Сколько в одном киловатте вольт: Перевести вольты (В) в киловатты (кВт): онлайн-калькулятор, формула

Содержание

киловатт [кВт] в теравольт-ампер [ТВ·А] • Конвертер мощности • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Мощность этого локомотива GO Train MP40PH-3C (Канада) равна 4000 лошадиных сил или 3000 киловатт. Он способен тянуть поезд из 12 вагонов с 1800 пассажирами

Общие сведения

В физике мощность — это отношение работы ко времени, в течении которого она выполняется. Механическая работа — это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s. Мощность можно также определить как скорость передачи энергии. Другими словами, мощность — показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

2 лошадиные силы или 1,5 киловатта и 20 пассажиров

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Лампа накаливания мощностью 60 ватт

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
  • Люминесцентные лампы мощностью 12 и 7 Вт

    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    Матрица светодиодов 5050. Мощность одного такого светодиода примерно равна 200 миливаттам

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

    Литература

    Автор статьи: Kateryna Yuri

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Сколько вольт в киловольте. Смертельное это напряжение

сколько вольт в киловольте. Смертельное это напряжение?

  1. смертельно частота тока
  2. 1 Киловольт = 1000 Вольт

    Смертельно или несмертельно — зависит от множества факторов.
    Место приложения к телу, путь тока, состояние организма.

    Но это опасное напряжение однозначно, при неудачном раскладе может хорошо приложить!

  3. Это одна тысяча вольт. Если речь идет об электрической сети промышленной частоты, то да, это опасно для жизни! Нельзя прикасаться или подходить близко, если провод на земле лежит.
  4. 1 киловольт=1000 вольт
    1 килограмм=1000 грамм
    1 килобит= 1024 битам =)
  5. Электрик старый, дядя Сма,
    Зайдя по вызову в отдел,
    Как старый добрый наш знакомый,
    Сперва розетку оглядел,

    Потом спросил не без причины
    У нас, оставшихся без дел,
    Искрила ли перед кончиной,
    Предохранитель ли слетел

    И, развинтив нутро на клеммы,
    На пальцы смачно поплевал;
    Вложив в розетку, суть проблемы

    Тотчас без тестера признал.

    Увидев наше изумленье,
    Нам старый мастер объяснил,
    Что не имеет больше сил
    Преодолеть сопротивленье

    Привычной кожи, потому
    Плевать приходится ему,
    Когда в розетке двести двадцать.
    Совсем иное дело, братцы,

    Коль надо за трхфазный браться
    Вот здесь могу сухой рукой
    Понять, под фазою какой
    Но тоже нечего бояться.

    Что не люблю я, без сомненья,
    И в том могу признаться вам:
    Не мило мне прикосновенье
    К высоковольтным проводам!

  6. Смертелен ампераж
  7. а жалко, что убить не может. . надо бы общество проредить)) вроде как от 40 вольт официально считают, ну это для тех у кого прививки от электричества нет..
  8. Кило — это тыща. А далее — щитайЪ.
  9. кило это три нуля 000. В киловольте 1 000 вольт.
    Да смертельно. Зависит от силы тока.
  10. кило — тысяча, а смертельно даже 12вольт тут мужику аккумулятор автомобильный на голову упал- мужик умер
  11. Смертелен ток — 100мА, и частота тока. Чем выше частота, тем больше ток течт по поверхности, чем по сечению проводника (тела) . Поэтому 1000вольт при токе 10мА вас не убьт, и 1000вольт частотой 1Мгерц — обожжет кожу.
  12. 1000 вольт. Смертельно не само напряжение, а сила тока, которая проходит через человека. В зажигалках, которые искры дают при нажатии на кнопку, вырабатываются пьезоэлементом десятки киловольт, однако сила тока ничтожно маленькая, и убить, естественно, никого не может
  13. И большее напряжение может быть не смертельно, если маленькая сила тока. Больше 10 мА уже не стоит испытывать.
    http://www.guitarplayer.ru/forum/index.php?topic=64970.0
    …Порог восприятия постоянного тока, входящего в руку, составляет примерно 5-10 миллиампер (мА) , порог восприятия используемого в быту переменного тока (60 Гц) около 110 мА. Максимальная сила тока, который вызывает сокращение мышц-сгибателей руки, но еще позволяет пострадавшему освободить руку от источника тока, составляет (в зависимости от мышечной массы) для постоянного тока 75 мА и для переменного 15 мА; такой ток называют током отпускания (неотпускающим током) . Переменный ток (60 Гц) низкого напряжения (110-220 В) , проходящий через грудную клетку в течение долей секунды, может вызвать фибрилляцию желудочков при силе всего лишь 60100 мА; постоянный ток вызывает подобный эффект при силе 300500 мА. Если ток проводится прямо в сердце (например, через сердечный зонд или электроды электрокардиостимулятора) , то фибрилляция может возникнуть под действием очень слабого тока, переменного или постоянного (lt;1 мА) .
  14. 1 кВ-1000 В. Опасным для жизни человека переменный ток становится начиная с силы примерно 0,01 А, а постоянный с 0,05 А.

Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического напряжения:

ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло — трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием электрического потенциала дело обстоит несколько сложнее.

Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации — математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.

Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал — стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.

Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется — пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…

Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.

Электрический потенциал

Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие — электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.

Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.

Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой

Н (уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень Н /2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.

По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть

ϕ Earth = 0

где ϕ Earth — обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ — буква греческого алфавита и читается как «фи»).

Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:

ϕ = W/q

В системе СИ единицей измерения электрического потенциала является вольт (В).

Напряжение

Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:

V = ϕ1 – ϕ2

Понятие напряжение ввёл немецкий физик Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:

V = I·R,

где V — это разность потенциалов, I — электрический ток, а R — сопротивление.

Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.

Для этого определения математическое выражение для напряжения описывается формулой:

V = A / q

Напряжение, как и электрический потенциал, измеряется в вольтах (В) и его десятичных кратных и дольных единицах — микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).

Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как

В = кг м²/(А с³)

Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.

Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов — акулы различных видов — обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии , и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!

Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент . Он был изобретён итальянским учёным и врачом Луиджи Гальвани , который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик Алессандро Вольта . Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый «Вольтов столб» , благодаря которой стало возможным получать электричество с помощью химических реакций.

Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения — Вольт.

Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа , создавшего генератор высокого напряжения , в основе которого лежит древняя идея разделения зарядов с помощью трения — вспомним янтарь!

Отцами современных генераторов напряжения были два замечательных американских изобретателя — Томас Эдисон и Никола Тесла . Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество — обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств — достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона — на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.

Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.

Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.

Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли — Венере — не говоря уже об огромных планетах вроде Юпитера и Сатурна.

Характеристики напряжения

Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.

В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами .

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм мозговой деятельности. Электрокардиограммы и эхокардиограммы дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов — русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения U i (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения U a — это наибольшее мгновенное значение напряжения за период. Размах напряжения U p-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения U rms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение напряжения осциллографом

Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).

Эксперимент №1

Общая схема эксперимента №1 представлена ниже:


Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1: Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.


Опыт 2: Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:


Опыт 3: Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными — сказывается допустимый рабочий частотный диапазон мультиметра 0-400 Гц:


Опыт 4: Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:


Эксперимент №2

Схема эксперимента №2, аналогична схеме эксперимента 1.

Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц — как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:


Техника безопасности при измерении напряжения

Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:

  1. Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
  2. Не производить измерения напряжений в труднодоступных местах или на высоте.
  3. При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  4. Пользоваться исправным измерительным инструментом.
  5. В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  6. Пользоваться измерительным прибором с исправными щупами.
  7. Строго следовать рекомендациям производителя по использованию измерительного прибора.


МВАр (Мегавольт Ампер-реактивный)
Не буду вдаваться в теорию, расскажу упрощенно и для сведения. На самом деле все генераторы на электростанциях вырабатывают два вида мощности. Во-первых, Активную мощность (это те самые Мегаватты — МВт, про которые я рассказал выше). Активная мощность совершает всю полезную работу — по нагреву проводников, по вращению двигателей. Но есть еще и реактивная мощность. Без нее не смогут крутиться двигатели (только активной мощности для приведения во вращение двигателя недостаточно) и работать некоторые потребители. Просто знайте, что она есть. Отсюда вытекает понятие полной мощности — измеряется в Мегавольт Амперах (МВА) — это корень квадратный из суммы квадратов активной и реактивной мощностей. Кстати, косинус фи (может слышали такое понятие, относящиеся к энергетике, показывает соотношение активной и реактивной мощностей, которые берет из сети потребитель). Все, идем дальше.

кВ (киловольт)
В Вольтах измеряется электрическое напряжение, обозначается «U». Если подумать — мы постоянно сталкиваемся с этой физической величиной. Электрическое напряжение между «+»-ом и «-»-ом пальчиковой батарейки от пульта телевизора всего 1,5 В, «в розетке на стене», то есть между ее контактами 220 В. Чаще всего напряжение используется журналистами при упоминании в материале линий электропередачи и электрических подстанций. Хочу открыть маленький секрет — если речь идет об отключении линии, зная ее напряжение можно оценить примерный масштаб отключений. Итак, в нашей стране используются следующие классы напряжений (про специфические, которые используются на некотором оборудовании промышленных предприятий писать не буду):
220 Вольт (220 В) — на такое напряжение рассчитаны бытовые приборы в СССР и соответственно проводка в жилых и административных зданиях.
0,4 кВ (0,4 киловольта или 400 Вольт, на самом деле 380 Вольт, для удобства округленные до целого значения) — линии такого напряжения прокладывают на очень маленькие расстояния, обычно от «трансформаторной будки» во дворе дома, до подъезда или по сельской улице, в любом случае максимальная длина такой линии — десятки метров. Соответственно если такая линия отключится, об этом узнают не более сотни потребителей электроэнергии.
6 кВ (6 киловольт или 6 тысяч Вольт, 6 000 В), 10 кВ, 35 кВ — это класс напряжения распределительной внутригородской сети, отключение сразу нескольких таких линий может «погасить» максимум небольшой городской квартал, как правило, длина таких линий несколько километров.
110 кВ, 220 кВ — системообразующая региональная сеть, длина от десятков до сотен километров. Отключение такой линии может оставить без света от 100 000 до 200 000 человек. Правда, обычно такие линии работают по несколько в параллели, так, что для того, чтобы пропал свет должно отключиться сразу нескольких линий или вся подстанция целиком.
500 кВ — сеть, образующая Единую Электроэнергетическую Систему Казахстана, также линии такого класса напряжения образуют межгосударственные электрические связи. Отключение такой линии может привести к обесточиванию до полумиллиона потребителей (а если отключение получит развитие, без света останется намного больше людей). Однако, как правило, ничего страшного не происходит, поскольку в параллели несколько таких линий. Длина несколько сотен километров. Самая длинная линия 500 кВ в Казахстане — от Актюбинска до Костаная — 500 км. Первые линии напряжением 500 кВ появились в СССР после 1960 года. В Казахстане первая 500-ка это линия между г. Аксу (Ермак) и Экибастузом, построенная в 1972 году.
1150 кВ (1 миллион 150 тысяч Вольт) — линия (вернее транзит длиной 2500 км, из которых 1500 км проходит по нашей территории) уникальна для Земли. Ни в одной стране мира нет линий такого класса напряжения. Только в Казахстане и России. Линия была построена для обмена мощностью между Сибирью, Казахстаном и Европейской частью СССР. Транзит берет начало в сибирском Итате, затем идет через Барнаул, Экибастуз, Кокшетау, Костанай в Челябинск. Для чего такие «дикие» напряжения, спросите вы? Просто это дает возможность передавать по транзиту 5 500 МВт — это самая мощная ВЛ в мире. Правда, на своем «родном» напряжении линии удалось поработать недолго. Распался Советский Союз, произошел резкий спад потребления — передавать стало нечего. Вот и перевели ее на напряжение 500 кВ. Но кто знает, может все вернется обратно?

Был один случай. Приехал к нам в Казахстан один иностранец, по линии какой-то международной организации, то ли ООН, то ли USAID, не помню. Приехал обучать аборигенов, так сказать. Достижениям западной цивилизации. Долго парил мозги про «их» успехи (которые, по правде говоря, для нас стали пройденным этапом году эдак в 1970), и по концовке видимо решил нас окончательно добить своим превосходством. У нас, говорит (многозначительно так), системообразующая сеть работает на напряжении… целых 400 тысяч Вольт! Последовавший за этим наш дружный смех он интерпретировал неправильно, подумал, что по причине сильной отсталости, туземцы не верят в существование такой «огромной» цифры, и уже было начал обдумывать продолжение спича. Однако был нами остановлен, и под белы ручки подведен к карте с трассировкой линий по стране. Док долго отказывался верить в то, что у нас буквально весь Казахстан в линиях на 500 кВ, а что построена линия напряжением 1150 кВ он поверил только у себя на родине, когда ознакомился с разведданными ЦРУ:) Больше к нам спецов не присылали.

Я перечислил все классы напряжения, которые используются в Казахстане и странах бывшего СССР (правда в России, Белоруссии, Прибалтике и на Украине используются еще классы 330 кВ и 750 кВ). В странах дальнего зарубежья классы напряжения отличаются от вышеприведенной шкалы. И это не от большого ума. Например, в США напряжение, используемое бытовыми приборами не 220 В, как у нас, а 127 В. На что это влияет? Если кто помнит, электрические «шнуры» (кабели питания) советской бытовой техники были довольно тонкими. Не то, что сейчас — телевизор, мощностью с лампочку в подъезде, получает питание от сети по кабелю, толщиной чуть ли не с мизинец, а про стиральную машинку я вообще молчу. Кстати, мой советский телевизор «Радуга» потреблял 750 Вт — в 3 раза больше, чем телек 51-ой диагонали LG сегодня. Далекие от школьных уроков физики люди думают, что такая разница в толщине проводов из-за желания иностранных производителей сделать более надежную и безопасную технику. А вот и нет. Просто кабели выпускаются под западные 110 -127В, а при таком напряжении меди в проводе должно быть в 4 (!) раза больше, чем при «советском» напряжении 220 В (для питания бытового прибора той же мощности). Чтобы оценить весь ужас перерасхода цветных металлов в США, помимо неэффективных «шнуров» к бытовой технике нужно учесть такую же проводку в стенах зданий, рассчитанную на 110-127 В. Скажете, что это они, дураки, что ли? Взяли бы да поменяли на 220 В. Не все так просто. Они бы сейчас может и поменяли, да денег это стоит переделывать все по новой стольких, что они запарятся доллары печатать.

Напряжение — локальный фактор. Если у вас слишком низкое напряжение в квартире, значит, проблема скорее всего существует в совсем небольшом районе. Скорее всего, на местной подстанции неправильно отрегулированы трансформаторы, либо в вашем районе дефицит реактивной мощности, про которую я написал ниже. Локальный — это означает, что если есть проблемы с напряжением в одном из Алматинских дворов, в соседнем может быть все в порядке, тем более все в порядке с напряжением в другом городе.

Постоянный и переменный электрический ток
Несмотря на то, что журналисты почти не сталкиваются с понятием электрического тока, для общего развития вкратце напишу и про него. Электрический ток это направленное движение электрически заряженных частиц под воздействием электрического поля. Уфф…:) Заряженными частицами могут быть, например электроны в металлических проводниках (поэтому провода ЛЭП делают из металла). Ионы в электролитах (поэтому «человека может ударить током»). Проще всего объяснить, что такое ток на устройстве простейшей электрической цепи. Есть источник тока — батарейка. Есть лампочка, подключенная к «+» и «-» батарейки при помощи проводника, например медной проволоки. Это простейшая электрическая цепь.

Батарейка является химическим источником тока. Из-за химических реакций, протекающих в батарейке, на стороне «-» батарейки, накапливаются электроны. Далее. Медная проволока, состоит из атомов, образующих кристаллическую решетку. Сквозь эту решетку могут свободно проходить электроны. Как только цепь замыкается (лампочка через проводки соединяется с обоими концами батарейки), электроны от «-» батарейки начинают перетекать к «+» по проволоке и нити накаливания лампочки (благодаря электродвижущей силе, которую создает батарейка) — это и есть электрический ток. Нить лампочки накаливания тоже металлическая, но кристаллическая решетка металла, из которого она изготовлена (обычно Вольфрам) намного «меньше» чем кристаллическая решетка меди, из которой сделаны проводки. Электронам труднее «протиснуться» через нее, в результате «трения» нить накаливания разогревается до высокой температуры и начинает светиться. Здесь мы коснулись еще одного понятия — электрического сопротивления. У меди оно меньше, чем у Вольфрама. Итак, здесь все понятно. Электроны циркулируют по цепи — это электрический ток, причем постоянный, поскольку они циркулируют в одном и том же направлении.

На постоянном токе «работает» практически вся бытовая электроника (компьютеры, телевизоры, пульты дистанционного управления). Исторически электрификация (централизованное обеспечение электроэнергией) начиналась с постоянного тока. Вообще, электрификация была голубой мечтой дедушки Томаса Эдисона, которую он, кстати, воплотил в жизнь. «Никогда не изобретай то, чего не сможешь продать!» — любил повторять предприимчивый изобретатель. Действительно, в те времена организация искусственного освещения сулила огромные барыши (в наше время это тоже отличный бизнес). Интересно, что до распространения искусственного освещения люди спали в среднем 10 часов в сутки. Основатель «General Electric », Эдисон стал одним из отцов современной энергетики, он спроектировал и выполнил в натуре первую в мире законченную энергетическую инфраструктуру — и производство электроэнергии на генераторах постоянного тока и ее доставку по линиям электропередачи к потребителям и всякие «мелочи» вроде выключателей, патронов к лампочкам, счетчиков электроэнергии и т.д. Кстати, размер цоколя лампочки до сих пор принято обозначать с большой латинской «E». Например, Е27 или Е14, где «Е» — означает Edison, а цифра это диаметр цоколя в миллиметрах. Сама лампочка накаливания — коллективное творение. Во всяком случае, Эдисон в 1906 году купил у Лодыгина патент на вариант лампочки с вольфрамовой нитью накаливания. Первым электрифицированным районом Земли стал Манхеттен в Нью-Йорке.

Все у Эдисона было нормально, пока не обнаружилась одна проблемка. Рабочее напряжение Эдисоновской сети постоянного тока было 127 Вольт — такое напряжение давали генераторы. Но чем дальше от генераторов пытались передать электроэнергию, тем меньше ее передавалось — сильно снижалось напряжение (это происходило из-за наличия сопротивления в электрических кабелях). Выход из положения состоял либо в том, чтобы повысить напряжение, но это создавало угрозу поражения электрическим током для конечных потребителей, а самое главное (самое — потому, что не до людей, когда такие деньги) нужно было менять генераторы, но это дорого, либо второй вариант — «понатыкать» электростанций по всему Нью-Йорку (через каждые 1,5-2 км), что, вообще говоря, снижало экономическую эффективность всей системы, про экологию я вообще молчу. Поскольку компания Эдисона была монополистом, он склонялся ко второму варианту.

Но тут Никола Тесла, который работал у Эдисона, подбросил идею перехода на переменный ток. В чем суть идеи. В 1831 году Майкл Фарадей обнаружил, что если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии магнитного поля, то в проводнике возникнет электрический ток. Блин, если так и дальше пойдет скоро и сам начну понимать, о чем пишу:) Проще говоря, что сделал Фарадей, — взял катушку, намотал на нее провод, концы провода подсоединил к вольтметру и как Ослик Иа из мультика про Винни Пуха стал опускать в полую сердцевину катушки магнит на ниточке, а потом поднимать. «Замечательно входит, замечательно выходит», — думал Фарадей. Тут смотрит, а стрелка вольтметра с каждым таким движением и дергается. Так и открыл электромагнитную индукцию.

Так вот, мо мере опускания магнита, по проводу, намотанному на катушку, начинает течь и возрастать ток, затем он уменьшается, затем становится равным нулю, а потом все повторяется в обратном направлении, а затем снова и снова. Это и есть переменный ток. Только до Теслы, куда его присобачить, этот переменный ток, никто не знал. Ну, есть, мол, такой и все тут.

Да, и еще изобрели трансформатор.

На Фарадейевскую катушку надели еще одну, большего диаметра (электрическая матрешка получилась), и тут заметили, что во второй катушке (если число витков отлично от первой катушки), напряжение другим становится. Так вот, Тесла прикинул 2+2 и предложил использовать переменный ток следующим образом. Делаем генератор переменного тока. Затем пропускаем переменный ток через трансформатор и многократно увеличиваем напряжение (это позволит передавать электроэнергию на большие расстояния). Затем доставляем электроэнергию до потребителя по линии электропередачи и снова пропускаем ток через трансформатор, только уже для понижения напряжения. Надо сказать, что такой фокус с постоянным током не проходит. Постоянный ток не трансформируется. Короче, вот проблема и решена, тем более что лампочке, если честно, вообще до лампочки — постоянный или переменный ток через нее проходит, светит почти одинаково. «Так, так, так, — захлопнув крышку карманных часов, сказал Эдисон, не дав Тесле договорить до конца. — А где генератор переменного тока взять, ты, что ли его изобретать будешь?». «Да я и не такое изобрести смогу, самодовольный ты осел », — ответил Никола. «Послушай, чем заниматься ерундой, приложи-ка лучше усилия к решению проблем электрических машин постоянного тока, если получится, дам тебе … $50 000, — прищурив глаза, Эдисон протянул Тесле исписанный листок бумаги. — И ступай уже, работать мешаешь». В подтверждение окончания разговора Эдисон отвернулся к верстаку, с какими-то железками, которым вскоре предстояло стать первым в мире видеовоспроизводящим устройством — кинетоскопом. Тесла довольно быстро решил проблемы с машинами Эдисона, и так же быстро придумал принцип работы генератора переменного тока. Помните Ослика Иа Фарадея с катушкой? Теперь немного изменим опыт. Не будем привязывать магнит за ниточку. Вместо этого, насадим магнит на палочку (тфу ты, детский сад какой-то) и будем палочку крутить, вдоль свой оси. Пишу, а самого почему-то смех разбирает:)) Катушка начнет вырабатывать переменный ток. В промышленном образце, конечно, никакого магнитика с палочкой нет, там есть ротор с мощным электромагнитом, который приводится во вращение паровой турбиной, вместо катушки с проволокой — статор. Итак, Тесла решил все задачи по машинам постоянного тока, которые Эдисон не смог решить сам. А Эдисон денег не дал. «Ну, ты парень даешь, совсем наших американских шуток не понимаешь, какие такие 50 штук баксов, я ж тебе зарплату плачу!» — ехидно улыбаясь, Эдисон похлопал Теслу по плечу и, приложив некоторое усилие, вырвал из рук своего сотрудника папку с чертежами и расчетами. «Нет, все-таки я великий изобретатель», — подумал Эдисон, наблюдая как сутуловатая фигура худощавого Теслы удаляется по коридору. Вот как Тесла и Эдисон рассорились. Да так, что через много лет, когда Тесле присудили Нобелевскую, он от нее отказался, поскольку ее на двоих с Эдисоном давали.

Почему Эдисон пробросил Теслу — понятно. Чтобы на переменный ток переходить, надо, во-первых, признать, и рассказать инвесторам, что я, Томас Алва Эдисон, в свое время недошурупил, что перспектив у постоянного тока как у снежка в микроволновке, а во-вторых, надо растрясти этих инвесторов на новые вложения. Не так-то это и просто. А что Тесла? А Тесла взял и пошел к Джорджу Вестингаузу, конкуренту Эдисона. Рассказал ему все как есть и сделали они первую в мире ГЭС с генераторами переменного тока на Ниагарском водопаде. Кстати, наш «КaзАтoмПрoм» владеет 10% акций компании «Westinghouse Electric », скажи в те годы Джорджу Вестингаузу, что казахи будут совладельцами его компании, думаю он бы сильно удивился, вот что глобализация делает.

Надо сказать, что Эдисон тоже не сдавался, какое то время. Что он только не делал, чтобы насолить развеселой компании Коли и Жоры. Статьи заказные писал с кричащими заголовками вроде «Еще одна жертва переменного тока» или «Все, что вы хотели узнать о переменном токе — убийце, но боялись спросить». И стул изобрел «электрический» (конечно же, на переменном токе), дескать, видите, мы этим переменным током преступников на тот свет отправляем, а вы хотите, чтобы он у вас из розетки дома торчал. И через «своих» сенаторов закон провел об ограничении уровня напряжения на линиях электропередачи, что делало бессмысленным использование переменного тока (потом закон конечно отменили). При этом опасность поражения постоянным током при напряжении 127 В ничуть не меньше, чем переменным. Это противостояние назвали «войной токов ». Но. Развитие не остановишь, переменный ток взял свое. Других вариантов нет и сегодня. Правда, надо сказать, американцы странные люди — на одной полке с прогрессом у них и технологическая отсталость может лежать. При всех преимуществах переменного тока, последние эдисоновские сети постоянного тока в Нью-Йорке были демонтированы только в 2007 году. Как говорится, дедушка умер, а дело живет, лучше бы было наоборот.

10000 Вольт сколько ампер

Практически каждый человек слышал про параметры электричества как Вольт, Ампер и Ватты.

Что такое мощность. Ватт [Вт]

Ватт, согласно системе СИ – единица измерения мощности. В наши дни используется для измерения мощности всех электрических и не только приборов. Согласно теории физики, мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с . Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.

На сегодняшний день для обозначения мощности электроприборов чаще применяется единица измерения киловатт (сокращенное обозначение – кВт). Несложно догадаться, сколько ватт в киловатте – приставка «кило» в системе СИ обозначает величину, полученную в результате умножения на тысячу.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Что такое напряжение. Вольт [В]

Напряжение – это физическая величина, характеризующая величину отношения работы
электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах.

Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана. Величина напряжения стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. Также допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

1 Вольт содержит:

  • 1 000 000 микровольт
  • 1 000 милливольт

Что такое Сила тока. Ампер [А]

Сила тока это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

1 Ампер содержит:

  • 1 000 000 микроампер
  • 1 000 миллиампер

Иногда такая задача как перевод ампер в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы, может вызвать затруднение. Ведь редко кто из нас помнит наизусть формулы мо школьной скамьи. Если конечно постоянно не приходится сталкиваться с этим по роду профессии или увлечения.

На самом деле, в быту знание таких вещей может потребоваться довольно часто. Например, на розетке или на вилке указана маркировка в виде надписи: «220В 6А». Эта маркировка, отражает предельно допустимую мощность подключаемой нагрузки. Что это значит? Какой максимальной мощности сетевой прибор можно включить в такую розетку или использовать с данной вилкой?

Исходя из этой маркировки мы видим, что рабочее напряжение, на которое расчитано это устройство составляет 220 вольт, а максимальный ток 6 ампер. Чтобы получить значение мощности, достаточно перемножить две эти цифры: 220*6 = 1320 ватт — максимальная мощность для данной вилки или розетки. Скажем, утюг с паром можно будет использовать только на двойке, а масляный обогреватель — только в половину мощности.

Сколько Вольт содержит 1 Ампер?

Ответить на этот вопрос довольно сложно. Однако для того чтобы вам было легче разобраться с этим вопросом мы предлагаем вам ознакомиться с таблицами соотношений

Для постоянного тока

ВольтыВт : А = А х Омы = √ (Вт х Омы)
Амперы(Вт : В) = √(Вт : Омы) = В : Омы
ОмыВ : А = Вт : (А) 2 = (В) 2 : Вт
ВаттыА х В = (А) 2 х Омы = (В) 2 : Омы

Для переменного тока

ВольтыВт : (А х cos Ψ) = А х Омы х cos Ψ = √(Вт х Омы)
АмперыВт: (В х cos Ψ) = 1/cos Ψ х √(Вт : Омы) = В : (Омы х cos Ψ)
ОмыВ : (А х cos Ψ) = Вт : (А) 2 • cos 2 Ψ = (В) 2 : Вт
ВаттыВ х А х cos Ψ = (А) 2 х Омы х cos 2 Ψ = (В) 2 : Омы

Сколько Ватт в 1 Ампере?

Итак, чтобы получить ватты, нужно указанные амперы умножить на вольты:

В ней P – Ватт, I – это А, а U – Вольт. То есть ток умножить на напряжение (в розетке у нас примерно 220-230 вольт). Это главная формула для нахождения мощности в однофазных электрических цепях.

Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А , 10 А * 220 В = 2200 Вт или 2.2 Киловатта , т. к. один Киловатт равен 1000 Ватт .

Переводим ватты в амперы

Иногда мощность в ваттах нужно перевести в амперы. С такой задачей сталкивается, например, человек, решивший выбрать защитный автомат для водонагревателя.

Например, на водонагревателе написано «2500 Вт» – это номинальная мощность при напряжении сети 220 вольт. Следовательно, чтобы получить максимальные амперы водонагревателя, разделим номинальную мощность на номинальное напряжение, и получим: 2500/220 = 11,36 ампер .

Итак, можно выбрать автомат на 16 ампер. 10 амперного автомата будет явно не достаточно, а автомат на 16 ампер сработает сразу, как только ток превысит безопасное значение. Таким образом, чтобы получить амперы, нужно ватты разделить на вольты питания — мощность разделить на напряжение I = P/U (вольт в бытовой сети 220-230).

Сколько ампер в киловатте и сколько киловатт в ампере

Бывает часто, что на сетевом электроприборе мощность указана в киловаттах (кВт), тогда может потребоваться перевести киловатты в амперы. Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер . Верно для сети и обратное утверждение: в одном ампере 0,22 кВт, потому что P = I*U = 1*220 = 220 Вт = 0,22 кВт .

Для приблизительных расчетов можно учитывать то, что при однофазной нагрузке номинальный ток I ≈ 4,5Р , где Р — потребляемая мощность и киловаттах. Например, при Р = 5 кВт, I = 4,5 х 5 = 22,5 А .

Ватты в киловатты

То есть, 1 кВт=1000 Вт (один киловатт равен тысячи ваттам). Обратный перевод так же прост: можно разделить число на тысячу либо переместить запятую на три цифры левее. Например:

  • мощность стиральной машины 2100 Вт = 2,1 кВт ;
  • мощность кухонного блендера 1,1 кВт = 1100 Вт ;
  • мощность электродвигателя 0,55 кВт = 550 Вт и т.д.

Килоджоули в киловатты и киловатт-час

Иногда полезно знать, как перевести килоджоули в киловатты. Для ответа на этот вопрос, вернемся к базовому отношению ватт и джоулей: 1 Вт = 1 Дж/1 с . Нетрудно догадаться, что:

  • 1 килоджоуль = 0.0002777777777778 киловатт-час (в одном часе 60 минут, а в одной минуте 60 секунд, следовательно в часе 3600 секунд, а 1/3600 = 0.000277778).
  • 1 Вт= 3600 джоуль в час

Ватты в лошадиные силы

  • 1 лошадиная сила =736 Ватт , следовательно 5 лошадиных сил = 3,68 кВт .
  • 1 киловатт = 1,3587 лошадиных сил .

Ватты в калории

  • 1 джоуль = 0,239 калории , следовательно 239 ккал = 0.0002777777777778 киловатт-час .

Измерение величин тока и напряжения

Для того что бы измерить напряжение необходимо мультиметр переключить в режим измерения переменного напряжения, при этом установите верхний предел как можно выше. Например 400 Вольт. А затем коснуться измерительными щупами ноля и фазы в розетке или клемнике и на экране Вы увидите величину напряжения.

Ток измерять тяжелее, для его измерения необходимо переключить в режим измерения тока в Амперах и подключиться так, что бы ток проходил через электроизмерительный прибор, мультиметр необходимо подключить последовательно с источником энергопотребления. Или в более дорогих моделях мультиметров есть сверху два разводных дополнительных щупа, которые необходимо нажатием клавиши развести и пропустить внутрь провод, на котором необходимо измерить величину тока. Здесь два важных момента: заводить только один фазный провод и следить за тем, что бы плотно смыкались электроизмерительные щупы.

Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.

Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:

Полная мощность (ВА) – величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.

Активная мощность (Вт) – величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ). Измеряется в Ваттах.

Коэффициент мощности (cos φ) – величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы «запихнуть» требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.

Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)

Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0.8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.

Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!

Таблица значений Таблица расчета Ампер и нагрузки в Ватт

Видео по теме: определения мощности и силы тока

какая сила тока и напряжение; для чего используется розетка трехфазная и однофазная

Ватт – количественный показатель мощности в системе единиц СИ. Она указывает на то, какая мощность потребуется, чтобы выполнить работу в 1Дж за единицу времени. Также ее используют при обозначении количества энергии, потребляемой прибором за временной отрезок. Киловатт – это все та же единица измерения, но с приставкой «кило», которая обозначает условное умножение на 1000.

Название ватт было позаимствовано у исследователя, который впервые открыл ее – физик Джеймс Ватт. Такой «перенос» имени ученого на открытую им единицу, был первым в истории науки. Далее такое явление стало встречаться чаще.

Многие люди по ошибке путают киловатты с киловатт*часами. Но это абсолютно разные понятия, которые характеризуют не одинаковые физические явления.

Киловатт*час – измерительная единица, указывающая на количественный показатель, выполняемой прибором за один час, работы. Ватты указывают на количество энергии, потребляемой прибором за временную единицу. То есть, понятия практически противоположенные. В первом случае мы получаем количественную оценку результат работы, а во втором – количественную оценку затрат. Поэтому сравнение, а тем более отожествление обоих единиц измерения, абсолютно неправильно.

Для лучшего понимания, рассмотрим всем известную лампочку с мощностью в 60 ватт. Продолжительность ее работы — 2 часа, то есть для этого потребовалось 60Ватт*2 ч. = 120 киловатт*час.

Сколько в киловатте ампер?

Для определения, сколько в киловатте ампер использую закон Ома. Для цепей постоянного тока мощность рассчитывается, как P=I*U, т.е. например, Ватт = Ампер * Вольт, Ампер = Ватт / Вольт.

Для однофазного переменного тока 220 В/50 Гц с номинальным напряжением (Uм = 220В), действующее значение U вычисляется по следующей формуле U=Uм * (корень из 2), таким образом U = 220 * 1,41 = 314В.

Так как номинальное значение напряжения импульсного, или переменного тока равно напряжению постоянного тока при действии активной нагрузки, то рассмотрим значения пример на 220 В.

Для цепей постоянного напряжения (иногда говорят постоянного тока):

  • при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 220 Вт,
  • при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 4,55А.

Для цепей переменного напряжения:

  • при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 154 Вт,
  • при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 6,49 А.

В России в розетках напряжение переменное.

Например для чайника мощностью 2 кВт в случае подключения его к нашей розетке с перменным током напряженностью 220 Вольт ток который будет идти по проводам равен 2 кВт 220 = 13 А. Это сильный ток и провода должны его выдержать. Учитывайте это. Тонкие или алюминиевые провода могут сильно греться и привести к всяческим возгораниям.

Перевод киловатт в лошадиные силы

Лошадиная сила – это внесистемная измерительная единица мощности, которая в настоящее время зачастую используется только относительно техники, которая работает на двигателях внутреннего сгорания. Поэтому мы частенько встречаемся с этим понятием и для оценки мощности мы должны уметь переводить л.с. в ватты. Для этого существует специальный пересчеточный коэффициент:

  • 1 кВт = 1, 3596 л.с. или «лошадка», как называют ее в народе.
  • 1 л.с. = 0,7355 кВт.

В такой вот нехитрый способ можно перевести киловатты в лошадки и обратно. Но таким образом пересчитывается лишь метрическая лошадиная сила. Помимо данного типа существуют еще и другие. Но сейчас встретить их на производстве или в быту практически невозможно.

Инструкция

Источники:

  • как мощность перевести

Амперы – стандартная системная единица измерения силы тока (СИ). Довольно крупная по бытовым меркам, поэтому кратные единицы (килоампер) на практике используются редко. Зато в характеристиках электронной аппаратуры (особенно миниатюрной) часто встречается дольная единица – миллиампер. Бытовая электроаппаратура обычно описывается таким параметром, как мощность (измеряется в ваттах). Подключать же бытовые электроприборы приходится к электросети, имеющей ограничение по силе тока. Чтобы избежать постоянного срабатывания предохранителей, необходимо представлять, как на практике перевести амперы в другие единицы измерения.

Вам понадобится

  • — тестер;
  • — калькулятор;
  • — техническая документация на электроприборы.

Инструкция

Аналогично можно рассчитать максимальную мощность электроаппаратуры при ее подключении к автономным энергии. Как правило, на аккумуляторах и элементах питания указывается напряжение и максимальный ток, на который рассчитан источник электроэнергии. При подключении слишком мощного потребителя, источник тока может очень быстро выйти из строя или, даже воспламениться.

Для определения потребляемой мощности изучите техническую документацию электроустройства или поищите информацию на корпусе прибора. Мощность электроаппаратуры указывается в ваттах (Вт, W), киловаттах (кВт, kW) или милливаттах (мВт, mW).

Пример.
Бытовая электрическая сеть рассчитана на максимальный ток 20 ампер.

Вопрос.
Сколько стоваттных электролампочек можно включить одновременно?

Решение.
1. Оцените максимальную мощность нагрузки электросети: 20(А) * 220(В) = 4400 (Вт).
2. Разделите общую допустимую мощность сети на мощность одной лампочки: 4400 (Вт) / 100 (Вт) = 44 (штуки).

Ответ.
Одновременно можно подключить 44 лампочки.

В амперах измеряется сила электрического тока. Поэтому для того чтобы рассчитать амперы , нужно найти эту физическую величину. Силу тока можно измерить тестером. Если нет такой возможности, можно узнать силу тока в цепи или конкретном потребителе по закону Ома.

Вам понадобится

  • — тестер;
  • — документация на потребители;
  • — источник тока.

Инструкция

Для того чтобы найти амперы , которыми измеряется сила тока, используйте обычный тестер, отрегулированный для измерения этой величины. Включите его в цепь последовательно с потребителями. На дисплее появится значение силы тока. Если тестер настроен на кратные или дольные величины, воспользуйтесь правилами их перевода в обычные . Например, если прибор в цепи показывает силу тока 120мА, то поделите это число на 1000 и получите значение 0,12 А. Если сила тока равна 2,3 кА, то теперь умножьте значение на 1000 и получите 2300 А.

Если измерить силу тока нет возможности, найдите ее по напряжению , которое необходимо для работы потребителя и его электрическому сопротивлению (Закон Ома для участка цепи). Для этого напряжение на данном участке цепи U поделите на его сопротивление R (I=U/R). Например, если в бытовую сеть подключен утюг с сопротивлением 160 Ом, то сила тока в нем равна отношению напряжения (в бытовой сети оно равно 220 В) к сопротивлению I=220/160=1,375 А.

Чтобы определить силу тока в цепи, не измеряя напряжение на потребителе, узнайте ЭДС (электродвижущую силу) источника тока и его внутреннее сопротивление. Определите сопротивление цепи. Найдите силу тока, поделив ЭДС на сумму внутреннего сопротивления источника r и внешнего сопротивления R (I=ЭДС/(R+r)). Например, если лампа подключена к аккумулятору с ЭДС 12 В, и имеет сопротивление 20 Ом, а внутренне сопротивление

На вопрос о соотношении вольт к амперам нельзя ответить однозначно. Все дело в том, что это единицы измерения разных величин, не имеющих между собой непосредственной связи. Сила тока измеряется в Амперах и является основным показателем текущей нагрузки, работы, которую выполняет электрический ток в проводнике. Другими словами, сила тока количественно характеризует плотность потока направленных частиц, проходящих через кристаллическую решетку. Вольт же является единицей измерения напряжения, а это совершенно другая величина. Напряжение численно выражает силу, которая прилагается по отношению к потоку электронов и приводит его в движение. По большему счету, электрическое напряжение — это разница между положительным и отрицательным потенциалом на разных концах проводника. Чем больше эта разница, тем выше магнитный поток, заставляющий электроны перемещаться в другие участки цепи, имеющие положительный заряд.

Подсчитать, сколько вольт в одном ампере можно только при условии учета основной характеристики проводника, в котором ток протекает — сопротивления. Ведь если поток элементарных частиц не встречает на своем пути никаких преград, его может привести в движение сила даже самой малой величины. Сопротивление численно выражает степень препятствования проводника прохождению электрического тока. Это выражается в столкновениях электронов с ионами кристаллической решетки, из-за чего последние нагреваются. Сопротивление является третьей вольт-амперной характеристикой и выражается в омах. Этот посредник и поможет определить, какое напряжение будет соответствовать тому или иному значению силы тока.

Отвечает на вопрос о вольтах и амперах закон Ома для равномерного участка цепи — для такого, на котором нет источников электроэнергии, а есть только потребители. Этот закон гласит, что сила тока в цепи возрастает вместе с увеличением напряжения и падает при повышении общего сопротивления этой цепи. Другими словами, чем выше электродвижущая сила, тем больший поток она способна привести в движение, однако с ростом сопротивления ее становится недостаточно, из-за чего плотность потока падает.

Рассмотреть закон Ома можно на примере обычной стоваттной лампочки. Мощность является произведением силы тока на квадрат напряжения, поэтому при 220 Вольтах в сети лампа пропускает через нить накаливания ток, примерно равный 0,45 Ампера. При этом сопротивление лампы равно частному от деления квадрата напряжения на мощность, то есть 484 Ом. Пользуясь законом Ома, эти величины легко проверить. Сила тока должна быть равной результату деления напряжения на сопротивления, то есть 220/484, что приблизительно равно 0,45 Ом.

Источники:

  • как перевести омы

Розетка – это электротехническое оснащение, без которого невозможно сегодня представить ни жилое, ни рабочее помещение. Поскольку техника используется разная, характеристики электрофурнитуры для нее тоже будут отличаться. Ни для кого не секрет, что мощность современных бытовых приборов несколько выше, чем 2-3 десятилетия назад. Именно поэтому были изменены и ГОСТы. Так, для советских разъемов стандартным было ограничение нагрузки 6А в сетях с напряжением 220в, сегодня же она увеличена до 16А. Для больших нагрузок подводятся трехфазные сети с напряжением 380в. Розетка 3 х фазная отличается по конструкции и способна выдерживать нагрузки до 32А.

Какая сила тока в розетке 220в и 380в, и для каких бытовых приборов необходимо 16, 25 и 32 ампера?

Сегодня каждый человек знает, сколько вольт в розетке. Стандартное напряжение в отечественных бытовых электросетях 220 вольт. В некоторых странах принят иной стандарт и там оно может быть 127 или 250 вольт. Большинство современной техники рассчитано именно на такие показатели. Однако помимо напряжения при монтаже проводки необходимо учитывать предполагаемую мощность подключаемых потребителей. Так на сегодняшний день в продаже представлены розетки 220 вольт с ограничением нагрузки 16А и 25А. Они используются для разных целей. Поскольку сила тока в розетке 220в прямо пропорциональна потребляемой мощности подключенного к ней оборудования.

К примеру, несколько десятилетий назад бытовой электротехники было не много, и особой мощностью она не отличалась, ограничение нагрузки на одну точку было 6А. В такой разъем можно подключить технику мощностью до 1,5кВт. Однако для современного дома этого уже слишком мало, так как даже стандартный электрочайник может потреблять до 2.5 кВт. Именно поэтому для современных разъемных соединений установлен стандарт ограничения нагрузки 16А, что позволяет безопасно подключать потребители мощностью до 3,5 кВт. В домах, где предполагается установка электроплит до 6кВт устанавливают так называемые силовые розетки 25А 220в. В целом это максимальные значения для бытовых электросетей.

Для более мощной техники используют трехфазные сети с напряжением 380в и соответствующие розетки 380 вольт (до 32А). Такие разъемы обычны для мастерских, объектов общественного питания, но могут быть установлены и в частном доме, если все нагревательные приборы (в том числе и отопительные) работают от электросети. Однако в таких случаях требуется не только установка специальной электрофурнитуры, но и усиленная проводка.

Как найти фазу в розетке, и зачем нужны трехфазные; как измерить напряжение и определить силу тока

Нередко при внесении каких-либо изменений в электропроводку возникает необходимость определить фазный провод. Независимо от того, какое напряжение в розетке, по современным нормам они должны иметь цветную маркировку. Так желто-зеленый провод – это заземление, а синий или голубой – ноль. Соответственно остальные (один или три) – фаза, обычно фазовые провода бывают:
  • по нормам до 2011г – желтый, зеленый, красный;
  • после 2011г – коричневый, черный, серый.

Однако в некоторых сетях, монтировавшихся до 2011г, черный провод использовался для заземления. Кроме этого в однофазной проводке принято фазу подключать справа.

Если какая либо маркировка отсутствует, то пригодится пробник с неоновой лампой. При прикосновении к фазе индикатор загорится. Если используется пробник со светодиодом, при проверке нельзя касаться рукой металлической площадки на торце ручки. Чтобы определить, какой ток в розетке, необходим вольтметр. Он же пригодится и при определении фаз трехфазного подключения. Так между каждой из фаз и нолем будет 220в при линейном напряжении 380в и 127в — при линейном 220в (но последний разъем сегодня практически не встречается и не используется). В бытовых сетях трехфазное подключение может использоваться для кухонных печей с электродуховкой большой мощности. Клеммные щитки в некоторых моделях позволяют, таким образом, равномерно распределить нагрузку.

Подробнее о выборе и монтаже розетки

Если необходимая сила тока в розетке — 1 ампер, сколько вольт в ней должно быть?

Ампер и вольт — разные физические величины. Вольт (В) — это напряжение, которое необходимо для того, чтобы протолкнуть 1 Кл (кулон) электричества через сеть. Ампер (А) — сила электротока в проводнике, показывающая, сколько кулонов проходит через проводник за 1 секунду. Если сила тока в проводнике составляет 1 Ампер, это означает, что за 1 секунду он пропускает заряд электричества, равный 1 Кл.

Если силу тока умножить на напряжение сети, то в итоге мы получим показатель ее мощности. Например:

Напряжение обычной бытовой сети — 220 В

Мощность электросети=220 В*1 А=220 Вт (Ватт)

Поэтому вопрос о том, сколько вольт в ампере, звучит не совсем корректно. Правильная формулировка: «Какую мощность (в ватах) развивает электроприбор, потребляющий ток 1А?»

Ответ на него будет звучать так: «Электрический прибор, потребляющий ток в 1А, при подключении к бытовой электросети с напряжением 220В, будет развивать мощность 220 Вт».

Формулы для вычисления значения тока и мощности электролинии представлены на рисунке ниже.

Как выбрать розетку для дома?

Розетка — устройство для подключения бытовых приборов к электросети. Состоит она из корпуса и колодки, к контактам и клеммам которой подсоединяются токоподводящие провода.

Различают розетки бытовые и промышленные. По нормам среднее напряжение — 220В в розетке бытового назначения. Допустимая сила тока для такой розетки — 10А-16А, что подходит для подключения прибора мощностью 3520 Вт. При установке техники большей мощности контакты сильно нагреваются, и возрастает возможность возгорания. Для электроплиты мощностью 8 кВт обычная розетка, выдерживающая силу тока в 16 А, не подойдет.

Как узнать, сколько ампер в 220-вольтной розетке? Если разделить 8 кВт (8000Вт) на напряжение в сети (220В), то получим, что сила тока при подключении такой плиты будет свыше 36А. Это значит, что в характеристиках розетки должно быть указано, что она рассчитана на ток до 40А. Аналогично можно подобрать розетки и для других бытовых приборов.

Как самостоятельно измерить силу тока в розетке?

Сила тока в розетке 220В не измеряется, поскольку ее там нет. Розетка может быть только рассчитана на определенную силу тока, которая необходима для работы того или иного прибора.

Проверяется сила тока в определенном участке цепи. Используется для этого прибор амперметр. Измеряется сила тока в такой последовательности:

    1. Необходимо создать последовательную цепь, состоящую из бытового прибора, силу тока которого нужно измерить, и амперметра.
    2. При подключении амперметра следует соблюдать полярность — “+” измерительного прибора подключается к “+” источника тока, а “-” — к “-” источника тока.

Амперметр на электрической схеме измерения постоянного тока обозначен символом:

Как известно, существует зависимость силы тока от напряжения в сети. Для ее измерения используется закон Ома: I (сила тока в участке цепи) =U (напряжение на этом участке)/R (постоянный показатель сопротивления участка).

Как и чем измерить напряжение в розетке?

Напряжение в домашней электросети должно находиться в пределе 220В ±10. Максимальное напряжение в сети должно составлять не более 220+10%= 242В. Если в квартире тускло, или слишком ярко горят лампочки, либо ни быстро перегорают, часто выходят из строя электроприборы, рекомендует проверить напряжение в розетке. Для этого используются специальные приборы:

  • вольтметр;
  • мультиметр;
  • тестер.

Перед использованием прибора необходимо проверить его изоляцию.

Как проверить напряжение в розетке? Для этого следует установить переключатель пределов измерения в необходимое положение (до 250 В — для измерения переменного напряжения).

Щупы прибора вставляют в гнезда розетки, табло прибора покажет напряжение в розетке.

Внимание: не следует касаться руками проводов и контактов, находящихся под напряжением.

Как правильно подключить трехфазную розетку?

При установке розетки на 380 вольт необходимо правильно подключить 4 или 5 проводов. Если перепутать местами ноль и фазу, это грозит не только поломкой электроприбора, но и возгоранием проводки.

Силовая линия для электропитания устройства состоит из трехфазной розетки и соответствующей ей вилки. Розетка 380 вольт подключается в следующей последовательности:


В каком случае устанавливается трехфазная розетка?

Большинство электрических приборов, используемых в доме, рассчитано на стандартное напряжение в сети (220В). Но есть приборы, электроплиты, производственное оборудование, мощные насосы, которые рассчитаны на большее напряжение в 380 В. Для такого оборудования устанавливаются трехфазные розетки.

Трехфазная розетка имеет четыре контакта — три из них (L1, L2 и L3) используются для подключения вилки, а четвертый (N) — нулевой, который применяется в качестве заземления.

Для подключения розетки 380В от щитка прокладывается четырехжильный кабель (3 фазы + ноль). Минимальная площадь среза токопроводящей жилы составляет 2,5 мм.кв. Оптимальным вариантом для подключения мощных машин является медный провод 3х4+2,5 (состоящий из трех жил сечением 4 мм. кв. и одной жилы, сечением 2,5 мм. кв.).

Трехфазная розетка должна иметь отдельный выключатель на электрощите, устанавливается она вблизи подключаемого прибора.

Еще вопросы по вашей теме:

  • Установка розеток в гипсокартон, бетонную и деревянную стену: как сделать розетку в стене, выполненной из разных материалов
  • Розетки и выключатели: устройство, схема подключения и высота установки: перенос и монтаж выключателей и розеток

Сколько ампер при 12 вольт?

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт).

Сколько в 1 ампер вольт?

ВОЛЬТ- единица измерения напряжения. Падения напряжения в 1 Вольт, получается на сопротивлении 1 Ом, при силе тока в 1 Ампер.

Сколько нужно ампер на 12 вольт?

Стартер выдает среднюю мощность от 1.5 до 2 киловатт, соответственно при напряжении в 12 вольт автомобильный аккумулятор должен показывать силу тока минимум в 125 Ампер.

Сколько ампер лампочка на 100 ватт?

Вот допустим лампа накаливания мощностью 100 ватт и напряжением 220 вольт исходя из формулы потребляет ток 2,2 ампера.

Сколько ампер в 1 квт таблица?

Перевести амперы в киловатты? Легко!

Мощность Вт, при напряжении в В
А12380
112380
224760
3361140

Сколько ампер в 100 квт?

I – сила тока, А (ампер). Мощность получилась в ваттах. Переводим значение в киловатты, 3520Вт делим на 1000 и получаем 3,52кВт (киловатт).

Сколько ампер в сети 220 вольт?

Стандартные розетки рассчитаны на силу тока в 16 Ампер. Поскольку напряжение в сети составляет 220 Вольт, то максимальная мощность составляет 16 Ампер * 220 Вольт = 3 520 Ватт или 3,5 Киловатт. 2. На линию розеток, как правило, ставят автоматы 16 Ампер.

Сколько ампер нужно для шуруповерта?

Для шуруповерта подойдет блок питания 12 В дающий 10 А тока, если имеется возможность использовать блок 20-30 А, это даже лучше. Это среднестатистические цифры, применимые к большинству шуруповертов.

Сколько ампер должен быть заряжен аккумулятор?

Аккумуляторные батареи для автомобилей имеют от 40 до 225 Ач. Но наиболее популярный диапазон, это 55 – 60 Ач. Проще говоря, на протяжении 60 минут, АКБ может отдавать силу тока в 55 Ампер, после чего полностью разрядится.

Сколько ампер в 1 квт?

Сколько ампер в киловатте и сколько киловатт в ампере

Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер.

Сколько ватт в 1 ампере 12 вольт?

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт).

Сколько ампер выдает генератор на машине?

Также не трудно найти марку своего генератора, и узнать его характеристики, а именно силу тока которую он может выдавать. Зачастую на современных машинах, она колеблется от 80 до 140 Ампер.

Сколько ампер в 5 квт?

Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт. 32-а Ампера 7040 Ватт, или 7-ь кВт. 50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).

Сколько ампер в 1 квт 380 В?

Перевести амперы в киловатты? Легко!

Мощность Вт, при напряжении в В
А12380
112380
224760
3361140

Сколько ампер в сети 380 вольт?

В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

Как перевести кв в а?

Формула для перевода кВт в А

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

220 вольт 10 ампер сколько ватт


Калькулятор перевода силы тока в мощность

Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.

Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.

Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.

Сколько Ватт в 1 Ампере и ампер в вате?

Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:

I = P / U, где

I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.

Корень из трех приблизительно равен 1,73.

То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.

Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

Таблица перевода Ампер – Ватт:
61224220380Вольт
5 Ватт0,830,420,210,020,008Ампер
6 Ватт1,000,50,250,030,009Ампер
7 Ватт1,170,580,290,030,01Ампер
8 Ватт1,330,670,330,040,01Ампер
9 Ватт1,5 0,750,380,040,01Ампер
10 Ватт1,670,830,420,050,015Ампер
20 Ватт3,331,670,830,090,03Ампер
30 Ватт5,002,51,250,140,045Ампер
40 Ватт6,673,331,670,130,06Ампер
50 Ватт8,334,172,030,230,076Ампер
60 Ватт10,005,002,500,270,09Ампер
70 Ватт11,675,832,920,320,1Ампер
80 Ватт13,336,673,330,360,12Ампер
90 Ватт15,007,503,750,410,14Ампер
100 Ватт16,678,334,170,450,15Ампер
200 Ватт33,3316,678,330,910,3Ампер
300 Ватт50,0025,0012,501,360,46Ампер
400 Ватт66,6733,3316,71,820,6Ампер
500 Ватт83,3341,6720,832,270,76Ампер
600 Ватт100,0050,0025,002,730,91Ампер
700 Ватт116,6758,3329,173,181,06Ампер
800 Ватт133,3366,6733,333,641,22Ампер
900 Ватт150,0075,0037,504,091,37Ампер
1000 Ватт166,6783,3341,674,551,52Ампер

Зачем нужен калькулятор

Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.

Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.

Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.

Как пользоваться

Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:

  1. Ввести значение напряжения, которое питает источник.
  2. В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
  3. В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).

Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.

Часто задаваемые вопросы

  • Сколько Ватт в Ампере?

    Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

  • 12 ампер сколько ватт?

    Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.

  • 220 ватт сколько ампер?

    Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.

  • 5 ампер сколько ватт?

    Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.

Калькулятор перевода силы тока в мощность, ампер в ватты

Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.

Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.

Что такое мощность Ватт [Вт]

Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.

Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.

В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.

Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.

Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.

Что такое Сила тока. Ампер [А]

Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.

Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.

Сколько Ватт в 1 Ампере?

Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.

Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.

Таблица перевода Ампер – Ватт

Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.

Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.

Таблица соотношения ампер и ватт, в зависимости от напряжения.

12В24В220В380В
5 Вт0,83А0,42А0,21А0,02А0,008А
6 Вт1,00А0,5А0,25А0,03А0,009А
7 Вт1,17А0,58А0,29А0,03А0,01А
8 Вт1,33А0,66А0,33А0,04А0,01А
9 Вт1,5А0,75А0,38А0,04А0,01А
10 Вт1,66А0,84А0,42А0,05А0,015А
20 Вт3,34А1,68А0,83А0,09А0,03А
30 Вт5,00А2,5А1,25А0,14А0,045А
40 Вт6,67А3,33А1,67А0,13А0,06А
50 Вт8,33А4,17А2,03А0,23А0,076А
60 Вт10,00А5,00А2,50А0,27А0,09А
70 Вт11,67А5,83А2,92А0,32А0,1А
80 Вт13,33А6,67А3,33А0,36А0,12А
90 Вт15,00А7,50А3,75А0,41А0,14А
100 Вт16,67А3,33А4,17А0,45А0,15А
200 Вт33,33А16,66А8,33А0,91А0,3А
300 Вт50,00А25,00А12,50А1,36А0,46А
400 Вт66,66А33,33А16,7А1,82А0,6А
500 Вт83,34А41,67А20,83А2,27А0,76А
600 Вт100,00А50,00А25,00А2,73А0,91А
700 Вт116,67А58,34А29,17А3,18А1,06А
800 Вт133,33А66,68А33,33А3,64А1,22А
900 Вт150,00А75,00А37,50А4,09А1,37А
1000 Вт166,67А83,33А41,67А4,55А1,52А

Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.

Зачем нужен калькулятор

Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.

Как пользоваться

Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.

Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.

Перевести амперы (А) в ватты (Вт): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести амперы (А) в ватты (Вт), введите значения силы тока I в амперах (A), напряжения U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (если требуется), затем нажмите кнопку “Рассчитать”. Таким образом будет получена мощность P в Вт. Чтобы сбросить введенные данные, нажмите соответствующую кнопку.

Калькулятор А в Вт (1 фаза, постоянный ток)

Формула для перевода А в Вт

PВт = IА ⋅ UВ

Мощность P в ваттах (Вт) однофазной сети с постоянным током равняется произведению силы тока I в амперах (А) и напряжения U в вольтах (В).

Калькулятор А в Вт (1 фаза, переменный ток)

Формула для перевода А в Вт

PВт = PF ⋅ IА ⋅ UВ

Мощность P в ваттах (Вт) однофазной сети с переменным током равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В) и коэффициент мощности PF.

Калькулятор А в Вт (3 фазы, переменный ток, линейное напряжение)

Формула для перевода А в Вт

PВт = √3 ⋅ PF ⋅ IА ⋅ UВ

Мощность P в ваттах (Вт) трехфазной сети с переменным током и линейным напряжением равняется квадратному корню из трех, умноженному на силу тока I в амперах (А), напряжение U в вольтах (В) и коэффициент мощности PF.

Калькулятор А в Вт (3 фазы, переменный ток, фазное напряжение)

Формула для перевода А в Вт

PВт = 3 ⋅ PF ⋅ IА ⋅ UВ

Мощность P в ваттах (Вт) трехфазной сети с переменным током и фазным напряжением равняется утроенному произведению силы тока I в амперах (А), напряжения U в вольтах (В) и коэффициента мощности PF.

Перевести ватты (Вт) в амперы (А): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести ватты (Вт) в амперы (А), введите мощность P в ваттах (Вт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

Калькулятор Вт в А (постоянный ток)

Формула для перевода Вт в А

Сила тока I в амперах (А) сети с постоянным током равняется мощности P в ваттах (Вт), деленной на напряжение U в вольтах (В).

Калькулятор Вт в А (1 фаза, переменный ток)

Формула для перевода Вт в А

Сила тока I в амперах (А) однофазной сети с переменным током равняется мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

Калькулятор Вт в А (3 фазы, переменный ток, линейное напряжение)

Формула для перевода Вт в А

Сила тока I в амперах (А) трехфазной сети с линейным напряжением равна мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.

Калькулятор Вт в А (3 фазы, переменный ток, фазное напряжение)

Формула для перевода Вт в А

Сила тока I в амперах (А) трехфазной сети с фазным напряжением равна мощности P в ваттах (Вт), деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).

Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Сколько в ампере ватт, как перевести амперы в ватты и киловатты

  • Главная
  • Справочник
  • Электротехника
  • Единицы измерений
  • Сколько в ампере ватт, как перевести амперы в ватты и киловатты

Практически каждый человек слышал про параметры электричества как Вольт, Ампер и Ватты.

Что такое мощность. Ватт [Вт]

Ватт, согласно системе СИ – единица измерения мощности. В наши дни используется для измерения мощности всех электрических и не только приборов. Согласно теории физики, мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.

На сегодняшний день для обозначения мощности электроприборов чаще применяется единица измерения киловатт (сокращенное обозначение – кВт). Несложно догадаться, сколько ватт в киловатте – приставка «кило» в системе СИ обозначает величину, полученную в результате умножения на тысячу.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Что такое напряжение. Вольт [В]

Напряжение — это физическая величина, характеризующая величину отношения работы
электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах.

Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана. Величина напряжения стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. Также допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

1 Вольт содержит:

  • 1 000 000 микровольт
  • 1 000 милливольт

Что такое Сила тока. Ампер [А]

Сила тока это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

1 Ампер содержит:

  • 1 000 000 микроампер
  • 1 000 миллиампер

Иногда такая задача как перевод ампер в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы, может вызвать затруднение. Ведь редко кто из нас помнит наизусть формулы мо школьной скамьи. Если конечно постоянно не приходится сталкиваться с этим по роду профессии или увлечения.

На самом деле, в быту знание таких вещей может потребоваться довольно часто. Например, на розетке или на вилке указана маркировка в виде надписи: «220В 6А». Эта маркировка, отражает предельно допустимую мощность подключаемой нагрузки. Что это значит? Какой максимальной мощности сетевой прибор можно включить в такую розетку или использовать с данной вилкой?

Исходя из этой маркировки мы видим, что рабочее напряжение, на которое расчитано это устройство составляет 220 вольт, а максимальный ток 6 ампер. Чтобы получить значение мощности, достаточно перемножить две эти цифры: 220*6 = 1320 ватт — максимальная мощность для данной вилки или розетки. Скажем, утюг с паром можно будет использовать только на двойке, а масляный обогреватель — только в половину мощности.

Сколько Вольт содержит 1 Ампер?

Ответить на этот вопрос довольно сложно. Однако для того чтобы вам было легче разобраться с этим вопросом мы предлагаем вам ознакомиться с таблицами соотношений

Для постоянного тока

Вольты Вт : А = А х Омы = √ (Вт х Омы)
Амперы (Вт : В) = √(Вт : Омы) = В : Омы
Омы В : А = Вт : (А)2 = (В)2 : Вт
Ватты А х В = (А)2 х Омы = (В)2 : Омы
   

Для переменного тока

Вольты Вт : (А х cos Ψ) = А х Омы х cos Ψ = √(Вт х Омы)
Амперы Вт: (В х cos Ψ) = 1/cos Ψ х √(Вт : Омы) = В : (Омы х cos Ψ)
Омы В : (А х cos Ψ) = Вт : (А)2 • cos2 Ψ = (В)2 : Вт
Ватты В х А х cos Ψ = (А)2 х Омы х cos2 Ψ = (В)2 : Омы
Сколько Ватт в 1 Ампере?

Итак, чтобы получить ватты, нужно указанные амперы умножить на вольты:

P = I × U

В ней P – Ватт, I – это А, а U – Вольт. То есть ток умножить на напряжение (в розетке у нас примерно 220-230 вольт). Это главная формула для нахождения мощности в однофазных электрических цепях.

Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А * 220 В = 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

Переводим ватты в амперы

Иногда мощность в ваттах нужно перевести в амперы. С такой задачей сталкивается, например, человек, решивший выбрать защитный автомат для водонагревателя.

Например, на водонагревателе написано «2500 Вт» — это номинальная мощность при напряжении сети 220 вольт. Следовательно, чтобы получить максимальные амперы водонагревателя, разделим номинальную мощность на номинальное напряжение, и получим: 2500/220 = 11,36 ампер.

Итак, можно выбрать автомат на 16 ампер. 10 амперного автомата будет явно не достаточно, а автомат на 16 ампер сработает сразу, как только ток превысит безопасное значение. Таким образом, чтобы получить амперы, нужно ватты разделить на вольты питания — мощность разделить на напряжение I = P/U (вольт в бытовой сети 220-230).

Сколько ампер в киловатте и сколько киловатт в ампере

Бывает часто, что на сетевом электроприборе мощность указана в киловаттах (кВт), тогда может потребоваться перевести киловатты в амперы. Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер. Верно для сети и обратное утверждение: в одном ампере 0,22 кВт, потому что P = I*U = 1*220 = 220 Вт = 0,22 кВт.

Для приблизительных расчетов можно учитывать то, что при однофазной нагрузке номинальный ток I ≈ 4,5Р, где Р — потребляемая мощность и киловаттах. Например, при Р = 5 кВт, I = 4,5 х 5 = 22,5 А.

Ватты в киловатты

То есть, 1 кВт=1000 Вт (один киловатт равен тысячи ваттам). Обратный перевод так же прост: можно разделить число на тысячу либо переместить запятую на три цифры левее. Например:

  • мощность стиральной машины 2100 Вт = 2,1 кВт;
  • мощность кухонного блендера 1,1 кВт = 1100 Вт;
  • мощность электродвигателя 0,55 кВт = 550 Вт и т.д.

Килоджоули в киловатты и киловатт-час

Иногда полезно знать, как перевести килоджоули в киловатты. Для ответа на этот вопрос, вернемся к базовому отношению ватт и джоулей: 1 Вт = 1 Дж/1 с. Нетрудно догадаться, что:

  • 1 килоджоуль = 0.0002777777777778 киловатт-час (в одном часе 60 минут, а в одной минуте 60 секунд, следовательно в часе 3600 секунд, а 1/3600 = 0.000277778).
  • 1 Вт= 3600 джоуль в час

Ватты в лошадиные силы

  • 1 лошадиная сила =736 Ватт, следовательно 5 лошадиных сил = 3,68 кВт.
  • 1 киловатт = 1,3587 лошадиных сил.

Ватты в калории

  • 1 джоуль = 0,239 калории, следовательно 239 ккал = 0.0002777777777778 киловатт-час.
Измерение величин тока и напряжения

Для того что бы измерить напряжение необходимо мультиметр переключить в режим измерения переменного напряжения, при этом установите верхний предел как можно выше. Например 400 Вольт. А затем коснуться измерительными щупами ноля и фазы в розетке или клемнике и на экране Вы увидите величину напряжения.

Ток измерять тяжелее, для его измерения необходимо переключить в режим измерения тока в Амперах и подключиться так, что  бы ток проходил через электроизмерительный прибор, мультиметр необходимо подключить последовательно с источником энергопотребления. Или в более дорогих моделях мультиметров есть сверху два разводных дополнительных щупа, которые необходимо нажатием клавиши развести и пропустить внутрь провод, на котором необходимо измерить величину тока. Здесь два важных момента: заводить только один фазный провод и следить за тем, что бы плотно смыкались электроизмерительные щупы.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Калькулятор преобразования

Вт / В / А / Ом

Ватт (Вт) — вольт (В) — амперы (А) — калькулятор Ом (Ом).

Рассчитывает мощность / вольтаж / текущий / сопротивление.

Введите 2 значений , чтобы получить другие значения, и нажмите кнопку Calculate :

Калькулятор

Ампер в ватт ►

Расчет Ом

Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):

Сопротивление R в омах (Ом) равно квадрату напряжения V в вольтах (В), деленному на мощность P в ваттах (Вт):

Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадрат тока I в амперах (A):

Расчет ампер

Ток I в амперах (A) равен напряжению V в вольтах (V), деленному на сопротивление R в омах (Ω):

Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):

Ток I в амперах (A) равен квадратному корню из мощности P в ваттах (Вт), деленному на сопротивление R в омах (Ом):

Расчет вольт

Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):

Расчет ватт

Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A):

Мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), деленному на сопротивление R в омах (Ом):

Мощность P в ваттах (Вт) равна квадрату тока I в амперах (А), умноженному на сопротивление R в омах (Ом):

Калькулятор закона Ома ►


См. Также

.

Как преобразовать 10 ампер в ватт (Вт)

Как преобразовать электрический ток 10 ампер (А) в электрическую мощность в Вт (Вт).

Вы можете рассчитать (но не преобразовать) ватты из ампер и вольт:

10А для расчета ватт при напряжении 12В постоянного тока

Для источника питания постоянного тока ватты равны ампер, умноженный на вольт.

Вт = амперы × вольт

Вт = 10 А × 12 В = 120 Вт

10А для расчета ватт при напряжении 120В переменного тока

Для источника питания переменного тока ватты равны коэффициенту мощности. умножить на ампер умножить на вольт.

Вт = ПФ × ампер × вольт

Для резистивной нагрузки без катушек индуктивности или конденсаторов коэффициент мощности равно 1:

Вт = 1 × 10 А × 120 В = 1200 Вт

Для индуктивной нагрузки (например, асинхронного двигателя) коэффициент мощности может быть примерно равным 0,8:

Вт = 0,8 × 10 А × 120 В = 960 Вт

10А для расчета ватт при напряжении 230В переменного тока

Для источника питания переменного тока ватты равны коэффициенту мощности, умноженному на ампер. умножить на вольт.

Вт = ПФ × ампер × вольт

Для резистивной нагрузки без катушек индуктивности или конденсаторов коэффициент мощности равно 1:

Вт = 1 × 10 А × 230 В = 2300 Вт

Для индуктивной нагрузки (например, асинхронного двигателя) коэффициент мощности может быть примерно равным 0,8:

Вт = 0,8 × 10 А × 230 В = 1840 Вт

Как преобразовать усилители в ватты ►


См. Также

.Конвертер величин

ВА в ватт

Калькулятор

Вольт-ампер (ВА) в ватт (Вт).

Введите полную мощность в вольтах и ​​мощность. коэффициент и нажмите кнопку Рассчитать , чтобы получить реальную мощность в ваттах:

Введите вольт-амперы: ВА
Введите коэффициент мощности:
Результат в ваттах: Вт
Калькулятор

Ватт в ВА ►

ВА в расчете в ваттах

Реальная мощность P в ваттах (Вт) равна полной мощности S в вольт-амперах (ВА), умноженной на коэффициент мощности PF:

P (Вт) = S (ВА) × PF

ВА для расчета ватт ►


См. Также

  • Как преобразовать ВА в ватты
  • Ватт в VA калькулятор
  • Ватт (Вт)
  • Электрический расчет
  • Преобразователь мощности
.

Вольт в Ватт, Ватт в Ампер, Калькулятор преобразования из Вольт в Ампер

Наш онлайн-калькулятор / средство преобразования может преобразовывать ватты в амперы, из вольт в ватты и из вольт в амперы. Калькулятор работает, заполняя любое из двух из трех полей (вольт амперы ватты) для вычисления значения третьего поля. Этот инструмент может преобразовать любое значение, если вы вводите два других значения.


Пример преобразования

Пример 1: Чтобы преобразовать вольт в амперы для блока питания 24 В VA50, введите 24 В и 50 Вт.Щелкните Рассчитать.

Пример 2: Для преобразования ватт в амперы для блока питания 12 В постоянного тока 500 мА введите 12 В и 0,5 А. Щелкните Рассчитать.


Часто задаваемые вопросы (FAQ)

  1. Как перевести из вольт в ватты?
    Формула для преобразования напряжения в ватты: ватт = ампер x вольт.
  2. Как перевести ватты в амперы?
    Формула для преобразования ватт в амперы при фиксированном напряжении: ампер = ватт / вольт.
  3. Как вы переводите из вольт в амперы?
    Формула для преобразования вольт в амперы при фиксированной мощности: ампер = ватт / вольт.
  4. Как вы переводите амперы в ватты?
    Формула для преобразования ампер в ватты при фиксированном напряжении: ватты = амперы x вольт.

Преобразование ватт в амперы (подробный пример)

Вот один из примеров того, как этот калькулятор обычно используется установщиками систем безопасности в качестве калькулятора усилителя. Установщику необходимо рассчитать расстояние, на которое можно проложить кабель питания от видеорегистратора видеонаблюдения до камеры видеонаблюдения, камеры видеонаблюдения HD и даже одной из новейших камер видеонаблюдения UHD 4K.Сначала им нужно рассчитать, сколько ампер выдает источник питания 24 В переменного тока. Обычно блоки питания 24 В переменного тока имеют номинальные значения ВА (амперы напряжения), а не амперы. Например, источник питания 24VAC50 — это 24 вольт, 50 вольт-ампер (ватты также известны как вольт-амперы). В приведенном выше калькуляторе установщик введет значение 24 в поле вольт и значение 50 в поле ватт.


Определения электрических терминов

Вот несколько полезных терминов, связанных с расчетом из вольт в ватты, из ваттов в амперы и из вольт в амперы.

  • Вольт — единица измерения электрической силы или давления, которая заставляет электрический ток течь в цепи. Один вольт — это давление, необходимое для протекания тока в один ампер против одного ома сопротивления. Концепция аналогична напору воды.
  • Ватт — единица измерения прилагаемой электрической мощности в цепи. Ватты также известны как вольт-амперы и представляют собой электрическую единицу измерения, обычно используемую в цепях переменного тока.Ватты рассчитываются путем умножения силы тока (измеренного в амперах) на электрическое давление (измеренное в вольтах).
  • Ампер (Ампер) — единица измерения силы тока в электрической цепи. Один ампер — это величина тока, когда один вольт электрического давления прикладывается к одному ому сопротивления. Амперы используются для измерения расхода электроэнергии аналогично тому, как GPM (галлоны в минуту) используются для измерения объема протекающей воды.
  • Ом — прибор для измерения сопротивления течению в электрическом токе.Электрические проводники (например, проволока) оказывают сопротивление потоку тока. Это похоже на то, как трубка или шланг оказывает сопротивление потоку воды. Один Ом — это величина сопротивления, которая ограничивает ток до одного ампера в цепи с одним вольт электрическим давлением.
  • Закон Ома — Закон Ома гласит, что когда электрический ток течет по проводнику (например, кабелю), сила тока (в амперах) равна движущей его электродвижущей силе (вольт), деленной на сопротивление проводника.

Онлайн-инструменты и калькуляторы

Пожалуйста, посетите нашу страницу Калькуляторы, конвертеры и инструменты для дополнительных онлайн-приложений.


Об этом инструменте

Этот онлайн-калькулятор был создан Майком Халдасом для профессионалов CCTV Camera Pros. CCTV Camera Pros — прямой поставщик оборудования для видеонаблюдения для дома, бизнеса и правительства. Если у вас есть какие-либо вопросы об этом инструменте или о чем-либо, связанном с системами видеонаблюдения, свяжитесь с Майком по адресу mike @ cctvcamerapros.net

.Калькулятор преобразования

Вт в ВА

Вт (Вт) в вольт-амперы (ВА) калькулятор.

Введите активную мощность в ваттах и ​​мощность коэффициент и нажмите кнопку Calculate , чтобы получить полную мощность в вольт-амперах:

Введите Вт: Вт
Введите коэффициент мощности:
Результат в вольтах: ВА

ВА в калькулятор ватт ►

Ватт в ВА расчет

Полная мощность S в вольт-амперах (ВА) равна реальной мощности P в ваттах (Вт), деленной на коэффициент мощности PF:

S (ВА) = P (Вт) / PF

Расчет ватт в ВА ►


См. Также

  • Как преобразовать ватт в VA
  • VA к калькулятору ватт
  • Ватт (Вт)
  • Электрический расчет
  • Преобразователь мощности
.

Вт в кВт · ч калькулятор преобразования

Мощность в ваттах (Вт) на энергию в Калькулятор киловатт-часов (кВтч) и формула расчета.

Введите мощность в ваттах, период потребления в часах и нажмите кнопку Рассчитать :

Введите мощность в ваттах: Вт
Введите время в часах: часов
Энергетический результат в киловатт-часах: кВтч
Калькулятор

кВтч в Вт ►

Расчет ватт в кВт · ч

Энергия E в киловатт-часах (кВтч) равна мощности P в ваттах (Вт),

раза период времени t в часах (hr), деленный на 1000:

E (кВтч) = P (Вт) × т (час) /1000

Расчет ватт в кВт · ч ►


См. Также

  • кВтч в калькулятор ватт
  • Расчет ватт в кВт · ч
  • кВт в кВтч расчет
  • кВт в кВт · ч калькулятор
  • Ватт (Вт)
  • Киловатт (кВт)
  • Киловатт-час (кВтч)
  • Электрический расчет
  • Преобразователь мощности
.

2.6 ампер часов сколько в вольтах. Ампер-часы в аккумуляторе: что это такое

Часто при установке новой бытовой техники возникает вопрос: а выдержит ли автомат подобное новое подключение? И вот тут начинается непонимание. Ведь номинальная сила тока автоматического отключателя указана в амперах, а максимальное потребление бытовых электрических приборов — всегда в ваттах или киловаттах. И как же быть в таком случае?

Конечно, многие могут догадаться, что необходимо перевести ватты в амперы или наоборот, но как перевести амперы в киловатты — знают не все. К примеру, потребляемая мощность стиральной машины — 2 кВт. И какой автомат на нее установить? Сразу же начинается поиск информации в справочной литературе и интернете.

Для удобства домашнего мастера и обобщения всей информации, имеющейся на эту тему, сейчас попробуем разложить по полочкам все этапы подобного перевода, формулы и правила.

Предварительные подсчеты

Первым делом необходимо проверить, какие из розеток контролируются тем же автоматом, на который подключается новое оборудование. Возможно, что и часть освещения квартиры питается посредством того же автоматического устройства отключения. А бывает и совсем непонятный монтаж электропроводки в квартире, при котором все электроснабжение запитано через один-единственный автомат.

После того, как определено количество включаемых потребителей, нужно сложить их потребление для получения общего показателя, т.е. узнать, сколько ватт могут потреблять приборы при условии их одновременного включения. Конечно, вряд ли они будут работать все вместе, но исключать этого нельзя.

При подобных подсчетах необходимо учесть один нюанс — на некоторых приборах потребляемая мощность указана не статичным показателем, а диапазоном. В таком случае берется верхний предел мощности, что обеспечит небольшой запас. Это намного лучше, чем брать минимальные значения, ведь в таком случае автоматическое отключающее устройство будет срабатывать при полной нагрузке, что совершенно неприемлемо.

Произведя положенные подсчеты, можно переходить к вычислениям.

Перевод для сетей 220 вольт

Т.к. в квартирах общепринятым является напряжение в 220 вольт, то перед тем, как задаваться вопросом «как перевести амперы в киловатты в трехфазной сети», имеет смысл рассмотреть расчеты именно для однофазных сетей. Согласно формуле, P = U х I, из чего можно сделать вывод, что U = P/I. Формула предусматривает измерение потребления в ваттах, а значит, при указании потребляемой мощности в киловаттах этот показатель нужно разделить на 1000 (именно столько ватт в 1 кВт). Собственно, расчеты не сложны, но для более удобного понимания можно рассмотреть все на примере.

Самым простым будет расчет по потреблению в 220 Вт в сети 220 В. Тогда номинал автомата — 220/220 = 1 ампер. Возьмем другие данные, к примеру, общая мощность, потребляемая приборами, равна 0,132 кВт в той же однофазной сети. Тогда будет необходим автомат с номинальным током 0,132 кВт/220 В, т.е. 132 Вт/220 В = 6 ампер. Тогда можно подобным образом высчитать, сколько ампер в киловатте: 1000/220 = 4,55 А.

Так же возможно произвести обратные вычисления, т.е перевод ампер в киловатты. К примеру, в однофазной сети установлен автомат на 5 ампер. Значит, согласно формуле можно высчитать соотношение величин, т.е. какую потребляемую мощность он может выдержать. Она будет равна 5 А х 220 В = 115 ватт. Значит, если общая потребляемая приборами мощность превышает этот показатель, автоматическое отключающее устройство не выдержит, следовательно, его необходимо заменить.

Ну а что, если через отдельный автомат питание приходит на комнату, в которой горит одна лампочка, и та всего на 60 ватт? Тогда любой автомат номиналом выше 0,3 А будет уже слишком мощным.

Как можно понять из изложенной информации, все расчеты достаточно просты и легко выполнимы.


Сети на 380 вольт

Для трехфазных сетей при подобных расчетах требуется немного другая формула. Все дело в том, что в схемах подключения приборов на 380 вольт используется три фазы, а потому и нагрузка распределяется по трем проводам, что и позволяет использовать автоматы с меньшим номиналом при той же потребляемой мощности.

Сама формула перевода ампер в кВт выглядит так: Р = корень квадратный из 3 (0,7) х U х I. Но это формула для того, чтобы перевести амперы в ватты. Ну а для того, чтобы перевести киловатты в амперы, нужно будет произвести следующие вычисления: ватт/(0,7 х 380). Ну а сколько киловатт в 1 Вт, мы уже разобрались.

Попробуем подобное рассмотреть на примере. На сколько ампер понадобится автомат, если дано напряжение сети 380 В, и потребляемая электроприборами мощность в 0,132 кВт. Подсчеты будут следующими: 132 Вт/266 = 0,5 А.

По аналогии с двухфазной сетью, попробуем рассмотреть, как рассчитать, сколько ампер в 1 киловатте. Подставив данные, можно увидеть, что 1000/266 = 3,7 А. Ну а в одном ампере будет содержаться 266 ватт, из чего следует, что для прибора мощностью 250 Вт автомат с подобным номиналом вполне подойдет.

К примеру, имеется трехполюсный автомат номиналом 18 А. Подставив данные в известную формулу, получим: 0,7 х 18 А. х 380 В = 4788 Вт = 4,7 кВт — это и будет предельно допустимая потребляемая мощность.

Как можно заметить, при одинаковой потребляемой мощности сила тока в трехфазной сети намного ниже, чем тот же параметр в схеме с одной фазой. Это следует учитывать при выборе устройств автоматического отключения.

Необходимость перевода киловатт в силу тока и наоборот

Подобные вычисления могут пригодиться не только при выборе номинала автомата для домашней или промышленной сети. Также и при монтаже электропроводки под рукой может не оказаться таблицы выбора сечения кабеля по мощности. Тогда необходимо будет вычислить общую силу тока, которая требуется используемым бытовым приборам исходя из их потребляемой мощности. Либо может возникнуть обратная ситуация. А уж как перевести амперы в киловатты и наоборот — теперь вопроса возникнуть не должно.

В любом случае, подобная информация, так же, как и умение ее применить в нужный момент, не просто не помешает, а даже необходима. Ведь напряжение — неважно, 220 или 380 вольт — опасно, а потому следует быть предельно внимательным и аккуратным при работе с ним. Ведь прогоревшая проводка или постоянно отключающийся от перегрузок автомат еще никому не добавили хорошего настроения. А это значит, без подобных вычислений не обойтись.

R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно — если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь — потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается… Но попробуем выразиться математически, то бишь

школьный курс физики

где Р — это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J — ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт… Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая…. Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника…. Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»

Схема подключения запараллеленных транзисторов вместо одного

Время автономной работы мобильного телефона, портативного инструмента или способность отдавать ток стартёру при пуске двигателя автомобиля – все это зависит от такой характеристики АКБ, как ёмкость. Она измеряется в ампер-часах или в миллиампер-часах. По величине ёмкости можно судить о том, сколько времени аккумулятор будет питать электрической энергией то или иное устройство. От неё зависит, как время разряда и заряда аккумулятора. При выборе аккумуляторной батареи для того или иного устройства полезно знать, что обозначает эта величина в ампер-часах. Поэтому сегодняшний материал будет посвящён такой характеристике, как ёмкость и её размерности в ампер-часах.

Вообще, ампер-час представляет собой внесистемную единицу электрического заряда. Её основное использование – это выражение ёмкости аккумуляторов.

Один ампер-час представляет собой электрический заряд, проходящий за 1 час через поперечное сечение проводника при пропускании тока 1 ампер. Можно встретить значения в миллиампер-часах.

Как правило, такое обозначение применяется для указания ёмкости аккумуляторов в телефонах, планшетах и других мобильных гаджетах. Давайте посмотрим, что значит ампер-час на реальных примерах.


На фото выше можно видеть обозначение ёмкости в ампер-часах. Это автомобильный аккумулятор 62 Ач. О чём нам это говорит? Из этой величины мы можем узнать, силу тока, с которой можно равномерный разряжать батарею до конечного напряжения. Для автомобильной АКБ конечное напряжение составляет 10,8 вольта. Стандартные циклы разряда обычно продолжаются 10 или 20 часов.

Исходя из вышесказанного, 62 Ач говорит нам о том, что этот аккумуляторная батарея способна на протяжении 20 часов отдавать ток 3,1 ампера. При этом напряжение на выводах батареи не опустится ниже 10,8 вольта.



На фото выше красным цветом подчёркнута ёмкость аккумулятора ноутбука – 4,3 ампер-часа. Хотя при таких величинах значение обычно выражается, как 4300 миллиампер-час (мАч).

Нужно ещё добавить, что системной единицей электрического заряда является кулон. Кулон связан с ампер-часами следующим образом. Один кулон в секунду равен 1 ампер. Следовательно, если перевести секунды в часы получится, что 1 ампер-час равен 3600 кулон.

Как связаны ёмкость аккумулятора (ампер-час) и его энергия (ватт-час)?

Многие производители на своих аккумуляторах не указывают ёмкость в ампер-часах, а вместо этого ставят значение запасаемой энергии в ватт-часах. Такой пример показан на фотографии ниже. Это аккумулятор смартфона Samsung Galaxy Nexus.


Прошу прощения за фото с мелким шрифтом. Запасаемая энергия составляет 6,48 ватт-часа. Запасаемую энергию можно рассчитать по следующей формуле:
1 ватт-час = 1 вольт * 1 ампер-час.

Тогда для аккумулятора Galaxy Nexus получаем:

6,48 ватт-часа / 3,7 вольта = 1,75 ампер-часа или 1750 миллиампер-час.

Какие ещё есть разновидности ёмкости аккумулятора

Существует такое понятие, как энергетическая ёмкость аккумулятора. Она показывает способность АКБ разряжаться определённый временной интервал с постоянной мощностью. Временной интервал в случае автомобильных аккумуляторных батарей обычно устанавливают 15 минут. Энергетическую ёмкость первоначально стали измерять в Северной Америке, но затем к этому подключились производители АКБ в других странах. Её значение можно получить в ампер-часах по следующей формуле:

Е (Ач) = W (Вт/эл) / 4, где

Е – энергетическая ёмкость в ампер-часах;

W – мощность при 15 минутном разряде.

Есть и ещё одна разновидность, которая пришла к нам из США, это резервная ёмкость. Она показывает способность АКБ питать бортовую движущейся машины при неработающем генераторе. Проще говоря, можно узнать, сколько аккумулятор даст вам проехать на машине, если генератор выйдет из строя. Рассчитать эту величину в ампер-часах можно по формуле:

Е (ампер-часы) = T (минуты) / 2.

Здесь можно ещё добавить, что при параллельном соединении АКБ их ёмкость суммируется. При последовательном соединении значение ёмкости не меняется.

Как узнать, сколько реально ампер-часов в вашем аккумуляторе?

Рассмотрим процесс проверки ёмкости на примере . Но такой разряд под контролем можно сделать для любой батареи. Будут отличаться только измеряемые величины.

Для того чтобы проверить реальные ампер-часы своего аккумулятора, нужно полностью его зарядить. Степень заряженности проконтролируйте по плотности . Полностью заряженная АКБ должна иметь плотность электролита 1,27─1,29 гр./см 3 . Затем нужно собрать схему, показанную на следующем рисунке.


Вам нужно выяснить, для какого режима разряда указана ёмкость вашего аккумулятора (10 или 20 часов). И поставить аккумулятор на разряд силой тока, вычисленной по формуле ниже.

I = E / T, где

E – номинальная ёмкость батареи,

T – 10 или 20 часов.

Этот процесс требует постоянного контроля напряжения на выводах АКБ. Как только напряжение упадёт до 10,8 вольта (1,8 на банке), разряд нужно остановить. Время, за которое аккумулятор разрядился, вы умножаете на ток разряда. Получается реальная ёмкость батареи в ампер-часах.

Если у вас нет резистора, то можете использовать автомобильные лампочки (12 вольт) подходящей ёмкости. Мощность лампочки подбираете в зависимости от того, какой разрядный ток вам нужен. То есть, если нужен ток разряда 2 ампера, то мощность будет 12 вольт умножить на 2 ампера. Итого 24 ватта.


Важно! После разряда аккумулятор сразу ставьте на зарядку, чтобы он не находился в таком разряженном состоянии. Для такой разряд лучше не делать вообще. При таком глубоком разряде они могут потерять часть своей ёмкости.

Преобразователь Киловатт в Вольт-ампер

Киловатт равен одной тысяче (10 3 ) ватт. Эта единица измерения обычно используется для выражения выходной мощности двигателей и мощности электродвигателей, инструментов, машин и нагревателей. Киловатт-час — энергия, расходуемая устройством мощностью 1000 ватт за один час, — обычно используется в качестве единицы расчета для энергии, поставляемой потребителям коммунальными предприятиями.

Этот инструмент преобразует киловатты в вольтамперы (квт в ва) и наоборот. 1 киловатт = 1000 вольт-ампер . Пользователь должен заполнить одно из двух полей, и преобразование произойдет автоматически.


1 киловатты = 1000 вольт-ампер

Формула киловатт в вольт-амперах (кВт в ва). ВА = кВт * 1000

Пересчет киловатт в другие единицы

Таблица киловатт в вольт-ампер

1 кВт = 1000 ВА 11 кВт = 11000 ВА 21 кВт = 21000 ВА
2 кВт = 2000 ВА 12 кВт = 12000 ВА 22 кВт = 22000 ВА
3 кВт = 3000 ВА 13 кВт = 13000 ВА 23 кВт = 23000 ВА
4 кВт = 4000 ВА 14 кВт = 14000 ВА 24 кВт = 24000 ВА
5 кВт = 5000 ВА 15 кВт = 15000 ВА 25 кВт = 25000 ВА
6 кВт = 6000 ВА 16 кВт = 16000 ВА 26 кВт = 26000 ВА
7 кВт = 7000 ВА 17 кВт = 17000 ВА 27 кВт = 27000 ВА
8 кВт = 8000 ВА 18 кВт = 18000 ВА 28 кВт = 28000 ВА
9 кВт = 9000 ВА 19 кВт = 19000 ВА 29 кВт w = 29000 ВА
10 кВт = 10000 ВА 20 кВт = 20000 ВА 30 кВт = 30000 ВА
40 кВт = 40000 ВА 70 кВт = 70000 ВА 100 кВт = 100000 ВА
50 кВт = 50000 ВА 80 кВт = 80000 ВА 110 кВт = 110000 ВА
60 кВт = 60000 ВА 90 кВт =

ВА

120 кВт = 120000 ВА
200 кВт = 200000 ВА 500 кВт = 500000 ВА 800 кВт = 800000 ВА
300 кВт = 300000 ВА 600 кВт = 600000 ВА 900 кВт =

0 ВА

400 кВт = 400000 ва 700 кВт = 700000 ва 1000 кВт = 1000000 ва

Преобразование мощности

Как перевести кВт в вольты

Как преобразовать электроэнергию в киловатт (кВт) в электрическое напряжение в вольт (В).

Вы можете рассчитать вольт из киловатт и усилители, но вы не можете конвертировать киловатты в вольты, поскольку единицы киловатты и вольты не Измерьте такое же количество.

Формула для расчета вольт постоянного тока в кВт

Напряжение В в вольтах равно 1000-кратной мощности P в киловатты, разделенные на ток I в амперах:

В (В) = 1000 × P (кВт) / Я (А)

Таким образом, напряжение равно 1000 киловатт, разделенных на амперы.

вольт = 1000 × киловатт / ампер

или

В = 1000 × кВт / А

Пример

Какое напряжение в вольтах при потребляемой мощности 4 киловатта и токе 3 ампера?

В = 4 кВт / 3A = 1333,333 В

Формула для однофазного переменного тока в ваттах для расчета

Действующее значение напряжения В в вольтах равно мощности P в ватты, разделенные на коэффициент мощности PF умноженный на фазный ток I в амперах:

В (В) = 1000 × P (кВт) / ( PF × I (A) )

Таким образом, вольты равны ваттам, разделенным на коэффициент мощности. раз амперы.

вольт = 1000 × киловатт / ( ПФ, × ампер)

или

В = 1000 × Ш / ( PF × A)

Пример

Какое среднеквадратичное значение напряжения в вольтах при потребляемой мощности 4 киловатта и коэффициенте мощности 0,8 а фазный ток 3,75 ампера?

В = 1000 × 4 кВт / (0,8 × 3,75 А) = 1333,333 В

Формула для расчета трехфазных ватт переменного тока в вольт

Линейное среднеквадратичное напряжение В L-L в вольтах равно мощности P дюйм киловатт, деленный на квадратный корень из трехкратного коэффициент мощности PF раз больше фазный ток I в амперах:

В Л-Л (В) = 1000 × P (кВт) / ( 3 × PF × I (A) )

Таким образом, вольты равны киловаттам, разделенным на квадратный корень. коэффициент мощности, умноженный на 3 ампера.

вольт = 1000 × киловатт / ( 3 × ПФ × Ампер)

или

В = 1000 × кВт / ( 3 × ПФ × А)

Пример

Какое среднеквадратичное значение напряжения в вольтах при потребляемой мощности 4 киловатта и коэффициенте мощности 0,8 а фазный ток протекает 2,165 ампера?

В = 1000 × 4кВт / ( 3 × 0,8 × 2,165 А) = 1333 В

Как преобразовать вольты в кВт ►


См. Также

Перевести киловатт-часы в электронвольты

Перевести киловатт-часы в электронвольты | преобразование энергии

Преобразовать киловатт-час (кВтч) по сравнению с электрон-вольт (эВ)

в обратном направлении

из электронвольт в киловатт-час

Или используйте страницу использованного преобразователя с многофункциональным преобразователем энергии

результат преобразования для двух единиц энергии
:
От единицы
Символ
Равно результат К единице
Символ
1 киловатт-час кВтч = 22,469,435,080,241,224,186,068,992.00 электрон-вольт эВ

Каково международное сокращение для каждой из этих двух единиц энергии?

Префикс или символ киловатт-часа: кВтч

Префикс или символ электронного вольта: эВ

Инструмент для преобразования технических единиц измерения энергии. Обменять показание в киловатт-час в единицах кВтч на электрон-вольт в единицах эВ как в эквивалентном результате измерения (две разные единицы, но одинаковое физическое общее значение, которое также равно их пропорциональным частям при делении или умножении).

Один киловатт-час, преобразованный в электрон-вольт, равен = 22 469 435 080 241 224 186 068 992,00 эВ

1 кВтч = 22 469 435 080 241 224 186 068 992,00 эВ

Поиск страниц при преобразовании в с помощью системы пользовательского поиска Google в Интернете
Для перехода на страницу конвертера единиц
киловатт-час — кВтч в электрон-вольт — эВ требуется включенный JavaScript в вашем браузере. Вот конкретные инструкции о том, как включить JS на вашем компьютере. Как включить JavaScript

Или для вашего удобства загрузите браузер Google Chrome для просмотра веб-страниц в высоком качестве.

  • Страниц
  • Разное
  • Интернет и компьютеры

Сколько электрон-вольт содержится в одном киловатт-часе? Чтобы связать с этой энергией — конвертер единиц киловатт-час в электронвольты , вырежьте и вставьте следующий код в свой html.
Ссылка будет отображаться на вашей странице как: в Интернете конвертер единиц из киловатт-часа (кВтч) в электрон-вольт (эВ)

онлайн-конвертер единиц измерения из киловатт-часа (кВтч) в электронвольт (эВ)

Онлайн-калькулятор преобразования киловатт-часов в электронвольты | convert-to.com конвертеры единиц © 2021 | Политика конфиденциальности

Преобразование киловатт-часов в электронвольт

053935104.00 эВ .00 эВ 4280692660968250054778880.00 эВ 871451596800.00 эВ
20 кВтч 4493886948048
21 кВтч 471858129545134950032867328.00 эВ
22 кВтч 494327564285379510731276288.00 эВ
23 кВтч 51679699

24002710208512.00 эВ
24 кВтч 5392664337658684946836.00 эВ
25 кВтч 561735868506113055387549696.00 эВ
26 кВтч 584205303246357547366481920.00 эВ
27 кВтч 6066747379866021080648
28 кВтч 6272726846600043823104.00 эВ
29 кВтч 6516136074670742232064.00 эВ
30 кВтч 674083042207335721440641024.00 эВ
31 кВтч 696552476947580144700096512.00 эВ
32 кВтч 71

11687824705398505472,00

эВ
33 кВтч 74142.00 эВ
34 кВтч 763960781168313689356369920.00 эВ
35 кВтч 786430215
36 кВтч 808899650648802810753187840.00 эВ
37 кВтч 83136
38 кВтч 853838520129291794711052288.00 эВ
39 кВтч 876307954869536355409461248.00 эВ

Что такое киловатт-час? Ватты, используемые для питания вашего дома, объяснено

Киловатт-часов, объяснено

Когда мы видим символ «кВтч» на счетах за коммунальные услуги, мы можем предположить, что это какая-то загадочная математическая или метафизическая сущность, и полностью игнорировать его.На самом деле, киловатт-час означает просто киловатт-час, и это базовое измерение энергии. Понимание киловатт-часов помогает нам понять наш счет за электроэнергию, а также помогает нам выглядеть умными, когда люди начинают говорить на такие тяжелые темы, как возобновляемые источники энергии или углеродный след.

Начинается с ватта.

Очевидно, киловатт-часы имеют какое-то отношение к ваттам. Ватт — это единица мощности. С технической точки зрения, ватт — это ток в один ампер, вызванный напряжением в один вольт. Вольт x ампер = ватт.

«Кило» от греческого означает «тысяча». Точно так же, как километр — это 1000 метров, киловатт — это 1000 ватт мощности. Мегаватт равен 1000 киловатт — или 1 миллиону ватт. Электроэнергия в домах обычно измеряется в киловаттах, а на крупных электростанциях — в мегаваттах или даже гигаваттах.

Энергия — это энергия, произведенная за время . Чтобы понять соотношение мощности и энергии, подумайте о мощности бытового устройства. Ваш холодильник может иметь большую мощность (мощность), но эта мощность бесполезна для вас, если она работает всего одну секунду.Вам нужен холодильник, чтобы он работал 24 часа в сутки. Таким образом, киловатты мало что значат в практическом смысле, если мы не увидим их динамику с течением времени.

Энергетические компании основывают свои услуги на киловатт-часах, или 1000 ватт электроэнергии, в течение одного часа. Киловатт-часы — это единицы измерения энергии, и вы увидите их сокращенно, как кВтч (большая W и маленькие k и h).

Энергия и мощность.

Не то же самое.

Большинство людей используют термины «энергия» и «мощность» как синонимы, но это технически неверно.Они связаны… но не одинаковы.

Энергия — это способность выполнять работу, буквально способность перемещать что-либо на расстояние. Например, чтобы переместить машину по дороге, требуется энергия. В тренажерном зале требуется энергия, чтобы поднимать тяжести над головой. Также требуется энергия, чтобы производить свет, перемещая электрон через нить накаливания лампочки.

Энергия может быть измерена в джоулях, БТЕ, ньютон-метрах и калориях. Но когда мы говорим об электроэнергии, мы говорим о ватт-часах или киловатт-часах.Энергия измеряет общее количество выполненной работы.

Мощность (или мощность) — это скорость производства энергии — это мера энергии в единицу времени. Если устройство очень мощное, оно может выполнять много работы за короткое время — быстрее, чем менее мощное устройство. Сильный порыв ветра может в мгновение ока разнести ваш шезлонг через патио. Легкий ветерок может подтолкнуть тот же стул через патио, но на это уйдет целый день. Если стул перемещался по патио, уровень мощности был другим, но общее потребление энергии было таким же.

Что для меня значат киловатт-часы?

Счет за электроэнергию рассчитывается в киловатт-часах — в день и в течение месяца. Чем меньше киловатт-часов используется в вашем доме, тем меньше ваш счет за электроэнергию. Таким образом, киловатт-часы — это деньги, которые уходят из вашего кармана. Уменьшение количества киловатт-часов поможет вам сохранить эти деньги. Прежде чем покупать новую технику, сравните мощность в киловатт-часах. Энергоэффективные модели сэкономят вам деньги.

Когда целая община, страна или планета сокращают количество киловатт-часов, экономия становится еще более значительной.Меньшее потребление энергии означает меньше выбросов парниковых газов, поэтому энергоэффективность крайне важна для здоровья окружающей среды. Энергоэффективность также обеспечивает большую доступность ресурсов для будущих поколений. Для американцев это означает меньшую зависимость от иностранных источников энергии и, следовательно, большую национальную безопасность. Конечно, энергоэффективность тоже идет на пользу экономике. Американцы, заботящиеся об энергосбережении, стимулируют инновации в производстве эффективных устройств и экономят в общей сложности более 500 миллиардов долларов в год.

Также ознакомьтесь с разделом «Понимание электрической сети: от источников энергии до распределительных центров».

Вольт в кВт — Калькулятор, преобразование, примеры, таблица и формула —

Здесь вы можете легко преобразовать из Вольт в кВт, с помощью этого инструмента вы можете сделать это автоматически.

Мы объясняем формулу, которая используется для преобразования вольт в кВт, мы также показываем, как перейти от вольт к кВт за 1 шаг, несколько иллюстрированных примеров преобразования вольт в кВт и таблицу с основными преобразованиями из вольт в кВт .

Наиболее распространенные значения коэффициента мощности в различных конструкциях, устройствах и двигателях.

  • Формула для преобразования, передачи, вычисления и преобразования из вольт в кВт, однофазное, двухфазное и трехфазное:
  • Как преобразовать из вольт в кВт за 1 шаг:
  • Примеры преобразования из вольт в кВт:
  • Вольт в кВт, таблица преобразования, эквивалентности, преобразования (Амперы = 10 Ампер, Fp = 0,8, переменный ток, 3F):
  • Типичный коэффициент мощности для двигателей, конструкций и устройств.
  • Типичный неулучшенный коэффициент мощности по отрасли:
  • Типичный коэффициент мощности обычной бытовой электроники:
  • Типичный коэффициент мощности двигателя:
  • Как использовать калькулятор вольт в кВт:

Формула для преобразования, прохождения, вычисления и преобразовать из вольт в кВт, однофазный, двухфазный и трехфазный:

  • кВт постоянного тока = кВт, активная мощность постоянного тока (постоянный ток).
  • кВт 1Ø = кВт 1 фаза.
  • кВт 2 Ø = кВт 2 фазы.
  • кВт 3Ø = кВт 3 фазы.
  • В L-N = Вольт фаза-нейтраль.
  • В L-L = Линия-линия Вольт.
  • I AC1Ø = ток / однофазный ток.
  • I AC2Ø = ток / двухфазный ток.
  • I AC3Ø = ток / трехфазный ток.
  • FP = Коэффициент мощности.

Как преобразовать из вольт в кВт за 1 шаг:

Шаг 1:

Чтобы перейти от вольт к кВт, вам нужно только умножить переменные, указанные в формуле, в соответствии с тип постоянного или переменного тока и количество фаз, а затем разделить на 1000. Например: двухфазный веб-сервер имеет напряжение 120 В (переменный ток, LN), коэффициент мощности 0,89 и ток 7,2 А, сколько кВт у сервера есть?

Чтобы узнать ответ, воспользуйтесь формулой для нахождения двухфазной мощности в кВт путем умножения переменных следующим образом: 2x120x7.2 x 0,89 = 1,54 кВт (Формула: кВт = 2xV (LN) xIxF.P).


Примеры преобразования из вольт в кВт:

Пример 1:

Трехфазный холодильник имеет переменное напряжение 230 В (LL), 5,7 Амперио и коэффициент мощности 0,83, сколько кВт пылесос есть?

Rta: // Что вы должны сделать, так это определить используемую формулу, так как оборудование трехфазное и переменного тока, вы должны использовать формулу: √3xV (LL) xIxF.P / 1000, замена переменных будет иметь следующий вид: √3x230Vx5,7 × 0,83 = 1,88 кВт.

Пример 2:

Двухфазный натриевый светильник имеет переменное напряжение 240 В (LL), силу тока 7,7 А и коэффициент мощности 0,91, что соответствует мощности светильника в кВт.

Rta: // Проверьте формулу для двухфазного оборудования (Формула: кВт = 2xV (LN) xIxF.P / 1000), поскольку у нас есть напряжение LL, мы должны передать его в LN следующим образом: умножить 220V ( LL) / √3 = 138V (LN), это способ преобразования напряжения из Linea-Linea в Linea-Neutro, затем мы просто умножаем переменные, которые появляются в формуле: 2x138x7,7 × 0.91 = 1,67 кВт.

Пример 3:

Трехфазное напряжение в офисе составляет 380 В (LL), коэффициент мощности 0,84 и сила тока 163 А. Сколько кВт имеется в офисе?

Rta: // Поскольку это трехфазный иллюминатор, необходимо взять формулу: (√3xV (LL) xIxF.P = ватт), а затем, заменив переменные, я получу: √3x380x163x0,84 / 1000 = 90,12 кВт.


Вольт в кВт, таблица для преобразования, эквивалентности, преобразования (Амперы = 10 Ампер, Fp = 0,8, переменный ток, 3F): 6,0 кВтатт033 Вольт 3535 400000 Вольт 3535 Вольт

0 637,3 кВтатт

Сколько вольт: Эквивалентность в ваттах
120 В Эквивалентно 1.6 кВтатт
127 Вольт 1,7 кВтатт
220 Вольт 3,0 кВтатт
240 Вольт 3,3 кВтатт
277 Вольт 3,8 кВтатт
440 Вольт
600 Вольт 8,3 кВтатт
1000 Вольт 13,8 кВтатт
1500 Вольт 20,7 кВтатт
4160 Вольт 57.6 кВтатт
5000 Вольт 69,2 кВтатт
7620 Вольт 105,5 кВтатт
8000 Вольт 110,8 кВтатт
11400 Вольт 157,9 кВтатц
182,9 кВтатт
15000 Вольт 207,8 кВтатт
22000 Вольт 304,8 кВтатт
25000 Вольт 346.4 кВтатт
30000 Вольт 415,6 кВтатт
34500 Вольт 478,0 кВтатт
35000 Вольт 484,9 кВтатт
40000 Вольт 554,2 кВтатт
554,2 кВтатт
57500 Вольт 796,7 кВтатт
66000 Вольт 914,5 кВтатт
69000 Вольт956.0 кВтатт
115000 Вольт 1593,4 кВтатт
138000 Вольт 1912,1 кВтатт
230000 Вольт 3186,9 кВтатт

Примечание. 0,8, сила тока 10 А и трехфазное питание переменного тока. Для разных переменных следует использовать калькулятор, который появляется в начале.


Типовой коэффициент мощности для двигателей, конструкций и оборудования.

Типичный неулучшенный коэффициент мощности по отрасли:
Промышленность Коэффициент мощности
Автозапчасти 0,75-0,80
Пивоварня 0,75-0.80
Цемент 0,80-0,85
Химическая промышленность 0,65-0,75
Угольная шахта 0,65-0,80
Одежда 0.35-0,60
Гальваника 0,65-0,70
Литейное производство 0,75-0,80
Ковка 0,70-0,80
Больница 0,75-0,80
Машиностроение 0,60-0,65
Металлообработка 0,65-0,70
Офисное здание 0,80-0,90
Нефтяное месторождение Насос 0.40-0,60
Производство красок 0,65-0,70
Пластик 0,75-0,80
Штамповка 0,60-0,70
Металлургический завод 0,65-0,80
Инструмент , штампы, кондукторы промышленность 0,65-0,75

Типичный коэффициент мощности обычной бытовой электроники:
Электронное устройство Коэффициент мощности
— Magnavox Projection TV в режиме ожидания 0,37
Samsung 70 ″ 3D Bluray 0,48
Цифровая фоторамка 0,52
ViewSonic Monitor 0,5
Dell Monitor 0,55
Magnavox Projection TV 0,58
Цифровое изображение Рамка 0,6
Цифровая фоторамка 0,62
Цифровая фоторамка 0,65
Philips 52 ″ Проекционный телевизор 0,65
Wii 0,7
Цифровая фоторамка 0,73
Xbox Kinect 0,75
Xbox 360 0,78
Микроволновая печь 0,9
Sharp Aquos 3D TV 0,95
PS3 Move 0,98
Playstation 3 0,99
Element 41 ″ плазменный телевизор 0,99
Современный большой телевизор с плоским экраном 0,96
Кондиционер с креплением к окну 0,9
Старый цветной телевизор на базе ЭЛТ 0,7
Плоский компьютерный монитор Legacy 0,64
Светильник While-LED 0,61
Адаптер питания для ноутбука Legacy 0,55
Лазерный принтер 0,5
Лампы накаливания 1
Люминесцентные лампы (без компенсации) 0,5
Люминесцентные лампы (с компенсацией) 0,93
Газоразрядные лампы 0,4-0 , 6

Типичный коэффициент мощности двигателя: 9003 5 1800
Мощность Скорость Коэффициент мощности
(л.с. 1/2 нагрузки 3/4 нагрузки полная нагрузка
0-5 0.72 0,82 0,84
5-20 1800 0,74 0,84 0,86
20-100 1800 0,79 0,86 0,89
100 — 300 1800 0,81 0,88 0,91

Ссылка // Коэффициент мощности в управлении электроэнергией-A. Bhatia, B.E.-2012

Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014

http: // www.engineeringtoolbox.com

Как использовать калькулятор вольт в кВт:

Сначала вы должны выбрать тип тока, который вы хотите AC или DC, и количество фаз в случае выбора AC, затем вы должны ввести показанные данные в левой части инструмента важно просмотреть то, что запрашивается в таблице, поскольку в зависимости от того, что требуется, необходимо ввести линейное или нейтральное линейное напряжение, затем вы должны ввести коэффициент мощности и наконец сила тока.

Квалификационный калькулятор от Вольт до кВт: [kkstarratings]

Ампер в кВт — Конвертер Ампер в Киловатт

Ампер в кВт — это преобразователь электроэнергии. Он помогает преобразовывать амперы в киловатты для постоянного (DC) и переменного тока (AC). Вам необходимо выбрать тип преобразования переменного или постоянного тока. Введите значение в амперах, нажмите «Рассчитать», чтобы получить примерно равное значение переменного или постоянного тока.

Ампер — единица измерения электрического тока. Ампер обозначается буквой «А».Киловатт — это единица измерения электрической энергии. Ватты используются для измерения небольшой электрической энергии и рассчитываются из ватта. Киловатты — это единицы измерения высокой электрической энергии. Киловатт в 1000 раз превышает мощность ватта. Все современное оборудование и гаджеты откалиброваны в киловаттах.

Мы знаем, что мощность равна напряжению, умноженному на ток.

P = V x I

Для преобразования силы постоянного тока в кВт формула преобразования:

Мощность постоянного тока равна току I в амперах, умноженному на напряжение V в вольтах, деленному на 1000.

P (кВт) = V x I / 1000

Где

P = Мощность в киловаттах.

В = напряжение.

I = ток.

Для преобразования однофазного переменного тока используются разные формулы. Для преобразования переменного тока в однофазный нужно использовать коэффициент мощности.

Формула преобразования однофазных ампер переменного тока в кВт:

Мощность переменного тока равна току I в амперах, умноженному на напряжение V в вольтах, умноженному на коэффициент мощности, деленный на 1000.

Коэффициент мощности — это отношение реальной мощности к полной мощности.

P (кВт) = V x I x PF / 1000

Где

P = Мощность в киловаттах

В = напряжение.

I = ток.

PF = коэффициент мощности.

Формула преобразования трехфазного тока переменного тока в кВт:

Формула преобразования

трехфазных ампер переменного тока в кВт аналогична однофазному переменному току, но значение коэффициента мощности изменено. Здесь, в трехфазном переменном токе, мы умножаем коэффициент мощности на √3.

P (кВт) = √3 x PF x V x I / 1000

Где

P = Мощность в киловаттах

В = напряжение.

I = ток.

PF = коэффициент мощности.

Типовой коэффициент мощности бытовой техники:

Ссылка // Летнее исследование ACEEE по энергоэффективности в зданиях, 2014 г. / electric-installation.com

Типовой коэффициент мощности в различных конструкциях:

Ссылка // IEEE Std 141-1993 (Красная книга IEEE)

Ссылка

// criticalpowergroup.com

Справочник

// Коэффициент мощности в управлении электроэнергией-А. Бхатия, BE-2012 Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014 г. http://www.engineeringtoolbox.com

Эквивалентные амперы и киловатты при 120 В переменного тока
Эквивалентные значения в амперах и киловаттах при напряжении 240 В.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *