — это 4-проводное соединение (в некоторых случаях) Соединение по схеме «треугольник» — это 3-проводное соединение.
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. При соединении треугольником возможна только 3-проводная 3-фазная система.
Из 4 проводов 3 провода являются фазами, а 1 провод — нейтралью (которая является общей точкой 3 проводов). Все 3 провода являются фазами при соединении треугольником.
При соединении звездой один конец всех трех проводов подключен к общей точке в форме Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. . При соединении треугольником каждый провод соединяется с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы.
Общая точка звездного соединения называется нейтральной или звездной точкой. В соединении треугольником нет нейтрали.
Линейное напряжение (напряжение между любыми двумя фазами) и фазное напряжение (напряжение между любой фазой и нейтралью) различаются. Линейное и фазное напряжение одинаковы.
Линейное напряжение равно трехкратному основному фазному напряжению, то есть VL = √3 VP. Здесь VL — линейное напряжение, а VP — фазное напряжение. Линейное напряжение равно фазному напряжению i.е. ВЛ = ВП.
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP различны. Например, в системе 230 В / 400 В напряжение между любым фазным проводом и нейтральным проводом составляет 230 В, а напряжение между любыми двумя фазами — 400 В. При соединении треугольником мы получаем только одно значение напряжения.
Линейный ток и фазный ток одинаковы. Линейный ток в три раза превышает основной фазный ток.
В соединении звездой, IL = IP.Здесь IL — линейный ток, а IP — фазный ток. При соединении треугольником, IL = √3 IP
Общая трехфазная мощность при соединении звездой может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Общая трехфазная мощность при соединении треугольником может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Поскольку линейное и фазовое напряжение различны (VL = √3 VP), изоляция требуется для каждой фазы меньше при соединении звездой. При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция.
Обычно соединение звездой используется как в передающих, так и в распределительных сетях (с однофазным питанием или трехфазным. Соединение треугольником обычно используется в распределительных сетях.
Поскольку требуется меньше изоляции, соединение звездой могут использоваться для больших расстояний Delta Connections используются для более коротких расстояний.
Соединения звездой часто используются в приложениях, требующих меньшего пускового тока. часто используются в приложениях, требующих высокого пускового момента.

Что такое трехфазный двигатель и как он работает?

Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы.Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в бытовых приложениях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает.Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список статей о моторах можно найти в разделе статей по теме.

Что такое трехфазное питание?

Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.

При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, состоящую в том, что его амплитуда и направление меняются со временем.Если отображать графически с амплитудой по оси Y и временем по оси X, соотношение между напряжением или током в зависимости от времени будет напоминать синусоидальную волну, как показано ниже:

Рисунок 1 — Однофазный переменный ток

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Электроэнергия, подаваемая в дома, является однофазной, это означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π / 3. радианы друг от друга.Если рассматривать графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

Рисунок 2 — Трехфазная электрическая мощность со сдвигом фаз 120
или между каждой фазой

Изображение предоставлено: teerawat chitprung / Shutterstock.com

Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.

Что такое трехфазный двигатель?

Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.

Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.

Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.

Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.

Как работает трехфазный двигатель?

Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет изменяться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:

Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.

Рисунок 3 — Принцип электромагнитной индукции

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120 o , магнитная полярность трех катушек не все идентичны в один и тот же момент времени. Это состояние приводит к тому, что статор создает так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:

, где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — следовательно, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных, не нуждаются в питании от сети переменного тока.

Контроллеры двигателей для трехфазных двигателей

Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описанное ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.

Резюме

В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
  2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
  3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
  4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
  5. https://www.elprocus.com/induction-motor-types-advantages/
  6. https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
  7. https://www.worldwideelectric.net/resource/construction-ac-motors/

Прочие изделия для двигателей

Больше от Machinery, Tools & Supplies

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *