Сила тока как обозначается – обозначение и определение силы тока, как расписать единицу измерения математическим способом

обозначение и определение силы тока, как расписать единицу измерения математическим способом

Великий учёныйТрадиционный символ I происходит от французского словосочетания intensité du courant, что на русском языке означает «сила тока». Эта фраза часто используется в старых текстах. В современной практике её зачастую укорачивают до слова «ток». Обозначение I было впервые использовано самим Андре-Мари Ампером, в честь которого названы единица электрического тока и разработанный им закон.

Великий учёный

Электрический токИмя André-Marie Ampère увековечено среди имён других 72 учёных на первом этаже Эйфелевой башни. Его вклад в науку заложил фундамент для понимания явлений электромагнетизма. Хоть Андре-Мари был не первым человеком, обнаружившим связь между электричеством и магнетизмом, он впервые попытался теоретически объяснить и продемонстрировать, как в математических выражениях расписывается связь между этими явлениями. Ампер с помощью устройства собственного изобретения смог измерить ток, а не просто зафиксировать его присутствие.

Учёный родился в Лионе в 1775 году и был современником Французской революции. Будучи сыном коммерсанта и чиновника, он с ранних лет проявлял страсть к математике, а став подростком, читал сложные трактаты Эйлера и Лагранжа. Получил должность профессора математики Парижской политехнической школы в 1809 году, а в 1814 г. был избран членом Академии наук. Хоть Андре-Мари преподавал математику, его интересы распространялись на многие области, в том числе на химию и физику.

Единица и определениеНаиболее значимый документ Ампера по теории электричества был опубликован в 1826 году. Теоретические основы, представленные в этом труде, стали фундаментом для дальнейших открытий в области электричества и магнетизма. Получив известность и признание в высокоуважаемых академиях и научных организациях мира, Ампер избегал публичности и чувствовал себя счастливым только в скромной лаборатории в Париже.

Несмотря на достижения и место в обществе, судьба учёного сложилась довольна трагично. В 1793 году его отца гильотинировали за политические убеждения. Это событие стало причиной глубокой депрессии Андре-Мари и едва не свело его с ума. Первая жена рано ушла из жизни после продолжительной болезни, второй брак был неудачным и несчастливым. Сам Ампер умер в 1836 году от воспаления лёгких в Марселе и был похоронен на кладбище Монмартр в Париже.

Электрический ток

Электричеством называют форму энергии, основанной на наличии электрических зарядов в веществе. Вся материя состоит из атомов, а атомы содержат заряженные частицы. Каждый протон в атомном ядре содержит одну единицу положительного электрического заряда, а каждый электрон, вращающийся вокруг ядра, несёт в себе единицу отрицательного. Электрические явления возникают, когда электроны покидают атомы: потеря одного или нескольких из них превращает атом в положительно заряженный ион.

Все явления, происходящие с зарядами, могут быть отнесены к двум основным категориям:

  • статическое электричество;
  • электрический ток.

Первый термин описывает поведение зарядов в состоянии покоя. Подобные явления хорошо иллюстрируют наэлектризованные волосы — они будут отталкиваться друг от друга, поскольку обладают одним зарядом.

Электрический ток имеет отношение к поведению зарядов в движении. Чтобы они перемещались непрерывно, им нужно обеспечить беспрепятственный маршрут. Путь для зарядов называют электрической цепью.

Простейшая электрическая цепь, как правило, состоит из следующих элементов:

  • источника;
  • нагрузки;
  • соединяющих проводников.

Эволюция эталонаЭлектрическим током называют любое движение носителей электрических зарядов: субатомных частиц (электронов или протонов), ионов (атомов, потерявших или набравших электроны) или квазичастиц (дырок в полупроводниках, которые можно рассматривать в качестве положительно заряженных носителей).

Ток в проводнике представляет собой движение электронов в одном направлении (постоянный) или с периодической сменой направления движения (переменный). В газах и жидкостях он состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных в обратном. Существуют и другие его виды, например, пучки протонов, позитронов или других заряженных мюонов в ускорителях частиц.

В отношении общепринятого направления тока существует некоторое противоречие, основа которого была заложена более двух веков назад. Поскольку в те времена электроны ещё не были обнаружены, учёные предположили, что перемещаемые частицы несли положительный заряд. Традиция обозначать направление тока как направление движения положительных частиц не забыта и сейчас, хоть в проводниках носителями заряда являются электроны.

Единица и определение

Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел.

Широко применяются следующие кратные единицы:

  • 10 −6А — микроампер мкА;
  • 10 −3А — миллиампер мА;
  • 10 3А — килоампер кА.

Эволюция эталона

Будущее величины в СИВ знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2).

Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

Будущее величины в СИ

Воздействие на человекаВ 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

Воздействие на человека

В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:

  • Практические измерения160х10 -19 — один электрон в секунду;
  • 0,7х10 -3 — слуховой аппарат;
  • 5х10 -3 — пучок в кинескопе телевизора;
  • 150х10 -3 — портативный ЖК телевизор;
  • 0,2 — электрический угорь;
  • 0,3 — лампа накаливания;
  • 10 — тостер, чайник;
  • 100 — стартер автомобиля;
  • 30х10 3 — удар молнии;
  • 180х10 3 — дуговая печь для ферросплавов;
  • 5х10 6 — дуга между Юпитером и Ио.

Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца.

Основные факторы летальности:

  1. АмперСила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
  2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
  3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
  4. Продолжительность воздействия.

Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

Практические измерения

Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

  1. Ампер единица измерения
    Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
  2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
  3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
  4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.

Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

как и в чём измеряется, по каким формулам находится, как обозначается

Сила тока: единица измеренияОпределение понятия силы тока звучит так: это заряженные частицы (электрические заряды), которые двигаются в определённом направлении и называются электронами.

Представим, что через участок цепи проходит определённое количество электричества, например, один кулон.

Он может пройти за одну секунду, а может за целый час. Поэтому сила его определяется именно количеством электричества, которое проходит через проводник за конкретную единицу времени — секунду.

Виды тока и единицы измерения

Ток бывает двух видов:

  • Постоянный — это тот, что не меняется со временем.
  • Переменный — это тот, что находится в розетке.

Постоянный и переменный токОбычные батарейки или аккумуляторы телефонов выдают именно постоянный. А переменный может изменяться. Когда вы включаете в одну розетку настольную лампу, которой не требуется большая сила, и вместе с ней включаете, например, мощный пылесос, то работают оба прибора, так как ток в сети переменный, в отличие от напряжения, он «подстроился» под приборы. Если бы он был постоянным, то в зависимости от его величины у вас либо сгорит лампа, либо не заработает пылесос.

Измеряется в амперах (А) — эта единица измерения одна из основных в СИ, обозначается величина английской буквой I.

Сила может измеряться основными и вспомогательными единицами:

  • Ампер (А).
  • миллиампер (мА) — это одна тысячная ампера.
  • микроампер (мкА) — одна миллионная ампера.

Если в замкнутой простой цепи проходит постоянный тoк, то в каждом месте цепи за секунду или минуту проходит абсолютно равное его количество, так как он не может накапливаться в отдельных участках цепи. Если рассматривать сложные цепи, то это правило тоже работает, но уже для отдельных участков цепи, которые можно считать простыми.

Количество его измеряется в кулонах. Если через поперечное сечение проводника за одну секунду проходит точно один кулон — то это один ампер. Для нахождения её можно использовать специальные приборы либо формулы.

Формулы для расчета величины

Начнём с формул, по которым можно вычислить эту самую силу. Например, если знать, сколько электричества прошло через проводник за определённый и известный промежуток времени, то можно узнать его силу по такой формуле: I = q/t, где:

  • q — это электрический заряд, который измеряется в кулонах;
  • t — время прохождения этого заряда, измеряется в секундах.

Закон Ома для замкнутой цепиЗакон Ома звучит так: сила тока в цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению. Этот закон применяется для вычисления силы постоянного тока.

Если вам нужно найти значение для переменного, то результат формулы нужно разделить на корень из двух.

Если опустить слова и перейти к обозначениям, то выглядит формула так: I = U/R. Буква I — сила тока в амперах. Буквой U обозначается напряжение в цепи, которое измеряется в вольтах. Буква R — это сопротивление, оно измеряется в Омах.

Зная эту формулу, можно без проблем вычислять и напряжение или сопротивление в цепи.

Можно ещё встретить такую запись закона: I = U/R+r. Это полный Закон Ома, который, помимо сопротивления внешних элементов цепи, учитывает сопротивление внутри источника питания и позволяет вычислить потребляемый ток.

Измерение с помощью приборов

Амперметр — специальный прибор, с помощью которого можно узнать, какая в цепи сила тока. Обозначение на амперметре покажут вам результат. Он подключается в разрыв таким образом, чтобы электричество протекало через прибор. Такое подключение называется последовательным. Подключать можно в любом месте, так как сила одинакова на любом участке замкнутой цепи. Применяется этот метод для измерения постоянного тока.

Если амперметра нет под рукой, то можно воспользоваться вольтметром — прибором для измерения напряжения в цепи. Для этого его нужно подключить параллельно в электрическую цепь. Замерив напряжение в цепи и зная сопротивление, мы можем высчитать силу тока по формуле Ома.

Также существует электромагнитный способ измерения постоянного и переменного тoка. Для этого требуется специальный магнитомодульный датчик. Он находит нужное значение, анализируя электромагнитное поле.

Не стоит забывать, что ток, как огонь — он полезен точно так же, как и опасен. Даже одна десятая ампера может быть опасна и даже смертельна для человека. А ведь в некоторых бытовых приборах он может достигать 10 и больше ампер. Даже в обычной лампочке накаливания его может быть достаточно для того, чтобы убить человека. Не говоря уже про технику где-нибудь на производствах, где он порой достигает нескольких тысяч ампер. Так что будьте осторожны.

Обозначения физических величин

Величины

Наименование

Обозначение

Механические величины

Вес

G, P, W

Время

t

Высота

h

Давление

p

Диаметр

d

Длина

l

Длина пути

s

Импульс (количество движения)

p

Количество вещества

ν, n

Коэффицент жесткости (жесткость)

Ʀ

Коэффицент запаса прочности

Ʀ, n

Коэффицент полезного действия

η

Коэффицент трения качения

Ʀ

Коэффицент трения скольжения

μ, f

Масса

m

Масса атома

ma

Масса электрона

me

Механическое напряжение

σ

Модуль упругости (модуль Юнга)

E

Момент силы

M

Мощность

P, N

Объем, вместимость

V, ϑ

Период колебания

T

Плотность

ϱ

Площадь

A, S

Поверхностное натяжение

σ, γ

Постоянная гравитационная

G

Предел прочности

σпч

Работа

W, A, L

Радиус

r, R

Сила, сила тяжести

F, Q, R

Скорость линейная

ϑ

Скорость угловая

ώ

Толщина

d, δ

Ускорение линейное

a

Ускорение свободного падения

g

Частота

ν, f

Частота вращения

n

Ширина

b

Энергия

E, W

Энергия кинетитеская

EƦ

Энергия потенциальная

Ep

Акустические величины

Длина волны

λ

Звуковая мощность

P

Звуковая энергия

W

Интенсивность звука

I

Скорость звука

c

Частота

ν, f

Тепловые величины и величины молекулярной физики
Абсолютная влажность

a

Газовая постоянная (молярная)

R

Количество теплоты

Q

Коэффицент полезного действия

η

Относительная влажность

ϕ

Относительная молекулярная масса

Mr

Постоянная (число) Авогадро

NA

Постоянная Больцмана

Ʀ

Постоянная (число) Лошмидта

NL

Температура Кюри

TC

Температура па шкале Цельсия

t, ϴ

Температура термодинамическая (абсолютная температура)

T

Температурный коэффицент линейного расширения

a, ai

Температурный коффицент объемного расширения

β, av

Удельная теплоемкость

c

Удельная теплота парообразования

r

Удельная теплота плавления

λ

Удельная теплота сгорания топлива (сокращенно: теплота сгорания топлива)

q

Число молекул

N

Энергия внутренняя

U

Электрические и магнитные величины

Диэлектрическая проницаемость вакуума (электрическая постоянная)

Ԑo

Индуктивность

L

Коэффицент самоиндукции

L

Коэффицент трансформации

K

Магнитная индукция

B

Магнитная проницаемость вакуума (магнитная постоянная)

μo

Магнитный поток

Ф

Мощность электрической цепи

P

Напряженность магнитного поля

H

Напряженность электрического поля

E

Объемная плотность электрического заряда

ϱ

Относительная диэлектрическая проницаемость

Ԑr

Относительная магнитная проницаемость

μr

Плотность эенгии магнитного поля удельная

ωm

Плотность энергии электрического поля удельная

ωэ

Плотность заряда поверхностная

σ

Плотность электрического тока

J

Постоянная (число) Фарадея

F

Проницаемость диэлектрическая

ԑ

Работа выхода электрона

ϕ

Разность потенциалов

U

Сила тока

I

Температурный коэффицент электрического сопротивления

a

Удельная электрическая проводимость

γ

Удельное электрическое сопротивление

ϱ

Частота электрического тока

f, ν

Число виток обмотки

N, ω

Электрическая емкость

C

Электрическая индукция

D

Электрическая проводимость

G

Электрический момент диполя молекулы

p

Электрический заряд (количество электричества)

Q, q

Электрический потенциал

V, ω

Электрическое напряжение

U

Электрическое сопротивление

R, r

Электродвижущая сила

E, Ԑ

Электрохимический эквивалент

Ʀ

Энергия магнитного поля

Wm

Энергия электрического поля

Wэ

Энергия Электромагнитная

W

Оптические величины

Длина волны

λ

Освещенность

E

Период колебания

T

Плотность потока излучения

Ф

Показатель (коэффицент) преломления

n

Световой поток

Ф

Светасила объектива

f

Сила света

I

Скорость света

c

Увеличение линейное

β

Увеличение окуляра, микроскопа, лупы

Ѓ

Угол отражения луча

έ

Угол падения луча

ԑ

Фокусное расстояние

F

Частота колебаний

ν, f

Энергия излучения

Q, W

Энергия световая

Q

Величины атомной физики

Атомная масса относительная

Ar

Время полураспада

T1/2

Дефект массы

Δ

Заряд электрона

e

Масса атома

ma

Масса нейтрона

mn

Масса протона

mp

Масса электрона

me

Постоянная Планка

h, ħ

Радиус электрона

re

Величины ионизирующих излучений
Поглощеная доза излучения (доза излучения)

D

Мощность поглощенной дозы излучения

Ď

Активность нуклида в радиоактивном источнике

A

Как читать схемы. Напряжение и сила тока

Как читать схемы? В прошлой статье мы с вами рассмотрели, как выглядят обозначения основных радиоэлементов на схеме. В этой статье мы поговорим о таких понятиях, как электрический ток, напряжение и сила тока. Хотя я уже писал о них в самых первых статьях, но в этой статье попробуем все это сложить в одну кучу, чтобы вам было легче уловить суть дела.

Проводники электрического тока

Начнем с самого-самого начала. Как вы знаете, все схемы состоят из проводков или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводков соединял различные радиоэлементы и у меня получилась схема, которая усиливает звуковые частоты

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются печатными дорожками.

Как читать схемы. Напряжение и сила тока

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология). 

На другой стороне печатной платы уже располагаются радиоэлементы

Как читать схемы. Напряжение и сила тока

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев,  как торт из коржей:

Как читать схемы. Напряжение и сила тока

Прямо внутри них  есть дорожки, которые соединяются межслойно. Очень сильно экономится площадь на поверхностях печатной платы. Бум  SMD  технологий вызвал в свою очередь нужду в многослойных печатных платах.

Электрический ток

Думаю, вы  не раз слышали такое выражение: “по этому проводу течет ток”. Электронику проще объяснять как раз с точки зрения гидравлики. Раз ток течет, значит, в нашем случае, проводок – это шланг или труба для электрического тока. Получается, что так. А что такое электрический ток?

Электрический ток – это упорядоченное движение заряженных частиц, чаще всего электронов, в одном направлении. По аналогии с гидравликой, электроны – это молекулы воды. Электрический ток – поток воды. Думаю, этого пока будет достаточно. Одними словами сыт не будешь, поэтому давайте нарисуем рисунок, чтобы порадовать глаза:

В данный момент шланг валяется где-нибудь в огороде и в нем осталась вода. Шланг никуда не подключен, то есть молекулы воды в шланге находятся в неподвижном состоянии.

По аналогии с электроникой, медный проводок лежит на столе и никуда не подключен.

Но вот настал вечер. Надо полить помидоры и огурцы, иначе к зиме останетесь без закуски. Как только мы открываем кран, вода в шланге начинает движуху:

Теперь вопрос на засыпку: почему когда мы открыли краник, вода побежала по шлангу?  Создалось давление… молекулы что левее стали давить на молекулы что правее и движуха началась. Но кто толкал те молекулы, которые толкали молекулы? Это либо насос, либо вода в водобашне под воздействием гравитационной силы Земли.

В электронике электроны толкает так называемая ЭДС. В любой электрической схеме есть тот самый “насос”, который толкает электроны по проводкам и радиоэлементам. Он может находится в самой схеме, либо подключаться в схему извне. Как только электроны начинают движуху в проводке в одном направлении, то можно уже сказать, что в проводке стал течь электрический ток.

Напряжение

А теперь представьте такую ситуацию. У нас есть водонасос, но шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Там пробка закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет приличная, то пробка вылетит со скоростью пули, либо давление порвет шланг, если пробка туго сидит в шланге.

Все то же самое можно сказать и про водобашню. Давление на дне башни зависит от того, сколько воды налито в башню. Если башня под завязку, то и давление на дне башни будет большое, и наоборот.

Как читать схемы. Напряжение и сила тока

А теперь прикиньте какое давление на дне океана, особенно в Марианской впадине 😉

Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать напряжение от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Как читать схемы. Напряжение и сила тока

Электрическое давление  – это еще не значит, что есть электрический ток. Для того, чтобы появился электрический ток должна быть движуха электронов в одном направлении, а они в данный момент тупо стоят на месте.  А раз движухи нету, то и нет электрического тока. Но то, что уже есть давление – это предпосылка к зарождению электрического тока.

Вы прямо сейчас можете создать давление воздуха в своем организме. Для этого достаточно набрать воздуха в легкие и закрыть рот. Потом выпустить воздух и надуть щеки, не открывая рот. В это время у вас на щеки молекулы воздуха будут оказывать давление. Чем больше вы выдыхаете воздуха, тем напряженнее стают ваши щеки от давления. Движуха идет из области высокого давления в область низкого давления. В ваших легких вы создали большое давление, а давление снаружи оказалось меньше. Поэтому-то щёчки и надулись.

С точки зрения электроники, на одном щупе блока питания высокое давление, а на другом низкое. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  – черным или синим. Тут типа давление минимальное (нулевое).

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – недостаточное.

Как читать схемы. Напряжение и сила токаКак читать схемы. Напряжение и сила тока

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но  напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Итак, одна составляющая для зарождения электрического тока у нас уже есть – это напряжение.

Вернемся снова к гидравлике.

Давление мы создали, но электрического тока до сих пор нету. Что надо сделать? Правильно, убрать пробку из шланга и дать водичке спокойно вытекать. Пошла движуха, значит, пошел электрический ток!

От какого слова образуется слово “ток”. Я думаю, от слова поТОК. Поток воды, поток энергии, поток света и тд, а поток электронов в проводке называется просто “электрическим током”. Значит, заставляя течь электроны, мы тем самым создаем электрический ток 😉

Теперь снова надуйте свои пухленькие щечки и пытайтесь создать внутри полости рта очень высокое давление. Что у нас произойдет? Ваши губки не выдержат и поток воздуха устремится изо рта в окружающее пространство. То есть вы создали в полости рта высокое давление, которое устремилось в область низкого давления, то есть наружу. Почти схожим образом вы создаете “ветер” из пукана, напрягая свой животик :-).

Ладно, давайте обобщим, все что мы тут пописали. ЭДС создает движуху электронов по проводку. Для того, чтобы движуха была, электроны должны куда-то направляться, желательно обратно к ЭДС источнику. В идеале, должно быть как-то так:

Как вы видите, труба у нас выходит из насосной станции и входит в насосную станцию. То есть контур трубы получается замкнутым. Пока работает насосная станция, у нас есть движуха воды. Как только насосная станция сдохнет, движуха воды прекратится. Также немаловажно чтобы труба не была тонкая в диаметре, иначе ее порвет, если насосная станция будет большой мощности.

По аналогии с электроникой получаем все то же самое. Во-первых, нужно чтобы контур был замкнутым, во вторых – чтобы был источник ЭДС, и в-третьих, чтобы провод выдерживал поток электронов.

Сила тока

Также нас интересует еще один немаловажный фактор – это какой объем воды у нас выльется из шланга за какое-то время.

Как думаете, с каким напором воды мы быстрее наполним ведерко?

С таким

Как читать схемы. Напряжение и сила тока

или с таким?

Как читать схемы. Напряжение и сила тока

или вот с таким?

Как читать схемы. Напряжение и сила тока

Понятное дело, что с последним. Почему так? Да потому что, ну пусть скажем за секунду, у нас вылитой из трубы воды будет больше, чем из шланга. А объем вылитой воды из зеленого шланга за секунду будет больше, чем из желтого, так как напор воды в желтом шланге очень слабый. И теперь еще один вопросик на посошок. Какой поток струи будет обладать бОльшей силой? Ясно дело, что струя, которая выходит из трубы. Такой струей можно и гидрогенераторы крутить.

Давайте допустим, что у нас  есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Так… теперь давайте все что мы тут пописали про водичку, применим в электронике. Проводки – это шланги или трубы, в зависимости от размера. Тонкий проводок – это тонкий в диаметре шланг, толстый проводок – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый проводок при одинаковом напряжении можно протащить больше электронов, чем тонкий.

И еще, в какой трубе сила потока электронов будет больше? Разумеется, через толстый проводок, так как количество электронов через поперечное сечение проводка за единицу времени будет проходить больше, чем в тонком проводке 😉 А количество электронов, которое проходит через поперечное сечение проводника за какой-то промежуток времени, называется силой тока. Я ведь говорил, что гидравлика и электроника очень взаимосвязаны ;-).

Не забываем, что электроны обладают зарядом, поэтому официальная терминология силы тока звучит так: сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения? Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится,  но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика. Второе – это поставить шланг большим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводку. Чем он больше в диаметре, тем больше он сможет протащить через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит  от того, на какую силу тока он рассчитан

Как читать схемы. Напряжение и сила тока

Как только сила тока через проводок превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в обрыве

Как читать схемы. Напряжение и сила тока

Заключение

Электрический ток в основном характеризуется такими параметрами, как напряжение и сила тока. Провода служат именно теми самыми “трубами и шлангами” для того, чтобы передавать электрический ток на расстояния. Они выбираются в зависимости от того, какая сила тока будет течь через них.

Например, вот такие медные “проводочки” используются для передачи бешеной силы тока на заводах, крупных фабриках, электросетях и тд. Называют их медными шинами.

Как читать схемы. Напряжение и сила тока

Как читать схемы. Напряжение и сила тока

На последней картинке можно увидеть предохранитель, который соединяет шины. Его номинал 500 Ампер. Можно сказать, что через сечение такой медной шины за 1 секунду может пробежать очень большой заряд, а точнее 500 Кулон.

А что было бы, если мы туда поставили какой-нибудь медный тонкий проводок? Я думаю, произошло бы что-то типа этого

Как читать схемы. Напряжение и сила тока 

 

Резюме

Электрический ток – это движение в одном направлении свободных электронов.

Свободные электроны у нас имеются в проводках, которые в основном сделаны из меди и алюминия.

Электрический ток характеризуется двумя параметрами: напряжением и силой тока.

Чтобы в проводке возник электрический ток, надо чтобы в одном конце проводка было избыточное давление, а в другом  – недостаточное.

Ток течет от плюса к минусу (хотя электроны бегут от минуса к плюсу)

Сила тока через проводок – это количество заряда, которое проходит через площадь “кружочка” (сечение проводка поперек) за одну секунду. Выражается в Амперах (Кулон/ Вольт).

Проводки, через которые будет проходить большая сила тока, делают толще, иначе тонкие провода нагреются и расплавятся, причинив вред окружающим предметам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *