Синхронные двигатели переменного тока – Практические основы синхронных двигателей, которые должен знать каждый инженер-электрик — Новости

Содержание

Синхронные двигатели | двигатели переменного тока — Учебник

Синхронные двигатели

Глава 13 — Двигатели переменного тока

Однофазные синхронные двигатели

Однофазные синхронные двигатели доступны в небольших размерах для приложений, требующих точного времени, таких как тайм-аут, часы и проигрыватели. Несмотря на то, что батареи с кварцевым аккумулятором с батарейным питанием широко доступны, линейка AC с линейным управлением имеет более долгосрочную точность — в течение нескольких месяцев. Это связано с тем, что операторы электростанций намеренно поддерживают долгосрочную точность частоты системы распределения переменного тока. Если он отстает на несколько циклов, они составят потерянные циклы AC, чтобы часы не теряли времени.

Большие и малые синхронные двигатели

Выше 10 лошадиных сил (10 кВт) более высокая эффективность и ведущий фактор мощности делают большие синхронные двигатели полезными в промышленности. Крупные синхронные двигатели на несколько процентов эффективнее, чем более распространенные асинхронные двигатели. Хотя синхронный двигатель более сложный.

Поскольку двигатели и генераторы схожи по конструкции, следует использовать генератор в качестве двигателя, наоборот, использовать двигатель в качестве генератора. Синхронный двигатель похож на генератор с вращающимся полем. На рисунке ниже показаны небольшие генераторы с полем вращения с постоянным магнитом. На этом рисунке ниже могут быть два параллельных и синхронизированных генератора переменного тока, приводимых в действие механическими источниками энергии, или генератор переменного тока, управляющий синхронным двигателем. Или это могут быть два двигателя, если подключен внешний источник питания. Дело в том, что в любом случае роторы должны работать на одной и той же номинальной частоте и находиться в фазе друг с другом. То есть, они должны быть синхронизированы . Процедура синхронизации двух генераторов состоит в том, чтобы (1) открыть переключатель, (2) включить оба генератора с одинаковой скоростью вращения, (3) продвинуть или затормозить фазу одного блока, пока оба выхода переменного тока не будут в фазе, (4) закройте переключатель, прежде чем они выйдут из фазы. После синхронизации генераторы будут заблокированы друг от друга, требуя значительного крутящего момента, чтобы сломать один блок (независимо от синхронизации) от другого.

Синхронный двигатель работает с генератором.

Учет момента с синхронными двигателями

ускорение крутящего момента или отставание настолько, что синхронизация теряется. Крутящий момент развивается только при поддержании синхронизации двигателя.

Приведение синхронных двигателей до скорости

В случае небольшого синхронного двигателя вместо генератора переменного тока (выше справа) нет необходимости проходить сложную процедуру синхронизации генераторов. Тем не менее, синхронный двигатель не запускается самостоятельно и должен быть доведен до приблизительной электрической скорости генератора, прежде чем он заблокирует (синхронизируется) с частотой вращения генератора. После достижения скорости синхронный двигатель будет поддерживать синхронизацию с источником питания переменного тока и развивать крутящий момент.

Sinewave управляет синхронным двигателем. Предполагая, что двигатель до синхронной скорости, так как синусоидальная волна изменяется на положительную величину на рисунке выше (1), нижняя северная катушка толкает северный полюс ротора, а верхняя южная катушка привлекает этот северный полюс ротора. Аналогичным образом южный полюс ротора отталкивается верхней южной катушкой и притягивается к нижней северной катушке. К тому моменту, когда синусоидальная волна достигает пика при (2), крутящий момент, удерживающий северный полюс ротора вверх, максимален. Этот крутящий момент уменьшается, когда синусоидальная волна уменьшается до 0 В постоянного тока при (3) с минимальным крутящим моментом. Когда синусоидальная волна изменяется на отрицательную между (3 и 4), нижняя южная катушка толкает южный роторный полюс, притягивая полюс северного ротора ротора. Аналогичным образом, северный полюс ротора отталкивается верхней северной катушкой и притягивается к нижней южной катушке. На (4) синусоидальная область достигает отрицательного пика с удерживающим моментом снова максимум. Поскольку синусоидальная волна изменяется с отрицательного на 0 V
DC
на положительный, процесс повторяется для нового цикла синусоидальной волны. Обратите внимание, что на п

Синхронный электродвигатель с обмоткой возбуждения

Дмитрий Левкин

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Взаимодействие магнитных полей статора и ротора синхронного двигателя с обмотками возбуждения

Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитное поле ротора синхронного двигателя с обмотками возбуждения

Магнитные поля ротора и статора сцепленные друг с другом

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

Ns = 60f/p,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя

Синхронный двигатель. Принцип действия и устройство. Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n

1, с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки.

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум момента Мmax
соответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.

Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.

При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента Мвн смещается на угол ? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора Мвн изменяется лишь угол ? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.

Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

Рис. 292. Электромагнитный момент в синхронной машине, образующийся в различных режимах

Рис. 293. Схема асинхронного пуска синхронного двигателя;

Рис. 294 Устройство пусковой обмотки синхронного двигателя: 1 — ротор; 2 — стержни; 3 — кольцо; 4 — обмотка возбуждения

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

Синхронный и асинхронный двигатель: отличия, принцип работы, применение

Классификация двигателей основывается на разных параметрах. По одному из них, различают синхронный и асинхронный двигатель. Отличия приборов, общая характеристика и принцип работы описаны в статье.

Синхронный двигатель

Этот тип двигателя способен работать одновременно и в качестве генератора, и как, собственно, двигатель. Его устройство сродни синхронному генератору. Характерной особенностью двигателя является неизменяемая частота роторного вращения от нагрузки.

Эти виды двигателей широко применяются во многих сферах, например, для электрических проводов, которым необходима постоянная скорость.

синхронный и асинхронный двигатель отличия

Принцип работы синхронного двигателя

В основу его функционирования положено взаимодействие вращающегося магнитного поля якоря и магнитных полей индукторных полюсов. Обычно якорь находится в статоре, а индуктор распологается в роторе. Для мощных моторов используются электрические магниты для полюсов, а для слабых — постоянные.

Принцип работы синхронного двигателя включает в себя (кратковременно) и асинхронный режим, который обычно применяют для разгона до необходимой (то есть номинальной) скорости вращения. В это время индукторные обмотки замыкаются накоротко или посредством реостата. После достижения необходимой скорости индуктор начинают питать постоянным током.

Преимущества и недостатки

Основными минусами этого вида двигателя являются:

  • необходимость питания обмотки постоянным током;
  • сложность запуска;
  • скользящий контакт.

Большинство генераторов, где бы они ни использовались, являются синхронными. Преимуществами таких двигателей в целом являются:

Асинхронный двигатель

Данный вид устройста представляет механизм, направленный на трансформацию электрической энергии переменного тока в механическую. Из самого названия «асинхронный» можно сделать вывод, что речь идет о неодновременном процессе. И действительно, частота вращения магнитного поля статора здесь выше роторной всегда.
Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от вида которого асинхронные двигатели короткозамкнутые могут быть и с фазным ротором.

принцип работы синхронного двигателя

Принцип действия

Работа двигателя осуществляется на основе взаимодействия магнитного статорного поля и наводящихся этим же полем токов в роторе. Вращающий момент появляется тогда, когда имеется разность частоты вращения полей.

Резюмируем теперь, чем отличается синхронный двигатель от асинхронного. Чем объясняется широкое применение одного типа и ограниченное — другого?

Синхронный и асинхронный двигатель: отличия

Отличие работы двигателей — в роторе. У синхронного типа он заключается в постоянном или электрическом магните. Благодаря притягиванию разноименных полюсов вращающееся поле статора влечет и магнитный ротор. Их скорость получается одинаковой. Отсюда и название — синхронный.

асинхронные двигатели короткозамкнутыеВ нем можно добиться, в отличие от асинхронного, даже опережения напряжения по фазам. Тогда устройство, подобно батареям конденсатора, может применяться для увеличения мощности.

Асинхронные двигатели, в свою очередь, просты и надежны, но их недостатком является трудность регулировки частоты вращения. Для реверсирования трехфазного асинхронного двигателя (то есть изменения направления его вращения в противоположную сторону) меняют расположение двух фаз или двух линейных проводов, приближающихся к обмотке статора.

Если рассматривать частоту вращения, то имеют и здесь синхронный и асинхронный двигатель отличия. В синхронном типе этот показатель является постоянным, в отличие от асинхронного. Поэтому первый используют там, где необходима постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.

Выявить на том или ином устройстве наличие рассматриваемых типов приборов очень просто. На асинхронном двигателе будет не круглое число оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном — круглое (например, тысяча оборотов в минуту).

И те, и другие моторы управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой меняющейся нагрузке на вал мотора частота вращения будет одной и той же. При этом нагрузка, конечно, должна меняться с учетом того, чтобы двигатель способен ее выдержать, иначе это приведет к поломке механизма.

чем отличается синхронный двигатель от асинхронного

Так устроен синхронный и асинхронный двигатель. Отличия обоих видов обуславливают сферу их использования, когда один вид справляется с задачей оптимальным образом, для другого это будет проблематичным. В то же время можно встретить и комбинированные механизмы.

Практические основы синхронных двигателей, которые должен знать каждый инженер-электрик — Новости

строительство

Как и асинхронный двигатель, синхронный двигатель состоит из статора и ротора, разделенных воздушным зазором . Он отличается от асинхронного двигателя тем, что поток в воздушном зазоре не обусловлен компонентом тока статора.

Пара древних компрессоров для кондиционирования воздуха с углекислым газом, оснащенная двумя антивибрационными синхронными двигателями с открытой рамой мощностью 150 лошадиных сил. Этот тип системы кондиционирования относится к 1930-м годам. (фото кредит: Jeffs4653 через Flickr)

Он создается магнитами или током катушки поля, обеспечиваемым внешним источником постоянного тока, питающим обмотку, размещенную в роторе.

Давайте рассмотрим темы, которые мы обсудим.

  • статор
  • ротор
    • С постоянными магнитами
    • С раневой катушкой
  • Рабочие характеристики
  • Другие типы синхронных двигателей
    • Линейные двигатели
      • Практическая реализация (ВИДЕО)
    • Синхронные асинхронные двигатели
    • Шаговые двигатели
      • Практическая реализация (ВИДЕО)

статор

Статор состоит из корпуса и магнитной цепи, обычно включающих слои кремниевой стали, и трехфазной катушки, аналогичной асинхронному двигателю, снабженному трехфазным переменным током для создания вращающегося поля.

РИСУНОК 1 — Магнитный скелет (верхняя половина) и структурные части (нижняя половина) десятиполюсного (720 об / мин при 60 циклах) синхронного двигателя.

Вернуться к содержанию ↑

ротор

Ротор несет магниты поля или катушки, через которые протекает постоянный ток, и которые создают расположенные северные и южные полюса. В отличие от асинхронных машин ротор вращается без скольжения со скоростью вращающегося поля.

Поэтому существуют два разных типа синхронных двигателей: магнитные двигатели и двигатели с ротационным ротором.

С постоянными магнитами

Синхронные машины переменного тока.

22.Образование вращающегося магнитного поля при двухфазной и трёхфазной системе.

Магнитное поле двухфазной и трехфазной обмотки.

Рассмотрим вращающееся магнитное поле трехфазной обмотки машины переменного тока.

На статоре расположены три катушки, оси которых сдвинуты взаимно на углы 120°. Каждая катушка для наглядности изображена состоящей из одного витка, находящегося в двух пазах (впадинах) статора.

В действительности катушки имеют большое число витков. Буквами А, В, С обозначены начала катушек, X Y, Z — концы их. Катушки соединены звездой, т. е. концы X, Y, Z соединяются между собой, образуя общую нейтраль, а начала А, В, С подключаются к трехфазной сети переменного тока. Катушки могут соединяться и треугольником.

По катушкам протекают синусоидальные токи с одинаковым амплитудами Im и частотой щ = 2рf, фазы которых смещены на 1/3 периода.

Токи, протекающие в катушках, возбуждают переменные магнитные поля, магнитные линии которых будут пронизывать катушки в направлении, перпендикулярном их плоскостям. Следовательно, средняя магнитная линия или ось магнитного поля, создаваемого катушкой А — X, будет направлена под углом 90° к плоскости этой катушки.

Направления магнитных полей всех трех катушек показаны векторами ВА, ВВ и ВС, сдвинутыми один относительное другого также на 120°.

Условимся считать положительными направления токов в катушках от начала к концу обмотки каждой фазы.

При этом в проводниках статора, подключенных к начальным точкам А, В, С, токи, принятые положительными, будут направлены на зрителя, а в проводниках, подключенных к конечными точкам X, Y и Z,- от зрителя.

Положительным направлениям токов будут соответствовать положительные направления магнитных полей, показанные на том же рисунке и определяемые по правилу буравчика.

Не касаясь количественной стороны явления, определим сначала направления магнитного поля, созданного трехфазной обмоткой для различных моментов времени.

В момент t= 0 ток в катушке А — X равен нулю, в катушке В — Y отрицателен, в катушке С -Z положителен. Следовательно, в этот момент тока в проводниках А и X нет, в проводниках С и Z он имеет положительное направление, а в проводниках B и Y — отрицательное направление.

Назначение машин переменного тока.

Синхронные машины – это бесколлекторные машины переменного тока, имеющие синхронную частоту вращения ротора, т. е. у них частота вращения ротора равна частоте вращения магнитного поля статора. В промышленности и на железнодорожном транспорте синхронные машины используют в основном как генераторы; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на тепловозах, автомобилях, самолётах. В первом случае мощностью до 1200 МВт, во втором – до 4400 кВт. В зависимости от типа привода различают турбогенераторы, гидрогенераторы и дизель-генераторы. Синхронные машины также используются и в качестве электродвигателей при мощности 100 кВт и выше для приводов насосов, компрессоров, вентиляторов и других механизмов.

Работа синхронной машины основана на явлении электромагнитной индукции и заключается в преобразовании механической энергии в электрическую энергию переменного тока (генераторы) или электрической энергии переменного тока в механическую (двигатели), т. е. синхронная машина обладает обратимостью.

Синхронная машина состоит из неподвижной части – статора, в пазах которого расположена многофазная (как правило, трёхфазная) обмотка и вращающейся части – ротора с обмоткой возбуждения, питаемой от источника постоянного тока (возбудителя) через контактные кольца и щётки. Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т. е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжением U1 и частотой f1 проходящий по обмотке ток создаёт вращающееся магнитное поле, частота вращения которого

n1 = 60×f1/p.

В результате взаимодействия этого поля с током возбуждения Iв, проходящим по обмотке ротора, создаётся электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме – тормозным. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения n1 = n2, где n2 — частота вращения ротора. Таким образом, в установившемся режиме ротор машины постоянного тока вращается с постоянной частотой, равной частоте вращающегося магнитного поля.

1 — сердечник статора, собранный из листовой электротехнической стали, 2 — трехфазная обмотка статора, включаемая в сеть переменного тока, 3 — сердечник ротора, 4 — фазная обмотка ротора, 5 — контактные кольца для соединения с пусковым или регулировочным реостатом, 6 — короткозамкнутая обмотка ротора.

Область применения синхронных электродвигателей

В статье  рассмотрены некоторые области применения синхронных электродвигателей, которые обладают отличными характеристиками при вращении мощных приводов. Сами синхронные электрические машины могут развивать мощность до 20 тысяч кВт.

Синхронные электродвигатели отличаются от асинхронных гораздо большей мощностью и полезной нагрузкой. Изменения тока возбуждения позволяет регулировать в них нагрузку. В отличие от асинхронных двигателей в синхронных при ударных нагрузках сохраняется постоянство частоты вращения, что позволяет их использовать в различных механизмах в металлургической и металлообрабатывающей промышленности.

Двигатели с синхронным типом действия способны развивать мощность до 20 тысяч кВт, что очень важно для приведения в действие исполнительных механизмов мощных обрабатывающих станков в машиностроении и других отраслях производства. Например, в высокопроизводительных гильотинных ножницах, где имеются большие ударные нагрузки на ротор электродвигателя.

Синхронные электрические двигатели с успехом используются в качестве источников реактивной мощности в узлах нагрузки для поддержания стабильного уровня напряжения. Довольно часто двигатели с синхронным принципом действия используются в качестве силовых машин в компрессорных установках большой производительности.

Мощные двигатели выполняются с использованием системы встречной вентиляции, при которой лопасти вентилятора расположены на роторе. Экономичный и надежный синхронный двигатель обеспечивает производительную и экономичную работу насосного оборудования.

Важной характеристикой синхронных электрических машин является сохранение постоянной скорости вращения, что важно для вращения приводов в виде насосов, компрессоров, вентиляторов, и различных генераторов переменного тока. Ценным также является возможность регулирования реактивного тока за счет вариаций тока возбуждения обмоток якоря. Благодаря этому увеличивается показатель косинуса φ при всех диапазонах работы, что увеличивает кпд двигателей и снижает потери в электрических сетях.

Сами двигатели с синхронным принципом действия устойчивы к колебаниям напряжения в сети, и обеспечивают постоянство скорости вращения при их возникновении. Синхронные электродвигатели при понижении питающего напряжения сохраняют большую перегрузочную способность, по сравнению с асинхронными. Способность к форсированию тока возбуждения при понижениях напряжения повышает надежность их работы при аварийных снижениях питающего напряжения в электрической сети.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, компрессоров и других силовых установок. В качестве недостатков синхронных машин можно отметить их конструктивную сложность, наличие внешнего возбуждения обмоток ротора, сложность запуска и довольно высокие стоимостные характеристики.

Принцип действия синхронного электродвигателя основывается на взаимодействии вращения магнитного поля якоря с магнитными полями полюсов индуктора. Якорь обычно располагается на статоре, а индуктор на подвижном роторе. При больших мощностях полюсами служат электромагниты, при этом постоянный ток подается на ротор через скользящие кольцевые контакты.

В маломощных двигателях используются постоянные магниты, расположенные на роторе. Существуют также синхронные машины с обращенным принципом работы, когда якорь размещен на роторе, а индуктор на статоре. Однако такая конструкция применяется в двигателях старых конструкций.

Синхронные электрические машины могут работать в генераторном режиме, когда якорь расположен на статоре для удобства отбора генерируемого электричества. На этом принципе основаны мощные генераторы, работающие на гидроэлектростанциях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *