Сила тока короткого замыкания это – УДАРНЫЙ ТОК КОРОТКОГО ЗАМЫКАНИЯ — это… Что такое УДАРНЫЙ ТОК КОРОТКОГО ЗАМЫКАНИЯ?

Содержание

Сила тока короткого замыкания

Содержание:

  1. Короткое замыкание при постоянном и переменном токе
  2. Физические процессы и ударный ток
  3. Взаимосвязь короткого замыкания и силы тока
  4. Защита цепей и оборудования
  5. Использование эффекта короткого замыкания на практике

Каждая электрическая цепь в общих чертах представляет собой источник тока с подключенной нагрузкой, обладающей каким-то сопротивлением. Получается своеобразный контур, по которому протекает электрический ток. Однако, под влиянием различных факторов, две разные точки этого контура начинают контактировать между собой, что и приводит к короткому замыканию.

На практике причиной может послужить любой токопроводящий предмет. Его сопротивление по сравнению с нагрузкой будет во много раз ниже, поэтому вся сила тока короткого замыкания устремляется именно с это место. Ее значение стремительно повышается, что вызывает мгновенный нагрев проводов до температуры плавления, после чего они перегорают. Толстые проводники расплавляются медленнее, и за это время они успевают воспламенить все горючие элементы, расположенные поблизости.

Короткое замыкание при постоянном и переменном токе

Как уже отмечалось, сопротивление нагрузки при коротком замыкании будет стремиться к нулю. В соответствии с законом Ома, сила тока, при этом, будет увеличиваться в сторону бесконечности. На практике такого бесконечного роста не получится, поскольку существует ограничение, вызванное сопротивлением источника тока. Тем не менее, сила тока короткого замыкания будет достаточно высокой, чтобы разогреть проводник. В этом случае рассматривается квадратичная зависимость, когда при увеличении тока в 10 раз, выделение тепла увеличится в 100 раз. Именно в этом и состоит главная опасность данного явления, приводящего к пожарам.

Под действием высокого тока проводники раскаляются и отдают тепловую энергию окружающим предметам и конструкциям. В случае соприкосновения фазного и нулевого проводников – источник тока замыкается коротко сам на себя. Как правило, возгорание начинается с изоляции, пришедшей в негодность после длительной эксплуатации или пострадавшей от механических повреждений. Величина негативных последствий определяется не только силой тока, но и продолжительностью нагрева и особенностями схемы данной цепи. Эти ситуации носят общий характер и затрагивают в основном цепи с постоянным током.

Большинство замыканий происходит в сетях переменного тока на 220 или 380В, широко используемых на объектах жилого и промышленного назначения. В отличие от постоянного, переменному току создаются препятствия в виде дополнительных реактивных сопротивлений – индуктивного и емкостного. Они отклоняются от вектора активного тока на 90 градусов: индуктивный отстает, а емкостный ток опережает его на указанную величину.

Физические процессы и ударный ток

Понять воздействие тока можно только через физику самого процесса. На первый взгляд можно подумать, что все совершается в одно мгновение: гудение, вспышка, после чего тока в сети уже нет. Однако, если рассмотреть этот процесс с точки зрения физики и мысленно разбить его на отдельные фазы, можно заметить, что на каждом этапе ток ведет себя по-разному.

До момента возникновения аварии в цепи наблюдается стабильное установившееся значение тока, находящееся в рамках номинала. Далее происходит внезапное резкое снижение полного сопротивления до величины, стремящейся к нулю. Если в цепи находится оборудование с индуктивным сопротивлением, например, электродвигатели и трансформаторы, то они своими физическими свойствами замедляют рост электрического тока.

В связи с этим, в первое мгновение, не превышающее 0,01 с, сила тока КЗ источника напряжения практически не изменяется, и даже немного понижается в начале переходного процесса. При этом ЭДС источника постепенно доходит до нуля и пройдя через эту отметку, принимает стабильное значение, при котором может протекать высокий ток аварийного режима. На переходном этапе сам ток будет состоять из суммы, включающей периодическую и апериодическую составляющую. Все происходящие процессы можно проанализировать по форме графика и вычислить постоянное значение временной величины, зависящей от сопутствующих факторов.

Следует коротко остановиться на так называемом ударном токе короткого замыкания. Прежде всего, эта величина не столь страшная, как ее название, и не связана напрямую с поражающим фактором электрического тока. Этот показатель, прежде всего, характеризует максимальную отметку тока КЗ, до которой он доходит в течение половины периода после начала аварии. Целый период длится 0,2 с, следовательно, его половина составит 0,1 с. Именно в этот момент проявляется наибольшая интенсивность взаимодействия проводников, расположенных рядом. Для определения ударного тока существует специальная формула, широко используемая специалистами при выполнении расчетов.

Взаимосвязь короткого замыкания и силы тока

Рассмотрев физику процесса, можно с большей точностью установить взаимную связь силы тока и короткого замыкания в различных ситуациях. Любое устройство или оборудование, подключенное к источнику тока, создает ситуацию, близкую к короткому замыканию. Каждый прибор обладает сопротивлением и берет на себя всю нагрузку, за счет чего и обеспечивается его нормальная работа. Однако, при заметном снижении сопротивления, сила тока сразу же заметно возрастет. Взаимосвязь между напряжением, сопротивлением и силой тока определяется законом Ома.

Для участка цепи существует упрощенная формула, которая будет выглядеть следующим образом: I=U/R. В ней соответственно I будет силой тока, U – сетевым напряжением и R – электрическим сопротивлением. Проводники на этом участке условно имеют однородную структуру, а сама цепь дополнена резистором. Параметры источника тока в расчет не берутся.

В самом упрощенном варианте ток при КЗ можно вычислить следующим образом: I

кз = Е/r, где Е – ЭДС источника тока, r – сопротивление нагрузки. Из этой формулы хорошо видно, как при сниженном сопротивлении будет расти сила тока. Сама по себе данная ситуация не представляет какой-либо угрозы, но здесь дополнительно вступает в действие закон Джоуля-Ленца. Он указывает на выделение тепла во время течения по проводнику электрического тока и определяется не только количественной, но и временной характеристикой. Суть этого закона заключается в том, что с повышением силы тока за единицу времени будет выделено и большее количество теплоты.

Сила тока КЗ батареи

Все положения, рассмотренные выше, подходят и к случаям короткого замыкания источников питания. Типичным примером служит аккумуляторная батарея, в состав которой входит отрицательный электрод – анод и положительный – катод. Один от другого их отделяет твердый или жидкий электролит. Происходящие внутри устройства химические реакции, формируют электрический заряд, обеспечивающий работу подключенного прибора.

По сути, батарею можно считать своеобразным участком цепи, на которых распространяются все установленные правила. Следовательно, нарушенная изоляция, также приводит к короткому замыканию и последующим процессам. Многократный рост силы тока приводит к выделению тепла, под действием которого источник электроэнергии перегревается и разрушается, с одновременным закипанием и разбрызгиванием электролита.

Защита цепей и оборудования

После того как электротехника получила толчок к своему интенсивному развитию, возникла серьезная проблема по защите от короткого замыкания и его последствий. Особую актуальность она приобрела с повышением мощности электродвигателей, генераторов, осветительных приборов и другого оборудования.

Простейшим решением стала последовательная установка вместе с нагрузкой плавких одноразовых предохранителей. В случае превышения током установленного значения, выделяемое резистивное тепло воздействовало на них. В результате, предохранители разрушались, прерывали цепь и процесс короткого замыкания прекращался. Подобные элементы до сих пор пользуются спросом из-за своей надежности, простоты и низкой стоимости.

Единственным недостатком такой конструкции является возможность замены плавкой вставки различными металлическими предметами – проволокой, гвоздями или скрепками. Они обладают совершенно другими параметрами и уже неспособны защитить от перегрузок и коротких замыканий.

Ситуация совершенно изменилась, когда на смену одноразовым устройствам пришли автоматические защитные средства. Вначале они стали активно использоваться в промышленности, а потом нашли свое применение в квартирных электрощитах. Автоматика гораздо удобнее в пользовании, поскольку такие устройства не требуют замены. После устранения причин короткого замыкания тепловые элементы остывают, и прибор вновь готов к использованию. Подгоревшие контакты нежелательно чистить или ремонтировать. В случае необходимости они легко заменяются новыми.

Использование эффекта короткого замыкания на практике

Многократно увеличенная сила тока при коротком замыкании приводит к выделению большого количества тепла. Поэтому данный режим нередко вызывает возгорания, разрушения проводки, прекращение электроснабжения потребителей. Довольно часто появление электромагнитных колебаний может существенно нарушить работу чувствительной электронной аппаратуры.

Тем не менее, несмотря на множество негативных факторов, эффект короткого замыкания успешно применяется в сфере промышленного производства. Конечно, для этого необходимо обеспечить надежную защиту и безопасные условия труда для работников.

Типичным примером служит сварочная аппаратура, особенно дуговая, в которой используется принцип короткого замыкания электрода и заземления. В месте контакта сила тока кратковременно возрастает, металл приходит в расплавленное состояние, обеспечивая надежное соединение деталей. Поскольку такой режим действует в течение очень короткого времени, трансформатор вполне способен выдержать перегрузки.

Ток короткого замыкания однофазных и трехфазных сетей

Содержание:

  1. Расчет токов короткого замыкания
  2. Изменения тока в процессе короткого замыкания
  3. Короткие замыкания в однофазных сетях
  4. Расчет токов КЗ для трехфазных сетей
  5. Ток КЗ в сетях с неограниченной мощностью
  6. Видео

В электрических сетях периодически возникают различные аварийные ситуации. Среди них, наибольшую опасность представляет ток короткого замыкания, формула которого используется при расчетах и проектировании. Последствия аварийного режима достаточно серьезные – выходят из строя сами сети, а также подключенные приборы и оборудование. Все это причиняет большой материальный ущерб. Проводимые расчеты, в том числе и на ударный ток КЗ требуются, в первую очередь, для того, чтобы обеспечить надежную защиту на электрифицированном объекте.

Расчет токов короткого замыкания

Для выполнения подобного расчета тока привлекаются квалифицированные специалисты. Они не только разрабатывают теоретическую сторону, но и отвечают за последующую эксплуатацию представленных схем. Здесь слишком много специфических особенностей, поэтому начинающие электрики должны хорошо представлять себе не только саму природу электричества, но и свойства проводников, диэлектриков, особенности изоляции и другие важные вопросы.

Результаты рассчитанные в домашних условиях, должны обязательно проверяться специалистами. Все расчеты, касающиеся короткого замыкания, выполняются с использованием специальных формул.

Трёхфазное короткое замыкание в электрических сетях до 1000В определяется с учетом следующих особенностей:

  • Трехфазная система по умолчанию является симметричной.
  • Трансформаторное питание считается неизменным, сравнимым с его номиналом.
  • Возникновение короткого замыкания считается в момент максимального значения силы тока.
  • Значение ЭДС принимается для источников питания, расположенных на большом расстоянии от места КЗ.

Кроме того, определяя параметры короткого замыкания, следует правильно вычислить общее сопротивление проводников, с привязкой к единому значению мощности. Обычные формулы могут привести к ошибкам из-за разных номинальных напряжений на отдельных участках в момент КЗ. Базовая мощность существенно упрощает расчеты и повышает их точность.

Изменения тока в процессе короткого замыкания

За период КЗ ток подвергается различным изменениям. В самом начале он увеличивается, далее – затухает до определенного значения, а потом автоматический регулятор возбуждения доводит его до стабильной величины.

Период времени, требуемый для изменения параметров тока короткого замыкания – ТКЗ, получил название переходного процесса. По окончании этого промежутка и до момента, когда КЗ будет отключено, наблюдается стабильный аварийный режим. Величина тока в различные промежутки времени необходима при выборе уставок для защитной аппаратуры, проверке динамической и термической устойчивости электрооборудования.

В каждой сети подключены нагрузки с установленными индуктивными сопротивлениями. Они препятствуют мгновенным изменениям тока, поэтому его величина меняется не скачкообразно, а нарастает постепенно, в соответствии с законом физики. Анализ и расчет тока в переходный период значительно упрощается, если его условно разделить на две составные части – апериодическую и периодическую.

  1. Первая – апериодическая часть ia – обладает постоянным знаком, появляется в момент КЗ и довольно быстро понижается до нулевой отметки.
  2. Вторая часть – периодическая составляющая тока КЗ Inmo – в первый момент времени представляет собой начальный ток короткого замыкания. Именно он используется при выборе уставок и проверке чувствительности защитных устройств. Данная сила тока короткого замыкания получила название сверхпереходного тока, поскольку при его расчетах схема замещения дополняется сверхпереходными ЭДС и сопротивлением генератора.

По завершении переходного периода периодический ток считается установившимся. Величина полного тока включает в себя апериодическую и периодическую составляющие на любом отрезке переходного периода. Показатель его максимального мгновенного значения представляет собой ударный ток короткого замыкания, определяемый при проверке динамической устойчивости электрооборудования.

Короткие замыкания в однофазных сетях

При выполнении расчетов энергосистем однофазного тока допускаются вычисления, производимые в упрощенной форме. Приборы и оборудование в таких сетях не потребляют большого количества электроэнергии, поэтому надежная защита может быть обеспечена обычным автоматическим выключателем, рассчитанным на ток срабатывания 25 ампер.

Ток однофазного короткого замыкания вычисляется в следующем порядке:

  • Определение параметров трансформатора или реактора, питающих сеть, в том числе их электродвижущей силы.
  • Устанавливаются технические характеристики проводников, используемых в сети.
  • Разветвленную электрическую схему необходимо упростить, разбив на отдельные участки.
  • Вычисление полного сопротивления между фазой и нулем.
  • Определения полных сопротивлений трансформатора или других питающих устройств, если такие данные отсутствуют в технической документации.
  • Все полученные значения вставляются в формулу.

В каждом случае сила тока короткого замыкания и формула, по которой рассчитывается однофазный процесс, показана на рисунке.

В ней Uf является фазным напряжением, Zt – сопротивлением трансформатора в момент КЗ. Zc будет сопротивлением между фазой и нулем, а Ik – однофазным током КЗ.

Использование данной формулы позволяет определить ток однофазного КЗ и его параметры в соответствующих цепях с величиной погрешности в пределах 10%. Полученных данных вполне достаточно, чтобы рассчитать правильную и эффективную защиту сети. Основной проблемой при получении исходных данных считается определение величины Zc.

При наличии данных о параметрах проводников и значениях переходных сопротивлений, определить сопротивление между фазой и нулем вполне возможно по формуле:

Здесь rf и rn являются, соответственно, активными сопротивлениями фазного и нулевого проводов, измеряемыми в Омах, ra представляет собой сумму активных сопротивлений контактов в цепочке фаза-ноль (Ом), xf” и xn” – внутренние индуктивные сопротивления фазного и нулевого проводов (Ом), x’ – является внешним индуктивным сопротивлением в цепочке фаза-ноль (Ом).

Полученное значение подставляется в предыдущую формулу, после чего определение тока КЗ уже не составит особого труда. Главное – соблюдать правильную последовательность действий при выполнении расчетов.

Расчет токов КЗ для трехфазных сетей

Для того чтобы определить ток трехфазного короткого замыкания в соответствующих сетях, следует обязательно учитывать специфику возникновения и развития этого процесса. Прежде всего, это индуктивность, возникающая в замкнутом проводнике, из-за чего ток трехфазного КЗ изменяется не мгновенно, а нарастает постепенно в соответствии с определенными законами.

Точность производимых вычислений зависит в первую очередь от расчетов основных величин, вставляемых в формулу. С этой целью используются дополнительные формулы или специальное программное обеспечение, выполняющее сложнейшие вычислительные операции за очень короткое время.

Если же расчеты в трехфазных сетях выполняются ручным способом, в таких случаях нужные результаты про ток КЗ формула, приведенная ниже, позволяет определить с достаточно точными показателями:

  • Iкз = Uc/(√3рез) = Uc /(√3*(Хсист + Хвн)), в которой Хвн является сопротивлением между шинами и точкой КЗ, Хсист – это сопротивление во всей системе относительно шин источника напряжения, Uc – напряжение на шинах в данной системе.

При отсутствии какого-то из показателей, его значение определяется с использованием дополнительных формул или программ. Если же расчеты трехфазного КЗ производятся для сложных сетей с большим количеством разветвлений, в этом случае основная схема преобразуется в схему замещения, где присутствует лишь один источник электроэнергии и одно сопротивление.

Сам процесс упрощения производится в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно в данной цепи.
  • Далее суммируются все сопротивления, подключенные последовательно.
  • Результирующее сопротивление Хрез определяется как сумма всех подключенных параллельных и последовательных сопротивлений.

Расчеты токов двухфазного короткого замыкания выполняются с учетом отсутствия у них симметричности. У них нет нуля, а присутствую токи, протекающие в прямом и обратном направлении. Таким образом, ток двухфазного КЗ рассчитывается последовательно, по отдельным формулам, используемым для каждого показателя.

Ток КЗ в сетях с неограниченной мощностью

Довольно часто мощность источника электроэнергии значительно превышает величину суммарной мощности всех подключенных потребителей. В таких случаях при решении задачи, как найти значение короткого замыкания, величина напряжения считается условно неизменной.

Наличие подобных условий приводит к бесконечному показателю мощности, а сопротивление проводников принимает нулевое значение. Они используются для расчета только в тех случаях, когда место короткого замыкания располагается на большом расстоянии от источника напряжения, а величина результирующего сопротивления цепи многократно превышает показатели сопротивления всей системы.

В сетях с неограниченной мощностью, вычислить ток короткого замыкания позволяет следующая формула: Ik = Ib/Xрез, в которой Ib является базисным током, а Xрез – результирующим сопротивлением сети. При наличии исходных данных, очень быстро найдем достаточно точный конечный результат.

Формула расчета силы ударного тока коротких замыканий ТКЗ

Ток короткого замыкания – это резко возрастающий электрический импульс, в результате которого выделяется значительное количество тепла. Обычно ток КЗ возникает в аварийной электроустановке или системе, наиболее частая причина его появления – это повреждение изоляции проводников.

Начало процесса

Начало процесса

После пикового возрастания электроимпульса возможны нарушения в подаче энергии, кроме того выход из строя части потребителей электроэнергии. Для того чтобы избежать этого, необходимо проектировать передающие сети с резервом на возникновение такой ситуации, кроме того периодически проводить контроль на предполагаемые пиковые нагрузки.

Причины возникновения

Основной причиной возникновения аварийной ситуации, связанной с пиковым возрастанием импульса, служит повреждение изоляции проводов. Повреждение может быть вызвано как механическим путём, так и в результате воздействия следующих факторов:

  • электрический пробой вследствие излишне мощной нагрузки;
  • перехлест неизолированных проводников или их соединение;
  • попадание в провода животных или птиц;
  • человеческий фактор;
  • износ оборудования или изоляции вследствие выработки ресурса или естественный.

Для того чтобы свести к минимуму возможности возникновения КЗ в электросети, достаточно своевременно производить проверку изоляции, контролировать ресурс и естественный износ оборудования. Кроме того, снижению риска возникновения КЗ способствует наличие автоматической защиты устройств, включённых в систему электропитания, а также точное соблюдение правил монтажа и эксплуатации электросетей.

Электродуга

Электродуга

Принцип действия

До момента возникновения короткого замыкания ток имеет равное нормальному значение. Но в условиях соединения проводников его величина резко возрастает из-за значительного уменьшения общего сопротивления сети. После чего параметры вновь снижаются до стабильного значения. При этом распределение импульса можно кратко описать так.

Итак, короткое замыкание формула:

I к.з.=Uph / (Zn + Zt), где:

  • I к.з. – величина тока короткого замыкания,
  • Uph – фазное напряжение,
  • Zn – суммарное сопротивление замкнутой сети,
  • Zt – суммарное сопротивление источника.

Фактически процесс возникновения и процесс протекания можно описать так:

  1. Величина тока стабильна, сеть обладает активным и индуктивным сопротивлением, которое ограничивает возможность резкого роста величины;
  2. При перехлёсте проводов и возникновении явления КЗ параметры сети остаются прежними, величина ТКЗ по-прежнему стабильна и равно нормальной;
  3. Переходный момент – с момента возникновения явления до восстановления установившегося режима. Расчет тока КЗ можно провести на любом отрезке этого процесса. Сила тока короткого замыкания в этот момент нестабильна, как и его напряжение.

Возникает закономерный вопрос, как рассчитать ток короткого замыкания. В переходном процессе ТКЗ рассчитывается, исходя из его элементов, в их наибольших значениях. Апериодический ток после возникновения снижается по экспоненциальной зависимости, до нулевой величины. Периодический – постоянен.

Ударный ток короткого замыкания – это максимально возможное значение тока КЗ, в момент до затухания апериодической составляющей он определяется по формуле:

I у – i пm + i аt=0, где:

  • I у – ударный ток КЗ,
  • i пm– амплитуда периодического тока,
  • i аt – величина апериодического.

Важно! Расчет ТКЗ – достаточно сложное и ответственное занятие, проектирование энергосистемы стоит доверить профессионалам.

Опасность

Опасность

Виды короткого замыкания

Фактически короткое замыкание – это непредусмотренное условиями эксплуатации соединение токоведущей линии с другой фазой или нейтралью, в результате чего возникает электрическая дуга, и выделяется значительное количество тепла. Это и является основной опасностью КЗ в быту.

В зависимости от типа сети подразделяют следующие виды:

  • трехфазное – перемыкание или соединение трех фаз;
  • двухфазное – перехлест двух фаз токоведущей системы;
  • однофазное на землю;
  • однофазное на нейтраль – перехлест фазы на землю, в качестве которой выступает изолированная нейтраль;
  • двух,- и трехфазное на землю – соединение двух или более токоведущих линий с проводом заземления.

В зависимости от вероятности возникновения, расчёт тока КЗ, его силы и напряжения производится индивидуально. Возникновение аварийной ситуации предполагается при проектировании, и в энергосистему закладываются устройства автоматической защиты и прерывания.

Сопротивление сети и закон Ома

Сопротивление сети играет важную роль, протяжённость провода может достигать значительных значений, а чем выше протяжённость, тем больше сопротивление. Оно также оказывает влияние на величину тока короткого замыкания. На эту величину влияет общее суммарное сопротивление всего участка сети до источника тока.

Расчёт основан на принципе определения силы тока по его напряжению. Этот же принцип работает при определении наиболее оптимальных нагрузок на сеть. Нагрузки в нормально работающей сети стабильны и постоянны, но в аварийной ситуации процесс протекает в неконтролируемом режиме. Несмотря на это, его основные пиковые параметры вполне поддаются расчётам.

Дуга

Дуга

Использование явления короткого замыкания

Помимо негативного эффекта, к которому приводит короткое замыкание в аварийных и неконтролируемых ситуациях, это явление может использоваться и в полезных целях. Нужно отметить, что в результате КЗ выделяется значительное количество тепла, и возникает электрическая дуга, контролируемое использование которой может принести немалую пользу.

Так, например, электродуговой сварочный аппарат. Принципом его работы является создание электрической дуги между электродом и поверхностью детали, в результате чего в зоне её работы повышается температура, и металл сваривается между собой. Действие в этом случае основано на явлении КЗ электрода и земли.

Стоит отметить! Величина тока и температура, создаваемая на месте сварки, достаточно велики, поэтому при работе с подобного рода оборудованием требуется соблюдать все необходимые меры предосторожности.

Аварийная защита от КЗ

Существует достаточно много устройств, обеспечивающих безопасность потребителя при коротком замыкании, в основе своей эти устройства отключают аварийный участок сети:

  • плавкие предохранители различных типов;
  • электрические автоматы;
  • дифференциальные автоматические устройства защиты;
  • токоограничители.

Наиболее простым, но в тоже время эффективным способом защиты от возникновения короткого замыкания служит включение в электросеть плавких предохранителей. При повышенной нагрузке нить таких предохранителей плавится и перегорает, тем самым обрывая от источника повреждённый участок сети.

Но, помимо высокой эффективности, эти устройства обладают рядом недостатков. В первую очередь, это необходимость их постоянной замены и работа только при определенных нагрузках. При дефиците таких предохранителей их зачастую заменяли «жучками», которые могли служить проводником тока, но не выполняли функции предохранителей, что, в свою очередь, могло привести к печальным последствиям.

Также достаточно эффективным и надёжным средством обеспечения безопасности служат автоматические выключатели, также известные как электрические автоматы. Принцип их действия основан на использовании тепловых реле. При нагреве пластины сверх нормы они расширяются и отключают автомат, для включения сети достаточно просто включить его обратно. Эти устройства более удобны, чем плавкие предохранители, более эффективны в работе.

Дифференциальные автоматы отключают ток даже при небольших изменениях параметров тока на подключённом к ним участке, эти устройства наиболее эффективны и безопасны, но в тоже время достаточно дорого стоят.

Токоограничивающий реактор применяется в сетях высокого напряжения, использование этих устройств, рассчитанных на промышленные нагрузки, в быту нерационально. Практически это катушка, последовательно включённая в токоведущую сеть. При коротком замыкании реактор принимает энергию на себя. В настоящее время применяются токоограничители различных конструкций.

Важно! Использование «жучков» вместо плавких предохранителей может грозить выходом из строя электрооборудования, а также пожаром!

Предохранитель

Предохранитель

Мощность источника питания

Исходя из этого параметра сети, можно оценить разрушительную работу при аварийной ситуации. Рассчитываются время протекания КЗ, пиковые величины и размер.

Для примера достаточно рассмотреть медный провод, подключённый к бортовой сети автомашины, и такой же отрезок провода, смонтированный в бытовой электросети напряжением 220V. Если в автомобиле из строя выйдут предохранители, или сгорит аккумулятор, при их отсутствии, то в бытовой сети просто отключится электроэнергия из-за перегрева автомата, но если, как и предохранители в автомашине, он вышел из строя, провод просто сгорит. Ситуация, что ток КЗ воздействует на источник питания маловероятна, так как протяжённость проводов, а, значит, и сопротивление сети достаточно большие, и ТКЗ просто не дойдёт до трансформатора.

Расчёт тока короткого замыкания производится несколькими различными методиками, они позволят определить все необходимые параметры с нужной точностью. Кроме того, можно измерить сопротивление схемы по способу «фаза-ноль», расчёт с использованием этого параметра делает расчет токов короткого замыкания более точным и позволяет откорректировать безопасные значения и необходимые устройства при проектировании электросети. В настоящее время существуют онлайн-калькуляторы для расчета параметров и величин КЗ. Рассчитывать параметры ТКЗ и систему безопасности через них довольно удобно и быстро.

Сварочная дуга

Сварочная дуга

Видео

Оцените статью:

Расчет токов короткого замыкания (КЗ)

Содержание:

  1. Для чего рассчитываются токи КЗ
  2. Исходные данные и критерии для расчетов
  3. Особенности проведения расчетов
  4. Как вычислить ток при трехфазном замыкании
  5. Расчеты токов КЗ в однофазных сетях

Различные неисправности и аварии в электрических сетях способны причинить серьезный вред не только оборудованию, но и обслуживающему персоналу. Наибольшие неприятности доставляют короткие замыкания, периодически возникающие в домашних сетях, в сложных схемах трансформаторных подстанций и электроустановок, питающих цепях, подключенных к мощному производственному оборудованию. В связи с этим, на стадии проектирования выполняется расчет токов короткого замыкания, позволяющий предотвратить возникновение аварийного режима, и не допустить серьезных негативных последствий.

Для чего рассчитываются токи КЗ

Проектируя энергетическую систему, инженеры пользуются различными компьютерными программами, справочниками, графиками и таблицами. С помощью этих средств анализируется работа схемы в режиме холостого хода, рассчитываются токи при номинальной нагрузке и в аварийных ситуациях.

Особенно опасными считаются возможные аварии, при которых возникают неисправности, наносящие оборудованию непоправимый вред. Наиболее часто возникают ситуации, когда проводники с разными потенциалами начинают контактировать между собой, вызывая режим короткого замыкания трансформатора. При этом, токопроводящие детали и предметы, послужившие причиной замыкания, обладают минимальным электрическим сопротивлением.

Основным параметром такого режима является ток короткого замыкания. Его появление связано с несколькими причинами:

  • Нарушения работы защитных автоматических устройств.
  • Техническое старение оборудования, вызывающее повреждения изоляции и короткое замыкание.
  • Удары молний, вызывающие высокое напряжение и другие воздействия природной стихии.
  • Ошибки, допущенные обслуживающим персоналом, неспособным определить ток.

Каждая электрическая схема создается под определенную номинальную нагрузку. Ток КЗ многократно превышает ее, создает высокую температуру, выжигающую наиболее слабые места в сети и оборудовании. Все заканчивается возгоранием и полным разрушением. Одновременно элементы схемы подвергаются механическим воздействиям.

Во избежание подобных ситуаций в процессе эксплуатации, еще во время проектирования принимаются меры специального характера. В первую очередь выполняются теоретический расчет токов короткого замыкания, определяющие вероятность их появления и величину. Полученные данные применяются в дальнейшем проектировании, а также при подборе силового оборудования и элементов защиты. Степень точности расчетов может быть разной, в зависимости от уровня надежности создаваемой защиты.

Исходные данные и критерии для расчетов

Напряжение, используемое в сети, бывает постоянным, переменным, с импульсной, синусоидальной и другой конфигурацией. Аварийные токи, случайно созданные любым из этих напряжений, полностью повторяют начальную форму, которая может изменяться под действием сопротивления или других факторов.

В первую очередь учитывается закон Ома, определяемый формулой I = U/R. Его принципы совершенно одинаковы как для номинальных нагрузок, так и для аварийных ситуаций, с небольшими отличиями. В первом случае показатели напряжения и сопротивления находятся в стабильном состоянии, а их изменения не выходят за пределы нормативных данных. В аварийном режиме эти процессы проходят стихийно, под влиянием случайных факторов. Поэтому и требуется расчет тока по специальным методикам.

Не менее важны показатели мощности источника напряжения. Данный критерий позволяет сделать оценку и вычислить энергетические возможности для разрушений, причиняемых токами коротких замыканий. Одновременно определяется величина этих токов и продолжительность действия. Кроме того, учитывается протяженность электрической цепи, количество линий и подключенных потребителей, существенно повышающих сопротивление. Однако, при слишком большой мощности, даже самая надежная схема не выдержит нагрузки и сгорит.

Методы расчетов зависит от конфигурации конкретной электрической схемы. В первую очередь, это подводка питания, выполняемая разными способами. В бытовых сетях на 220 В обычно используется фаза и ноль, постоянное напряжение подается от плюсовой и минусовой клеммы источника, а трехфазный ток подается по отдельной схеме. Изоляция проводников и токоведущих частей может быть нарушена в любом из этих вариантов, и в поврежденных местах начнут протекать токи короткого замыкания.

Замыкание случается одновременно между тремя или двумя фазами, между фазой и нулем или землей, между двумя или тремя фазами и землей. Каждый из этих режимов учитывается при составлении проекта.

Большое значение имеет электрическое сопротивление цепи. Оно зависит от протяженности линии от источника питания, особенно постоянного, до точки КЗ, отсюда и его возможности по ограничению тока. К основному добавляются индуктивные и емкостные сопротивления, присутствующие в обмотках катушек, трансформаторов и в обкладках конденсаторов. Они участвуют в формировании апериодических составляющих, вносят изменения в основные параметры.

Проведение расчетов

Для выполнения расчетов трёхфазного и однофазного тока привлекаются квалифицированные специалисты. Они отвечают не только за математическую часть, но и за дальнейшее поведение рассчитанной схемы в условиях эксплуатации. Вычисления, сделанные в домашних условиях, требуют дополнительной проверки, чтобы исключить вероятность ошибок. До начала расчетов начинающие электрики должны изучить основные понятия электричества, свойства проводников и диэлектриков, роль и значение надежной изоляции.

Все вычисления, в том числе затрагивающие трехфазное оборудование, выполняются по специальным методикам, включающим в себя различные формулы.

Следует обязательно учесть ряд особенностей:

  • Все трехфазные системы условно относятся к симметричным.
  • Питание, подведенное к трансформатору, считается неизменной величиной, приравненной к его номиналу.
  • Сила тока принимает максимальное значение в момент возникновения аварийного режима. Потребуется расчет ударного тока короткого замыкания.
  • Влияние ЭДС источника питания, расположенного на большом расстоянии от места появления короткого замыкания.

Параметры ТКЗ при необходимости дополняются результирующим сопротивлением проводников. С этой целью показатели мощности приводятся к единому значению. Для таких расчетов нежелательно использовать обычные формулы, изучаемые на курсе физики. Здесь вполне возможны ошибки из-за разных номиналов напряжения на различных участках цепи в момент начала аварийного режима. Единая базовая мощность делает расчеты более простыми, существенно повышая точность результатов.

Номинальное напряжение, используемое при вычислениях, берется с увеличением на 5%. В сетях 380 вольт этот показатель составит 400В, а при 220В итоговое значение будет 231В.

Как вычислить ток при трехфазном замыкании

Расчет тока трехфазного короткого замыкания необходимо рассмотреть более подробно, учитывая все особенности и сопутствующие факторы этого процесса.

В проводнике, попавшем под действие короткого замыкания, не будет мгновенного изменения силы тока. Его значение нарастает постепенно, в соответствии с установленными физическими законами. Существуют специальные методики на расчет трехфазного тока, для которых требуются данные всех основных величин, определяемые математическим путем. Полученные результаты затем использует специальная формула.

Одна из формул выглядит следующим образом: Iкз = Uc/√3*xрез = Uc/√3*(хсист+ хвн). В ней Uc – величина напряжения на шинах, xрез – результативное или общее сопротивление. Оно состоит из хсист – соотношения сопротивления всей системы и шин источника питания, и хвн – сопротивления на участке между шинами и точкой КЗ.

Если какой-либо показатель отсутствует, его можно рассчитывать по дополнительным формулам или с помощью специальных компьютерных программ. При выполнении расчетов в сложных разветвленных сетях, они преобразуются в схемы замещения. Каждая отдельно взятая схема представлена в виде источника электроэнергии и одного сопротивления. Процесс упрощения происходит в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно.
  • То же самое выполняется в отношении последовательно подключенных сопротивлений.
  • Величина результирующего сопротивления в относительных единицах определяется сложением всех сопротивлений с параллельным и последовательным подключением.

Современная вычислительная техника предоставляет возможность выполнения сложнейших операций буквально за несколько секунд. Это дает возможность получения точных результатов, используемых в проектировании.

Расчеты токов КЗ в однофазных сетях

В однофазных электрических сетях расчет токов короткого замыкания выполняется по упрощенной методике. Это связано с незначительным энергопотреблением электроприборов на 220В. То есть, надежно защитить частный дом или квартиру вполне возможно с помощью автоматических выключателей на 25А.

Примерно рассчитать ток однофазного короткого замыкания можно по формуле № 1, в которой Ik будет однофазным током КЗ, а Uf – фазное напряжение. Параметры Zt и Zc представляют собой сопротивление трансформатора в момент КЗ и сопротивление между фазой и нулем. Погрешность вычислений с использованием этой формулы составляет примерно 10%. Этих данных вполне достаточно, чтобы спланировать надежную защиту сети.

Основные сложности могут возникнуть при решении задачи, как определить параметр Zc. Однако, при наличии данных о переходных сопротивлениях и характеристиках проводника, величина сопротивления между фазным и нулевым проводом достаточно легко находится по формуле № 2. В ней параметры rf и rn являются, соответственно, активными сопротивлениями фазы и нуля (Ом). Внутренние индуктивные сопротивления фазного и нулевого проводников обозначаются как xf и xn (Ом). Еще две величины – ra и x’ являются суммарным активным сопротивлением контактов цепочки фаза-нуль и внешним индуктивным сопротивлением этой же цепи.

При вычислении токов однофазного КЗ, расчетная схема должна выполняться в определенной последовательности:

  • Вначале нужно установить параметры источника питания.
  • Определить характеристики проводников, используемых в цепи.
  • Слишком разветвленную схему нужно упростить путем замещения сложных компонентов простыми. С этой целью составляется схема замещения для расчета токов короткого замыкания.
  • Найти величину полного сопротивления на участке фаза-ноль.
  • При отсутствии технической документации определяется полное сопротивление источника питания, измеряемое в относительных единицах.

Все полученные значения подставляются в формулу, после чего вычисленным результатом можно пользоваться при составлении проектов.

Ток КЗ. От чего зависит величина тока короткого замыкания?

Ток КЗ

Ток КЗ (короткого замыкания)

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы хотим рассказать вам про ток КЗ (короткого замыкания) в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Далее рассмотрим ток КЗ для трехфазной цепи при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток КЗ во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Ток КЗ

   Расчёт тока КЗ

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток КЗ в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Ток КЗ

   Типичные значения напряжений короткого замыкания

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей пренебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

Ток КЗ

   Пример расчёта тока КЗ

На рисунке ниже приведено пояснение для данного примера.

Ток КЗ

   Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Ток КЗ

   Расчёт тока короткого трехфазного замыкания

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Ток КЗ

   Треугольник сопротивления

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

Ток КЗ

   Расчёт полного сопротивления Zт

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Ток КЗ

   Вычисление Xз

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Ток КЗ

   Расчёт полного эквивалентного сопротивления Zкз

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Ток КЗ

   Характеристики масляных трансформаторов

 

Ток КЗ

   Характеристики сухих трансформаторов

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Ток КЗ

   Расчёт полного сопротивления трансформатора Zтр

Pн — номинальная мощность трансформатора в киловольт-амперах. Активное сопротивление обмоток находится исходя из мощности потерь. Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток КЗ в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток КЗ на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Смотрите также по теме:

   Расчет токов короткого замыкания в сети до 1кВ.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Ток короткого замыкания и его определение. Как рассчитать ток КЗ?

   Здравствуйте, дорогие друзья! В данной статье вы узнаете, что такое ток короткого замыкания, его причины и как его рассчитать. Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей. Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания  

   Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается сопротивление изоляции. Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания. Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением. Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.  

   Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.  

Как рассчитать ток короткого замыкания в домашних условиях

   Знание величины тока короткого замыкания крайне необходимо для обеспечения пожарной безопасности. Очевидно, что если измеренный ток короткого замыкания меньше тока уставки максимальной защиты автомата или 4-х кратного значения номинала тока предохранителя, то время срабатывания (перегорания плавкой вставки) будет больше, а это, в свою очередь, может привести к чрезмерному нагреву проводов и их возгоранию.

   Как этот ток определить? Существуют специальные методики и специальные приборы для этого. Здесь рассмотрим вопрос как это сделать, имея лишь мультиметр или даже вольтметр. Очевидно, что этот способ имеет не очень высокую точность, но всё же достаточную для обнаружения несоответствия максимально-токовой защиты к величине этого тока.

   Как это сделать в домашних условиях? Необходимо взять достаточно мощный приёмник, например, электрический чайник или утюг. Ещё неплохо бы иметь тройник. К тройнику подключаем наш потребитель и вольтметр или мультиметр в режиме измерения напряжения. Записываем установившуюся величину напряжения (U1). Отключаем потребитель, и записываем величину напряжения без нагрузки (U2). Дальше производим расчёт. Нужно разделить мощность вашего потребителя (P) на разность замеренных напряжений.

                                                                       Iк.з.(1) = Р/(U2 – U1)

   Посчитаем на примере. Чайник 2 кВт. Первый замер – 215 В, второй замер – 230 В. По расчёту получается 133,3 А. Если стоит, например, автомат ВА 47-29 с характеристикой С, то его уставка будет от 80 до 160 Ампер. Следовательно, возможно, что этот автомат сработает с задержкой. По характеристике автомата можно определить, что время срабатывания может быть при этом до 5 секунд. Что в принципе опасно. 

   Что делать? Нужно увеличить величину тока короткого замыкания. Увеличить этот ток можно заменив провода питающей линии на большее сечение.

Полезное КЗ

   Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

причины, последствия и защита от негативного явления, расчет силы тока

Напряжение короткого замыканияНапряжение короткого замыкания — значение напряжения, которое подается на одну из обмоток трансформатора, чтобы в цепи возник электрический ток. Остальные обмотки в это время должны быть закорочены. Это значение определяет падение напряжения на трансформаторе, его внешнюю характеристику и ток непреднамеренного замыкания. Выражается оно в процентном отношении к номинальному напряжению.

Причины возникновения

Замыкание в цепи считается незапланированным, нештатным соединением проводников, при котором возникают разрушающие токи. Любое подключение электрическрго прибора в розетку тоже считается коротким замыканием, но уже плановым. Источник потребления электроэнергии является сопротивлением, которое воспринимает всю нагрузку короткого замыкания.

Если значение этого сопротивления будет стремиться к нулю, то, согласно закону Ома, для электрической цепи, ток возрастает до такой величины, что происходит сильный нагрев и разрушение проводников. Причины возникновения негативного явления:

  1. Короткое замыканиеКратковременное повышение напряжения приводит к пробою изоляции проводов или электрической схемы. Происходит рост силы тока до значения короткого замыкания с появлением дугового разряда.
  2. Старая, пришедшая в негодность изоляция становится причиной возникновения спонтанных закорачиваний проводников.
  3. Механические повреждения изоляции тоже приводят к нештатным ситуациям. Например, часто сами жильцы во время ремонта нарушают целостность изоляции.
  4. Попадание посторонних предметов, мелких животных, элементов соседних узлов вызывают негативное соединение проводов между собой.
  5. Удар молнии вызывает кратковременное повышение напряжения в электрической цепи.

Основными признаками такого явления считается появление запаха гари, искрение и горение изоляции проводов. Кроме того, происходит отключение электрической цепи или ее участков.

Опасные последствия

Одним из самых опасных последствий замыкания проводов считается риск появления очага возгорания. Причиной его возникновения становится выделение большого количества тепла, разрушение изоляции и появление открытого огня.

При дуговом кратковременном замыкании, когда проскакивает мощнейший электрический заряд, воспламеняются окружающие вещи и предметы. Кроме того, к негативным последствиям относятся:

  • Ток короткого замыканиямеханические и термические повреждения электроустановок;
  • снижение значения напряжения, которое приводит к потере производительности или полной остановке электрических механизмов;
  • отдельные генераторы и электростанции выпадают из синхронной работы системы, что приводит к созданию аварийной ситуации;
  • появление электромагнитных волн, которые влияют на линии связи и коммуникаций.

Эти результаты будут наблюдаться только непосредственно в месте замыкания или рядом с ним, так как по мере удаления от этого участка величина тока будет ослабевать. При планировании и монтаже любой электроустановки принимаются необходимые меры защиты от негативного явления.

Определение силы тока

Определение токаЧтобы рассчитать ток короткого замыкания, следует обратиться к закону Ома для электрической цепи. Он гласит, что его сила прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

В случае короткого замыкания значение сопротивления очень мало, поэтому отношение напряжения к нему вырастает в несколько раз. Например, в однофазной домашней электрической сети напряжение — 220 В. Если принять, что сопротивление во время короткого замыкания падает до 0,04 Ом, то получается сила тока — 5500 А.

Так как стандартная розетка рассчитана на 16 А, то становится очевидным, что она просто сгорит. Это расчет примерный, так как для других видов этого явления он более сложный. Кроме однофазных, в трехфазных сетях возможны замыкания:

  • двухфазное;
  • между фаз на землю;
  • трехфазное.

При определении значения тока в этих случаях во внимание принимаются: сопротивление всей электрической магистрали, отдельных участков, дополнительного оборудования сети, дуги замыкания проводников и другое. Поэтому его суммарное значение будет гораздо выше, чем в приблизительном расчете.

Методы защиты

Меры безопасности Основной метод защиты от этого негативного явления основан на разрыве электрической цепи. Для этого в ней применяются плавкие предохранители. Обычно они представляют собой проводник, который рассчитан на определенный предельный ток.

Предохранители считаются самым слабым звеном в схеме, поэтому, как только значение тока увеличится, то проводник перегорает и разрывает цепь. Таким способом защищаются остальные элементы цепи. Для защиты квартирных и домовых электрических контуров применяются автоматические выключатели.

Главным отличием автоматов от плавких предохранителей считается многоразовое использование. В конструкцию автомата входит расцепитель, который и обеспечивает срабатывание прибора в нештатной ситуации. Выпускается несколько видов этих приборов:

  • электромагнитные;
  • термические;
  • полупроводниковые;
  • смешанные.

Во время образования тока критической величины автомат отключается с помощью теплового или электромагнитного расцепителя. Для защиты от высокого тока нельзя использовать устройство защитного отключения, так как у него совсем другие задачи.

Другим методом защиты является использование токоограничивающего реактора. Этот агрегат устанавливается в цепях с высоким напряжением, где сила тока может достигнуть больших размеров, и невозможно подобрать соответствующее защитное устройство.

Реактор представляет собой катушку индуктивности, которая последовательно подключается в электрическую сеть. При аварийной ситуации этот агрегат принимает на себя всю силу тока.

Использование замыкания проводников

Как избежать короткое замыканиеКроме отрицательных свойств, это негативное явление приносит пользу. Существует немало устройств, работающих на высоких значениях тока. Самым популярным из них считается сварочный агрегат. При его работе образуется электрическая дуга между сварочным электродом и заземляющим контуром.

Принцип работы аппарата основан на снижении напряжения и увеличении силы тока, которая может достигать до 250 А. Температура дуги составляет до нескольких тысяч градусов, что позволяет расплавлять свариваемые детали в месте касания.

Такие режимы используются кратковременно, а мощность сварочного агрегата позволяет выдержать перегрузки. Это использование замыкания проводников при сварочных работах позволяет получить прочные и надежные металлические конструкции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *