Си ампер: Ампер — Википедия

Содержание

Ампер — Википедия

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток)[1]. Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

Определение

Современное определение ампера было предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году[2][3].

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10

−7 ньютона.

Иллюстрация к определению ампера.

Из определения ампера следует, что магнитная постоянная μ 0 {\displaystyle \mu _{0}} равна 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Гн/ м или, что то же самое, 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d {\displaystyle d} друг от друга бесконечных параллельных проводников, по которым текут токи I 1 {\displaystyle I_{1}} и I 2 {\displaystyle I_{2}} , приходящаяся на единицу длины, выражается соотношением:

F = μ 0 4 π 2 I 1 I 2 d . {\displaystyle F={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{d}}.}

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создает замкнутый контур, по которому протекает ток, равный 1 амперу.

История и перспективы

Единица измерения, принятая на 1-м Международном конгрессе электриков[4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см).

В 2011 г. XXIV ГКМВ приняла резолюцию[5], в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов.

В частности, предполагается, что СИ станет системой единиц, в которой элементарный электрический заряд e равен 1,602 17X·10−19 Кл точно[6]. Результатом этого явится отмена ныне действующего определения ампера и принятие нового. Величина ампера будет установлена в соответствии с новым точным значением элементарного электрического заряда, выраженным в c·А. В связи с этим в резолюции XXIV ГКМВ по поводу ампера сформулировано следующее положение[5]:

Ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X·10

−19, когда он выражен единицей СИ c·А, что эквивалентно Кл.

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение ампера, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ в том же году[7].

Кратные и дольные единицы

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ

[2]. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок[8].

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 АдекаампердаАdaA10−1 АдециампердАdA
102 АгектоампергАhA10−2 АсантиамперсАcA
103 АкилоамперкАkA10−3 АмиллиампермАmA
106 АмегаамперМАMA10−6 АмикроампермкАµA
109 АгигаамперГАGA10−9 АнаноампернАnA
1012 АтераамперТАTA10−12 АпикоамперпАpA
1015 АпетаамперПАPA10−15 АфемтоамперфАfA
1018 АэксаамперЭАEA10−18 АаттоампераАaA
1021 АзеттаамперЗАZA10−21 АзептоамперзАzA
1024 АиоттаамперИАYA10−24 АиоктоампериАyA
     применять не рекомендуется

Связь с другими единицами СИ

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

См. также

Примечания

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 23-24. — 416 с. — 30 000 экз.

Ампер — Википедия

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование —

ампер-виток)[1]. Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

Определение

Современное определение ампера было предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году[2][3].

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10

−7 ньютона.

Иллюстрация к определению ампера.

Из определения ампера следует, что магнитная постоянная μ 0 {\displaystyle \mu _{0}} равна 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Гн/ м или, что то же самое, 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d {\displaystyle d} друг от друга бесконечных параллельных проводников, по которым текут токи I 1 {\displaystyle I_{1}} и I 2 {\displaystyle I_{2}} , приходящаяся на единицу длины, выражается соотношением:

F = μ 0 4 π 2 I 1 I 2 d . {\displaystyle F={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{d}}.}

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создает замкнутый контур, по которому протекает ток, равный 1 амперу.

История и перспективы

Единица измерения, принятая на 1-м Международном конгрессе электриков[4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см).

В 2011 г. XXIV ГКМВ приняла резолюцию[5], в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов.

В частности, предполагается, что СИ станет системой единиц, в которой элементарный электрический заряд e равен 1,602 17X·10−19 Кл точно[6]. Результатом этого явится отмена ныне действующего определения ампера и принятие нового. Величина ампера будет установлена в соответствии с новым точным значением элементарного электрического заряда, выраженным в c·А. В связи с этим в резолюции XXIV ГКМВ по поводу ампера сформулировано следующее положение[5]:

Ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X·10−19, когда он выражен единицей СИ c·А, что эквивалентно Кл.

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение ампера, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ в том же году[7].

Кратные и дольные единицы

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ[2]. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок[8].

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 АдекаампердаАdaA10−1 АдециампердАdA
102 АгектоампергАhA10−2 АсантиамперсАcA
103 АкилоамперкАkA10−3 АмиллиампермАmA
106 АмегаамперМАMA10−6 АмикроампермкАµA
109 АгигаамперГАGA10−9 АнаноампернАnA
1012 АтераамперТАTA10−12 АпикоамперпАpA
1015 АпетаамперПАPA10−15 АфемтоамперфАfA
1018 АэксаамперЭАEA10−18 АаттоампераАaA
1021 АзеттаамперЗАZA10−21 АзептоамперзАzA
1024 АиоттаамперИАYA10−24 АиоктоампериАyA
     применять не рекомендуется

Связь с другими единицами СИ

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

См. также

Примечания

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 23-24. — 416 с. — 30 000 экз.

Ампер — Википедия. Что такое Ампер

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток)[1]. Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

Определение

Современное определение ампера было предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году[2][3].

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10−7 ньютона.

Иллюстрация к определению ампера.

Из определения ампера следует, что магнитная постоянная μ 0 {\displaystyle \mu _{0}} равна 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Гн/ м или, что то же самое, 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d {\displaystyle d} друг от друга бесконечных параллельных проводников, по которым текут токи I 1 {\displaystyle I_{1}} и I 2 {\displaystyle I_{2}} , приходящаяся на единицу длины, выражается соотношением:

F = μ 0 4 π 2 I 1 I 2 d . {\displaystyle F={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{d}}.}

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создает замкнутый контур, по которому протекает ток, равный 1 амперу.

История и перспективы

Единица измерения, принятая на 1-м Международном конгрессе электриков[4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см).

В 2011 г. XXIV ГКМВ приняла резолюцию[5], в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов.

В частности, предполагается, что СИ станет системой единиц, в которой элементарный электрический заряд e равен 1,602 17X·10−19 Кл точно[6]. Результатом этого явится отмена ныне действующего определения ампера и принятие нового. Величина ампера будет установлена в соответствии с новым точным значением элементарного электрического заряда, выраженным в c·А. В связи с этим в резолюции XXIV ГКМВ по поводу ампера сформулировано следующее положение[5]:

Ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X·10−19, когда он выражен единицей СИ c·А, что эквивалентно Кл.

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение ампера, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ в том же году[7].

Кратные и дольные единицы

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ[2]. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок[8].

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 АдекаампердаАdaA10−1 АдециампердАdA
102 АгектоампергАhA10−2 АсантиамперсАcA
103 АкилоамперкАkA10−3 АмиллиампермАmA
106 АмегаамперМАMA10−6 АмикроампермкАµA
109 АгигаамперГАGA10−9 АнаноампернАnA
1012 АтераамперТАTA10−12 АпикоамперпАpA
1015 АпетаамперПАPA10−15 АфемтоамперфАfA
1018 АэксаамперЭАEA10−18 АаттоампераАaA
1021 АзеттаамперЗАZA10−21 АзептоамперзАzA
1024 АиоттаамперИАYA10−24 АиоктоампериАyA
     применять не рекомендуется

Связь с другими единицами СИ

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

См. также

Примечания

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 23-24. — 416 с. — 30 000 экз.

Ампер — Википедия. Что такое Ампер

Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток)[1]. Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

Определение

Современное определение ампера было предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году[2][3].

Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10−7 ньютона.

Иллюстрация к определению ампера.

Из определения ампера следует, что магнитная постоянная μ 0 {\displaystyle \mu _{0}} равна 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Гн/ м или, что то же самое, 4 π × 10 − 7 {\displaystyle 4\pi \times 10^{-7}} Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d {\displaystyle d} друг от друга бесконечных параллельных проводников, по которым текут токи I 1 {\displaystyle I_{1}} и I 2 {\displaystyle I_{2}} , приходящаяся на единицу длины, выражается соотношением:

F = μ 0 4 π 2 I 1 I 2 d . {\displaystyle F={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{d}}.}

Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создает замкнутый контур, по которому протекает ток, равный 1 амперу.

История и перспективы

Единица измерения, принятая на 1-м Международном конгрессе электриков[4] (1881 г., Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см).

В 2011 г. XXIV ГКМВ приняла резолюцию[5], в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов.

В частности, предполагается, что СИ станет системой единиц, в которой элементарный электрический заряд e равен 1,602 17X·10−19 Кл точно[6]. Результатом этого явится отмена ныне действующего определения ампера и принятие нового. Величина ампера будет установлена в соответствии с новым точным значением элементарного электрического заряда, выраженным в c·А. В связи с этим в резолюции XXIV ГКМВ по поводу ампера сформулировано следующее положение[5]:

Ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X·10−19, когда он выражен единицей СИ c·А, что эквивалентно Кл.

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение ампера, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ в том же году[7].

Кратные и дольные единицы

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ[2]. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок[8].

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 АдекаампердаАdaA10−1 АдециампердАdA
102 АгектоампергАhA10−2 АсантиамперсАcA
103 АкилоамперкАkA10−3 АмиллиампермАmA
106 АмегаамперМАMA10−6 АмикроампермкАµA
109 АгигаамперГАGA10−9 АнаноампернАnA
1012 АтераамперТАTA10−12 АпикоамперпАpA
1015 АпетаамперПАPA10−15 АфемтоамперфАfA
1018 АэксаамперЭАEA10−18 АаттоампераАaA
1021 АзеттаамперЗАZA10−21 АзептоамперзАzA
1024 АиоттаамперИАYA10−24 АиоктоампериАyA
     применять не рекомендуется

Связь с другими единицами СИ

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

См. также

Примечания

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 23-24. — 416 с. — 30 000 экз.

новые определения ампера, килограмма, кельвина и моля / Хабр


Сфера из кремния-28 с чистотой 99,9998% может быть использована для вычисления максимально точного числа Авогадро, которое войдёт в определение единицы измерения количества вещества, известной как моль. Фото: Национальная физическая лаборатория Великобритании

Международное бюро мер и весов планирует провести самую значительную реформу в международной системе единиц (СИ) со времени последней большой ревизии этого стандарта в 1960 году, пишет Nature. Придётся принимать новые ГОСТы, а также внести исправления в учебники физики в школе и вузах.

В настоящее время СИ (современный вариант метрической системы) принята в качестве основной системы единиц большинством стран мира и почти везде используется в области техники. Полное определение всех единиц СИ приведено в официальной брошюре (8-е издание) и дополнении к ней от 2014 года. Нынешний стандарт утверждён в СССР 1 января 1963 года ГОСТом 9867-61 «Международная система единиц».

Руководство международной организации проголосует за предложенные изменения на Генеральной конференции по мерам и весам в 2018 году, а в случае положительного решения изменения вступят в силу с мая 2019 года. Новые определения для единиц измерения и эталонов никак не отразится на жизни обывателей: один килограмм картофеля в магазине останется тем же килограммом картофеля. Весы будут измерять овощи и мясо с той же точностью, что и раньше. Но эти определения важны для учёных, потому что в научных исследованиях должна соблюдаться идеальная точность формулировок и измерений. Международное бюро мер и весов считает, что новые эталоны позволят «обеспечить высочайший уровень точности в различных способах измерений в любом месте и времени и в любом масштабе, без потери точности».

Итак, какие же изменения нас ждут?

Сейчас Международное бюро мер и весов намерено пересмотреть определения и эталоны следующих единиц измерения:

  • ампер
  • килограмм
  • кельвин
  • моль

Следует оговориться, что далее по тексту новые определения приводятся в сокращённом виде и не соответствует в точности тексту, который записан в официальном документе. Сам документ и окончательные значения констант опубликуют в ближайшее время.
Современное определение принято III Генеральной конференцией по мерам и весам (ГКМВ) в 1901 году и формулируется так: «Килограмм есть единица массы, равная массе международного прототипа килограмма». При этом Международный прототип (эталон) килограмма хранится в Международном бюро мер и весов (расположено в городе Севр неподалёку от Парижа) и представляет собой цилиндр диаметром и высотой 39,17 мм из платино-иридиевого сплава (90% платины, 10% иридия). Размер прототипа примерно соответствует размеру мяча для гольфа.


Компьютерное изображение международного прототипа килограмма

Проблема с эталоном килограмма состоит в том, что любые материалы могут терять атомы или, наоборот, пополняться атомами из окружающего пространства. В частности, различные официальные копии эталонного килограмма, который хранится в Севре, отличаются по весу от официального эталона. Разница достигает 60 микрограмм. Такие изменения произошли за более чем 100 лет с момента создания копий.

Ещё одна проблема с единицами измерения фиксированного масштаба — то, что элемент неопределённости (погрешность) увеличивается по мере удаления от этой фиксированной точки (эталона). Например, сейчас при измерении миллиграмма элемент неопределённости в 2500 раз больше, чем при измерении килограмма.

Эта проблема решается, если определить единицу измерения через другую физическую постоянную. Собственно, в новом определении килограмма так и сделано: здесь используется постоянная Планка.

Новое определение: 1 килограмм равен постоянной Планка, поделенной на 6,626070040 × 10−34 м2·с−1. Для выражения единицы требуется постоянная Планка.

Измерение массы на практике возможно с помощью ваттовых весов: через два отдельных эксперимента со сравнением механической и электромагнитной силы, а затем путём перемещения катушки через магнитное поле для создания разности потенциалов (на иллюстрации внизу). Грубо говоря, масса вычисляется через электроэнергию, которая необходима, чтобы поднять предмет, лежащий на другой чаше весов.


Современное определение: как записано в ГОСТе, 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём. В обязательном Техническом приложении к тексту Международной температурной шкалы МТШ‑90 Консультативный комитет по термометрии установил требования к изотопному составу воды при реализации температуры тройной точки воды.

Тройная точка воды — строго определённые значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом, жидком и газообразном состояниях.

Международный комитет мер и весов подтвердил, что определение кельвина относится к воде, чей изотопный состав определён следующими соотношениями:

0,00015576 моля 2H на один моль 1Н
0,0003799 моля 17О на один моль

16О
0,0020052 моля 18О на один моль 16О.

Проблемы современного определения очевидны. При практической реализации величиа кельвина зависит от изотопоного состава воды, а на практике практически невозможно добиться молекулярного состава воды, который соответствует Техническому приложению к тексту Международной температурной шкалы МТШ‑90.

Ещё в 2011 году на заседании Генеральной конференции по мерам и весам было предложено в будущей редакции Международной системы единиц переопределить кельвин, связав его со значением постоянной Больцмана. Таким образом, значение кельвина впервые будет точно зафиксировано.

Новое определение: 1 кельвин соответствует изменению тепловой энергии на 1,38064852 × 10

−23 джоулей. Для выражения единицы требуется постоянная Больцмана.

Измерять точную температуру можно с помощью измерения скорости звука в сфере, заполненной газом. Скорость звука пропорциональна скорости перемещения атомов.


Современное определение: моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

Новое определение: количество вещества системы, которая содержит 6,022140857 × 1023 специфицированных структурных единиц. Для выражения единицы требуется постоянная Авогадро (число Авогадро).

Для вычисления числа Авогадро — и определения моля через него — учёные предлагают создать идеальную сферу из чистого кремния-28. У этого вещества идеально точная кристаллическая решётка, так что количество атомов в сфере можно определить, если точно измерить диаметр сферы (с помощью лазерной системы). В отличие от существующего куска платиново-иридевого сплава, скорость потери атомов кремния-28 точно предсказуема, что позволяет вносить коррективы в эталон.

Первые опыты по созданию такого эталона предприняли в 2007 году. Исследователи из берлинского Института выращивания кристаллов под руководством Хелге Риманна (Helge Riemann) приобрели в России обогащённый кремний-28 и сумели получить образец изотопа 28 с чистотой 99,994%. После этого исследователи ещё несколько лет анализировали состав 0,006% «лишних» атомов, определяли точный объём сферы и проводили рентгеноструктурный анализ. Изначально предполагалось, что «идеальные» сферы из кремния-28 могут быть утверждены в качестве нового стандарта для килограмма. Но сейчас более вероятно то, что их используют для вычисления числа Авогадро, и, как следствие, определения моля. Тем более что за время, прошедшее с 2007 года, физики научились производить гораздо более чистый кремний-28.


Сфера из кремния-28 с чистотой 99,9998. Фото: CSIRO Presicion Optics

В 2014 году американские физики сумели обогатить кремний-28 до беспрецедентного качества в 99,9998% в рамках международного проекта по расчёту числа Авогадро.


Современное определение предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году: «Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10−7 ньютона».

В современном определении ампер определяется через некий мысленный эксперимент, который предусматривает возникновение силы в двух проводах бесконечной длины. Очевидно, что на практике мы не может измерить такую силу, потому что по определению не может существовать двух проводников бесконечной длины.

Изменить определение ампера предложили на том же заседании Генеральной конференции по мерам и весам в октябре 2011 года, что и определение кельвина. Идея заключалась в том, что новое определение должно быть основано не на созданный человеком артефактах через мысленный эксперимент, а на фундаментальных физических постоянных или свойствах атомов. Итак, новое определение выражается только через одну постоянную — заряд электрона.

Новое определение: электрический ток, соответствующий потоку 1/1,6021766208 × 10−19 элементарных электрических зарядов в секунду. Для выражения единицы требуется заряд электрона.

На практике для определения ампера понадобится только один инструмент — одноэлектронный насос. Такие инструменты создали несколько лет назад. Они позволяют перемещать определённое количество электронов в течение каждого насосного цикла, что является крайне ценным качеством для фундаментальной науки и метрологии.

Определения секунды, метра и канделы, судя по всему, остаются неизменными, как показано на иллюстрации.

В новой системе СИ определение всех единиц выражается через константу с фиксированным значением. Многие единицы определяются во взаимосвязи с другими единицами. Например, определение килограмма определяется через постоянную Планка, а также через определения секунды и метра.

Считается, что такая система гораздо более устойчива и самодостаточна.

Ампер — Циклопедия

Ампер (А) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ (обозначается А). Сила тока измеряется амперметром.

Ампер равен силе такого постоянного тока, который, пропущенный по двум прямым параллельным бесконечным проводникам с незначительным поперечным сечением, помещенными на расстоянии 1 метр друг от друга в вакууме, создавал бы между этими проводниками силу 2⋅10−7 ньютонов на метр длины.

Число 2⋅10−7 взятое из-за того, что изначально ампер определялся для СГС, и сила взаимодействия между проводниками должна была равняться 2 дины на сантиметр длины, если они расположены на расстоянии 1 см.

Единица получила название в честь французского физика Андре Ампера.

С момента введения ампера в качестве единицы измерения силы электрического тока, его определение приобрело нескольких изменений. Сначала определение ампера полностью базировалось на законе Ома, а именно, как сила тока, протекающего в проводнике с сопротивлением 1 ом при разности потенциалов 1 вольт. Трудности практического воспроизведения установленного таким образом определения привели к введению международных электрических единиц, базировавшихся на вещественных эталонах, и нового определения ампера. Международный ампер был определен как неизменный ток, выделяемый из раствора азотнокислого серебра (AgNO3) за 1 секунду 1,118 мг серебра.

Впоследствии, значительное усовершенствование электрических измерений позволило с 1948 года отказаться от вещественного эталона ампера.

В наше время самое точное определение ампера опять же сводится к использованию закона Ома, поскольку необходимые для этого величины: вольт и ом можно с большой точностью определить, используя эффект Джозефсона и квантовый эффект Холла.

[править] Предложение переопределения

Вместо того, чтобы определять ампер через силу взаимодействия двух проводников, существует предложение определять его через поток элементарных электрических зарядов. Поскольку кулон примерно равен 6,2415093×1018 элементарных зарядов, один ампер примерно равен 6,2415093×1018 движущихся зарядов через сечение проводника за секунду[1]. Если отказаться от слов «примерно», то элементарный электрический заряд как фундаментальная физическая постоянная будет определен точно. Международный комитет мер и весов на своей конференции в 2005 году согласился изучить это предложение.

Миллиампер — это… Что такое Миллиампер?

  • миллиампер — миллиампер …   Орфографический словарь-справочник

  • миллиампер — миллиампер, род. мн. миллиамперов и миллиампер …   Словарь трудностей произношения и ударения в современном русском языке

  • МИЛЛИАМПЕР — (Milliampere) единица тока, равная одной тысячной ампера. Обозначение тА или ма. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • миллиампер — [см. милли…] – тысячная часть ампера. Большой словарь иностранных слов. Издательство «ИДДК», 2007 …   Словарь иностранных слов русского языка

  • миллиампер — сущ., кол во синонимов: 2 • единица (830) • ма (4) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • миллиампер — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN milliamperemA …   Справочник технического переводчика

  • миллиампер — miliamperas statusas T sritis Standartizacija ir metrologija apibrėžtis Dalinis srovės stiprio matavimo vienetas, lygus tūkstantajai ampero daliai, t. y. 1 mA = 10⁻³ A. atitikmenys: angl. milliampere vok. Milliampere, n rus. миллиампер, m pranc.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • миллиампер — miliamperas statusas T sritis fizika atitikmenys: angl. milliampere vok. Milliampere, n rus. миллиампер, m pranc. milliampère, m …   Fizikos terminų žodynas

  • миллиампер — миллиампер, миллиамперы, миллиампера, миллиампер, миллиамперу, миллиамперам, миллиампер, миллиамперы, миллиампером, миллиамперами, миллиампере, миллиамперах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») …   Формы слов

  • миллиампер — миллиамп ер, а, род. п. мн. ч. ов, счетн. ф. амп ер …   Русский орфографический словарь

  • Перевести амперы в миллиамперы — Перевод единиц измерения

    ›› Перевести амперы в миллиамперы

    Пожалуйста, включите Javascript использовать конвертер величин


    ›› Дополнительная информация в конвертере величин

    Сколько ампер в 1 миллиампере? Ответ — 0,001.
    Мы предполагаем, что вы конвертируете ампер в миллиампер .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    ампер или миллиампер
    Основной единицей СИ для электрического тока является ампер.
    1 ампер равен 1 ампера или 1000 миллиампер.
    Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать амперы в миллиамперы.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица преобразования ампер в миллиампер

    1 ампер в миллиампер = 1000 миллиампер

    2 ампера в миллиампер = 2000 миллиампер

    3 ампера в миллиампер = 3000 миллиампер

    4 ампера в миллиампер = 4000 миллиампер

    5 ампер в миллиампер = 5000 миллиампер

    6 ампер в миллиампер = 6000 миллиампер

    7 ампер в миллиампер = 7000 миллиампер

    8 ампер в миллиампер = 8000 миллиампер

    9 ампер в миллиампер = 9000 миллиампер

    10 ампер в миллиампер = 10000 миллиампер


    ›› Хотите другие единицы?

    Вы можете выполнить обратное преобразование единиц измерения из миллиампер в ампер, или введите любые две единицы ниже:


    ›› Преобразователи общего электрического тока

    ампер на биот
    ампер на абамп
    ампер на кулон в секунду
    ампер на гилберта
    ампер на килоампер
    ампер на гигаампер
    ампер на тераампер
    ампер на наноампер
    ампер на статампер
    ампер на
    ампер на статампер

    ›› Определение: Amp

    В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов.Нынешнее определение, принятое 9-й сессией ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками действует сила, равная 2 10 -7 ньютон на метр длины ».


    ›› Определение: Миллиампер

    Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

    Итак, 1 миллиампер = 10 -3 ампер.


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    ,

    ампер: Введение | NIST

    Кредит: Энергетическое управление Бонневилля / Министерство энергетики

    Первые 10 миль ЛЭП Макнари — Джон Дэй, шоссе 14, штат Вашингтон. Линии электропередачи обычно имеют высокое напряжение, до 750 000 вольт, но относительно низкие токи, до 1000 ампер.

    Ампер (A), основная единица измерения электрического тока в системе СИ, является привычной и незаменимой величиной в повседневной жизни.Он используется для определения потока электричества в фенах (15 ампер для модели мощностью 1800 Вт), удлинителях (обычно от 1 до 20 ампер), домашних автоматических выключателях (от 15 до 20 ампер для одной линии), дуговой сварке ( примерно до 200 ампер) и более. В повседневной жизни мы испытываем ток в широком диапазоне: светодиодная лампа, эквивалентная 60 Вт, потребляет небольшую долю ампер; молния может выдерживать 100 000 ампер и более.

    468-пиксельный криогенный светодиодный картограф для сверхпроводящих детекторов фотонов.Светодиоды очень энергоэффективны; токи для маленького светодиода могут составлять всего несколько тысячных ампер.

    Ампер является всемирно признанной единицей измерения с 1908 года и со временем измеряется с все более высокой точностью, в последнее время до нескольких частей на десять миллионов.

    Но определить ампер в лучшем случае было проблематично. До 2019 года его официальное определение — общая версия эксперимента, проведенного французским ученым Андре-Мари Ампером в 1820-х годах — указывало на полностью гипотетическую ситуацию:

    Ампер — это постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создавал бы между этими проводниками силу, равную 2 x 10 — 7 ньютон на метр длины.

    Поскольку бесконечно длинные провода и вакуумные камеры, как правило, были недоступны, сила тока не могла быть физически реализована в соответствии с его собственным определением, хотя его можно было с большими трудностями приблизительно определить в лаборатории. Столь же неудовлетворительным было то, что усилитель, хотя и имел электрическую величину, определялся в механических терминах. Ньютон (единица силы в системе СИ, кг • м / с 2 ) был получен из единицы массы системы СИ: килограмма, хранящегося в Севре, Франция.Его значение массы со временем менялось, что ограничивало точность производных единиц.

    Кредит: Ю. Ральченко / NIST

    Гроза в Санта-Фе в 2013 году. Обычные молнии могут переносить электрический ток 100 000 ампер и более.

    Однако в ноябре 2018 года было одобрено новое определение ампера вместе с тремя другими базовыми единицами СИ: килограммом (массой), кельвином (температурой) и молями (количеством вещества).Начиная с 20 мая 2019 года, ампер основан на фундаментальной физической константе: элементарном заряде (е), который представляет собой количество электрического заряда в отдельном электроне (отрицательный) или протон (положительный).

    Ампер является мерой количества электрического заряда , движущегося в единицу времени , то есть электрического тока. Но количество электрического заряда по самому , независимо от того, движется он или нет, выражается другой единицей СИ, кулоном (Кл). Один кулон равен примерно 6.241 x 10 18 электрических зарядов ( e ). Один ампер — это ток, при котором один кулон заряда проходит через заданную точку за 1 секунду.

    Вот почему средний разряд молнии несет около 5 кулонов заряда, даже если его ток может составлять десятки тысяч ампер. Разница в этих числах возникает из-за того, что удар молнии длится всего несколько десятков миллисекунд (тысячных долей секунды).

    Кредит: NIST

    Микросхема одноэлектронного транспорта (SET), которая может использоваться для подсчета электронов в переопределенном амперах.

    Определение ампера исключительно с точки зрения элементарного заряда e можно рассматривать как своего рода результат «хорошие новости — плохие новости». С одной стороны, он четко определяет усилитель в терминах только одного инварианта природы, которому было присвоено точное фиксированное значение во время переопределения. После этого прямые измерения ампер превратились в подсчет прохождения отдельных электронов в устройстве во времени.

    С другой стороны, e почти невообразимо мал — примерно одна десятая миллиардной миллиардной величины заряда в токе в 1 ампер, который проходит через заданную точку за 1 секунду.Измерение отдельных электронов, прошедших определенную точку, является технически сложной задачей, и основная задача ученых состоит в том, чтобы получить ток отдельных электронов, который можно регулярно измерять и использовать в качестве стандарта.

    Итак, хотя новое определение, наконец, поставило ампер на более рациональную основу, оно ставит новые и серьезные проблемы для науки об измерениях.

    ,

    Перевести миллиампера в амперы

    Укажите значения ниже, чтобы преобразовать миллиампер [мА] в ампер [A], или наоборот .


    Миллиампер

    Определение: Миллиампер (обозначение: мА) является частью основной единицы измерения электрического тока в системе СИ — ампера. Он определяется как одна тысячная ампера.

    История / происхождение: Миллиампер берет свое начало от ампера. Префикс «милли» указывает на одну тысячную от предшествующей базовой единицы, в данном случае на ампера.Амперу может предшествовать любой из метрических префиксов, чтобы указать единицы с желаемой величиной.

    Текущее использование: Миллиампер, как часть единицы СИ, используется во всем мире, часто для небольших измерений электрического тока. Есть много устройств, которые измеряют единицы в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства не измеряют исключительно миллиамперы.

    Ампер

    Определение: Ампер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ).Ампер формально определяется на основе фиксированного значения элементарного заряда, е, равного 1,602176634 × 10 -19 при выражении в единицах С, которое равно А · с. Второй определяется на основе частоты цезия ΔνCs. Это определение действует с 2019 года и является значительным изменением по сравнению с предыдущим определением ампера.

    История / происхождение: Ампер назван в честь Андре-Мари Ампер, французского математика и физика. В системе единиц сантиметр-грамм-секунда ампер был определен как одна десятая единицы электрического тока времени, которая теперь известна как абампер.Размер единицы был выбран таким, чтобы она удобно помещалась в системе единиц метр-килограмм-секунда. До 2019 года ампер формально определялся как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины создавалась между двумя проводниками, где проводники параллельны, имеют бесконечную длину, помещены в вакуум. , и имеют пренебрежимо малые круглые сечения. В единицах измерения заряда СИ, кулонах, один ампер определяется как один кулон заряда, проходящий через заданную точку за одну секунду.Это определение было трудно реализовать с высокой точностью, и поэтому оно было изменено на более интуитивное и более простое для понимания. Раньше, поскольку определение включало ссылку на силу, необходимо было определить кг, метр и секунду в системе СИ, прежде чем можно было определить ампер. Теперь это зависит только от определения второго. Одним из потенциальных недостатков переопределения является то, что проницаемость вакуума, диэлектрическая проницаемость вакуума и импеданс свободного пространства были точными до переопределения, но теперь будут подвержены экспериментальной ошибке.

    Использование тока: Ампер, как базовая единица измерения электрического тока в системе СИ, используется во всем мире почти для всех приложений, связанных с электрическим током. Ампер может быть выражен в виде ватт / вольт или Вт / В, так что ампер равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения.

    Таблица преобразования миллиампер в ампер

    Миллиампер [мА] Ампер [A]
    0,01 мА 1.0E-5 A
    0.1 мА 0,0001 A
    1 мА 0,001 A
    2 мА 0,002 A
    3 мА 0,003 A
    5 мА 0,005 A
    10 мА 0,01 A
    20 мА 0,02 A
    50 мА 0,05 A
    100 мА 0,1 A
    1000 мА 1 A

    Как преобразовать миллиампер в амперы

    1 мА = 0.001 A
    1 A = 1000 мА

    Пример: преобразование 15 мА в A:
    15 мА = 15 × 0,001 A = 0,015 A

    Популярные преобразования единиц тока


    Преобразование миллиампер в другие единицы тока

    .

    Основы СИ: базовые и производные единицы

    Для простота понимания и удобство, даны 22 производные единицы СИ специальные имена и символы, как показано в таблице 3. Мощность Заряд электроэнергии

    Таблица 3. Производные единицы СИ со специальными наименованиями и обозначениями

    Производная единица СИ
    Полученное количество Имя Символ Выражение
    через
    другие единицы СИ
    Выражение
    через
    базовых единиц СИ
    плоский угол радиан (а) рад м · м -1 = 1 (б)
    телесный угол стерадиан (а) ср (в) м 2 · м -2 = 1 (б)
    частота герц Гц с -1
    сила ньютон N м · кг · с -2
    давление, напряжение паскаль Па Н / м 2 м -1 · кг · с -2
    энергия, работа, количество тепла джоуль Дж Н · м м 2 · кг · с -2
    , лучистый поток ватт Вт Дж / с м 2 · кг · с -3
    , количество электроэнергии кулон С с · A
    разность электрических потенциалов,
    электродвижущая сила
    вольт В Вт / А м 2 · кг · с -3 · A -1
    емкость фарад F С / В м -2 · кг -1 · с 4 · A 2
    электрическое сопротивление Ом Omega В / А м 2 · кг · с -3 · A -2
    Электрическая проводимость siemens S A / V м -2 · кг -1 · с 3 · A 2
    магнитный поток Вебер Вб В · с м 2 · кг · с -2 · A -1
    Плотность магнитного потока тесла т Вт / м 2 кг · с -2 · A -1
    индуктивность генри H Вт / А м 2 · кг · с -2 · A -2
    Температура Цельсия градусов Цельсия ° С К
    Световой поток люмен лм кд · SR (в) м 2 · м -2 · cd = cd
    освещенность люкс лк лм / м 2 м 2 · м -4 · cd = m -2 · cd
    активность (радионуклида) беккерель Бк с -1
    Поглощенная доза, удельная энергия (переданная), керма серый Гр Дж / кг м 2 · с -2
    Эквивалент дозы (г) зиверт Св Дж / кг м 2 · с -2
    Каталитическая активность катал кат с -1 · моль
    (а) Радиан и стерадиан можно выгодно использовать в выражениях для производных единиц, чтобы различать количества различной природы, но того же размера; некоторые примеры приведены в таблице 4.
    (b) На практике символы rad и sr используются там, где уместно, но производная единица «1» обычно опускается.
    (c) В фотометрии название единицы стерадиан и единица измерения символ sr обычно сохраняется в выражениях для производных единиц.
    (d) Прочие величины, выраженные в зивертах, относятся к окружающей среде. эквивалент дозы, эквивалент направленной дозы, эквивалент индивидуальной дозы, и органная эквивалентная доза.

      Примечание о градусах Цельсия. Производная единица в таблице 3 со специальным названием градус Цельсия и специальный символ ° C заслуживает комментария. Из-за температуры когда раньше определялись масштабы, остается обычной практикой выражать термодинамические температура, условное обозначение T , в части отличия от эталонной температура T 0 = 273.15 К, ледяная точка. Эта температура разница называется температурой Цельсия, символом t , и составляет определяется количественным уравнением

      т = т т 0 .

      Единицей измерения температуры по Цельсию является градус Цельсия, символ ° C. числовое значение температуры Цельсия t , выраженное в градусах Цельсий равен

      t / ° C = T / K — 273.15.

      Из определения t следует, что градус Цельсия равен по величине до кельвина, что, в свою очередь, означает, что числовой значение заданной разницы температур или температурного интервала, значение выражается в единицах градуса Цельсия (° C) равно числовое значение той же разницы или интервала, когда его значение выражается в единицах кельвина (К). Таким образом, перепады температур или температура интервалы могут быть выражены либо в градусах Цельсия, либо в кельвинах. используя то же числовое значение.Например, температура по Цельсию разница Delta т и термодинамический перепад температур Delta T между точкой плавления галлия и тройной точкой воды может можно записать как Delta t = 29,7546 ° C = Delta T = 29,7546 К.

    Особые наименования и символы производных единиц 22 СИ со специальными названиями и символами приведенные в таблице 3, сами могут быть включены в названия и символы другие производные единицы СИ, как показано в таблице 4.

    Экспозиция

    Таблица 4. Примеры производных единиц СИ, названия и обозначения которых включать производные единицы СИ со специальными названиями и символами

    Производная единица СИ
    Полученное количество Имя Символ
    Вязкость динамическая паскаль-секунда Па · с
    момент силы Ньютон-метр Н · м
    поверхностное натяжение ньютон на метр Н / м
    угловая скорость радиан в секунду рад / с
    угловое ускорение радиан на секунду в квадрате рад / с 2
    Плотность теплового потока, энергетическая освещенность ватт на квадратный метр Вт / м 2
    теплоемкость, энтропия джоуль на кельвин Дж / К
    удельная теплоемкость, удельная энтропия джоуль на килограмм кельвина Дж / (кг · К)
    удельная энергия джоуль на килограмм Дж / кг
    теплопроводность ватт на метр кельвина Вт / (м · К)
    плотность энергии джоуль на кубический метр Дж / м 3
    Напряженность электрического поля вольт на метр В / м
    Плотность электрического заряда кулонов на кубический метр С / м 3
    Плотность электрического потока кулонов на квадратный метр С / м 2
    диэлектрическая проницаемость фарад на метр Ф / м
    проницаемость генри на метр Г / м
    молярная энергия джоуль на моль Дж / моль
    мольная энтропия, мольная теплоемкость джоуль на моль кельвина Дж / (моль · К)
    (x и gamma лучи) кулон на килограмм C / кг
    Мощность поглощенной дозы серого в секунду Гр / с
    интенсивность излучения Вт на стерадиан Вт / ср
    сияние Вт на квадратный метр стерадиан Вт / (м 2 · ср)
    каталитическая (активная) концентрация катал на кубический метр кат / м 3

    Продолжить до префиксов SI

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *