Сигнал называется дискретным – Дискретным называют сигнал: а) принимающий конечное число определённых значений б) непрерывно изменяющийся во времени

Содержание

Какой сигнал называется дискретным — MOREREMONTA

Любая система цифровой обработки сигналов независимо от ее сложности содержит цифровое вычислительное устройство — универсальную цифровую вычислительную машину, микропроцессор или специально разработанное для решения конкретной задачи вычислительное устройство. Сигнал, поступающий на вход вычислительного устройства, должен быть преобразован к виду, пригодному для обработки на ЭЦВМ. Он должен иметь вид последовательности чисел, представленных в коде машины.

В некоторых случаях задача представления входного сигнала в цифровой форме решается сравнительно просто. Например, если нужно передать словесный текст, то каждому символу (букве) этого текста нужно поставить в соответствие некоторое число и, таким образом, представить передаваемый сигнал в виде числовой последовательности. Легкость решения задачи в этом случае объясняется тем, что словесный текст по своей природе дискретен.

Однако большинство сигналов, с которыми приходится иметь дело в радиотехнике, являются непрерывными. Это связано с тем, что сигнал является отображением некоторого физического процесса, а почти все физические процессы непрерывны по своей природе.

Рассмотрим процесс дискретизации непрерывного сигнала на конкретном примере. Допустим, на борту некоторого космического аппарата производится измерение температуры воздуха; результаты измерения должны передаваться на Землю в центр обработки данных. Температура

Рис. 1.1. Виды сигналов: а — непрерывный (континуальный) сигнал; 6 — дискретный сигнал; в — АИМ-колебание; г — цифровой сигнал

воздуха измеряется непрерывно; показания датчика температуры также являются непрерывной функцией времени (рис. 1.1, а). Но температура изменяется медленно, достаточно передавать ее значения один раз в минуту. Кроме того, нет необходимости измерять ее с точностью выше чем 0,1 градуса. Таким образом, вместо непрерывной функции

можно с интервалом в 1 мин передавать последовательность числовых значений (рис. 1.1, г), а в промежутках между этими значениями можно передавать сведения о давлении, влажности воздуха и другую научную информацию.

Рассмотренный пример показывает, что процесс дискретизации непрерывных сигналов состоит из двух этапов: дискретизации по времени и дискретизации по уровню (квантования). Сигнал, дискретизированный только по времени, называют дискретным; он еще не пригоден для обработки в цифровом устройстве. Дискретный сигнал представляет собой последовательность, элементы которой

в точности равны соответствующим значениям исходного непрерывного сигнала (рис. 1.1, б). Примером дискретного сигнала может быть последовательность импульсов с изменяющейся амплитудой — амплитудно-импульсно-модулированное колебание (рис. 1.1, в). Аналитически такой дискретный сигнал описывается выражением

где исходный непрерывный сигнал;

единичный импульс АИМ-колебания.

Если уменьшать длительность импульса сохраняя его площадь неизменной, то в пределе функция стремится к -функции. Тогда выражение для дискретного сигнала можно представить в виде

Для преобразования аналогового сигнала в цифровой после дискретизации по времени должна следовать дискретизация по уровню (квантование). Необходимость квантования вызвана тем, что любое вычислительное устройство может оперировать только числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. Так в рассмотренном примере производится округление значений температуры до трех значащих цифр (рис. 1.1, г). В других случаях число разрядов передаваемых значений сигнала может быть иным. Сигнал, дискретизированный и по времени, и по уровню, называется цифровым.

Правильный выбор интервалов дискретизации по времени и по уровню очень важен при разработке цифровых систем обработки сигналов. Чем меньше интервал дискретизации, тем точнее дискретизированный сигнал соответствует исходному непрерывному. Однако при уменьшении интервала дискретизации по времени возрастает число отсчетов, и для сохранения общего времени обработки сигнала неизменным приходится увеличивать скорость обработки, что не всегда возможно. При уменьшении интервала квантования требуется больше разрядов для описания сигнала, вследствие чего цифровой фильтр становится более сложным и громоздким.

DSPL-2.0 — свободная библиотека алгоритмов цифровой обработки сигналов

Распространяется под лицензией LGPL v3

Страница проекта на GitHub.

Содержание

Вводные понятия

Сигнал называют аналоговым, если он определен на непрерывной оси времени , и в каждый момент может принимать произвольные значения. Аналоговый сигнал может быть представлен непрерывной, или кусочно-непрерывной функции переменной . Пример аналогового сигнала показан на рисунке 1.

Если сигнал принимает произвольные значения только в фиксированные моменты времени , — целое число, то такой сигнал называется дискретным. Наиболее широкое распространение получили дискретные сигналы, определенные на равноотстоящей сетке , где — интервал дискретизации. При этом в моменты дискретизации дискретный сигнал может принимать произвольные значения. Если значения дискретного сигнала также берутся на фиксированной сетке значений, и при этом сами значения могут быть представлены числом конечной разрядности в одной из систем счисления, то такой дискретный сигнал называется цифровым . Часто говорят, что цифровой сигнал представляет собой квантованный по уровню дискретный сигнал. Примеры дискретного и цифрового сигналов также показаны на рисунке 1. Тонкая разница между дискретными и цифровыми сигналами дает возможность их отождествлять практически во всех прикладных задачах. Аналоговый сигнал может быть описан функцией времени, в то время как дискретный и цифровой сигналы могут быть заданы вектором отсчетов :

Указанный преимущества определили повсеместное распространение цифровых систем хранения и обработки сигналов. Но цифровые сигналы также имеют и недостатки по сравнению с аналоговыми.

Во-первых нет возможности передавать цифровые сигналы «как есть», поскольку передача сигналов чаще всего происходит при использовании электромагнитных и акустических волн, которые являются непрерывными во времени. Поэтому для передачи цифровых сигналов требуются дополнительные методы цифровой модуляции, а также цифро-аналоговые преобразователи (ЦАП).

Другим недостатком цифровых сигналов является меньший динамический диапазон сигнала (т.е. отношение самого большого значения к самому маленькому), из-за квантования сигнала на фиксированной сетке значений.

Дискретизация аналоговых сигналов. Математическая модель дискретного сигнала

В данном параграфе мы рассмотрим способ выборки дискретных значений аналогового сигнала. Структурная схема устройства дискретизации показана на рисунке 2. Данное устройство называется аналого-цифровой преобразователь (АЦП), потому что оно преобразует аналоговый сигнал в набор оценок дискретных значений , где — целое число, взятых через равноотстоящие промежутки времени .

Временны́е осциллограммы, поясняющие принцип работы устройства показаны на рисунке 3 (см. [1, стр. 475–476], или [2, стр. 438]).

На входе АЦП имеется аналоговый сигнал . Генератор импульсов формирует равноотстоящие стробирующие импульсы , которые управляют ключом, в результате чего на вход усилителя подаются котроткие выборки сигнала длительности длительности , взятые через интервал дискретизации .

Оценка дискретного сигнала может быть представлена в виде

Интегрируя на каждом интервале длительности стробирующего импульса получим оценку значения сигнала в момент времени . При конечной величине мы можем говорить об оценке значения сигнала в момент времени с некоторой погрешностью, ввиду изменения сигнала на интервале . Поэтому мы используем шапочку над обозначением , чтобы подчеркнуть приближенную оценку.

При уменьшении длительности погрешность оценки будет уменьшаться, и в пределе мы можем получить дискретный сигнал как:

Бесконечная сумма смещенных дельта-функций называется решетчатой функцией и обозначается [3, стр. 77]:

Тогда математической моделью дискретного сигнала будет произведение исходного аналогового сигнала на решетчатую функцию:

Графически модель дискретного сигнала , с использованием решетчатой функции показана на рисунке 4.

Для получения численных значений дискретного сигнала необходимо проинтегрировать дискретный сигнал (5) в окрестности :

В дальнейшем мы будем широко использовать данную модель дискретного сигнала для перехода от методов анализа и обработки аналоговых сигналов, к цифровым.

Размерность дискретного сигнала

Пусть исходный аналоговый сигнал описывает изменение напряжения во времени и имеет размерность вольт . Вспомним, что дельта-функция Дирака имеет размерность, обратную размерности ее аргумента. Тогда решетчатая функция , согласно (4) имеет размерность , а размерность дискретного сигнала (5) будет .

Заметим, что значения дискретного сигнала, полученные из (6) как результат интегрирования дискретного сигнала в окрестности момента времени , будут иметь размерность исходного сигнала .

Преобразование Фурье решетчатой функции

В данном разделе мы проанализируем спектральную плотность решетчатой функции . Для начала рассмотрим как периодический сигнал. Тогда можно представить в виде разложения в ряд Фурье:

Тогда (7) с учетом (8):

Выражение (10) представляет как бесконечную сумму комплексных экспонент.

Рассмотрим теперь преобразование Фурье решетчатой функции:

Поменяем операции интегрирования и суммирования и применим фильтрующее свойство дельта-функции:

Выражение (12) также представляет собой бесконечную сумму комплексных экспонент. Учтем, что и получим:

Таким образом, спектральная плотность решетчатой функции представляет собой также решетчатую функцию.

Период повторения дельта-функций в частотной области равен , при этом дельта-функции масштабируются в раз, как это показно на рисунке 5.

Заметим, что умножение на в частотной области изменяет размерность спектральной плотности , в результате чего спектральная плотность переходит в безразмерный спектр (что не удивительно, потому что исходная решетчатая функция — периодическая).

Спектральная плотность дискретного сигнала

Пусть дан аналоговый сигнал , спектральная плотность которого равна . В данном параграфе мы рассмотрим процесс равноотстоящей дискретизации сигнала в частотной области.

Преобразование Фурье дискретного сигнала (5) равно:

Применим свойство преобразования Фурье произведения сигналов, тогда представляет собой свертку спектральной плотности решетчатой функции и спектральной плотности исходного сигнала :

Уравнение (17) задает спектральную плотность дискретного сигнала как бесконечную сумму масштабированных копий спектральной плотности , отстоящих друг от друга на рад/с по частоте, как это показано на рисунке 6.

Заметим, что мы не накладываем никаких ограничений ни на интервал дискретизации , ни на сигнал , ни на спектральную плотность . Вне зависимости от частоты дискретизации рад/с, и формы , спектральная плотность дискретного сигнала всегда будет представлять собой сумму масштабированных копий , отстоящих друг от друга на величину частоты дискретизации рад/с.

Размерность спектра дискретного сигнала

Проанализируем выражение (17) на предмет размерности , в предположении, что исходный аналоговый сигнал имеет размерность :

Если аналоговый сигнал описывает изменения напряжения во времени и измеряется в единицах вольт, то при дискретизации аналогового сигнала, получим дискретные отсчеты, также измеряемые в вольт, и спектр дискретного сигнала также будет измеряться в единицах вольт. Тогда функцию мы можем назвать спектром, а не спектральной плотностью.

Главный вывод: преобразование Фурье дискретного сигнала не изменяет размерности дискретных отсчетов сигнала, в отличии от преобразования Фурье аналогового сигнала, которое возвращает спектральную плотность .

Выводы

В данном разделе мы ввели понятие дискретного и цифрового сигналов. Мы опеределили, что дискретный сигнал может быть представлен как результат произведения решетчатой функции и аналогового сигнала.

Были детально рассмотрены свойства решетчатой функции и показано, что спектральная плотность решетчатой функции также представляет собой масштабированную по амплитуде решетчатую функцию.

В результате свойств решетчатой функци получили, что спектральная плотность дискретного сигнала представляется бесконечной суммой копий спектральных плотностей исходного сигнала, отставленных дург от друка на величину равную частоте дискретизации.

Дискретный сигнал — сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи. По английски: Discrete signal Синонимы:… … Финансовый словарь

дискретный сигнал — Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

дискретный сигнал — Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

Дискретный сигнал — 13. Дискретный сигнал Сигнал, имеющий конечное число значений величин Источник … Словарь-справочник терминов нормативно-технической документации

дискретный сигнал — diskretusis signalas statusas T sritis automatika atitikmenys: angl. sampled signal vok. abgetastetes Signal, n rus. дискретный сигнал, m pranc. signal échantillonné, m; signal discret, m … Automatikos terminų žodynas

дискретный сигнал — Сигнал, описываемый дискретной функцией времени … Политехнический терминологический толковый словарь

дискретный сигнал времени — diskretinamojo laiko signalas statusas T sritis radioelektronika atitikmenys: angl. discrete time signal vok. diskretes Zeitsignal, n rus. дискретный сигнал времени, m pranc. signal discret de temps, m … Radioelektronikos terminų žodynas

Сигнал (техника) — Сигнал в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым… … Википедия

Дискретный — (от лат. discretus раздельный, прерывистый). Это прилагательное может употребляться в разных контекстах: В дискретной математике дискретным называется счётное множество, эта концепция также важна в комбинаторике и теории вероятностей. В общей… … Википедия

дискретный — 4.2.6 дискретный: Относящийся к данным, которые состоят из отдельных элементов, таких как символы, или к физическим величинам, имеющим конечное число различных распознаваемых значений, а также к процессам и функциональным блокам, использующим эти … Словарь-справочник терминов нормативно-технической документации

Обсуждение:Дискретный сигнал — Википедия

Материал из Википедии — свободной энциклопедии

Определение не соответствует современной мировой и отечественной науке[править код]

Да уж! «Сигнал называется дискретным, если он может принимать лишь конечное(!) число значений(!).» Выходит, что дискретный сигнал это сигнал непрерывный во времени(!) и квантованный по уровню(!), хотя на самом деле все наоборот.

Да, ранее, на заре ЦТ и ЦА словом «дискретный» называли все, что отличалось от «аналоговый» (например, «дискретный ИП»=»цифровой ИП», «дискретный микросхема»=»цифровая микросхема», «дискретный сигнал»=»цифровой сигнал»=»квантованный сигнал»). Видимо не случайно в статье приводится ссылка на АИ за 1987г — Самофалов К.Г. и др. с названием «…теория ЦИФРОВЫХ автоматов».

С появлением АЦП, развитием теории квантования, появлением и широким применением ПЗС, появлением скоростных осциллографов и методов повышения частоты дискретизации с помощью специальных ЭЛТ с ПП мишенью (т.н. аналого-цифровая развертка) термин «дискретный» (по крайней мере «дискретный сигнал») стал означать совсем иное. В то же время вопросы точности и оптимальности реализации математических операций при обработке сигналов в ПЛИС, МК, ЦПОС более четко определили объекты теории ЦОС и понятие «цифровой сигнал».

Смотрим хотя бы в английскую версию статьи: «A discrete signal or discrete-time signal is a time series consisting of a sequence of qualities» — временной ряд, состоящий из последовательности величин. Т.е. 1) «discrete signal» = «discrete-time signal», 2) ни слова о «значениях, которые может принимать сигнал», 3) ни слова о «числе» этих значений!

В качестве АИ смотри, например, «А. Оппенгейм, Р. Шафер. Обработка сигналов в дискретном времени, 2006г», — оригинальное название у авторов: «Discrete-Time Signal Processing», которое наши переводчики из конъюнктурных соображений перевели по-старому, «Цифровая обработка сигналов», в чем стыдливо признались в предисловии к переводу, несмотря на то, что сами авторы в своем предисловии подчеркнули, что это именно теория «дискретных» сигналов (т.е. более широкого класса сигналов, в том числе и сигналов в ПЗС, в фильтрах на переключаемых емкостях, ППК и т.п., где нет «конечного числа значений»), а не теория «квантованных» и «цифровых» сигналов, которыми занимается современная ЦОС. Просто мир ушел вперед. Akil 14:48, 18 августа 2012 (UTC)

INFOблог: Непрерывные и дискретные сигналы

В предыдущем посте мы рассматривали различные определения понятия «информация» и пришли к выводу, что информация может быть определена множеством разных способов в зависимости от выбранного подхода. Но об одном мы можем говорить однозначно: информация — знания, данные, сведения, характеристики, отражения и т.д. — категория нематериальная. Но мы живем в мире материальном. Следовательно, для существования и распространения в нашем мире информация должна быть связана с какой-либо материальной основой. Без нее информация не может передаваться и сохраняться.

Тогда материальный объект (или среда), с помощью которого представляется та или иная информация будет являться носителем информации, а изменение какой-либо характеристики носителя мы будем называть сигналом.
Например, представим равномерно горящую лампочку, она не передает никакой информации. Но, если мы будем включать и выключать лампочку (т.е. изменять ее яркость), тогда с помощью чередований вспышек и пауз мы сможем передать какое-нибудь сообщение (например, посредством азбуки Морзе). Аналогично, равномерный гул не дает возможности передать какую-либо информацию, однако, если мы будем изменять высоту и громкость звука, то сможем сформировать некоторое сообщение (что мы и делаем с помощью устной речи).

При этом сигналы могут быть двух видов: непрерывный (или аналоговый) и дискретный.
В учебнике даны следующие определения.

Непрерывный сигнал принимает множество значений из некоторого диапазона. Между значениями, которые он принимает, нет разрывов.
Дискретный сигнал принимает конечное число значений. Все значения дискретного сигнала можно пронумеровать целыми числами.

Немного уточним эти определения.
Сигнал называется непрерывным (или аналоговым), если его параметр может принимать любое значение в пределах некоторого интервала.

Сигнал называется дискретным, если его параметр может принимать конечное число значений в пределах некоторого интервала.

Графики этих сигналов выглядят следующим образом

Примерами непрерывных сигналов могут быть музыка, речь, изображения, показания термометра (высота столба ртути может быть любой и представляет собой ряд непрерывных значений).

Примерами дискретных сигналов могут быть показания механических или электронных часов, тексты в книгах, показания цифровых измерительных приборов и т.д.

Вернемся к примерам, рассмотренным в начале сообщения — мигающая лампочка и человеческая речь. Какой из этих сигналов является непрерывным, а какой дискретным? Ответьте в комментариях и аргументируйте свой ответ. Можно ли непрерывную информацию преобразовать в дискретную? Если да — приведите примеры.

Дискретный сигнал — Карта знаний

  • Дискре́тный сигна́л (лат. discretus — «прерывистый», «разделённый») — сигнал, который является прерывистым (в отличие от аналогового) и который изменяется во времени и принимает любое значение из списка возможных значений. Список возможных значений может быть непрерывным или квантованным.

    Существует путаница между понятиями дискретного и цифрового сигналов. Часто цифровой сигнал называют дискретным, потому что он состоит из дискретных (отдельных) частей (samples), несмотря на то, что цифровой сигнал не является прерывистым сигналом.

    В английском языке используют понятия: discrete time (дискретное время), для рассмотрения значений переменных в отдельные моменты времени; continuous time (непрерывное время), для рассмотрения значений переменных в любой момент времени, причем между любыми двумя моментами времени существует бесконечное количество других моментов времени.

    Цифровой сигнал получается последовательностью двух шагов:

    Сэмплирования, который производит непрерывный сигнал дискретного времени

    Квантования, который заменяет значение каждого сэмпла приближенным значение, выбранным из заданного дискретного набора (квантованных уровней).Дискретность применяется в вычислительной технике для пакетной передачи данных.

Источник: Википедия

Связанные понятия

Сигнал — материальное воплощение сообщения для использования при передаче, переработке и хранении информации.Сигна́л — код (символ, знак), созданный и переданный в пространство (по каналу связи) одной системой, либо возникший в процессе взаимодействия нескольких систем. Смысл и значение сигнала проявляются после регистрации и интерпретации в принимающей системе. Ана́логовый сигна́л — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. Физи́ческое коди́рование (линейное кодирование, манипуляция сигнала, модуляция, импульсно-кодовая модуляция) — представления дискретных сигналов, передаваемых по цифровому каналу связи, с целью передачи данных, представленных в цифровом виде, на расстояние по физическому каналу связи (такому как оптическое волокно, витая пара, коаксиальный кабель, инфракрасному излучению). Физическое кодирование также применяется для записи данных на цифровой носитель. При физическом кодировании уделяют внимание… Цифровая связь — область техники, связанная с передачей цифровых данных на расстояние. Существуют два класса систем связи: цифровые и аналоговые. Цифровой сигнал — это сигнал, имеющий конечное число дискретных уровней. Аналоговые сигналы являются непрерывными. Типичным примером такого сигнала является речевой сигнал, передаваемый по обычному телефону. Информацию, передаваемую аналоговыми сигналами, также необходимо защищать, в том числе и криптографическими методами.

Подробнее: Шифрование в аналоговой телефонии

Синхро́нный усили́тель — тип электронного усилителя, в котором применён принцип синхронного детектирования сигнала. Канал связи (англ. channel, data line) — система технических средств и среда распространения сигналов для односторонней передачи данных (информации) от отправителя (источника) к получателю (приёмнику). Цифровые технологии (англ. Digital technology) основаны на представлении сигналов дискретными полосами аналоговых уровней, а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала. Аудио-скремблер (англ. scramble — шифровать, перемешивать) — программное или аппаратное устройство, выполняющее скремблирование звука — обратимое преобразование звукового сигнала, основанное на изменении соотношений между временем, амплитудой и частотой звукового сигнала. Фа́зовая манипуля́ция (ФМн, англ. phase-shift keying (PSK)) — один из видов фазовой модуляции, при которой фаза несущего колебания меняется скачкообразно в зависимости от информационного сообщения. В основе кодирования звука с использованием ПК лежит процесс преобразования колебаний воздуха в колебания электрического тока и последующая дискретизация аналогового электрического сигнала. Кодирование и воспроизведение звуковой информации осуществляется с помощью специальных программ (редактор звукозаписи). Качество воспроизведения закодированного звука зависит от частоты дискретизации и её разрешения (глубины кодирования звука — количество уровней).

Подробнее: Кодирование звуковой информации

Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Используется для изучения процессов управления техническими системами, для цифровой обработки сигналов и в других областях науки и техники. Распознавание по голосу — одна из форм биометрической аутентификации, позволяющая идентифицировать личность человека по совокупности уникальных характеристик голоса. Относится к динамическим методам биометрии. Однако, поскольку голос человека может меняться в зависимости от возраста, эмоционального состояния, здоровья, гормонального фона и целого ряда других факторов, не является абсолютно точным. По мере развития звукозаписывающей и воспроизводящей техники, технология распознавания применяется с… Передискретиза́ция (англ. resampling) в обработке сигналов — изменение частоты дискретизации дискретного (чаще всего цифрового) сигнала. Алгоритмы передискретизации широко применяются при обработке звуковых сигналов, радиосигналов и изображений (передискретизация растрового изображения — это изменение его разрешения в пикселах). Метод прямой последовательности для расширения спектра (DSSS — англ. direct sequence spread spectrum) — широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала, при котором исходная последовательность битов преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Адаптивный фильтр — система с линейным фильтром, имеющим передаточную функцию, контролируемую переменными параметрами и средствами для установки этих параметров согласно оптимизационному алгоритму. Ввиду сложности оптимизационных алгоритмов почти все адаптивные фильтры являются цифровыми фильтрами. Адаптивные фильтры требуются для некоторых приложений, поскольку некоторые параметры желательной операции обработки (например, местоположение отражающих поверхностей в реверберирующем пространстве) заранее… Состязание сигналов — явление в цифровых устройствах несоответствия работы данного устройства с заданным алгоритмом работы по причине возникновения переходных процессов в реальной аппаратуре. Временная область — анализ математических функций, физических сигналов или временных рядов в экономике или статистике охраны окружающей среды относительно времени. Во временной области значения сигнала или функции известное для всех действительных чисел в случае непрерывного времени, или в разные отдельные моменты в случае дискретного времени.. Инструментом, который обычно используется для визуализации реальных сигналов во временной области, является осциллограф. График временной области показывает… Задача характеризации элементов микросхем заключается в получении зависимостей функциональных параметров библиотечного элемента или блока от длительности фронтов сигналов на входе и от величины нагрузочных емкостей для заданных наборов этих величин. В коммерческих системах характеризации (SiliconSmart , Virtuoso Liberate Characterization Solution , Virtuoso Variety Statistical Characterization Solution , Virtuoso Liberate MX Memory Characterization Solution , Kronos Characterizer Plus ) такие зависимости… Ве́йвлет (англ. wavelet — небольшая волна, рябь), иногда, гораздо реже, вэйвлет — математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием… Аппара́тный генера́тор случа́йных чи́сел (генератор истинно случайных чисел) — устройство, которое генерирует последовательность случайных чисел на основе измеряемых, хаотически изменяющихся параметров протекающего физического процесса. Работа таких устройств часто основана на использовании надёжных источников энтропии, таких, как тепловой шум, дробовой шум, фотоэлектрический эффект, квантовые явления и т. д. Эти процессы в теории абсолютно непредсказуемы, на практике же получаемые из них случайные… В обработке сигналов чирплет-преобразование — это скалярное произведение входного сигнала с семейством элементарных математических функций, именуемых чирплетами.

Подробнее: Чирплет

Белый шум — стационарный шум, спектральные составляющие которого равномерно распределены по всему диапазону задействованных частот. Примерами белого шума являются шум близкого водопада (отдаленный шум водопада — розовый, так как высокочастотные составляющие звука затухают в воздухе сильнее низкочастотных), или дробовой шум на клеммах большого сопротивления, или шум стабилитрона, через который протекает очень малый ток. Название получил от белого света, содержащего электромагнитные волны частот всего… Вейвлет Хаа́ра — один из первых и наиболее простых вейвлетов. Он основан на ортогональной системе функций, предложенной венгерским математиком Альфредом Хааром в 1909 году. Вейвлеты Хаара ортогональны, обладают компактным носителем, хорошо локализованы в пространстве, но не являются гладкими. Впоследствии Ингрид Добеши стала развивать теорию ортогональных вейвлетов и предложила использовать функции, вычисляемые итерационным путём, названные вейвлетами Добеши. Цифровой водяной знак (ЦВЗ) — технология, созданная для защиты авторских прав мультимедийных файлов. Обычно цифровые водяные знаки невидимы. Однако ЦВЗ могут быть видимыми на изображении или видео. Обычно это информация представляет собой текст или логотип, который идентифицирует автора. Передача данных (обмен данными, цифровая передача, цифровая связь) — физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило, для последующей обработки средствами вычислительной техники. Примерами подобных каналов могут служить медные провода, ВОЛС, беспроводные каналы передачи данных или запоминающее устройство. Счётчик числа импульсов — устройство, на выходах которого получается двоичный (двоично-десятичный) код, определяемый числом поступивших импульсов. Счётчики могут строиться на двухступенчатых D-триггерах, T-триггерах и JK-триггерах. Морфинг (англ. morphing — трансформация) — звуковой эффект, заключающийся в наложении характеристик одного звука на другой. В качестве характеристик могут выступать огибающая, спектр или временная структура сигнала. Часто говорят о тембральном морфинге — процессе комбинирования двух или более звуков различного тембра для получения нового звука, тембр которого включает в себя отдельные характеристики обоих звуков. Алгоритм Карплуса-Стронга для синтеза струны — способ синтеза звука, заключающийся в пропускании короткого сигнала через линию задержки с фильтром. В зависимости от параметров, полученный звук может быть похож на звук струны, извлекаемый медиатором или тэппингом, либо на звуки некоторых ударных инструментов. Ту́рбокод — параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Синонимом турбокода является известный в теории кодирования термин — каскадный код (англ. concatenated code) (предложен Д. Форни в 1966 году). Долгая краткосрочная память (англ. Long short-term memory; LSTM) — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Сеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В… Код Миллера (иногда называют трехчастотным) — один из способов линейного кодирования (физического кодирования, канального кодирования, импульсно-кодовая модуляция, манипуляция сигнала). Применяется для передачи информации, представленной в цифровом виде от передатчика к приемнику (например по последовательному интерфейсу, оптоволокну). Код формируемый согласно правилу кода Миллера: является двухуровневым (сигнала может принимать два потенциальных значения, например: высокий и низкий уровень напряжения… Прямохаотические системы связи — цифровые системы связи на хаотических сигналах, в которых формирование хаотической несущей и модуляция информационным сигналом происходят непосредственно в полосе частот связи, а извлечение информации производится без промежуточного преобразования частоты. Эхоподавление — термин используется в телефонии Представляет собой процесс удаления эха из передаваемых звуков для повышения качества передачи голоса по телефону. В дополнение к улучшению субъективного качества, эхоподавление увеличивает пропускную способность канала связи за счет подавления пауз, предотвращая распространение эха по сети. Теория информации — раздел прикладной математики, радиотехники (теория обработки сигналов) и информатики, относящийся к измерению количества информации, её свойств и устанавливающий предельные соотношения для систем передачи данных. Как и любая математическая теория, теория оперирует математическими моделями, а не реальными физическими объектами (источниками и каналами связи). Использует, главным образом, математический аппарат теории вероятностей и математической статистики. Цвета шума — система терминов, приписывающая некоторым видам стационарных шумовых сигналов определённые цвета исходя из аналогии между спектром сигнала произвольной природы (точнее, его спектральной плотностью или, говоря математически, параметрами распределения случайного процесса) и спектрами различных цветов видимого света. Эта абстракция широко используется в отраслях техники, имеющих дело с шумом (акустика, электроника, физика и т. д.). Шумопонижение — процесс устранения шумов из полезного сигнала с целью повышения его субъективного качества или для уменьшения уровня ошибок в каналах передачи и системах хранения цифровых данных. Методы шумоподавления концептуально очень похожи независимо от обрабатываемого сигнала, однако предварительное знание характеристик передаваемого сигнала может значительно повлиять на реализацию этих методов в зависимости от типа сигнала. Бит (русское обозначение: бит; международное: bit; от англ. binary digit — двоичное число; также игра слов: англ. bit — кусочек, частица) — единица измерения количества информации. 1 бит информации — символ или сигнал, который может принимать два значения: включено или выключено, да или нет, высокий или низкий, заряженный или незаряженный; в двоичной системе исчисления это 1 (единица) или 0 (ноль). Цифровая звукозапись — технология преобразования аналогового звука в цифровой с целью сохранения его на физическом носителе для возможности последующего воспроизведения записанного сигнала. Экстраполятор первого порядка — математическая модель для восстановления дискретизованного сигнала, которое может производиться обычным цифро-аналоговым преобразователем (который в данном случае выступает в качестве экстраполятора нулевого порядка) и аналоговой схемой (интегратором). В этом случае сигнал восстанавливается в виде кусочно-линейной аппроксимации изначально оцифрованного сигнала. По сравнению с экстраполятором нулевого порядка экстраполятор первого порядка в общем случае имеет меньший… Форма волны —  наглядное представление формы сигнала, такого как волна, распространяющегося в физической среде, или его абстрактное представление. Дифференциальная импульсно-кодовая модуляция (ДИКМ) — это метод кодирования сигнала, который основывается на импульсно-кодовой модуляции (ИКМ — англ. Pulse Code Modulation (PCM)), но использует дополнительные возможности для компактного представления, основываясь на прогнозировании отсчётов сигнала. ДИКМ может применяться для аналогового сигнала или цифрового сигнала. Цифрово́й компара́тор или компара́тор ко́дов логическое устройство с двумя словарными входами, на которые подаются два разных двоичных слова равной в битах длины и обычно с тремя двоичными выходами, на которые выдаётся признак сравнения входных слов, — первое слово больше второго, меньше или слова равны. При этом выходы «больше», «меньше» имеют смысл, если входные слова кодируют числа в том или ином машинном представлении. Электрический импульс — кратковременный всплеск электрического напряжения или силы тока в определённом, конечном временном промежутке. Различают видеоимпульсы — единичные колебания какой-либо формы и радиоимпульсы — всплески высокочастотных колебаний. Видеоимпульсы бывают однополярные (отклонение только в одну сторону от нулевого потенциала) и двухполярные. Реконструкционный фильтр (восстанавливающий фильтр, англ. reconstruction filter, anti-imaging filter) используется в смешанных аналогово-цифровых системах для вывода гладкого (smooth) аналогового сигнала c цифрового входа. В частности, он применяется в устройствах ЦАП. Пото́чный или Пото́ковый шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры. Синхронизация — процесс установления и поддержания временных соотношений (взятия отсчётов) между двумя и более системами, участвующих в процессе синхронной передачи цифровых данных. При синхронной передаче данных возникают ситуации, когда приёмник и передатчик работают не в такт (частота формирования сигнала в канал связи не совпадает с частотой опроса данных на приёмной стороне), что приводит к рассогласованию системы передачи и приема данных, и к возникновению ошибок в принятых данных. Чтобы в…

Чем отличается непрерывный сигнал от дискретного

Для связи и передачи сообщений используют сигналы, которые отличаются друг от друга. Существуют непрерывные (НС) и дискретные сигналы (ДС).

Особенности непрерывного сигнала

Типы сигналовТипы сигналов

Если дискретный сигнал квантуется как по времени, так и по уровню, то его называют цифровым сигналом

Сигнал считается непрерывным, если в заданных пределах он может иметь любое значение. С математической точки зрения это означает, что НС можно представить в виде непрерывной функции. Примерами такого сигнала является получаемый с микрофона сигнал о давлении на его мембрану звуковой волны или сигнал от термопары об измеряемой температуре.

Аналоговые системы для передачи информации, использующие НС, имеют следующие недостатки:

  • пониженную помехозащищённость — это свойство связано с тем, что из-за непрерывности системы помеху, попавшую в сигнал, невозможно отличить от самого сигнала;
  • затруднения при передаче сигналов управления;
  • трудности при сопряжении с компьютером и другими цифровыми устройствами;
  • трудности шифрования.

Что такое дискретный

Дискретный сигналДискретный сигнал

Дискретность применяется в вычислительной технике для пакетной передачи данных

Дискретный сигнал — тот, который в некотором интервале может принимать определённое число значений. К таким сигналам относятся показания цифровых часов или приборов, а также тексты в книгах.

Благодаря достижениям в цифровой технике большинство электронных устройств в настоящее время являются цифровыми и работают с ДС. В то же время физические сигналы в природе имеют аналоговый вид. Преобразование НС в дискретный вид производится путём дискретизации его с помощью специальных устройств (АЦП). Обратное преобразование сигнала производится с помощью ЦАП.

Достоинствами цифровых систем, работающих на ДС, являются:

  • высокая помехозащищённость и возможность работы каналов связи при больших шумах;
  • простота передачи команд управления каналами;
  • возможность цифровой обработки сигналов;
  • лёгкость засекречивания.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер — цифровая машина, то есть внутреннее представление информации в нём дискретно. Дискретизация входных сигналов (если она непрерывна) позволяет сделать их пригодными для дискретной обработки.

Отличия двух видов сигналов

непрерывный и дискретный сигналынепрерывный и дискретный сигналы

Все значения дискретного сигнала можно пронумеровать целыми числами

Основным отличием непрерывного сигнала от ДС является то, что он может иметь в заданном диапазоне любое значение, тогда как ДС может принимать только определённые значения.

К недостаткам систем, использующих ДС, можно отнести:

  • увеличение полосы частот, требуемой для передачи сообщений;
  • для обеспечения точного воспроизведения непрерывного сигнала при дискретизации требуется значительное количество уровней квантования и высокая частота;
  • требование синхронизации;
  • плохая совместимость с уже имеющимися аналоговыми системами.

Различные процессы могут быть описаны с помощью непрерывных или дискретных сигналов. Непрерывный сигнал может иметь любое значение из некоторого диапазона величин, тогда как для дискретного сигнала возможные его значения определены заранее. Во многих случаях при использовании цифровых методов обработки информации полезно преобразовать непрерывные сигналы в дискретные.

чем отличаются от цифровых и общая информация

Аналоговый сигнал (analogue signal) – непрерывный во времени поток данных (информации), имеющий изменяющиеся и принимающие любое возможное значение характеристики (напряжение, силы тока, мощности, давления звуковой волны и т.д.). Несмотря на большое количество недостатков и постепенное вытеснение цифровым аналогом, в таких областях, как телефония, звукозапись, телевидение, такой вид передачи информации сохраняет свою актуальность, благодаря относительной своей дешевизне и простоте генерирующего его оборудования.

Графическое изображение непрерывного потока данных

Графическое изображение непрерывного потока данных

История появления термина

Появление термина, обозначающего такой способ передачи данных, тесно связано с такими сферами, как вычислительная техника, телефония и звукозаписывающая индустрия, электрические измерения.

Вычислительная техника

В 40-х годах создаются первые вычислительные системы, предназначенные для сбора и обработки цифровой информации. В начале 80-х годов с появлением новых моделей компьютеров на базе процессоров Intel возможности вычислительной техники расширились. Именно в этот период появляется данный термин.

Звукозапись и телефония

Понятие непрерывного способа передачи данных изначально связано с телефонией. Непрерывные колебания поступают на динамик устройства, становятся электрическим аналогом, затем преобразуются в сигнал, подобный голосу.

Электрические измерения

Непрерывный поток воспроизводится приемным устройством пропорционально таким электрическим параметрам, как напряжение, сила тока. Именно с началом измерения указанных выше электрических величин связывают появление этого термина.

Общая информация

Энергия потока

Так как аналоговый сигнал – это непрерывный поток данных, то энергия его бесконечна. Однако в качестве значения данной характеристики обычно используют усредненную для определенного промежутка времени величину, так, к примеру, переменный электрический ток в телефонной сети, отвечающий за передачу голоса, имеет среднее напряжение 60 В.

Взаимное преобразование различных по природе потоков

Непрерывный поток данных преобразуется в дискретный (прерывистый). Достаточно воспользоваться импульсным блоком питания, который сформирует входное напряжение в виде дискретных ультразвуковых пачек. Преобразование проводится программой либо технически через микросхемы.

Отличия дискретного и цифрового сигналов

Основная разница дискретного и цифрового потоков – ярко выраженная амплитуда у последнего

Основная разница дискретного и цифрового потоков – ярко выраженная амплитуда у последнего

Один из способов передачи данных, описываемых в данной статье, – дискретный, имеющий сходные характеристики с аналоговым, но отличающийся от него тем, что он является прерывистым.

По сравнению с дискретным и аналоговым, цифровой сигнал, наоборот, характеризуется конкретными параметрами:

  • Строго определённой своими характеристиками длительностью;
  • Ярко выраженной амплитудой;
  • Наличием двух состояний: «0» либо «1».
  • Формированием из битов машинных слов, необходимых для дальнейшей обработки информации, ее представлении в доступном и понятном виде для пользователя.

Благодаря этим особенностям, цифровая передача и хранение информации в последнее время находят очень широкое применение в различных отраслях техники, электроники, связи.

Важно! Самое основное, чем отличается аналоговая информация от дискретной, – это прерывистость передачи последней при помощи соответствующего потока данных. Однако, несмотря на данное различие, дискретная информация не является цифровой, так как ее характеристики в процессе существования могут обладать как ограниченным, так и неограниченным диапазоном значений.

Виды сигналов

В зависимости от изменения характеристик во времени, все потоки подразделяются на следующие виды:

  • Аналоговые – непрерывные, имеющие большое количество значений;
  • Дискретные – прерывистые, с большим количеством значений;
  • Цифровые – прерывистые, имеющие 2 четко обозначенных основных значения.

Также, в зависимости от среды передачи и способа формирования, они бывают электрические, звуковые, оптические.

Для чего обрабатывается сигнал

Чтобы получить данные, содержащиеся в описанных выше потоках, их обрабатывают через процессы усиления, фильтрации, модуляции и демодуляции. Лишь после этого они будут представлены в понятном для пользователя виде и использованы по назначению.

Создание и формирование

Для создания непрерывного потока используют такое специальное оборудование, как генераторы. Собирают их, используя различные транзисторы (полевые и биполярные), трансформаторы.

Динамический диапазон

Динамический диапазон

Динамический диапазон

Важной характеристикой любой системы динамических измерений считается ее динамический диапазон. Четкого определения данного параметра для сигнала пока не существует, поэтому принято считать, что это соотношение наибольшего и наименьшего его значений, измеренных системой в определенный промежуток времени.

Для каждого потока важно, чтобы его динамический диапазон максимально соответствовал аналогичной характеристике системы либо устройства, предназначенного для преобразования, передачи и хранения его величин. От правильного подбора зависит, насколько точно будет передана и преобразована информация любого потока.

Аналоговый сигнал

Такой вид потока данных непрерывен во времени, его определение возможно в любой временной промежуток.

Цифровой сигнал

Такой поток представлен последовательностью конкретных цифровых значений, как правило, двух, которые принимают за логические «0» и «1» или «true» и «false».

Применение цифрового сигнала

Цифровой поток наиболее применим в современной электронике, при двоичной системе шифрования и кодирования данных.

Дискретный сигнал

В отличие от непрерывного, дискретный способ передачи данных имеет следующие особенности:

  • Может характеризоваться постоянным значением параметра, изменятся только по времени;
  • Изменяется уровень величины, но во времени остается постоянным;
  • Меняется как по значению величины, так и по временному параметру.

Сравнение цифрового и аналогового сигналов

Широко применяемые в современном мире аналоговый и цифровой сигналы имеют свои преимущества и недостатки.

К основным плюсам непрерывного потока информации относятся:

  • Простота формирования;
  • Небольшая стоимость оборудования для его получения и поддержания.

Недостатки такого вида передачи данных:

  • Содержание большого количества лишней информации, которую необходимо фильтровать;
  • Низкая помехоустойчивость, что сказывается на качестве воспроизводимой информации;
  • В передачу такого сигнала возможно нежелательное вмешательство с целью похищения передаваемой информации.

Прерывистый способ передачи данных имеет следующие преимущества:

  • Небольшое количество значений, помехоустойчивость;
  • Простота расшифровки на принимающем оборудовании;
  • Возможность кодировки больших объемов данных при их хранении и передаче на большие расстояния.

У прерывистого способа передачи и хранения информации имеется один серьезный недостаток – при серьезном уровне помех может произойти обрыв, первоначальный вид потока данных не сохранится. Для восстановления его параметров на момент обрыва приходится предусматривать дополнительные функции.

Аналоговый и цифровой сигналы и цифро-аналоговое преобразование

Аналого-цифровое преобразование

Аналого-цифровое преобразование

Современные системы, устройства позволяют проводить процессы взаимных преобразований. Так, при аналого-цифровом преобразовании (АЦП) проходит квантование аналогового потока данных в цифровой, после чего информация готова для передачи через цифровые каналы.

При процессе ЦАП цифровые коды на входе, наоборот, преобразуются в эквивалентный выходной аналоговый поток (ток, напряжение). Преобразователи широко используются для формирования сигналов в системах управления, аудио,-и видеоаппаратуре.

Таким образом, сигнал аналоговый – это хоть и уже утрачивающий свою актуальность, но достаточно широко применимый способ передачи данных. Хотя аналоговый сигнал и называют пережитком прошлого, его роль в современной телекоммуникационной технике, радиопередаче и телевещании еще до сих пор очень существенна.

Видео

Аналоговый сигнал — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 октября 2017; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 октября 2017; проверки требуют 8 правок. Аналоговый (слева сверху), Цифровой (Слева снизу) и Дискретные сигналы (справа сверху и снизу)

Ана́логовый сигна́л — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.[1]

Различают два пространства сигналов — пространство L (непрерывные сигналы), и пространство l (L малое) — пространство последовательностей.

Пространство l (L малое) есть пространство коэффициентов Фурье (счётного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L — есть пространство непрерывных по области определения (аналоговых) сигналов.

При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют континуальным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

  • Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.
  • Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесённая в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несёт информацию об изменении температуры, сигнал с микрофона — о быстрых изменениях давления в звуковой волне, и т. п.

Аналоговое телевидение — один из видов телевещания. В некоторых странах, например, в России[2][комм 1], эфирное аналоговое телевидение заменяется цифровым.

  1. ↑ В России аналоговое телевещание отключается в 2019 году.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *