Симисторы вта характеристики: Симисторы BTA 04 – BTA 41, основные характеристики, цоколевка – Симисторы серии BTA40, BTA41, BTB41 — DataSheet

Симисторы серии BTA40, BTA41, BTB41 — DataSheet

Свойства

  • Мощные симисторы
  • Низкое тепловое сопротивление
  • Высокая коммутирующая способность
  • Сертифицированы по стандарту UL1557
  • Корпусы соответствуют директиве RoHS (2002/95/EC)

 

Применение

 

Описание

Доступны в мощных корпусах. Симисторы серии BTA / BTB40-41 подходят для коммутации переменного тока общего назначения. Серия BTA снабжена изолированным язычком (номинальное среднеквадратичное напряжение пробоя 2500 В).

 

Типы корпусов (A1, A2 - аноды, G - управляющий электрод)Типы корпусов (A1, A2 — аноды, G — управляющий электрод)
Общие характеристики
ОбозначениеПараметрBTA40(1)BTA41(1)BTB41Ед. изм
IT(RMS)Действующий ток в открытом состоянии404141А
VDRM/VRRMПовторяющееся импульсное напряжение в закрытом состоянии600 и 800600 и 800600 и 800В
!gtОтпирающий постоянный ток управления505050мА

 

Абсолютные максимальные значения 
ОбозначениеПараметрЗначениеЕд. изм.
IT(RMS)Действующий ток в открытом состоянии (для полной синусоиды)TOP3Tc = 95 °C40А
RD91 / TOP ins.Tc = 80 °C
ITSMУдарный ток в открытом состоянии (для полного цикла, Tj initial = 25 °C)F = 50 Гцt = 20 мс400A
F = 60 Гцt = 16.7 мс420
l2tl2t  Значение плавления симистораtp = 10 мс1000A2с
dl/dtКритическая скорость нарастания тока в открытом состоянии l
G
= 2 ·lGT , tr < 100 нс
F = 120 ГцTj = 125 °C50A/мкс
VDSM/VRSMНеповторяющееся импульсное напряжение в закрытом состоянииtp = 10 мсTj = 25 °CVDSM/VRSM+ 100В
IGMИмпульсный ток управленияtp = 20 мксTj = 125 °C8A
PG(AV)Средняя рассеиваемая мощность управления
Tj = 125 °C
1Вт
Tstg Температура хранения-40…+ 150 °C
TjДиапазон рабочих температур-40…+ 125°C

 

Электрические характеристики (Tj = 25 °C)
ОбозначениеПараметрЗначениеЕд. изм.
IGT(1)Отпирающий постоянный ток управленияVD = 12 В, RL
= 33 Ом
I- II — IIIMAX.50мА
IV100
VGTПостоянное отпирающее напряжение управлениявсе квадрантыMAX.1,3В
VGDНеотпирающее постоянное напряжение управленияVD = VDRM RL = 3.3 кОм Tj = 125 °Cвсе квадрантыMIN.0,2А
IH (2)Ток удержанияlj = 500 mAMAX.80мА
ILТок включения тиристора
IG = 1.2 IGT
I-III-IVMAX.70мА
II160
dV/dt(2)Скорость нарастания напряженияVD = 67% VDRM  в открытом состоянии, Tj = 125 °CMIN.500В/мкс
(dV/dt)c(2)Критическая скорость нарастания напряжения(dl/dt)c = 20 А/мс, Tj = 125 °CMIN.10В/мкс
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Статические характеристики 
ОбозначениеУсловияЗначениеЕд. изм.
VT(1)Напряжение в открытом состоянии ITM = 60 A, tp = 380 мксTj = 25 °CMAX.1,55В
Vt0(2)Пороговое напряжениеTj= 125 °CMAX.0,85В
Rd(2)Динамическое сопротивлениеTj= 125 °CMAX.10мОм
I
DRM
Повторяющийся импульсный ток в закрытом состоянии VDRM = VRRMT= 25 °CMAX.5мкА
IRRMПовторяющийся импульсный обратный ток VDRM = VRRMTj= 125 °C5мА
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Тепловое сопротивление 
ОбозначениеУсловияЗначениеЕд. изм.
Rth(j-c)Тепловое сопротивление переход-корпусRD91 (изолированный корпус)/ТОРЗ изолированный0,9°С/Вт
TOP30,6
Rth(j-a)Тепловое сопротивление переход-средаТОРЗ / TOP3 изолированный50°С/Вт

 

Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл)Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл)Зависимость действующего тока от температуры корпуса
Зависимость действующего тока от температуры корпусаЗависимость теплового сопротивления от длительности импульсаЗависимость теплового сопротивления от длительности импульсаХарактеристики в отрытом состоянии (максимальные значения)Характеристики в отрытом состоянии (максимальные значения)Зависимость ударного тока в открытом состоянии от количества циклов
Зависимость ударного тока в открытом состоянии от количества цикловЗависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавления Зависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавленияОтносительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры переходаОтносительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры переходаОтносительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряжения
Относительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряженияОтносительное изменение критической скорости снижения основного тока в зависимости от температуры переходаОтносительное изменение критической скорости снижения основного тока в зависимости от температуры переходаРасшифровка серии
Расшифровка серииРазмеры для корпуса TOP3Размеры для корпуса TOP3Размеры для корпуса RD91Размеры для корпуса RD91

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Симистор BTA41-800B или точечная сварка

На mysku.ru уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео…

Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата.
Максимальное обратное напряжение 800 В
Максимальное значение тока в открытом состоянии 40 А
Рабочая температура от -40 до 125 °C
Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. ).
Блок схема этого элемента:

A1 и A2 — силовые электроды
G — управляющий электрод
В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Подробно характеристики BTA41-800B можно посмотреть в datasheet.

Для управления симистором обычно используются специальные симисторные оптроны (triac driver). Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.
.

В большинстве случаев предпочтительным является использование оптосимисторов с детекцией нуля, по целому ряду причин. Иногда (при резистивной нагрузке детекция нуля не важна. А иногда нужно включать нагрузку например на максимуме синусоиды сетевого напряжения, тогда приходится сооружать свою схему детеции и, конечно, использовать оптосимистор без детекции нуля.

Перейдем к нашему устройству. Так уж сложились звезды, что мне потребовалось заменить банки в паре аккумуляторов шуруповертов и в руки попала неисправная микроволновка… И в то же время, в голове давненько витала мысль о необходимости соорудить себе точечную сварку. И я решился на этот шаг.

Разобрал микроволновку (исходная мощность 1200 Вт), вынул все детали. Забегая вперед скажу, что нам потребуется часть проводов с клеммами, трансформатор и вентилятор. Остальное можно использовать в других устройствах (в комментариях можно поделиться своими соображениями на этот счет). Мои трансформатор с вентилятором и провода, выглядели так:

Необходимо сохранив первичную обмотку удалить вторичную, которая сделана более тонким проводом. Удалять можно разными способами, мне показалось более приемлемым спиливание дремелем выступающей части обмотки с последующим выбиванием остатков. Чтобы не повредить первичную обмотку, рекомендую вставить фанерку подходящей толщины между обмотками.

Далее необходимо намотать толстый провод вместо извлеченной вторичной обмотки. Я использовал вот такой многожильный провод сечением 70 мм2:

Старое его название ПВ3-70. Больших усилий намотка провода не требовала, получилось так:

Я купил 2 метра провода, думаю, можно было обойтись и одним метром.
Зачищаем концы:

Готовим паяльное оборудование (флюс лти-120, катушка 2мм припоя и газовая горелка надетая на баллон газа):

Наконечник лучше использовать из луженной меди под провод 70 мм (ТМЛ 70-12-13):

Обильно смачиваем флюсом внутренние поверхности наконечников и провода. Вставляем провод в наконечник подгибая непослушные проводки (не быстрая процедура), и греем горелкой подавая сбоку припой. Результат примерно такой:

Все ужасы закроем термоусадкой:

На мой провод отлично уселась вот такая:

На этой стадии уже можно подключить трансформатор к розетке проводом от микроволновки (он уже имеет клеммы для подключения) и даже попробовать сделать первую сварку, коммутируя нажатием на концы толстого провода, единственное, я рекомендую прикрутить какие-то медные детали, так как наконечники портить не желательно. Варить получится разве что какие-то толстые детали — так как возможности коммутации весьма ограничены.

Перейдем к электрической части. Я уже говорил что коммутацию первичной обмотки решил делать симистором, осталось решить вопрос каким оптосимистором им управлять. Я решил делать схему распознавания нуля, поэтому выбрал вариант без детекции нуля, взяв MOC3021. Datasheet на эту микросхему. Типовое включение следующее:

Вентилятор от микроволновки я решил использовать для охлаждения трансформатора и платы. Так как он тоже на 220 В, то для его включения я решил использовать релюшку OMRON G3MB-202P, она компактная и хорошо справляется с маломощной нагрузкой.

Для управления логикой я решил использовать контроллер atmega328p в корпусе QFP32.

Блок питания нужен на 5 Вольт, я применил такой. Он рассчитан на 600 мА, чего вполне достаточно.

Основной фокус в данном деле это синхронизация с сетью 220 В. Нужно научиться включать нагрузку в момент когда сетевое напряжение имеет определенное значение. В итоге я пришел к такой схеме:

Особенности: VD1 — нужно выбирать быстрый диод (я взял MUR) — он нужен для шунтирования оптрона и избегания появления на нем обратного напряжения более 5 В, VD2 — подойдет любой выпрямительный (подойдет 1N4007 — он существенно снизит тепловую нагрузку на R2, убрав лишнюю полуволну), R2- следует взять мощностью 1-2 Вт (у меня под рукой не было и я поставил 2 резистора параллельно по 90 КОм на 1/4 Вт, температура оказалась приемлемой). А6 — это аналоговый вход контроллера, который использовал я для этих целей. R1 подтягивает вход контроллера к земле. В остальном схема довольно простая.

Нарисовал плату в программе Sprint Layout:

Изготавливаем плату ЛУТ-ом. После травления в хлорном железе:

После смывки тонера:

После лужения:

Вопреки привычной тактике, я сначала спаял силовую часть, чтобы ее отладить независимо от контроллера, на симистор решил приклеить радиатор, выпиленный из алюминиевого профиля:

Получилось так:

Убедился что все хорошо:

Схема слежения за нулем выдает вот такое:

Припаял остальные элементы:


Прошиваем загрузчик (благо я специально вывел пины SPI), и начинаем писать тестировать, исправлять, перепаивать…

Для отладки интенсивно использовался осциллограф, я использую на даче такой, дома конечно удобнее стационарный:

Теперь можно припаять провода для подключения нагрузки (трансформатора и вентилятора), я использовал провода с клеммами от той же микроволновки, в этот момент промелькнула мысль не перепутать бы их при сборке…

Для проверки подключил лампу накаливания вместо трансформатора, на этом этапе сварка выглядит так:

Сдвиг в 3 мс — дает вот такие управляющие импульсы:

А вот так выглядит то, что идет в нагрузку (масштаб сетевого напряжения специально взят иной):

И вот так при другой длительности:

Для визуализации я использовал светодиод трехцветный (использовал только 2: синий и зеленый), с общим катодом. Когда сварочник включен в сеть, горит зеленый свет, когда идет сварка синий. Также используется звуковая сигнализация с помощью вот такой пищалки, при нажатии кнопки сварки проигрывается одна мелодия, после другая.
Для визуализации процесса настройки, я использовал OLED дисплейчик с диагональю 1.3″. Он компактный и хорошо виден из-за своей яркости — по моему оптимальное решение.

Стартовый экран выглядит так:

Рабочий режим так:

Как видно, можно задать три параметра: длительность сварочного импульса, количество импульсов и сдвиг относительно распознанного начала положительной полуволны.

Все параметры настраиваются энкодером KY-040. Я решил сделать такую логику: переключение режимов настройки осуществляется кратковременным нажатием энкодера, изменение текущего параметра в заданном диапазоне вращением энкодера, а чтобы сохранить текущие параметры нужно использовать длительное нажатие энкодера, тогда при загрузке будут именно они использоваться (значения по умолчанию).

Видео тестовой сварки с экранчиком и применением энкодера, в качестве нагрузки вместо трансформатора все та же лампочка 75 Вт:

Первый опыт сварки на жести от консервной банки, еще без корпуса:

Результатом я остался доволен.

Но нужен корпус. Корпус решил изготовить из дерева. Один мебельный щит из Леруа у меня был, второй купил. Прикинул расположение и напилил, навырезал (получилось не особо аккуратно, но меня как корпус для аппарата точечной сварки вполне устраивает:

Все управление решил сделать в передней части корпуса для удобства настройки в процессе работы:

Сзади предусмотрел отверстия для забора воздуха:

В качестве кнопки включения и предохранителя установил автомат на 10А.

Корпус покрасил черной краской:

Для защиты установил решетки на заднюю панель:

Немного про кнопку включения. Ее решил делать отдельно, причем, мне хотелось иметь два варианта кнопки: стационарный — для длительной работы и мобильный — для быстрой сварки. Соответственно требовался разъем, в качестве которого выступил стандартный разъем для питания (припаял к нему проводки и изолировал термоусадкой):

Стационарный вариант кнопки решил соорудить в виде педали:

К ней шел коротенький проводок, видимо предполагается ее присоединение к длинному. Разбираем:

Припаиваем ПВС 2х0.5:

В исходном кабеле шло три провода:

Нам черный не нужен.
Собираем все обратно. И припаиваем на другой конец провода штекер:

Мобильную версию изготовил совсем просто:

Экранчик и разъем для кнопки крепим в корпус:

Туда же крепим нашу плату:

Внутри довольно плотно:

Помните я писал о мысли про неперепутывание нагрузок… так вот я перепутал. OMRON G3MB-202P — отправился к праотцам, начав находится включенным независимо от управляющего сигнала… Во он:

Пришлось снимать стенку, потом плату и перепаивать релюху. Процесс сопровождался небольшим количеством нецензурных выражений. Причем плату до этого я уже покрыл защитным лаком в 2 слоя… Но не будем о грустном. Все получилось, прибор заработал.

Как известно, вращение вентилятора, особенно такого не маленького как в нашем случае, сопровождается вибрацией и нагрузкой на крепление, резьбовое соединение постепенно ослабевает и процесс усугубляется. Чтобы этого не происходило, я в своих поделках стараюсь пользоваться отечественным фиксатором резьбы Автомастергель от «Регион Спецтехно». Обзор этого замечательного геля я даже делал тут:

Данный фиксатор является анаэробным, то есть полимеризуется именно там где нужно — в плотной скрутке резьбы.

На дно корпуса прикрутил гламурные ножки:

Тестовая сварка, принесла немало положительных эмоций:

В качестве электродов нужно использовать медные пластины, у меня их не было, сплющил трубку от кондиционера — вполне нормально.
Варилось вот это:

Итоговый вид агрегата:

Вид сзади:

Гвозди сваривает вполне нормально:

Немного измерений. Параметры дачной электросети:

Потребление холостого хода:

При включенном вентиляторе:

Из-за инерционности прибора и сварки короткими импульсами скорее всего прибор не может определить максимальную мощность, вот столько он показал:

Токовые клещи у меня не умеют показывать пик, то что удалось зафиксировать кнопкой:

В реальности я видел цифру в 400 А.
Напряжение на контактах:

Теперь полезное применение. У одного человека (привет ему 🙂 ) Шуруповерт перезимовал на даче и весной или даже осенью был затоплен паводком. Жалобы были на очень короткое время работы акумов 1-2 шурупа и все… Вот такая картина вскрытия:

Акумы чувствовали себя явно не в порядке, позже это подтвердилось тестами:

На замену были заказаны новые банки. И после окончания работ со сварочником, самое время было их заменить:


Оторвать руками полоски у меня не вышло. Платка была отмыта провода тоже заменены::

Аккумулятор начал новую жизнь:

Видео сварки аккумуляторов:


Результат всегда стабилен, оптимальное время 34 мс, количество импульсов 1, сдвиг 3 мс.

Спасибо всем, кто дочитал этот огромный обзор до конца, надеюсь кому-то данная информация окажется полезной. всем крепких соединений и добра!

П.С. Продолжение в этом обзоре

Готовое устройство тут.

BTA16-600B Симистор на 16 Ампер 600 Вольт

ОПИСАНИЕ

D2PAK%20%20TO-220AB

Доступные в через отверстие или поверхностного монтажа пакеты, BTA16, BTB16 и T16 тиристорные серии подходит для общего назначения переменного тока переключения. Они может использоваться как включение/выключение функции в приложениях Например, статический реле, Отопление регулирования, индукция Мотор начиная цепи… или для фазы операции управления в свет диммеры, скорость мотора контроллеры…

Основные параметры

VRRM600
IT(RMS) (макс.)16
VDRM (макс.)600
IFSM (макс.)168
IFT (макс.),мА50
dV/dt,В/мкс1000
dI/dt,А/мс14
TA,°Cот -40 до 125
КорпусTO-220AB

 

Скачать описание BTA16-600 16A Datasheet

От крупнейшего интернет-магазина

Симисторы

Название

Описание

BTA16-600CСимистор   на 16 Ампер 600 Вольт, изолированный корпус
BTA16-600CWСимистор   на 16 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA16-600SWСимистор   на 16 Ампер 600 Вольт, логический уровень, изолированный корпус
BTA16-700BСимистор   на 16 Ампер 700 Вольт, изолированный корпус
BTA16-700BWСимистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-700CСимистор на   16 Ампер 700 Вольт, изолированный корпус
BTA16-700CWСимистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-700SWСимистор   на 16 Ампер 700 Вольт, логический уровень, изолированный корпус
BTA16-800BСимистор   на 16 Ампер 800 Вольт, изолированный корпус
BTA16-800BWСимистор   на 16 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA16-800CСимистор   на 16 Ампер 800 Вольт, изолированный корпус
BTA16-800CWСимистор   на 16 Ампер 700 Вольт, бесснабберный, изолированный корпус
BTA16-800SWСимистор   на 16 Ампер 800 Вольт, логический уровень, изолированный корпус
BTA20-600BWСимистор   на 20 Ампер 600 Вольт, изолированный корпус
BTA20-600CWСимистор   на 20 Ампер 600 Вольт, изолированный корпус
BTA20-700BWСимистор   на 20 Ампер 700 Вольт, изолированный корпус
BTA20-700CWСимистор   на 20 Ампер 700 Вольт, изолированный корпус
BTA24-600BWСимистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA24-600CWСимистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA24-800BWСимистор   на 25 Ампер 800 Вольт, бесснабберный ,изолированный корпус
BTA24-800CWСимистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA25-600BСимистор   на 25 Ампер 600 Вольт, неизолированный корпус
BTA25-600BWСимистор   на 25 Ампер 600 Вольт, бесснабберный, неизолированный корпус
BTA25-800BСимистор   на 25 Ампер 800 Вольт, неизолированный корпус
BTA25-800BWСимистор   на 25 Ампер 600 Вольт, бесснабберный, неизолированный корпус
BTA26-600BСимистор   на 25 Ампер 600 Вольт, изолированный корпус
BTA26-600BWСимистор   на 25 Ампер 600 Вольт, бесснабберный, изолированный корпус
BTA26-800BСимистор   на 25 Ампер 800 Вольт, изолированный корпус
BTA26-800BWСимистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA26-800CWСимистор   на 25 Ампер 800 Вольт, бесснабберный, изолированный корпус
BTA40-600BСимистор   на 40 Ампер 600 Вольт, неизолированный корпус
BTA40-800BСимистор   на 40 Ампер 800 Вольт, неизолированный корпус
BTA41-600BСимистор   на 40 Ампер 600 Вольт, изолированный корпус
BTA41-800BСимистор   на 40 Ампер 800 Вольт, изолированный корпус
BTB04-600SLСимистор   на 4 Ампера 600 Вольт
BTB08-600BСимистор   на 8 Ампер 600 Вольт
BTB08-600BWСимистор   на 8 Ампер 600 Вольт, бесснабберный
BTB08-600CСимистор   на 8 Ампер 600 Вольт
BTB08-600CWСимистор   на 8 Ампер 600 Вольт, бесснабберный
BTB08-600SWСимистор   на 8 Ампер 600 Вольт, логический уровень
BTB08-600TWСимистор   на 8 Ампер 600 Вольт, логический уровень
BTB08-800BСимистор   на 8 Ампер 800 Вольт
BTB08-800BWСимистор   на 8 Ампер 800 Вольт, бесснабберный
BTB08-800CСимистор   на 8 Ампер 800 Вольт
BTB08-800CWСимистор   на 8 Ампер 800 Вольт, бесснабберный
BTB08-800SWСимистор   на 8 Ампер 800 Вольт, логический уровень
BTB08-800TWСимистор   на 8 Ампер 800 Вольт, логический уровень
BTB10-600BСимистор   на 10 Ампер 600 Вольт, неизолированный корпус

Симистор BTA41-800B или точечная сварка


На mySKU.me уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео…

Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата.
Максимальное обратное напряжение 800 В
Максимальное значение тока в открытом состоянии 40 А
Рабочая температура от -40 до 125 °C
Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. ).
Блок схема этого элемента:

A1 и A2 — силовые электроды
G — управляющий электрод
В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *