Сеть 220 трехфазная: Что такое трехфазное напряжение 380 В и однофазное напряжение 220 В – СамЭлектрик.ру

Содержание

Как из 220 Вольт сделать 380 В: обзор методик и способов

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор.  преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для  этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

какой она бывает, и какой она должна быть

Трехфазные розетки и вилки встречается в основном в домах с электрическими плитами советской застройки второй половины двадцатого века. Но когда речь идёт о профессиональном оборудовании, силовых электромоторах или нагревателях, станках и технике использующих в работе три фазы различают множество разновидностей устройств используемых для их подключения. 

В повседневной жизни обыватель редко сталкивается с необходимостью получать от сети напряжение 380 вольт, которое образуется в результате сдвига синусоиды на одну треть в каждой из трёх фаз по 220 вольт, в результате чего получают указанное значение.
На самом деле, в каждый многоквартирный дом и жилой массив подведено указанное напряжение. Так что, где бы ни находился потребитель – если там есть электричество, значит, то велика вероятность, что там есть три фазы и возможность подключения к сетям 380 вольт.

Устройство трёхфазной сети

Каждая розетка 380в состоит, как минимум из 4 контактов: к ней подходит три фазных провода и один нулевой. Напряжение между фазами составляет 380 вольт. Напряжение 220В получается если мерить его между любой из фаз и нолем. Каждая из фаз способна нести нагрузку не менее, чем в три с половиной тысячи ватт, а соединённые вместе они могут обеспечить питанием нагрузку до десяти с половиной киловатт и больше, в зависимости от необходимости.

В каждой из трёх фаз, по сравнению с предыдущей, присутствует перемещение синусоиды на показатель равный одной трети периода, что в сумме даёт общую синусоиду напряжения 380 вольт. Как пользоваться мультиметром для измерения напряжения обязательно прочитайте статью на нашем сайте.

Подобные показатели необходимы, в первую очередь, для подачи питания на электродвигатели, которые могут применяться в самых разных областях. Очевидные примеры такого применения: лебедки, поднимающие и опускающие лифтовые кабины; токарные и другие станки; системы вентиляции и многое другое.

Важно знать: 3 х фазная розетка может, при необходимости, использоваться для получения однофазного тока напряжением 220 вольт. Для этого необходимо на вилке, подключаемой к ней, подсоединить два контакта: ноль и любую из трёх фаз. Таким образом, будет получено необходимое напряжение.

Области применения

Главными областями применения трёхфазных разъёмов остаются промышленные и строительные объекты. Практически все сварочные аппараты, смесители, промышленные перфораторы, помпы и насосы, применяемые на крупных объектах, имеют рабочее напряжение 380 вольт.

Одна 3 х фазная розетка, если речь идёт о силовом варианте, способна обеспечивать до 63 ампер нагрузки. И конечно она не идёт ни в какое сравнение с обычной сетью 220 вольт. А при необходимости прогрева бетонной стяжки 380 вольт не имеет альтернативы.

Однако в повседневной жизни такое напряжение применяется не меньше, особенно если речь идёт про частный дом. Мотор на въездных воротах, насос, котёл, электрическая плита – все они могут быть рассчитаны на сеть 380 вольт. Именно поэтому трёхфазную сеть стараются протянуть в каждый дом. Как смонтировать вводной щит читайте статью на нашем сайте. Пользоваться сетью 380 вольт или нет – зависит от каждого конкретного случая. Но быть она должна. А если есть трёхфазная сеть – должны быть и разъёмы для неё.

Основные виды трехфазных розеток

Трехфазные розетки и вилки бывают самых разных видов и форм, ниже перечислены основные из возможных вариантов, которые встречаются повсеместно:

  • Комплект из розетки и вилки для подключения электроплиты. РВ-РШ. Состоит из накладной стеновой розетки и вилки, с четырьмя латунными клеммами, включающими в себя три фазных канала по 16 ампер и общий ноль;
  • Стационарные розетки, в исполнении на четыре и на пять контактов, где пятый контакт предназначен для заземляющего провода. Поставляется в обычном, влагозащитном и герметичном исполнении. Являются накладными элементами, требующими монтажа на несущие поверхности. Для этого вида розеток промышленность выпускает специальные силовые вилки, снабженные соответствующим количеством контактов;

Обратите внимание: розетка на 380 вольт является объектом повышенной опасности, поэтому любые подключения к ней должны выполняться специалистами, всё подключаемое оборудование лучше всего заземлять, а на линию подводящую питание к розетке необходимо поставить дополнительное оборудование, для защиты конечного потребителя от поражения током, например дифференциальный автомат.

  • Переносная силовая розетка находит своё применение на объектах, где необходимо кратковременно обеспечить подачу энергии. Чаще всего используется при строительных работах. Различают розетки двух уровней влагозащиты: зашита от брызг IP44 и розетка с усиленной до IP67 влагозащитой. Такая розетка способна выдержать кратковременное погружение под воду и представляет собой набор из розетки и вилки, где все соединения герметичны, что достигается при помощи резиновых уплотнителей;
  • Стационарная розетка на 380 вольт скрытого типа установки, устанавливается в местах постоянного пользования, отличительной особенностью таких розеток является то, что они монтируются в специальные монтажные короба или в силовые щиты, при этом механизм розетки спрятан внутри базовой поверхности, на которую она установлена. Различают розетки на четыре и на пять контактов;
  • Усиленные розетки, способные выдерживать нагрузку до 63 Ампер, контакты которых выполнены с необходимым запасом прочности. Используются при крупных производствах и для техники требующей указанную силу тока. Имеют обязательное заземление. Могут иметь исполнение с уровнем влагозащиты IP67. Как правило, являются стационарными;
  • Двойные и тройные розетки, называемые двух и трёх лучевыми. Используются для подключения нескольких потребителей на один канал;
  • Каучуковые розетки и вилки российского производства на 32 ампера, выполненные в соответствии с ГОСТОМ и имеющие сертификаты качества.

Суммируя вышесказанное можно заключить, что розетка на 380 вольт поставляется в следующих исполнениях: настенные – накладные и встраиваемые; переносные – одно, двух, трёх лучевые; с индексами влагозащиты IP 20, IP44 и IP67; на 16, 32, и 63 ампера предельно допустимой силы тока.
Краткий обзор розеток видео обязательно смотрите ниже:

Заключение

Важно понимать, что проводить любые работы связанные с риском поражения электрическим током, имеет право только персонал, прошедший обучение, сдавший нормативы по технике безопасности, и работающий в соответствии с нарядом на работы.

Указанный специалист должен быть укомплектован всем необходимым для работы, иметь специальные одежду и инструмент, кроме того, работы проводятся в составе бригады, состоящей из нескольких человек.

Только так можно быть полностью уверенным в безопасности проводимых работ. Не имея всего вышеперечисленного, категорически запрещается приближаться к объектам под напряжением и самостоятельно проводить электротехнические работы, нарушая данное правило, вы полностью перекладываете на себя всю ответственность за возможные последствия. Поэтому ни при каких обстоятельствах не проводите данные работы самостоятельно.

Почему между фазой и нолем 220 В, а между фазами 380 В?

Мы знаем, что в нашей сети между фазой и нолем 220 В. Но почему тогда между двумя фазами 380 В, а не 440, например? Разбираемся в сути феномена.

Фазное и линейное напряжения

Напряжение между фазой и нолем называется фазным. На одной фазе напряжение всегда 220 В, а на ноле, соответственно, 0. Так как разница между ними составляет 220 В, то значит фазное напряжение всегда будет 220 В (в бытовой сети бывают скачки и падения, поэтому напряжение может немного меняться).

Но если фазным напряжением все предельно ясно, то с линейным не все так просто. Линейным напряжением называется напряжение между двумя фазами. Мы знаем, что оно составляется 380 В, но откуда оно получается?

Все дело в работе генератора, который генерирует электроэнергию, и установлен на подстанции. Обратите внимание на иллюстрацию ниже. Обмотки (фазы А, В и С) генератора расположены под углом 120о относительно друг друга. Внутренний индуктор или магнит (обозначенный буквами С и Ю) вращаясь, создает электромагнитное поле. Но так как фазы расположены под углом 120о относительно друг друга, то вращение индуктора по отношению к каждой фазе смещено на 1/3 цикла. В итоге, когда магнит проходит возле одной фазы, то он максимально возбуждает обмотку до 220 В, а в это же время другая фаза возбуждена лишь на -160. В данном случае линейное напряжение составит Uл = 220 — (-160) = 380 В.

Также для четырехпроводной системы проводки при соединении трехфазного генератора звездой существует такая формула: Uл = квадратный корень из 3*Uф, где Uф — это фазное напряжение, которое равняется 220 В. В итоге получаем Uл = 1,73 *220 = 380 В.

Как бы вы ни решили проводить вычисления, вы придете к показателю в 380 В.

Читайте также:

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Во первых почему питающее напряжение в электрических сетях пременное, а не постоянное? Первые генераторы в конце 19-го века выдавали постоянное напряжение, пока кто-то (умный!) не сообразил, что производить переменное при генерации и выпрямлять при необходимости его в точках потребления проще, чем производить постоянное при генерации и рожать переменное в точках потребления.

Во вторых, почему 50 Гц? Да просто у немцев так получилось, в начале 20 века. Нет тут особого смысла. В США и некоторых других странах 60 Гц. (см. справку проекта TehTab.ru)

В третьих, почему передающие сети (линии электропередач) имеют очень высокое напряжение? Тут смысл есть, если вспомнить основные формулы электротехники, то: потери мощности при транспортирове равны d(P)=I2*R, а полная передаваемая мощность равна P=I*U. Доля потерь от общей мощности выражается как d(P)/P=I*R/U. Минимальная доля потерь общей мощности, т.о. будет при максимальном напряжении. Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения:

  • от 1000 кВ и выше (1150 кВ, 1500 кВ) — ультравысокий
  • 1000 кВ, 500 кВ, 330 кВ — сверхвысокий
  • 220 кВ, 110 кВ — ВН, высокое напряжение
  • 35 кВ — СН-1, среднее первое напряжение
  • 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение
  • 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.

В четвертых: что такое номинальное обозначение В=»Вольт» ( А=»Ампер») в цепях переменного напряжения (тока)? Это действующее=эффективное=среднеквадратическое= среднеквадратичное значение напряжения (тока) , т.е. такое значение постоянного напряжения (тока) , которое даст такую-же тепловую мощность на аналогичном сопротивлении. Показывающие вольтметры и амперметры дают именно это значение. Максимальные амплитудные значения (например с осцилографа) по модулю всегда выше действующего.

В пятых, почему в в сетях потребителей напряжение ниже? Тут смысл тоже есть. Практически допустимые напряжения определялись доступными изоляционными материалами и их электрической прочностью. А потом уже ничего было не поменять.

Что такое «трехфазное напряжение 380 В и однофазное напряжение 220 В»? Тут внимание. Строго говоря, в большинстве случаев ( но не во всех) под трехфазной бытовой сетью в РФ понимают сеть 220/380В (изредка встречаются бытовые сети 127/220 В и промышленные 380/660 В!!!). Неправильные, но встречающиеся обозначения: 380/220В;220/127 В; 660/380 В!!! Итак, далее говорим об обычной сети 220/380Вольт, для работы с остальными — лучше бы Вам быть электриком. Итак для такой сети:

  • Наша домашняя (РФ, да и СНГ…) сеть 220/380В-50Гц, в Европе 230/400В-50Гц (240/420В-50Гц в Италии и Испании), в США — частота 60Гц, а номиналы вообще другие
  • К Вам придет как минимум 4 провода: 3 линейных («фазы») и один нейтральный (вовсе не обязательно с нулевым потенциалом!!!)-если у Вас только 3 линейных провода, лучше зовите инженера-электрика.
  • 220В — это действующее напряжение между любой из «фаз»=линейный провод и нейтралью (фазное напряжение).Нейтраль — это не ноль!
  • 380В — это действующее значение между любыми двумя «фазами»=линейными проводами (линейное напряжение)

Проект DPVA.info предупреждает: если Вы не имеете представления о мерах безопасности при работе с электроустановками (см. ПУЭ), лучше сами и не начинайте.

  • Нейтраль (всех видов) не обязательно имеет нулевой потенциал. Качество питающего напряжения на практике не соответствует никаким стандартам, а должно бы соответствовать ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения» (никто не виноват…)
  • Защитные автоматы (тепловые и КЗ) защищают цепь от перегрузки и пожара, а не Вас от удара током
  • Заземление вовсе не обязательно имеет низкое сопротивление (т.е. спасает от удара током).
  • Точки с нулевым потенциалом могут иметь бесконечно большое сопротивление.
  • УЗО установленное в подающем щите не защищает никого, кто получает удар током из гальванически развязанной цепи, запитанной от этого щита.

Удачи!

Типы подключения ТЭНов типа ЗВЕЗДА или ТРЕУГОЛЬНИК для трехфазной сети: схемы и примеры :: информационная статья компании Полимернагрев

Трубчатые электронагреватели являются самым популярным типом нагревательных элементов как в промышленности, так и в бытовых приборах. Каждый электрический ТЭН, даже если он рассчитан на 220В, может подключаться как к однофазной, так и к трехфазной сети. Давайте подробно рассмотрим, какие типы подключения к трехфазной сети для нагревателей существуют и какие требования к характеристикам ТЭНов предъявляются для них.

Для подключения электронагревательных элементов к 3-фазной сети применяются такие виды схем:

Если мы имеем не специальные нагреватели, типа блок ТЭНов или сухие керамические ТЭНы, а обычные трубчатые ТЭНы, то для получения равномерной нагрузки необходимо иметь на каждой фазе трехкратное количество электронагревателей. То есть минимальное количество нагревателей будет равно 3. При этом в технических параметрах ТЭНов напряжение питания может быть как 380, так и 200 Вольт.

Для электронагревательных ТЭНов с параметрами напряжения электропитания 220 В нужно использовать тип подключения к 3-фазной сети типа ЗВЕЗДА. А для тех, которые производятся с характеристикой напряжения равной 380 Вольт, возможно применять обе схемы подключения: и вариант ЗВЕЗДА и вариант ТРЕУГОЛЬНИК.

Вариант подключения к трехфазной сети питания типа ЗВЕЗДА

Тип ЗВЕЗДА применяется в сухих ТЭНах от компании Полимернагрев в варианте подключения № 3 с четырьмя болтами в качестве типа токовывода. Также тип подключения «звезда» может применяться при подключении блок ТЭНов ТЭНБ. В данных случаях подключение нагревательных спиралей производится по следующей электрической схеме:

Давайте теперь рассмотрим, как можно подключить нагреватели по данной схеме, если у нас имеются в наличии не специальные, а стандартные электрические воздушные или водяные металлические ТЭНы.

К питающему напряжению должен подключаться только один вывод от каждого ТЭНа. Именно поэтому для подключения к трехфазной сети у нас должно быть кратное трем количество электронагревателей. Остальные же контактные выводы, которые не подключены к напряжению, должны быть соединены в одну так называемую нулевую точку.  Таким образом, мы получаем трехпроводную соединенную нагрузку.

Давайте подробно рассмотрим схему трехпроводного соединения на 380 В для включения 3-х водяных ТЭНов. На первом рисунке вы можете рассмотреть описанную выше схему включения ТЭНов, а на втором к схеме добавляется специальное устройство для подачи напряжения на ТЭНы с защитными переключателями. Как четко видно на схеме, каждый второй токовывод нагревателя подается на фазы А, В и С, а остальные же соединяются вместе. 


Подключая ТЭНы таким образом мы получаем значение напряжения электропитания на каждом электротэне между подключением к сети и нейтральной точкой равное 220 В.

В приведенной схеме можно увидеть, что выводы нагревателей справа подсоединены к фазам А, В, С. Выводы, которые находятся слева — соединяются в общей нейтральной точке. Рабочее напряжение между выводами справа и нейтральной точкой равно 220 Вольт.

Также есть вариант подключения к трехфазной сети ЗВЕЗДА, который использует четырехпроводную схему. При таком способе применяют трехфазное питание с напряжением 230В, а нулевую точку подают на нейтраль источника электропитания.

Тут так же, как и в предыдущем случае, одни выводы соединяются в нулевую точку, а другие подводятся к трехфазной сети. Если соединение с нулевой точкой передавать на нулевую шину источника электропитания, мы получим на каждом нагревателе между питанием и нулем напряжение в 220-230В.

Когда возникает необходимость в полном отключении питания на нагреватели, нужно применять выключатели типа 3+n или же 3р+n, способные функционировать в автоматическом режиме. Автоматы данного типа могут использоваться для полного перевода всех силовых электроконтактов на полностью автоматический рабочий режим.

Давайте рассмотрим, как же на практике следует применять тип подключения ЗВЕЗДА, на примере монтажа ТЭНов в электрокотле.

Подключение нагревателей по схеме ЗВЕЗДА для электрокотла

В электрических нагревательных котлах ТЭНы могут подключаться различными способами, но для демонстранции схемы подключения по типу ЗВЕЗДА опишем вариант установки сухих ТЭНов к 3-фазной сети питания с напряжением 220В.

Высокая мощность водяных сухих ТЭНов накладывает определенные требования к качеству соединений. Надежность соединений должна быть обеспечена высоким качеством термостойких проводов и строгим соответствием всех действий описанной в инструкции схеме.


Первое, что нужно сделать, это при подключении фазных поводов произвести накрутку гайки M4. Далее вам необходимо наложить шайбу и установить кольцевой наконечник провода питания. Следующим шагом будет наложение еще одной такой же шайбы, поверх которой помещается еще одна специальная пружинная шайба гровер. И это все нужно надежно зафиксировать гайкой M4.

Провода, которые выводятся на нейтральную фазу, крепятся при помощи болта типа M8. Провод нейтрали нужно поместить в перемычку, которая находится между контактами отверстий ТЭНа.

Обязательно заземлите корпус нагревательного элемента и проводов питания после того, как подключите все провода на питающие и нулевые контакты ТЭНа. В большинстве случаев в стандартных электрокотлах болт заземления располагается с левой стороны около блока с ТЭНами. К нему мы и должны присоединить провод для заземления.

После подключения проводов следует провести заземление корпуса нагревателя и проводов подключения ТЭНа. Обычно у котлов для заземления с левой стороны у блока электронагревателей находится болт, к которому и следует подключать проводник заземления.

Вы можете использовать для заземления как отдельный провод уравнения потенциалов, так и провод с клеммника заземления блока управления.

Наглядно все вышеописанное вы можете посмотреть на рисунке ниже в виде схемы и фото подключения ТЭНа.


Если вы сделали все в четком соответствии инструкции, подключение блок Тэна электрокотла можно считать завершенным. Останется лишь вернуть защитный кожух на блок нагрева.

В электрических котлах управление нагревом осуществляется на основе данных от термодатчиков. Терморегулирующие устройства находятся на основной панели управления котла. На терморегулятор будут подаваться данные о температуре ТЭНа и температуре теплоносителя. На основе этих показаний и установленных на терморегуляторе настройках автоматикой принимается решение о подаче или отключении питания нагревательных элементов. Пока температура будет меньше установленной, будет подаваться питание, и Тэны будут производить нагрев, а при достижении или превышении порогового значения питание будет отключено и ТЭН прекратит нагреваться. При остывании до нижнего порога ТЭН опять включится.

Терморегулятор позволяет человеку всего один раз установить температуру (верхний и нижний порог) и потом работа электрокотла будет осуществляться в автоматическом режиме, а температура будет поддерживаться на нужном уровне.

Есть вариант использования терморегуляторов с несколькими типами термодатчиков, которые будут не только контролировать нагревание самого ТЭНа, но и температуру воздуха в помещении. Для этого термодатчик нужно установить на расстоянии от котла и теплоносителя.

Вариант подключения к трехфазной сети питания типа ТРЕУГОЛЬНИК

Рассмотрим на схеме второй вариант подключения нагревательных элементов к трехфазной сети под названием ТРЕУГОЛЬНИК. 

При данном варианте нагреватели соединяются между собой последовательно. У нас в итоге должно сформироваться три плеча для фазы А, В и С.  Для примера:

  1. Для А фазы – соединяем первый вывод ТЭНа №1 и первый вывод ТЭНа №2

  2. Для В фазы – соединяем второй вывод ТЭНа №2 и второй вывод ТЭНа №3

  3. Для С фазы – соединяем второй вывод  ТЭНа №1 и первый вывод ТЭНа №3

Теперь, когда мы познакомились с двумя типами подключения ТЭНов, можно рассмотреть зависимость мощности и температуры нагревателей от типа схемы подключения.

Зависимость температуры и мощности нагрева от варианта схемы подключения

Мощность нагревателя – это очень важный параметр, на который многие покупатели ориентируются при покупке ТЭНа. По сути же мощность ТЭНа зависит только от показателя сопротивления греющей спирали. Конечно же, если не использовать трансформаторы и питание от определенной сети будет постоянным. Данное свойство зависимости можно легко вычислить, воспользовавшись простой формулой из школьного курса физики:

Мощность (P) = Напряжение (U) * Сила тока (I)

В данном случае за величину напряжения берем разницу потенциалов между выводами электрического ТЭНа, а силу тока нужно измерять ту, которая будет протекать по греющей спирали.

Силу тока можно вычислить по формуле I=U/R, где R – электрическое сопротивление нагревательной спирали. Теперь подставим данное значение в формулу мощности, и получится, что мощность ТЭНа зависит только от напряжения и сопротивления.

Таким образом, делаем вывод, что при постоянном напряжении сети питания мощность электронагревателя будет меняться только при изменении сопротивления.

Значение сопротивления резистивного элемента в основной массе нагревателей имеет прямую зависимость от значения выделения температуры. Но в нагревателях с нихромовой или фехралевой спиралью, к примеру, в пределах сотни-другой градусов сопротивление практически не изменяется.

В ситуации с высокотемпературными нагревателями из карбида кремния или дисилицид молибдена картина будет совсем другой. В выскотемпературных нагревателях с увеличением температуры сопротивление падает очень значительно в пределах от 5 до 0,5 Ом, что делает их очень выгодными с точки зрения потребления электроэнергии в печах.

Но из-за данного качества высокотемпературных КЭНов их нельзя подключать напрямую даже к сети питания 220В, не говоря уже о 380В. Технически можно произвести подключение к 220в КЭНы, если соединить их последовательным образом. Однако при данном способе будет невозможно контролировать мощность и температурную выработку нагревателей в печи. Для подключения высокотмепературных нагревателей неметаллического типа следует использовать специальные регулируемые трансформаторы или же стандартные статистические ЭМ устройства.


В компании Полимернагрев вы можете купить электронагреватели, которые производятся специально с учетом подключения к трехфазной сети питания. Это сухие керамические ТЭНы, блок Тэны для воды и трехстержневые КЭНы. Тип подключения данных нагревателей зависит от показателя напряжения по схеме звезды или треугольника.

При подключении электрических Тэнов в соответствии со схемой ТРЕУГОЛЬНИК соединяются три нагревательных спирали, у которых равные значения сопротивления и на питание будет подано 380В. Подключение ТЭНов ЗВЕЗДА подразумевает наличие нулевого вывода, а на каждый элемент нагрева будет подаваться 220В. Нулевой провод позволяет подключать потребители с разным значением сопротивления.

Если у вас остались вопросы по типам подключения нагревателей к трехфазной сети, вы можете обратиться к нашим специалистам по телефону в Москве или задайте свой вопрос в форме ниже, мы постараемся подробно ответить вам в самые кратчайшие сроки.

Выбор между трехфазной или однофазной электростанцией

Один из самых распространенных вопросов при выборе электростанции, какая лучше однофазная или трехфазная? Часто покупатели бывают в недоумении от того, что продавец советует им купить однофазную электростанцию, хотя в дом приходит три фазы. Именно поэтому в этом разделе мы постараемся разобраться с темой количества фаз генераторной установки отдельно.

Сеть

Итак, основная сеть электропитания может иметь 1 или 3 фазы. Двух фаз не бывает. Два провода, входящие в дом – это фаза с напряжением 220 Вольт и нейтраль (ноль), которая часто также выполняет функцию заземления. Если в дом входит четыре провода, то имеет место быть 3-фазный вход плюс нейтраль (нулевая фаза). Напряжение в цепях трехфазного тока, как правило, обозначают дробью 220/380 (230/400) Вольт: 220 (230) в числителе дроби означает напряжение фаза-ноль, а 380 (400) в знаменателе — напряжение между любыми двумя фазными проводами.

Потребители

Трехфазный ток обычно используется на производстве, а так же для бытовых приборов старого образца, либо потребителей большой мощности: электроплиты, сауны, асинхронные двигатели в насосах. В быту, в основном, используются однофазные устройства.

Электрогенераторы

Однофазный и трехфазный генератор — разные устройства. Трехфазная электростанция создана для того, чтобы обеспечивать электроэнергией трехфазные потребители, а не для того, чтобы питать однофазные устройства, разделенные на три части. Трехфазный генератор мощностью 9 кВт выдает 3 раза по 3 кВт. Он не сможет запитать однофазную нагрузку в 4 кВт. При этом генераторные электростанции большой мощности (свыше 30 кВА), не имеют проблемы с распределением нагрузки пофазно при использовании в быту. Главной особенностью эксплуатации трехфазной электростанции является обязательное равномерное распределение нагрузки между фазами. Разница в нагрузке между тремя фазами не должна превышать 25%.

Системы резервного электроснабжения

Схема №1 Однофазный ввод, однофазные потребители, однофазный генератор

Самая простая ситуация, когда у вас в доме нет трехфазных потребителей, и к дому подходит одна фаза. В этом случае для резервного электроснабжения используется однофазный электрогенератор. Резервировать электрогенератором можно как все нагрузки в доме, так и особо важные, выделенные в ЩГП (щит гарантированного питания) в соответствии с мощностью генератора.

Схема №2 Трехфазный вход, однофазные потребители, однофазный генератор

Вариант 1. К вашему дому подведены три фазы, но резервировать вы хотите только одну, на которую подключаются особо важные электроприборы. В этом случае остальные две линии просто не будут участвовать в системе резервного электроснабжения. Тем не менее, в этом случае вам также необходимо равномерно распределять все свои нагрузки по фазам, чтобы исключить перекос мощности по фазам на питающей подстанции.

Вариант 2. Самый простой и удобный вариант построения резервной системы электроснабжения.

В эту систему входит однофазный электрогенератор и трехфазный АВР (автомат ввода резерва). В этом случае, при исчезновении внешней трехфазной сети, автоматически запускается однофазный генератор и через АВР подает на всю нагрузку свою фазу. Генератор, таким образом, будет питать все три фазы по однофазному принципу работы. Такая схема позволяет полностью использовать мощность генератора, подключить к резервному питанию всю имеющуюся нагрузку и не беспокоиться за перекос фаз.

Схема №3 Трехфазный ввод, однофазные потребители, трехфазный генератор

В данной схеме устанавливается трехфазная электростанция. В этом случае трехфазная электростанция будет питать энергией однофазные потребители, но обязательно равномерное распределение нагрузки на каждую из трех фаз генератора. Группировка потребителей по фазам часто требует полную переборку электрощита или монтаж новой проводки. Самая сложная схема. При этом, генераторная установка практически всегда будет недогружена, так как невозможно распределить все нагрузки пофазно так, чтобы на 100% загрузить каждую фазу.

Подключение нагревателей к трехфазной сети «звезда» и «треугольник» для контроля мощности и температуры

Любой тип трубчатого нагревателя может подключаться как к однофазной, так и к трехфазной сети. В свою очередь к трехфазной сети нагреватель может подключаться по одной из следующих схем:

Равномерная нагрузка возможна при условии, что на каждой фазе количество ТЭНов будет кратно числу три. Для подключения к трехфазной сети подбираются электронагреватели с рабочим напряжением в 200 или 380 Вольт. Элементы нагрева, у которых рабочее напряжение рассчитано на сеть 220 Вольт подключают по типу «звезда», а устройства с напряжением 380 Вольт могут подключаться к сети по типу «звезда» и «треугольник».

Подключения по схеме «звезда»

В качестве примера приведем подключение по схеме «звезда» с тремя электронагревателями. Таким способом можно подключать сухие ТЭНы с четырьмя болтами выводов и блоки ТЭН.


Каждый второй вывод нагревательного элемента подключается к соответствующей фазе. Первые выводы при этом соединены вместе и образовывают общую точку определяющуюся как нулевая или нейтральная. Соединённая нагрузка в данном случае считается трехпроводной.

Трехпроводное подключение предназначено для рабочего напряжения 380 Вольт. Ниже рассмотрим схему подсоединения трубчатого нагревателя к трехфазной сети. Включение и отключение напряжения производится в указанном случае автоматически за счет трехполюсных выключателей. 


В приведенной схеме можно увидеть, что выводы нагревателей справа подсоединены к фазам А, В, С. Выводы, которые находятся слева — соединяются в общей нейтральной точке. Рабочее напряжение между выводами справа и нейтральной точкой равно 220 Вольт.

Помимо трехпроводного подключения можно подключаться к сети и по четырехпроводной схеме «звезда». В данном случае подключают нагреватели в трехфазную сеть, напряжение которой составляет 220 Вольт. Нулевая точка нагрузки соединяется с нейтральной точкой питающего источника. 


Представленная схема показывает соединение правых выводов трубчатых элементов нагрева к соответствующим фазам, левые при этом замыкаются в одной точке, подключенной к нейтральной шине источника питания. Между нулем и выводами нагревателей напряжение 220 Вольт.

Если нужно полностью отключить нагрузку от электрической сети применяются выключатели «3+N» или «3Р+N», которые работают в автоматическом режиме. С помощью таких автоматов можно полностью перевести все силовые контакты на автоматизированный режим работы. Для наглядного практического применения схемы типа «звезда» рассмотрим подключение электронагревателей котла.

ПОДКЛЮЧЕНИЕ ТЭНОВ ЭЛЕКТРОКОТЛА

Для электрокотла можно подобрать несколько вариантов подключения, но в данном случае мы рассмотрим подключение сухих ТЭНов к трехфазной сети с напряжением 220 Вольт по типу «звезда». Из-за того, что мощность сухих трубчатых нагревателей высока важно, чтобы питающие провода соединялись с ними надежно. Поэтому рекомендуется в строгом порядке придерживаться схемы подключения проводов к выводам ТЭН по инструкции.


Подключая фазные провода к выводам электронагревателей следует в первую очередь накрутить гайку м4. После этого нужно наложить шайбу и одеть наконечник-кольцо питающего проводка. Далее опять накладывается шайба, а сверху на нее ложится пружинная шайба-гровер. Все это зажимается гайкой м4.

Провод, который будет подключен к нейтральной фазе, затягивается болтом м8. Он будет располагаться в перемычке между контактами отверстий нагревателя.

После подключения проводов следует провести заземление корпуса нагревателя и проводов подключения ТЭНа. Обычно у котлов для заземления с левой стороны у блока электронагревателей находится болт, к которому и следует подключать проводник заземления.

В качестве защитного заземлителя можно использовать отдельный проводник дополнительной системы уравнивания потенциалов или взять его с клеммы заземления управляющего блока.


После работ приведенных выше можно считать, что подключение ТЭНа электрического котла завершено. Теперь осталось только провести установку кожуха защиты на блоке теплового обменника.

Для контроля температур воды и воздуха применяют специальные термодатчики. На главной панели блока управления электрического котла находятся два промаркированных регулятора — «воздух» и «вода». Каждый из регуляторов имеет свою градуировку с цифровым кодом, в котором обозначена температура, измеряемая в Цельсиях. Благодаря таким регуляторам можно с легкостью выставлять требуемые термические значения теплоносителя. Регулятор работает по принципу настройки, когда температура электрокотла достигнет значений, которые были установлены в опциях, ТЭН прекратит нагрев, а как значения опустятся ниже необходимого уровня, устройства нагрева вновь начнут свою работу.

Таким образом, можно автоматизировать работу электрокотла. Оператору достаточно всего лишь выставить значения нужных показателей, а дальнейшая работа будет проводиться автоматически. Тепло в помещении будет поддерживаться на нужном уровне без участия человека.

Температурные датчики значительно облегчают эксплуатацию электрокотла. Датчик контроля температуры воды располагается непосредственно в теплообменнике в специальном посадочном месте. Как вариант его можно установить самостоятельно, прикрепив к отопительной трубе.

Аналогичным образом работает и датчик определяющий температуру воздуха. Его устанавливают в помещении для замера общей температуры. Электрический котел будет прогревать теплоноситель до той степени, пока воздух в помещении не достигнет нужных температурных значений.

Различные типы и модели электрокотлов могут отличаться своей внутренней компоновкой, наличием дополнительных функций, автоматизации и мн. др. Но, несмотря на разность всевозможной модификации прокладка электрической проводки, подбор типа и сечения кабеля, автоматической защиты, а также подключений к сети не меняются.

Подключение по схеме «треугольник»


При подключении по схеме «треугольник» выводы трубчатого нагревателя соединяют в поочередном порядке. Схема подключения такого типа означает, что: вывод под номером 1 у первого нагревателя будет соединён с выводом №1 второго нагревателя; вывод №2 второго ТЭНа подключится к выводу №2 третьего нагревателя; от первого нагревателя вывод №2 подсоединится к выводу №1 третьего ТЭНа. При соблюдении указанной схемы в итоге должно получиться три плеча — «а», «б», «с». На каждое плечо будет подана своя фаза:

  • «а» — А фаза;

  • «б» — В фаза;

  • «с» — С фаза.

Мощность нагревателей и их температурная подача зависимо от схемы подключения ТЭНа

Выбирая нагреватель, покупатель в первую очередь обращают внимание на его мощность. Техническая практика же показывает, что при постоянном подключении к определенной сети, когда не используются трансформаторы, показатели мощности зависят только от электросопротивления резистивного элемента, который находится в самом нагревательном устройстве. Зависимость определена формулой:

P = U * I

где P — мощность,

U — напряжение между концами греющего элемента,

I – ток, протекающий по резистивному элементу.

По той причине, что ток, проходящий по спирали зависим только от напряжения, приложенного к концам и собственного электросопротивления (R) конкретного участка спирали, формулу можно упростить:

P = U2 / R

Из этого можно сделать вывод, что в условиях постоянного напряжения мощность будет повышаться только тогда, когда сопротивление будет падать. 

Электросопротивление у большей части нагревательных устройств напрямую зависит от температурной выработки самого элемента нагрева. Но, сопротивление в пределах нескольких сотен градусов будет меняться незначительно. Стоит понимать, что с карбидокремниевыми нагревателями ситуация будет абсолютно другой. Так как у них функцию элемента нагрева выполняет неметаллический стержень, сопротивление здесь будет изменяться не в линейном порядке. Сопротивление таких устройств может находиться в диапазоне 0,5…5 Ом, что не позволит напрямую подключить устройство нагрева в сеть напряжением 220 Вольт и уж тем более 380 Вольт. По техническим меркам карбидокремниевые нагреватели можно подсоединять к стандартной сети, если соблюдать их сборку в последовательной цепочке. Но. Стоит отметить, что такая методика малоэффективна, если необходимо проводить точный контроль мощности и регулировку определенной температуры печи. Самым лучшим способом считается подключение электронагревателей к сети с помощью лабораторных регулируемых автотрансформаторов или стандартных устройств статистических электромагнитных устройств. 


Существуют нагреватели, которые изготавливаются сразу для трехфазной сети, например блок- ТЭНы или W-образные карбидокремниевые нагреватели. Способ их подключения зависит от рассчитанного напряжения по схеме «звезда» или «треугольник». При подключении по схеме «треугольник» подразумевается соединение трех нагревательных единиц, у которых сопротивления равны и на каждый будет подано напряжение 380 Вольт. Схема «звезда» с наличием нулевого провода подробно расписана выше и предназначается для подачи на каждый потребитель напряжения 220 Вольт. Нулевой провод необходим для подключения потребителей с разными электросопротивлениями.

Получить консультацию по подбору мощности, рабочих температур и способу подключения нагревателей вы можете бесплатно, обратившись к услугам компании «ТЭН24». Наши технологи помогут в точности рассчитать все параметры и характеристики электронагревателей для вашего оборудования и за короткое время выполнят заказ. Доставка промышленных нагревателей «ТЭН24» осуществляется по всей Украине.



Полный список: Трехфазная электроэнергия (напряжение / частота)

Абу-Даби (не страна, а штат (эмират) в Объединенных Арабских Эмиратах) 400 В 50 Гц 3, 4
Афганистан 380 В 50 Гц 4
Албания 400 В 50 Гц 4
Алжир 400 В 50 Гц 4
Американское Самоа 208 В 60 Гц 3, 4
Андорра 400 В 50 Гц 3, 4
Ангола 380 В 50 Гц 4
Ангилья 120/208 В / 127/220 В / 240/415 В 60 Гц 3, 4
Антигуа и Барбуда 400 В 60 Гц 3, 4
Аргентина 380 В 50 Гц 3, 4
Армения 400 В 50 Гц 4
Аруба 220 В 60 Гц 3, 4
Австралия 400 В (официально, но на практике часто 415 В) 50 Гц 3, 4
Австрия 400 В 50 Гц 3, 4
Азербайджан 380 В 50 Гц 4
Азорские острова 400 В 50 Гц 3, 4
Багамы 208 В 60 Гц 3, 4
Бахрейн 400 В 50 Гц 3, 4
Балеарские острова 400 В 50 Гц 3, 4
Бангладеш 400 В 50 Гц 3, 4
Барбадос 200 В 50 Гц 3, 4
Беларусь 380 В 50 Гц 4
Бельгия 400 В 50 Гц 3, 4
Белиз 190 В / 380 В 60 Гц 3, 4
Бенин 380 В 50 Гц 4
Бермудские острова 208 В 60 Гц 3, 4
Бутан 400 В 50 Гц 4
Боливия 400 В 50 Гц 4
Бонайре 220 В 50 Гц 3, 4
Босния и Герцеговина 400 В 50 Гц 4
Ботсвана 400 В 50 Гц 4
Бразилия 220/380 В 60 Гц 3, 4
Британские Виргинские острова 190 В 60 Гц 3, 4
Бруней 415 В 50 Гц 4
Болгария 400 В 50 Гц 4
Буркина-Фасо 380 В 50 Гц 4
Бирма (официально Мьянма) 400 В 50 Гц 4
Бурунди 380 В 50 Гц 4
Камбоджа 400 В 50 Гц 4
Камерун 380 В 50 Гц 4
Канада 120/208 В / 240 В / 480 В / 347/600 В 60 Гц 3, 4
Канарские острова 400 В 50 Гц 3, 4
Кабо-Верде (по-португальски: Кабо-Верде) 400 В 50 Гц 3, 4
Каймановы острова 240 В 60 Гц 3
Центральноафриканская Республика 380 В 50 Гц 4
Чад 380 В 50 Гц 4
Нормандские острова (Гернси и Джерси) 400 В 50 Гц 4
Чили 380 В 50 Гц 3, 4
Китай, Народная Республика 380 В 50 Гц 3, 4
Остров Рождества 400 В 50 Гц 3, 4
Кокосовые острова (Килинг) 400 В 50 Гц 3, 4
Колумбия 220 В / 440 В 60 Гц 3, 4
Коморские Острова 380 В 50 Гц 4
Конго-Браззавиль (Республика Конго) 400 В 50 Гц 3, 4
Конго-Киншаса (Демократическая Республика Конго) 380 В 50 Гц 3, 4
Острова Кука 415 В 50 Гц 3, 4
Коста-Рика 240 В 60 Гц 3, 4
Кот-д’Ивуар (Кот-д’Ивуар) 380 В 50 Гц 3, 4
Хорватия 400 В 50 Гц 4
Куба 190 В / 440 В 60 Гц 3
Кюрасао 220 В / 380 В 50 Гц 3, 4
Кипр 400 В 50 Гц 4
Кипр, Север (непризнанное, самопровозглашенное государство) 400 В 50 Гц 4
Чехия (Чехия) 400 В 50 Гц 3, 4
Дания 400 В 50 Гц 3, 4
Джибути 380 В 50 Гц 4
Доминика 400 В 50 Гц 4
Доминиканская Республика 120/208 В / 277/480 В 60 Гц 3, 4
Дубай (не страна, а государство (эмират) в составе Объединенных Арабских Эмиратов) 400 В 50 Гц 3, 4
Восточный Тимор (Тимор-Лешти) 380 В 50 Гц 4
Эквадор 208 В 60 Гц 3, 4
Египет 380 В 50 Гц 3, 4
Сальвадор 200 В 60 Гц 3
Англия 400 В 50 Гц 4
Экваториальная Гвинея [недоступно] [недоступно] [недоступно]
Эритрея 400 В 50 Гц 4
Эстония 400 В 50 Гц 4
Эфиопия 380 В 50 Гц 4
Фарерские острова 400 В 50 Гц 3, 4
Фолклендские острова 415 В 50 Гц 4
Фиджи 415 В 50 Гц 3, 4
Финляндия 400 В 50 Гц 3, 4
Франция 400 В 50 Гц 4
Французская Гвиана (заморский департамент Франции) 380 В 50 Гц 3, 4
Французская Полинезия (французская зарубежная совокупность) 380 В 60 Гц 3, 4
Габон (Габонская Республика) 380 В 50 Гц 4
Гамбия 400 В 50 Гц 4
Газа 400 В 50 Гц 4
Грузия 380 В 50 Гц 4
Германия 400 В 50 Гц 4
Гана 400 В 50 Гц 3, 4
Гибралтар 400 В 50 Гц 4
Великобритания (GB) 400 В 50 Гц 4
Греция 400 В 50 Гц 4
Гренландия 400 В 50 Гц 3, 4
Гренада 400 В 50 Гц 4
Гваделупа (заморский департамент Франции) 400 В 50 Гц 3, 4
Гуам 190 В 60 Гц 3, 4
Гватемала 208 В 60 Гц 3, 4
Гвинея 380 В 50 Гц 3, 4
Гвинея-Бисау 380 В 50 Гц 3, 4
Гайана 190 В 60 Гц 3, 4
Гаити 190 В 60 Гц 3, 4
Голландия (официально Нидерланды) 400 В 50 Гц 3, 4
Гондурас 208 В / 230 В / 240 В / 460 В / 480 В 60 Гц 3, 4
Гонконг 380 В 50 Гц 3, 4
Венгрия 400 В 50 Гц 3, 4
Исландия 400 В 50 Гц 3, 4
Индия 400 В 50 Гц 4
Индонезия 400 В 50 Гц 4
Иран 400 В 50 Гц 3, 4
Ирак 400 В 50 Гц 4
Ирландия, Северная 400 В 50 Гц 4
Ирландия, Республика (Ирландия) 400 В 50 Гц 4
Остров Мэн 400 В 50 Гц 4
Остров Мэн 400 В 50 Гц 4
Израиль 400 В 50 Гц 4
Италия 400 В 50 Гц 4
Ямайка 190 В 50 Гц 3, 4
Япония 200 В 50 Гц / 60 Гц 3
Jordan 400 В 50 Гц 3, 4
Казахстан 380 В 50 Гц 3, 4
Кения 415 В 50 Гц 4
Кирибати [недоступно] [недоступно] [недоступно]
Корея, Северная 380 В 50 Гц 3, 4
Корея, Южная 380 В 60 Гц 4
Косово 230 В / 400 В 50 Гц 3
Кувейт 415 В 50 Гц 4
Кыргызстан 380 В 50 Гц 3, 4
Лаос 400 В 50 Гц 4
Латвия 400 В 50 Гц 4
Ливан 400 В 50 Гц 4
Лесото 380 В 50 Гц 4
Либерия 208 В 60 Гц 3, 4
Ливия 400 В 50 Гц 4
Лихтенштейн 400 В 50 Гц 4
Литва 400 В 50 Гц 4
Люксембург 400 В 50 Гц 4
Макао 380 В 50 Гц 3
Македония, Северная 400 В 50 Гц 4
Мадагаскар 380 В 50 Гц 3, 4
Мадейра 400 В 50 Гц 3, 4
Малави 400 В 50 Гц 3, 4
Малайзия 400 В (официально, но на практике часто 415 В) 50 Гц 4
Мальдивы 400 В 50 Гц 4
Мали 380 В 50 Гц 3, 4
Мальта 400 В 50 Гц 4
Маршалловы Острова [недоступны] [недоступны] [недоступны]
Мартиника (Французский заморский департамент) 380 В 50 Гц 3, 4
Мавритания 380 В 50 Гц 3, 4
Маврикий 400 В 50 Гц 4
Mayotte (Французский заморский департамент) [недоступен] [недоступен] [недоступен]
Мексика 127/220 В / 120/240 В / 440 В / 240/480 В 60 Гц 3, 4
Микронезия (официально: Федеративные Штаты Микронезии) [недоступно] [недоступно] [недоступно]
Молдова 400 В 50 Гц 4
Монако 400 В 50 Гц 4
Монголия 400 В 50 Гц 4
Черногория 400 В 50 Гц 3, 4
Монтсеррат 400 В 60 Гц 4
Марокко 380 В 50 Гц 4
Мозамбик 380 В 50 Гц 4
Мьянма (ранее Бирма) 400 В 50 Гц 4
Намибия 380 В 50 Гц 4
Науру 415 В 50 Гц 4
Непал 400 В 50 Гц 4
Нидерланды 400 В 50 Гц 3, 4
Новая Каледония (французское зарубежье) 380 В 50 Гц 3, 4
Новая Зеландия 400 В 50 Гц 3, 4
Никарагуа 208 В 60 Гц 3, 4
Нигер 380 В 50 Гц 4
Нигерия 415 В 50 Гц 4
Ниуэ 400 В 50 Гц 3, 4
Остров Норфолк 400 В 50 Гц 3, 4
Северный Кипр (непризнанное, самопровозглашенное государство) 400 В 50 Гц 4
Северная Корея 380 В 50 Гц 3, 4
Северная Македония 400 В 50 Гц 4
Северная Ирландия 400 В 50 Гц 4
Норвегия 230 В / 400 В 50 Гц 3, 4
Оман 415 В 50 Гц 4
Пакистан 400 В 50 Гц 3
Палау 208 В 60 Гц 3
Палестина 400 В 50 Гц 4
Палестина 400 В 50 Гц 4
Панама 240 В 60 Гц 3
Папуа-Новая Гвинея 415 В 50 Гц 4
Парагвай 380 В 50 Гц 4
Перу 220 В 60 Гц 3
Филиппины 380 В 60 Гц 3
Острова Питкэрн [недоступны] [недоступны] [недоступны]
Польша 400 В 50 Гц 4
Португалия 400 В 50 Гц 3, 4
Пуэрто-Рико 480 В 60 Гц 3, 4
Катар 415 В 50 Гц 3, 4
Реюньон (Французский заморский департамент) 400 В 50 Гц 4
Румыния 400 В 50 Гц 4
Россия (официально Российская Федерация) 380 В 50 Гц 4
Руанда 400 В 50 Гц 4
Saba [недоступно] [недоступно] [недоступно]
Сен-Бартелеми (французское заморское сообщество, неофициально также называемое Сен-Бартс или Сен-Бартс) [недоступно] [недоступно] [недоступно]
Остров Святой Елены [недоступен] [недоступен] [недоступен]
Сент-Китс и Невис (официально Федерация Сент-Кристофера и Невиса) 400 В 60 Гц 4
Сент-Люсия 400 В 50 Гц 4
Сен-Мартен (французское зарубежье) [недоступно] [недоступно] [недоступно]
Сен-Пьер и Микелон (французское зарубежье) [недоступно] [недоступно] [недоступно]
Сент-Винсент и Гренадины 400 В 50 Гц 4
Самоа 400 В 50 Гц 3, 4
Сан-Марино 400 В 50 Гц 4
Сан-Томе и Принсипи 400 В 50 Гц 3, 4
Саудовская Аравия 400 В 60 Гц 4
Шотландия 400 В 50 Гц 4
Сенегал 400 В 50 Гц 3, 4
Сербия 400 В 50 Гц 3, 4
Сейшельские острова 240 В 50 Гц 3
Сьерра-Леоне 400 В 50 Гц 4
Сингапур 400 В 50 Гц 4
Синт-Эстатиус 220 В 60 Гц 3, 4
Синт-Мартен 220 В 60 Гц 3, 4
Словакия 400 В 50 Гц 4
Словения 400 В 50 Гц 3, 4
Соломоновы Острова [недоступны] [недоступны] [недоступны]
Сомали 380 В 50 Гц 3, 4
Сомалиленд (непризнанный, самопровозглашенный штат) 380 В 50 Гц 3, 4
Южная Африка 400 В 50 Гц 3, 4
Южная Корея 380 В 60 Гц 4
Южный Судан 400 В 50 Гц 4
Испания 400 В 50 Гц 3, 4
Шри-Ланка 400 В 50 Гц 4
Судан 400 В 50 Гц 4
Суринам (Суринам) 220 В / 400 В 60 Гц 3, 4
Свазиленд 400 В 50 Гц 4
Швеция 400 В 50 Гц 3, 4
Швейцария 400 В 50 Гц 3, 4
Сирия 380 В 50 Гц 3
Таити (самый большой остров во Французской Полинезии, заморское сообщество Франции) 380 В 60 Гц 3, 4
Тайвань 220 В 60 Гц 4
Таджикистан 380 В 50 Гц 3
Танзания 415 В 50 Гц 3, 4
Таиланд 400 В 50 Гц 3, 4
Того 380 В 50 Гц 4
Токелау 400 В 50 Гц 3, 4
Тонга 415 В 50 Гц 3, 4
Тринидад и Тобаго 115/230 В / 230/400 В 60 Гц 4
Тунис 400 В 50 Гц 4
Турция 400 В 50 Гц 3, 4
Туркменистан 380 В 50 Гц 3
Острова Теркс и Кайкос 240 В 60 Гц 4
Тувалу 400 В 50 Гц 3, 4
Уганда 415 В 50 Гц 4
Украина 400 В 50 Гц 4
Объединенные Арабские Эмираты (ОАЭ) 400 В 50 Гц 3, 4
Соединенное Королевство (UK) 400 В 50 Гц 4
Соединенные Штаты Америки (США) 120/208 В / 277/480 В / 120/240 В / 240 В / 480 В 60 Гц 3, 4
Виргинские острова США 190 В 60 Гц 3, 4
Уругвай 380 В 50 Гц 3
Узбекистан 380 В 50 Гц 4
Вануату 400 В 50 Гц 3, 4
Ватикан 400 В 50 Гц 4
Венесуэла 120 В 60 Гц 3, 4
Вьетнам 380 В 50 Гц 4
Виргинские острова (Британские) 190 В 60 Гц 3, 4
Виргинские острова (США) 190 В 60 Гц 3, 4
Уэльс 400 В 50 Гц 4
Уоллис и Футуна (французское зарубежье) 380 В 50 Гц 3, 4
Западный берег 400 В 50 Гц 4
Западная Сахара 380 В 50 Гц 4
Йемен 400 В 50 Гц 4
Замбия 400 В 50 Гц 4
Зимбабве 400 В 50 Гц 3, 4

Почему трехфазное напряжение составляет 440 вольт?

Как известно, напряжение — это разность потенциалов между двумя точками.

Однофазный

Однофазная система питания — это система, в которой имеется только один источник переменного напряжения.

Однофазный состоит всего из двух проводов, один из которых называется фазой, а другой — нейтральным.

Напряжение измеряется между фазой и нейтралью.

Трехфазный

В то время как 3 фазы — это напряжение между любыми двумя из этих трех фаз.

В трехфазном питании есть 3 линии питания, сдвинутые по фазе на 120 градусов друг от друга.

Итак, чистая разница напряжений между двумя фазами в соответствии с фазовым углом 120 градусов составляет 440 В.

Как показано на рисунке ниже, трехфазный источник питания имеет три провода (RYB).

Напряжение на любой одной фазе и нейтрали составляет 220 В, а напряжение на 3 фазе — 440 В, потому что мы проверяем напряжение между любыми двухфазными RY, YB или BR.

Почему 440 вольт?

Рассмотрим одну синусоидальную волну с максимальной амплитудой 220 относительно ее оси.Таким образом, будь то положительный или отрицательный цикл, он может достигать максимума 220 (+220 или -220).

Но если учесть напряжение между одной фазой, тогда оно станет 440.

Теперь все 3 фазы имеют одинаковое максимальное среднеквадратичное значение. То есть, если рассмотреть любую из фаз и сравнить их напряжение с нейтралью, оно выйдет на 220 или 240 вольт или около того.

В то время как в случае трех фаз напряжение может использоваться между двумя фазами вместо одной фазы и нейтрали.Будь то три фазы, но вы можете рассчитать напряжение между любыми двумя из них одновременно.

Максимальное напряжение, которое можно получить от любых двух фаз, — это когда одна находится в верхней части своего положительного цикла (т. Е. +220), а другая — в самом низком из своего отрицательного цикла (-220).

Если мы проверим напряжение между этими двумя точками, то оно составит 440 вольт ((+220) — (- 220) = 440).

Автор: Р. Джаган Мохан Рао

Читать дальше:

Потребители низкого напряжения — Руководство по устройству электроустановок

Страна Частота и допуск
(Гц и%)
Внутренний (V) коммерческий (V) Промышленное (В)
Афганистан 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Алжир 50 ± 1.5 220/127 (д)
220 (к)
380/220 (а)
220/127 (а)
10 000
5 500
6 600
380/220 (а)
Ангола 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Антигуа и Барбуда 60 240 (к)
120 (к)
400/230 (а)
120/208 (а)
400/230 (а)
120/208 (а)
Аргентина 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Армения 50 ± 5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Австралия 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
440/250 (а)
440 (м)
22 000
11 000
6 600
415/240
440/250
Австрия 50 ± 0,1 230 (к) 380/230 (а) (б)
230 (к)
5,000
380/220 (а)
Азербайджан 50 ± 0,1 208/120 (а)
240/120 (к)
208/120 (а)
240/120 (к)
Бахрейн 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11000
415/240 (а)
240 (к)
Бангладеш 50 ± 2 410/220 (а)
220 (к)
410/220 (а) 11000
410/220 (а)
Барбадос 50 ± 6 230/115 (к)
115 (к)
230/115 (к)
200/115 (а)
220/115 (а)
230/400 (г)
230/155 (к)
Беларусь 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Бельгия 50 ± 5 230 (к)
230 (а)
3N, 400
230 (к)
230 (а)
3N, 400
6 600
10 000
11 000
15 000
Боливия 50 ± 0.5 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Ботсвана 50 ± 3 220 (к) 380/220 (а) 380/220 (а)
Бразилия 60 ± 3 220 (к, а)
127 (к, а)
220/380 (а)
127/220 (а)
69 000
23 200
13 800
11 200
220/380 (а)
127/220 (а)
Бруней 50 ± 2 230 230 11 000
68 000
Болгария 50 ± 0.1 220 220/240 1000
690
380
Камбоджа 50 ± 1 220 (к) 220/300 220/380
Камерун 50 ± 1 220/260 (к) 220/260 (к) 220/380 (а)
Канада 60 ± 0,02 120/240 (к) 347/600 (а)
480 (е)
240 (е)
120/240 (к)
120/208 (а)
7200/12 500
347/600 (а)
120/208
600 (ж)
480 (ж)
240 (ж)
Кабо-Верде 220 220 380/400
Чад 50 ± 1 220 (к) 220 (к) 380/220 (а)
Чили 50 ± 1 220 (к) 380/220 (а) 380/220 (а)
Китай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Колумбия 60 ± 1 120/240 (г)
120 (к)
120/240 (г)
120 (к)
13 200 927 47 120/240 (г)
Конго 50 220 (к) 240/120 (к)
120 (к)
380/220 (а)
Хорватия 50 400/230 (а)
230 (к)
400/230 (а)
230 (к)
400/230 (а)
Кипр 50 ± 0.1 240 (к) 415/240 11 000 927 47 415/240
Чешская Республика 50 ± 1 230 500
230/400
400 000
220 000
110 000
35 000
22 000
10 000
6 000
3 000
Дания 50 ± 1 400/230 (а) 400/230 (а) 400/230 (а)
Джибути 50 400/230 (а) 400/230 (а)
Доминика 50 230 (к) 400/230 (а) 400/230 (а)
Египет 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
66,000
33,000
20,000
11,000
6,600
380/220 (а)
Эстония 50 ± 1 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Эфиопия 50 ± 2,5 220 (к) 380/231 (а) 15 000
380/231 (а)
Фолклендские острова 50 ± 3 230 (к) 415/230 (а) 415/230 (а)
Острова Фиджи 50 ± 2 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11000
415/240 (а)
Финляндия 50 ± 0.1 230 (к) 400/230 (а) 690/400 (а)
400/230 (а)
Франция 50 ± 1 400/230 (а)
230 (а)
400/230
690/400
590/100
20 000
10 000
230/400
Гамбия 50 220 (к) 220/380 380
Грузия 50 ± 0,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Германия 50 ± 0.3 400/230 (а)
230 (к)
400/230 (а)
230 (к)
20 000
10 000
6 000
690/400
400/230
Гана 50 ± 5 220/240 220/240 415/240 (а)
Гибралтар 50 ± 1 415/240 (а) 415/240 (а) 415/240 (а)
Греция 50 220 (к)
230
6,000
380/220 (а)
22 000
20 000
15 000
6 600
Гранада 50 230 (к) 400/230 (а) 400/230 (а)
Гонконг 50 ± 2 220 (к) 380/220 (а)
220 (к)
11000
386/220 (а)
Венгрия 50 ± 5 220 220 220/380
Исландия 50 ± 0.1 230 230/400 230/400
Индия 50 ± 1,5 440/250 (а)
230 (к)
440/250 (а)
230 (к)
11000
400/230 (а)
440/250 (а)
Индонезия 50 ± 2 220 (к) 380/220 (а) 150 000
20 000
380/220 (а)
Иран 50 ± 5 220 (к) 380/220 (а) 20 000
11 000
400/231 (а)
380/220 (а)
Ирак 50 220 (к) 380/220 (а) 11000
6 600
3000
380/220 (а)
Ирландия 50 ± 2 230 (к) 400/230 (а) 20 000
10 000
400/230 (а)
Израиль 50 ± 0.2 400/230 (а)
230 (к)
400/230 (а)
230 (к)
22 000
12 600
6 300
400/230 (а)
Италия 50 ± 0,4 400/230 (а)
230 (к)
400/230 (а) 20 000
15 000
10 000
400/230 (а)
Ямайка 50 ± 1 220/110 (г) (к) 220/110 (г) (к) 4000
2300
220/110 (г)
Япония (восток) + 0.1
— 0,3
200/100 (в) 200/100 (ч)
(до 50 кВт)
140 000
60 000
20 000
6 000
200/100 (ч)
Иордания 50 380/220 (а)
400/230 (к)
380/220 (а) 400 (а)
Казахстан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Кения 50 240 (к) 415/240 (а) 415/240 (а)
Киргизия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Корея (Северная) 60 +0, -5 220 (к) 380/220 (а) 13 600
6 800
Корея (Южная) 60 ± 0.2 220 (к) 380/220 (а) 380/220 (а)
Кувейт 50 ± 3 240 (к) 415/240 (а) 415/240 (а)
Лаос 50 ± 8 380/220 (а) 380/220 (а) 380/220 (а)
Лесото 220 (к) 380/220 (а) 380/220 (а)
Латвия 50 ± 0.4 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Ливан 50 220 (к) 380/220 (а) 380/220 (а)
Ливия 50 230 (к)
127 (к)
400/230 (а)
220/127 (а)
230 (к)
127 (к)
400/230 (а)
220/127 (а)
Литва 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Люксембург 50 ± 0,5 380/220 (а) 380/220 (а) 20 000
15 000
5 000
Македония 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Мадагаскар 50 220/110 (к) 380/220 (а) 35 000
5 000
380/220
Малайзия 50 ± 1 240 (к)
415 (а)
415/240 (а) 415/240 (а)
Малави 50 ± 2.5 230 (к) 400 (а)
230 (к)
400 (а)
Мали 50 220 (к)
127 (к)
380/220 (а)
220/127 (а)
220 (к)
127 (к)
380/220 (а)
220/127 (а)
Мальта 50 ± 2 240 (к) 415/240 (а) 415/240 (а)
Мартиника 50 127 (к) 220/127 (а)
127 (к)
220/127 (а)
Мавритания 50 ± 1 230 (к) 400/230 (а) 400/230 (а)
Мексика 60 ± 0.2 127/220 (а)
120/240 (к)
127/220 (а)
120/240 (к)
4,160
13,800
23,000
34,500
277/480 (а)
127/220 (б)
Молдавия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Марокко 50 ± 5 380/220 (а) 380/220 (а) 225 000
220/110 (а) 150 000
60 000
22 000
20 000
Мозамбик 50 380/220 (а) 380/220 (а) 6 000
10 000
Непал 50 ± 1 220 (к) 440/220 (а)
220 (к)
11000
440/220 (а)
Нидерланды 50 ± 0.4 230/400 (а)
230 (к)
230/400 (а) 25 000
20 000
12 000
10 000
230/400
Новая Зеландия 50 ± 1,5 400/230 (д) (а)
230 (к)
460/230 (д)
400/230 (д) (а)
230 (к)
11000
400/230 (а)
Нигер 50 ± 1 230 (к) 380/220 (а) 15000
380/220 (а)
Нигерия 50 ± 1 230 (к)
220 (к)
400/230 (а)
380/220 (а)
15000
11000
400/230 (а)
380/220 (а)
Норвегия 50 ± 2 230/400 230/400 230/400
690
Оман 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Пакистан 50 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Папуа-Новая Гвинея 50 ± 2 240 (к) 415/240 (а)
240 (к)
22000
11000
415/240 (а)
Парагвай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
22 000
380/220 (а)
Филиппины (Республика) 60 ± 0,16 110/220 (к) 13,800
4,160
2400
110/220 (в)
13,800
4,160
2400
440 (б)
110/220 (в)
Польша 50 ± 0,1 230 (к) 400/230 (а) 1,000
690/400
400/230 (а)
Португалия 50 ± 1 380/220 (а)
220 (к)
15000
5000
380/220 (а)
220 (к)
15 000
5 000
380/220 (а)
Катар 50 ± 0.1 415/240 (к) 415/240 (а) 11000
415/240 (а)
Румыния 50 ± 0,5 220 (к)
220/380 (а)
220/380 (а) 20 000
10 000
6 000
220/380 (а)
Россия 50 ± 0,2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Руанда 50 ± 1 220 (к) 380/220 (а) 15 000
6 600
380/220 (а)
Сент-Люсия 50 ± 3 240 (к) 415/240 (а) 11000
415/240 (а)
Самоа 400/230
Сан-Марино 50 ± 1 230/220 380 15 000 927 47 380
Саудовская Аравия 60 220/127 (а) 220/127 (а)
380/220 (а)
11000
7 200
380/220 (а)
Соломоновы Острова 50 ± 2 240 415/240 415/240
Сенегал 50 ± 5 220 (а)
127 (к)
380/220 (а)
220/127 (к)
90 000
30 000
6 600
Сербия и Черногория 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Сейшельские острова 50 ± 1 400/230 (а) 400/230 (а) 11000
400/230 (а)
Сьерра-Леоне 50 ± 5 230 (к) 400/230 (а)
230 (к)
11 000 927 47 400
Сингапур 50 400/230 (а)
230 (к)
400/230 (а) 22 000
6 600
400/230 (а)
Словакия 50 ± 0.5 230 230 230/400
Словения 50 ± 0,1 220 (к) 380/220 (а) 10 000
6 600
380/220 (а)
Сомали 50 230 (к)
220 (к)
110 (к)
440/220 (к)
220/110 (к)
230 (к)
440/220 (г)
220/110 (г)
Южная Африка 50 ± 2,5 433/250 (а)
400/230 (а)
380/220 (а)
220 (к)
11000
6 600
3300
433/250 (а)
400/230 (а)
380/220 (а)
11000
6,600
3,300
500 (б)
380/220 (а)
Испания 50 ± 3 380/220 (а) (д)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220/127 (а) (д)
15000
11000
380/220 (а)
Шри-Ланка 50 ± 2 230 (к) 400/230 (а)
230 (к)
11000
400/230 (а)
Судан 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Свазиленд 50 ± 2.5 230 (к) 400/230 (а)
230 (к)
11000
400/230 (а)
Швеция 50 ± 0,5 400/230 (а)
230 (к)
400/230 (а)
230 (к)
6,000
400/230 (а)
Швейцария 50 ± 2 400/230 (а) 400/230 (а) 20,000
10,000
3,000
1,000
690/500
Сирия 50 220 (к)
115 (к)
380/220 (а)
220 (к)
200/115 (а)
380/220 (а)
Таджикистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Танзания 50 400/230 (а) 400/230 (а) 11000
400/230 (а)
Таиланд 50 220 (к) 380/220 (а)
220 (к)
380/220 (а)
Того 50 220 (к) 380/220 (а) 20 000
5 500
380/220 (а)
Тунис 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
30 000
15 000
10 000
380/220 (а)
Туркменистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Турция 50 ± 1 380/220 (а) 380/220 (а) 15000
6 300
380/220 (а)
Уганда + 0.1 240 (к) 415/240 (а) 11000
415/240 (а)
Украина + 0,2 / — 1,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
220 (к)
Объединенные Арабские Эмираты 50 ± 1 220 (к) 415/240 (а)
380/220 (а)
220 (к)
6 600
415/210 (а)
380/220 (а)
Соединенное Королевство
(кроме Северной
Ирландии)
50 ± 1 230 (к) 400/230 (а) 22 000
11 000
6 600
3 300
400/230 (а)
Соединенное Королевство
(включая Северную
Ирландию)
50 ± 0.4 230 (к)
220 (к)
400/230 (а)
380/220 (а)
400/230 (а)
380/220 (а)
Соединенные Штаты Америки
Америка
Шарлотта
(Северная Каролина)
60 ± 0,06 120/240 (к)
120/208 (а)
265/460 (а)
120/240 (к)
120/208 (а)
14 400
7 200
2400
575 (е)
460 (е)
240 (е)
265/460 (а)
120/240 (к)
120/208 (а)
Соединенные Штаты Америки
Америка
Детройт (Мичиган)
60 ± 0.2 120/240 (к)
120/208 (а)
480 (ж)
120/240 (в)
120/208 (а)
13200
4800
4,160
480 (ж)
120/240 (в)
120/208 (а)
Соединенные Штаты Америки
Америка
Лос-Анджелес (Калифорния)
60 ± 0,2 120/240 (к) 4800
120/240 (г)
4800
120/240 (г)
Соединенные Штаты
Америка
Майами (Флорида)
60 ± 0.3 120/240 (к)
120/208 (а)
120/240 (j)
120/240 (h)
120/208 (a)
13 200
2400
480/277 (а)
120/240 (в)
Соединенные Штаты
Америка Нью-Йорк
(Нью-Йорк)
60 120/240 (к)
120/208 (а)
120/240 (к)
120/208 (а)
240 (е)
12,470
4,160
277/480 (а)
480 (ж)
Соединенные Штаты Америки
Америка
Питтсбург
(Пенсильвания)
60 ± 0.03 120/240 (к) 265/460 (а)
120/240 (к)
120/208 (а)
460 (е)
230 (е)
13 200
11 500
2400
265/460 (а)
120/208 (а)
460 (ж)
230 (ж)
Соединенные Штаты
Америка
Портленд (Орегон)
60 120/240 (к) 227/480 (а)
120/240 (к)
120/208 (а)
480 (е)
240 (е)
19 900
12 000
7 200
2400
277/480 (а)
120/208 (а)
480 (е)
240 (е)
Соединенные Штаты Америки
Америка
Сан-Франциско
(Калифорния)
60 ± 0.08 120/240 (к) 277/480 (а)
120/240 (к)
20800
12000
4,160
277/480 (а)
120/240 (г)
Соединенные Штаты
Америка
Толедо (Огайо)
60 ± 0,08 120/240 (к)
120/208 (а)
277/480 (в)
120/240 (в)
120/208 (в)
12,470
7,200
4,800
4,160
480 (ж)
277/480 (а)
120/208 (а)
Уругвай 50 ± 1 220 (б) (л) 220 (б) (л) 15000
6000
220 (б)
Вьетнам 50 ± 0.1 220 (к) 380/220 (а) 35 000
15 000
10 000
6 000
Йемен 50 250 (к) 440/250 (а) 440/250 (а)
Замбия 50 ± 2,5 220 (к) 380/220 (а) 380 (а)
Зимбабве 50 225 (к) 390/225 (а) 11000
390/225 (а)

Схема подключения трехфазная на 220.Пуск трехфазного двигателя от однофазной сети без конденсатора

Одна из причин подключения трехфазного двигателя к однофазной цепи заключается в том, что подача электрической энергии на промышленные объекты и для бытовых нужд принципиально различается.

Для промышленного производства электротехнические предприятия изготавливают электродвигатели с трехфазной системой питания и для запуска двигателя необходимо иметь 3 фазы.

Что делать, если вы приобрели двигатели для промышленного производства, и вам нужно подключить их к домашней розетке? Некоторые опытные специалисты с помощью электрических схем Ногера закрепили электродвигатель на однофазную сеть.

Схема подключения обмоток

Чтобы понять человека, впервые столкнувшегося с проблемой подобной проблемы, необходимо знать, как устроен трехфазный двигатель. Если открыть крышку переключения, можно увидеть колодку и провода, подключенные к клеммам, их количество будет равно 6.

Трехфазный электродвигатель имеет три обмотки и, соответственно, 6 выводов, они имеют начало и конец, и соединены в электрические конфигурации, называемые — «Звезда и Треугольник».

Интересно, но в большинстве случаев стандартное переключение формируется в «звезду», так как подключение к «треугольнику» приводит к потере мощности, но обороты двигателя увеличиваются. Бывает, что провода находятся в произвольном положении и не подключены к разъемам или клеммы вообще нет. В этом случае нужно использовать прибор с тестером или измерителем.

Нужно прозвонить каждый провод и найти пару, это будет три обмотки двигателя. Затем подключитесь к конфигурации «Звезда» следующим образом: Начало-конец-начало.Очистите три провода для одной клеммы. Выводов должно быть три, вот и дальше будет переключение.

Важно знать: В бытовой сети организована однофазная система питания или — «фаза и ноль». Эта конфигурация должна использоваться для подключения двигателя. С начала одного провода от электродвигателя подключаем к любой сети сети, затем ко второму концу обмотки подключаем провод питания и там один конец конденсаторного блока.

Остается свободным последний провод от двигателя и неподключенный контакт конденсаторов, они их подключают и пуск трехфазного двигателя в однофазную сеть готов. Графически их можно изобразить так:

  • A, B, C — линия 3-х фазной цепи.
  • F и O — фаза и ноль.
  • С — конденсаторный.

В промышленном производстве применяется трехфазная система питания. По нормам ПУЭ все шины сетевой шины маркируются плохими значениями и имеют соответствующий цвет:

А — желтый.

B зеленый.

С — красный.

Примечательно, что независимо от расположения фаз B шина «B» с зеленым цветом всегда должна быть посередине. Внимание! Межфазное напряжение измеряется специальным прибором, прошедшим УЗИ, и работниками соответствующей группы приема. В идеале межфазное напряжение составляет 380 вольт.

Устройство электродвигателя

Чаще всего нам в руки попадают электродвигатели с трехфазной асинхронной схемой работы.Какой двигатель? Это вал, на который запрессован короткозамкнутый ротор, по краям которого установлены подшипники скольжения.

Статор изготовлен из трансформаторной стали, с большой магнитной проницаемостью, цилиндрической формы с продольными канавками для укладки провода и поверхностного изоляционного слоя.

Провода обмотки по специальной технологии уложены в каналы статора и изолированы от корпуса. Симбиоз статора и ротора называется электродвигателем асинхронного типа.

Как рассчитать емкость конденсатора

Для запуска 3-х фазного двигателя от бытовой сети необходимо произвести некоторые манипуляции с конденсаторными блоками. Для запуска электродвигателя без «нагрузки» емкость конденсатора нужно подбирать по формуле 7-10 МПа на 100 Вт мощности двигателя.

Если внимательно посмотреть на боковую часть электродвигателя, то можно найти его паспорт, где указана мощность агрегата. Например: если двигатель имеет мощность 0.5 кВт, емкость конденсатора должна быть от 35 до 50 МФ.

Следует отметить, что используются только «постоянные», ни в коем случае не «электролитические». Обратите внимание на надписи, которые есть сбоку на корпусе, они говорят о емкости конденсатора, измеренной в микрофрадах, и напряжении, на которое они рассчитаны.

Блок пусковых конденсаторов собран именно по такой формуле. Использование двигателя в качестве силового агрегата: подключите его к водяному насосу или используйте как дисковую пилу, потребуется дополнительный конденсаторный блок.Такая конструкция называется рабочими блоками конденсаторов.

Двигатель заводится и подбирается ёмкостная ёмкость последовательным или параллельным подключением, чтобы звук от электродвигателя съедал максимально тихо, но есть более точный метод сбора бака.

Для проверки правильности выбора конденсатора необходимо иметь устройство, называемое — контейнер-накопитель. Экспериментируя с различными комбинациями подключения, добейтесь одинакового значения напряжения между всеми тремя обмотками.Затем емкость читают и выбирают нужный конденсатор.

Необходимые материалы

В процессе подключения 3-х фазного двигателя к однофазной сети потребуются материалы и инструменты:

  • Комплект конденсаторов с разным расходом или «бак-накопитель».
  • Электропровода типа ПВ-2.5.
  • Вольтметр или тестер.
  • Переключатель на 3 положения.

Под рукой должны быть элементарные инструменты: индикатор напряжения, диэлектрический проход, изолента, крепеж.

Параллельное и последовательное соединение конденсаторов

Конденсатор относится к электронным деталям и при разных комбинациях переключения его номинальные значения могут отличаться.

Параллельное соединение:

Последовательное соединение:

Следует отметить, что при параллельном соединении конденсаторов емкость будет свернута, но напряжение будет уменьшаться и наоборот, последовательный вариант дает увеличение напряжения и уменьшение емкости.

В заключение можно сказать, что безнадежных положений нет, нужно лишь приложить немного усилий и результат не заставит себя ждать. Электротехника познавательная и полезная наука.

Как подключить трехфазный двигатель в однофазную сеть, смотрите инструкцию в следующем видео:

Чаще всего к нам в дом, на участок используют однофазную сеть 220 В. Поэтому техника и все самоделки делают так, чтобы они работали от этого источника питания.В этой статье рассмотрим, как правильно подключить однофазный двигатель.

Асинхронный или коллектор: как отличить

Как правило, тип двигателя можно отличить по знаку — паспортной табличке, на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Как устроены коллекторные двигатели

По составу можно выделить асинхронные и коллекторные двигатели.У коллекционеров обязательно есть кисти. Находятся они возле коллектора. Еще один обязательный атрибут двигателя этого типа — наличие разделенного секциями медного барабана.

Такие двигатели выпускаются только однофазные, их часто устанавливают в бытовой технике, так как позволяют получить большое количество оборотов на старте и после разгона. Они удобны еще и тем, что можно легко изменить направление вращения — нужно только изменить полярность.Организовать изменение скорости вращения несложно — изменением амплитуды питающего напряжения или угла его отсечки. Поэтому подобные двигатели используются в большинстве бытовой и строительной техники.

Недостатки коллекторных двигателей — повышенная шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т. Д. Шум при их работе приличный. На малых оборотах коллекторные двигатели не такие уж и шумные (омыватели), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянное трение приводит к необходимости регулярного ухода. Если токоприемник не чистить, загрязнение графитом (от стирающих щеток) может привести к тому, что соседние участки в барабане будут подключены, мотор просто перестанет работать.

Асинхронный

Асинхронный двигатель имеет статор и ротор, может быть одно- и трехфазным. В этой статье рассматривается подключение однофазных двигателей, но речь пойдет только о них.

Асинхронные двигатели отличаются низким уровнем шума при работе, т.к. они установлены в технике, шум работы критичен. Это кондиционеры, сплит-системы, холодильники.

Однофазные асинхронные двигатели бывают двух типов — бифилярные (с пуском) и конденсаторные. Вся разница в том, что в бифилярных однофазных двигателях пусковая установка работает только до разгона мотора. После отключается специальным устройством — центробежным выключателем или силовым реле (в холодильниках).Это необходимо, так как после разгона это только снижает эффективность.

В конденсаторных однофазных двигателях обмотка конденсатора работает постоянно. Две обмотки — основная и вспомогательная — смещены друг относительно друга на 90 °. Благодаря этому вы можете изменить направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по нему легко идентифицировать.

Более точно определить бифилярный или конденсаторный двигатель перед вами можно, измерив сопротивление обмоток.Если сопротивление вспомогательной обмотки более чем в два раза (разница может быть даже более значительной), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка запускается, а значит, в цепи должен присутствовать переключатель или реле стартера. схема. В конденсаторных двигателях постоянно работают обе обмотки и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой установкой

Для соединения двигателя с пусковой обмоткой потребуется кнопка, которой меняют местами один из контактов после переключения.Эти открывающиеся контакты необходимо будет подключить к пусковой установке. В магазинах есть такая кнопка — это PNVS. Он имеет средний контакт на время удержания, и две крайние точки остаются в закрытом состоянии.

Внешний вид кнопки PNVS и состояние контакта после отпускания кнопки «Старт» »

Сначала с помощью замеров определяем, какая обмотка заводится. Обычно вывод двигателя имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Наименьшее сопротивление имеет рабочий, среднее значение — пусковая обмотка, наибольшее — общий вывод (измеряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они будут называться попарными. Найдите две пары. Тот, в котором сопротивление меньше — рабочий, в котором больше запускается.После этого подключить один провод от пусковой и рабочей обмотки, вывести общий провод. Всего есть три провода (как в первой версии):

  • один с рабочей обмоткой — рабочий;
  • из пусковой установки;
  • обыкновенный.

Со всеми этими

Все три провода подключаются к кнопке. Он также имеет три контакта. Обязательный пусковой провод «Спойте по среднему контакту (который замыкается только в момент пуска), Остальные два — по краю т.е. (произвольно). К крайним входным контактам ПНВС подключаем кабель питания (от 220 В), средний контакт перемычкой с рабочими ( примечание! Не обычный ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярной) через кнопку.

Конденсатор

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить по схеме, описанной выше).

Первая схема — с конденсатором в цепи питания пусковой обмотки, хорошо заводятся, но при хорошей мощности мощность далека от номинальной, но намного ниже. Схема включения с конденсатором в цепь рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие показатели. Соответственно, первая схема используется в тяжелых пусковых устройствах (например), а с исправным конденсатором — если нужна хорошая производительность.

Схема с двумя конденсаторами

Есть еще третий вариант подключения однофазного двигателя (асинхронный) — установить оба конденсатора. Получается что-то среднее между описанными выше вариантами. Эта схема реализуется чаще всего. Он на рисунке выше посередине или на фото ниже более подробно. При организации данной схемы также нужна кнопка типа ПНВС, которая подключит только конденсатор, а не время пуска, пока мотор не «отпустит». Тогда две обмотки останутся подключенными, а вспомогательная — через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочий и пусковой

При реализации других схем — с одним конденсатором — понадобится штатный кнопочный, автомат или тумблер. Там все связано просто.

Подбор конденсаторов

Существует довольно сложная формула, по которой можно точно рассчитать требуемую мощность, но вполне возможно обойтись рекомендациями, выведенными на основе множества экспериментов:

  • рабочий конденсатор взят из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше напряжения сети, то есть для сети 220 вольт берем емкость с рабочим напряжением 330 В и выше. А чтобы запуск был проще, для пусковой цепи поищите специальный конденсатор. У них в разметке есть слова Старт или Старт, но можно брать и обычные.

Изменение направления движения двигателя

Если после подключения мотор работает, но вал не вращается в нужном вам направлении, вы можете изменить это направление.Это заставляет менять обмотку вспомогательной обмотки. Когда схема была собрана, один из проводов подал на кнопку, второй подключили к проводу от рабочей обмотки и вывели комбинезон. Здесь необходимо пересечь проводники.

Электродвигатель 220В — простое и распространенное устройство. Благодаря такому напряжению его часто используют в бытовой технике. Однако он не лишен недостатков. Как данные электродвигатели, об их использовании, минусах и способах решения проблем, а также о возможности подключения к сети мы расскажем в статье.

Однофазные устройства. Описание

При необходимости подключения универсального коллекторного двигателя с последовательным возбуждением обмотка подключается к коллекторно-щеточному узлу. После нагружения вала устройством, с которым будет работать двигатель, подается необходимое напряжение.

Обычно коллекторные двигатели на постоянном токе низковольтные. Поэтому для подключения электродвигателя 3000 об. Минимум 220В, нужно применить соответствующий блок питания с трансформатором и выпрямителем.

Подключение трехфазного двигателя

В настоящее время уже встречаются невероятные случаи, когда автомобилисты используют электродвигатель. Если его нужно заменить или отремонтировать, то может возникнуть вопрос, как подключить электродвигатель к сети 220В. Трехфазный двигатель можно легко активировать, не вызывая специалистов, используя приведенные ниже рекомендации.

Отвертка, тепловое реле, изолента, автомат и тестер могут быть полезны как инструменты.

подробная инструкция

Старый двигатель снят и помечен нулевым проводом с лентой.При повторной установке нулевой провод можно легко определить с помощью индикатора. В конце его свет не загорится.

Добавлен новый двигатель в арматуру с магнитным стартером, а также с автоматом и тепловым реле. В щит устанавливается арматура.

Тепловое реле подключено к стартеру. Выбирая последнее, нужно быть уверенным, что оно соответствует мощности мотора.

Выводы усиления подключаются к клеммам машины, кроме нулевого провода.Выходные клеммы подключены к одному и тому же тепловому реле. На выходе стартера подключается кабель, идущий непосредственно на двигатель.

При мощности менее одного киловатта автомат можно подключать, минуя магнитный пускатель.

Для подключения электродвигателя сняли крышку. На терминале выводы будут соединены в виде треугольника или звездочек. Концы кабеля подсоединяются к контактным площадкам. При образовании звезды контакты подключаются поочередно.

Если выводы случайные, используют тестер. Его подключают к концам, ища обмотки. После этого они соединяются как в форме звезды, а выводы катушек собираются в точку. Остальные концы соединены кабелем.

Двигатель накрываем крышкой и проверяем работу механизма. Если вал вращается не в том направлении, в котором нужно вводить провода, просто местами.

Электродвигатели бытовые — это однофазные двигатели, по ошибке их часто называют («двухфазные двигатели»).Они будут использоваться в сети с напряжением 220 В. В связи с этим однофазные двигатели называют электродвигателем 220 или двигателем 220 В. Электродвигатели серии АИР (однофазные двигатели — «электродвигатели бытовые») асинхронные однофазные с короткозамкнутым роторным конденсатором предназначены для работы от сети переменного тока напряжением 220 В частотой 50 Гц. Допускается работа от напряжения 230, частоты 50 Гц и 220, 230, частоты 60 Гц. Однофазные двигатели изготавливаются с двухфазной обмоткой на статоре («двухфазные двигатели»).Чтобы снизить влияние температуры окружающей среды на емкостные конденсаторы, их следует размещать в местах, наименее подверженных температурным колебаниям. Во время работы двигателя рекомендуется периодически контролировать емкость конденсатора.

Условия эксплуатации

  • Напряжение и частота: 220 В при частоте 50 Гц.
  • Тип климатического исполнения: У2, У3, У5, Ухл, 2, Т2.
  • Режим работы: S1.
  • Степень защиты базового варианта: IP 54.
  • Степень охлаждения — IC 041.
  • Класс нагревостойкости изоляции: Электродвигатели изготавливаются с изоляцией класса нагрева «in» или «f» по ГОСТ 8865-93.
  • Номинальные значения климатических факторов по ГОСТ 15150-69 и ГОСТ 15543.1-89.
  • Запыленность воздуха не более 2 мг / м3.
  • Группа механического исполнения М1 по ГОСТ 17516.1-90.
  • Влияние вибрационных нагрузок для двигателей, соответствующих 1 степени жесткости по ГОСТ 17516.1-90.

Область применения однофазных двигателей

Однофазный асинхронный двигатель предназначен для привода механизмов. В частности, насосы вентиляции и для друга бытовая техника. Электродвигатели с питанием 220В комплектуются как одним, так и двумя конденсаторами (рабочий и пусковой). Двигатели серий Aire, Airmut, Airut, Adme, AISA, AIS2E (однофазные с двумя конденсаторами) Последние подходят для использования на оборудовании, требующем большой отправной точки: деревообрабатывающие станки, конвейеры, компрессоры, подъемники и т. Д., применяется для привода малой механизации: фьюзеров, бетоносмесителей и др. Электропитание осуществляется от сети переменного тока до напряжения 220В. Как правило, двигатели поставляются производителями-изготовителями, оснащенными конденсаторами (потребителю остается только подключить двигатель к однофазной сети по схеме подключения). Установочные характеристики однофазных двигателей и их габаритные размеры соответствуют общепромышленным двигателям серии АИР (АИРМ, 5А, АДМ и др.)) расшифровка обозначения: АИР, АИРМУТ, АИСЭ — электродвигатель однофазный с двухфазной обмоткой и рабочим конденсатором. АИР3Е, АИР3УТ — однофазный электродвигатель с трехфазной обмоткой и рабочим конденсатором.

Пример условного обозначения электродвигателя АИРА:

AIRE 100S4 U3 IM1081

  • Эйр
    • НО асинхронный,
    • И Единая серия (Интер Электро)
    • R Емкость крепления для установочных размеров (Р по ГОСТ, с -ПП (CENELEK, DIN)
    • E. однофазный двигатель
  • 100 -габрит двигатель (высота между центром вала и основанием)
  • S. — установочный размер по длине кровати
  • 4 — Количество полюсов
  • У3. -Климатическое исполнение и категория размещения
  • IM1081 — Выступления на лапах

Варианты исполнения в способе установки:

  • IM1081 (Лапы)
  • IM2081 (лапы + фланец)
  • IM3081 (фланец)
Конструктивные варианты способа установки: im1081

Конструктивное исполнение по способу установки: im1081 — на лапы с одним цилиндрическим концом вала.

IM1081.

тип двигателя Количество полюсов
L1. L10 B1. B11. H. D1 D10 L30. L33 ч41 D30
Айгмут 63. 2,4 30 80 5 129 63 14 7 227 261 154 135
Airut 71. 2,4 40 90 6 135 71 19 7 272,5 316,5 188 163
Aire 80 А. 2,4 50 100 6 155 80 22 10 296,5 350 204,5 177
Эйре 80 Б. 2,4 50 100 6 155 80 22 10 320,5 374 204,5 177
Эйр 100С. 4 60 112 8 200 100 28 год 12 360 424 246,5 226
AISE 100L 2 60 140 8 200 100 28 год 12 391 455 246,5 226
AIS2E100LV 2 60 140 8 200 100 28 год 12 391 455 246,5 226
AIS2E112MV 2 80 140 10 228 112 32 12 435 520 285 246
Конструктивные варианты способа установки: IM2081

Конструктивное исполнение по способу установки: IM2081 — на лапах одним цилиндрическим концом вала.

Габаритные, установочные и присоединительные размеры IM2081

тип двигателя Количество полюсов Установочные и присоединительные размеры, мм
L1. L10 B1. B10 B11. H. D1 D10 D20 D22. D25. Н. L30. ч41 D24.
Айгмут 63. 2,4 30 80 5 100 129 63 14 7 130 10 130 6 227 154 160
Airut 71. 2,4 40 90 6 112 135 71 19 7 165 12 130 7 272,5 188 200
Aire 80 А. 2,4 50 100 6 125 155 80 22 10 165 12 130 8 296,5 204,5 200
Эйре 80 Б. 2,4 50 100 6 125 155 80 22 10 165 12 130 9 320,5 204,5 200
Эйр 100С. 4 60 112 8 160 200 100 28 год 12 215 15 180 11 360 246,5 250
AISE 100L 2 60 140 8 160 200 100 28 год 12 215 15 180 12 391 246,5 250
AIS2E100LV 2 60 140 8 160 200 100 28 год 12 215 15 180 12 391 246,5 250
AIS2E112MV 2 80 140 10 190 228 112 32 12 265 15 230 13 435 285 300

Необходимость использования трехфазного асинхронного электродвигателя самостоятельно возникает при установке или проектировании самодельного оборудования.Обычно на даче или в гараже Мастера хотят использовать самодельные фрезы, бетономешалки, приспособления для заточки и обрезки изделий.

Применение трехфазного асинхронного электродвигателя самостоятельно

Возникает вопрос: как подключить электродвигатель, рассчитанный на 380 вольт, к сети 220 вольт. Кроме того, важно как подключить электродвигатель к сети, так и обеспечить желаемый КПД КПД (КПД), поддерживать КПД и КПД агрегата.

Особенности устройства двигателя

Каждый двигатель имеет табличку или паспортную табличку, на которой указаны технические данные и схема прокрутки обмоток. Символ Y обозначает соединение звездой, а δ — треугольник. Кроме того, на табличке указывается табличка, для которой предназначен электродвигатель. Электропроводка для подключения к сети находится на клеммной коробке, где выведены провода обмотки.

Для обозначения начала и конца обмотки буквы C или U, V, W.Первое обозначение было на практике раньше, а английские буквы стали применяться после введения ГОСТа.

Не всегда использовать двигатель, предназначенный для трехфазной сети, это кажется возможным. Если на клеммнике отображается 3 выхода, а не 6 как обычно, подключение возможно только с напряжением, которое указано в технических характеристиках. В этих устройствах соединение треугольником или звездой уже выполнено внутри самого устройства.Поэтому нельзя использовать электродвигатель на 380 вольт с 3 выводами для однофазной системы.

Можно частично разобрать двигатель и переделать 3 вывода на 6, но сделать это не так-то просто.

Существуют разные схемы, как лучше подключать устройства с параметрами 380 вольт к однофазной сети. Чтобы использовать трехфазный электродвигатель в сети 220 вольт, проще использовать один из 2 способов подключения: «Звезда» или «Треугольник». Хотя трехфазный двигатель можно запустить от 220 без конденсаторов.Рассмотрим все варианты.

На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно использовать фазосдвигающие конденсаторы, которые еще называют пусковыми (спусковыми) и рабочими (себ.).

Тип соединения «Звезда»

При соединении звездой все три конца обмотки соединяются. Для этого воспользуйтесь специальной перемычкой. Питание на клеммы подается от начала обмоток.При этом начало обмотки С1 (U1) через параллельно соединенные конденсаторы попадает в начало обмотки С3 (U3). Далее этот конец и C2 (U2) необходимо подключить к сети.

В этом типе подключения, как и в первом примере, используются конденсаторы. Для подключения потребуются 3 перемычки для скрутки. Они соединят начало и конец обмотки. Выводы, идущие от начала обмотки C6C1 по той же параллельной схеме, что и в случае подключения «звезда», подключаются к выходу, идущему от C3C5.Затем конец и выход C2C4 следует подключить к сети.

Тип подключения «Треугольник»

При наличии на вывеске индикаторов 380 / 220В, подключение к сети возможно только по «треугольнику».

Как рассчитать емкость

Формула применима к рабочему конденсатору:

Seb. = 2780хi / u, где
U — номинальное напряжение,
I — ток.

Есть еще одна формула:

Себ.= 66hr, где p — мощность трехфазного электродвигателя.

Оказывается, емкость конденсатора 7МКФ рассчитана на 100Вт его мощности.

Значение емкости стартера должно быть в 2,5-3 раза больше рабочей. Такое несоответствие конденсаторов в конденсаторах обязательно, потому что пусковой элемент включается при работе в трехфазном двигателе непродолжительное время. К тому же при включении наибольшая нагрузка на него намного больше, оставлять в рабочем положении это устройство на более длительный срок не стоит, иначе из-за слияния тока по фазам через некоторое время электродвигатель выйдет из строя. начать перегрев.

Если использовать для работы электродвигатель, мощность которого менее 1кВт, то пусковой элемент не потребуется.

Иногда емкостей одного конденсатора должно не хватить для начала работы, тогда схема выбирается из нескольких разных элементов, соединенных последовательно. Итоговую емкость при параллельном подключении можно рассчитать по формуле:

Корпус = C1 + C1 + … + CN.

На схеме такое подключение выглядит следующим образом:

Насколько правильно подобраны конденсаторы, можно будет понять только во время использования.Из-за этого схема из нескольких элементов более оправдана, потому что при большей мощности двигатель будет перегреваться, а при меньшей — выходная мощность не достигнет желаемого уровня. Подбор емкости лучше начинать с ее минимального значения и постепенно доводить до оптимального. В этом случае вы можете измерить ток с помощью токоизмерительных клещей, тогда подобрать оптимальный вариант будет проще. Это измерение производится в рабочем режиме трехфазного электродвигателя.

Какие выбрать конденсаторы

Для подключения электродвигателя чаще всего используются бумажные конденсаторы (MBGO, CBP или MPHO), но все они имеют небольшие емкостные характеристики и достаточно громоздки. Другой вариант — выбрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы. Кроме того, когда диод является пробным, а такое случается довольно часто, через конденсатор начнет протекать переменный ток, что может привести к взрыву.

Помимо емкости стоит обратить внимание на рабочее напряжение в домашней сети. При этом модели с техническими показателями не менее 300Вт. Для бумажных конденсаторов расчет рабочего напряжения для сети немного другой, и рабочее напряжение в этом типе устройств должно быть выше 330-440ВБ.

Пример подключения к сети

Давайте посмотрим, как рассчитывается это подключение на примере двигателя со следующими характеристиками на шильдике.

Характеристики двигателя

Итак, возьмем трехфазный асинхронный двигатель со схемой подключения на 220 вольт «треугольник» и «звезда» на 380 вольт.

В данном случае мощность электродвигателя, взятого для примера, составляет 0,25 кВт, что существенно меньше 1 кВт, пусковой конденсатор не понадобится, а общая схема будет выглядеть так.

Для подключения к сети нужно найти емкость рабочего конденсатора.Для этого подставьте значения в формулу:
Себ. = 2780 2А / 220В = 25 мкФ.

Рабочее напряжение прибора выбрано выше показателя 300 вольт. На основании этих данных производится сортировка соответствующих моделей. Некоторые варианты можно найти в таблице:

Зависимость емкости и напряжения от типа конденсатора

Тип конденсатора Емкость, мкФ. Номинальное напряжение в
MBG0. 1
2
4
10
20
30
400, 500
160, 300, 400, 500
160, 300, 400
160, 300, 400, 500
160, 300, 400, 500
160, 300
МБГ4. 1; 2; 4; 10; 0,5 250, 500
К73-2 1; 2; 3; 4; 6; 8; 10 400, 630
К75-12. 1; 2; 3; 4; 5; 6; 8; 10 400
К75-12. 1; 2; 3; 4; 5; 6; 8 630
К75-40 4; 5; 6; 8; 10; 40; 60; 80; 100 750

Ключ тиристорный соединительный

Электродвигатель трехфазный, рассчитанный на 380 вольт, предназначен для однофазного напряжения с помощью тиристорного ключа.Для запуска агрегата в этом режиме потребуется такая схема:

Схема трехфазного электродвигателя на однофазное напряжение

В работе используются:

  • транзисторов серий VT1, VT2;
  • резисторов МЛТ;
  • кремниевые диффузионные диоды D231
  • тиристоры серии КУ 202.

Все элементы рассчитаны на напряжение 300 вольт и ток 10а.
Тиристорный ключ собран, как и другие микросхемы, на плате.

Сделать такой прибор под всех, кто имеет начальные знания в создании микросхем. При мощности электродвигателя менее 0,6-0,7кВт при подключении к тепловой сети тиристорный ключ не соблюдается, поэтому дополнительное охлаждение не потребуется.

Такое подключение может показаться слишком сложным, но все зависит от того, какие элементы у вас есть, чтобы переделать двигатель с 380Вт на однофазный. Как видите, использовать трехфазный двигатель на 380 через однофазную сеть не так уж и сложно, как кажется на первый взгляд.

Подключение. Видео

Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого необходимо.

Действительно ли необходимо дома зарядное устройство для трехфазного электромобиля?

Мы приветствуем вопросы читателей об электромобилях, зарядках и обо всем, что вы хотите узнать. Поэтому, пожалуйста, отправьте их, и мы заставим наших экспертов ответить и пригласить других людей внести свой вклад через раздел комментариев.

Надеюсь, вы поможете с этим. Это следует из комментария, который вы сделали другому читателю по поводу его новой сборки. В том случае он был в деревне и намеревался установить трехфазное питание.

Вы упомянули, что трехфазное питание, вероятно, не требуется в городе, учитывая, что поблизости будут станции быстрой зарядки (если я вас правильно понял). Я делаю новую постройку в Шорхэме на стороне залива Вестернпорт на полуострове Морнингтон. В деревне это не выход, но и не в городе.Насколько мне известно, поблизости нет зарядных станций.

Мы почти наверняка получим электромобиль в ближайшие год или два, поэтому мы хотим быть готовы к установке зарядного устройства. Должны ли мы убедиться, что дом готов к трехфазному питанию? Или мы будем в порядке с однофазным питанием, как предлагает наш электрик? Есть ли у вас мнение об относительной стоимости установки трехфазной сейчас по сравнению с однофазной и трехфазной на более позднем этапе?

Марка

Hi Mark — это интересный вопрос, действительно ли требуется трехфазное питание для зарядки электромобилей, поскольку электромобили (и системы зарядки электромобилей) быстро развиваются в сторону увеличения дальности действия и гибкого, упрощенного управления зарядкой.Поэтому я обновлю свой последний ответ на основе этих изменений.

В качестве примера эволюции самих электромобилей, мой новый Hyundai Kona electric (электромобиль с полным аккумулятором, или BEV) на однофазном 32A (7 кВт) EVSE (оборудование для электроснабжения электромобилей: <см. Часто задаваемые вопросы здесь>) будет полностью заряжен и готов к работе примерно через 9 часов.

И я заряжаю его только раз в неделю или две, исходя из того, что пробегаю 200-400 км в неделю.

С другой стороны, мой старый Leaf взял 4.5 часов при 3,6 кВт (максимально возможная скорость зарядки) и подзарядка 3-4 раза в неделю. Кроме того, из-за малого радиуса действия мне нужно было время от времени заряжать его в течение дня между поездками. (Так же возьму мою машину ДВС для поездок более 90км с возвратом L).

И я должен отметить, что у Kona electric (как и у многих моделей электромобилей, представленных в настоящее время на рынке) нет трехфазной системы зарядки, поэтому она просто не может получить более быструю зарядку переменного тока на трех фазах.

Некоторые электромобили заряжаются с использованием трех фаз (в частности, Renault Zoe, который обеспечивает зарядку переменного тока мощностью до 22 кВт и может полностью заряжаться менее чем за три часа), но в настоящее время Kona типична для большинства марок электромобилей, не заряжая одиночный аккумулятор мощностью более 7 кВт. фаза.(См. Таблицу 1 ниже).

Таблица 1: Список новых BEV в Австралии и тарифы на них

Приблизительная скорость зарядки AC EVSE, в часах
1 фаза 3 фазы
Модель EV Размер батареи 7 кВт 11кВт 22 кВт Диапазон EV в км (Реальный 1 )
Hyundai Ioniq 28 4.5 Н / Д Н / Д 200
Renault Kangoo ZE 33 6 Н / Д Н / Д 200 2
Nissan Leaf 40 7,5 Н / Д Н / Д 240
Renault Zoe 41 7,5 4 2,75 300 2
BMW i3 120 Ач 42 9.75 4 Н / Д 246
Tesla M3 Std. Диапазон 50 8,5 5,5 Н / Д 354
Hyundai Kona электрический 64 9 Н / Д Н / Д 420
Tesla M3 большой дальности 75 12 8 Н / Д 523
Ягуар Ай-Пейс 90 13 Н / Д Н / Д 375
Tesla Models S и X 100 14.5 9 Н / Д S: 540; Х: 460

Примечания к таблице:

1: Приведенные реальные цифры являются номинальными значениями диапазона Агентства по охране окружающей среды США (дают наиболее близкие к достижимым диапазонам в условиях Австралии).

2: Рейтинги производителя «реального мира», используемые производителем, поскольку Renault не продаются на рынке США.

Как видите, все, кроме Jaguar I-Pace и Tesla Models S и X, будут полностью заряжаться за ночь при однофазной зарядке 7 кВт, но Jag не может заряжать более 7 кВт переменного тока, чтобы иметь возможность работать лучше.Даже для Tesla S и X на одной фазе оба будут близки к полной зарядке при ночной зарядке на 7 кВт.

Следовательно, если вы полностью не разряжаете батарею каждый день в течение последних трех, все BEV, которые в настоящее время продаются на австралийском рынке, будут полностью заряжены к тому времени, когда вы закончите завтрак и отключите / взлетите утром.

Таким образом, для домашнего хозяйства с одним электромобилем вам придется резко выделяться на кривой использования транспортного средства, чтобы оправдать установку трехфазного источника питания для его зарядки, даже если оно может воспользоваться этим.Установка его в качестве «будущего» для автомобилей, которые появятся позже, которые могут использовать зарядку 11 или 22 кВт, по-прежнему не будет оправдана для среднего пользователя транспортного средства.

ОДНАКО: электромобили в конечном итоге заменят все автомобили с ДВС, так что же произойдет, когда домохозяйства заменят второй (или даже третий) автомобиль с ДВС на электрический, если только один может получить полную зарядку за ночь? Нужно ли будет дома планировать заранее и составлять списки зарядки электромобилей? Или владельцам электромобилей придется устанавливать будильник, чтобы вставать с постели в 2 часа ночи, чтобы поменять опережение ???

Уже есть несколько ответов на те вопросы, которые не требуют подключения трехфазного питания для работы нескольких EVSE.Один из вариантов — получить EVSE с несколькими выводами, который разделяет 7 кВт, если заряжаются два электромобиля, поэтому, если один был близок к заряду и заканчивает раньше, полные 7 кВт идут на второй электромобиль после завершения первого.

Кроме того, большинство новых электромобилей предлагают настройку «максимального уровня заряда», так что домашние электромобили могут быть настроены на 60% или 80% для большей части использования, и если один человек хочет 100%, его автомобиль может быть настроен на это.

Вы также можете купить EVSE, которые можно запрограммировать на обмен информацией между ними, а также на мониторинг и настройку из приложений — так что всей зарядкой можно управлять из дома.(Никаких полночных пробежек на улице в тапочках не требуется J).

Даже если ваш автомобиль не будет полностью заряжен к тому времени, когда вы отправитесь в путь утром, при более длинных запасах хода, предлагаемых современными электромобилями, мала вероятность того, что он иссякнет на стандартных рабочих дорогах или местных маршрутах для покупок и детских поездок.

Даже в этом случае появляется больше возможностей для зарядки переменного тока на рабочем месте и по месту назначения. (Зарядка пункта назначения — это общее название для зарядки переменного тока в пункте назначения, отличном от рабочего места или дома.Например: торговые центры, мотели, мини-гостиницы и т. Д. И т. Д.). Все это текущие варианты.

В будущем также появится возможность быстрой зарядки постоянным током на вашем маршруте, если вы действительно хотите заплатить за это плату за высокий тариф на электроэнергию. Этот последний (пока что) по-прежнему ограничен некоторыми из основных междугородних маршрутов, но зарядные устройства постоянного тока сейчас внедряются с возрастающей скоростью.

Я пытаюсь подчеркнуть, что отсутствие трехфазного питания не является препятствием для владения электромобилем — на самом деле для большинства людей его установка была бы ненужными расходами.

Положительным моментом для установки трехфазного источника питания является то, что в новой конструкции не требуется больших дополнительных затрат на установку вместо однофазной: вы можете рассчитывать на 1000–2000 долларов сверх стоимости однофазной проводки и оборудования. (Это было бы намного дороже, если бы его модернизировали позже).

Также текущие расходы на измерения и поставку, как правило, лишь немного больше, чем для однофазной установки. (Между прочим: эти расходы могут варьироваться сильно между органами снабжения.

Перед тем, как принять решение об установке, вам нужно будет выполнить домашнюю работу и проверить подключение к электричеству в вашем районе и расценки на тарифы).

Кроме того, если у вас есть причины, отличные от зарядки электромобиля, для использования трехфазного питания (например, для запуска трехфазной машины в мастерской, запуска большого кондиционера или установки более крупной сбалансированной солнечной фотоэлектрической системы), то установка трехфазной EVSE — это минимальная «доплата».

Итого:

  1. Для подавляющего большинства домашних хозяйств с одним электромобилем установка трех фаз только для зарядки электромобиля не требуется.
  2. Учитывая, что в настоящее время в электромобили используются более крупные батареи, даже для большинства будущих домохозяйств с несколькими электромобилями новый набор устройств EVSE с распределением нагрузки, автомобильных приложений и приложений для телефонов EVSE обеспечит беспроблемную зарядку электромобилей без необходимости установки трехфазного источника питания. Это означает, что установка трехфазного источника питания в качестве меры «будущего» по-прежнему не требуется для большинства сценариев использования нескольких электромобилей в домашних условиях;
  3. Трехфазный источник питания стоит устанавливать где:
  • Трехфазное питание в домашних условиях используется не только для электромобилей,
  • и / или там, где есть несколько электромобилей дальнего действия, требующих полной подзарядки из почти разряженного на регулярной основе, И нет устройств быстрой зарядки постоянного тока в пределах разумного диапазона или на обычном маршруте движения.

Я уверен, что есть и другие сценарии, в которых установка трехфазного источника питания дома для зарядки электромобилей оправдана — я говорю, что стоит заранее обдумать варианты, так как причин для этого становится все меньше и меньше. по мере увеличения размеров автомобильных аккумуляторов развиваются домашние системы зарядки электромобилей и развертываются сети целевых зарядных устройств переменного тока (а также быстрые зарядные устройства постоянного тока).

Если вы все еще не уверены, что делать, вы также можете обратиться к опытному специалисту по поставкам и установке EVSE, чтобы провести индивидуальную оценку EV и EVSE и дать рекомендации, основанные на ваших потребностях.

И последнее замечание — если у вас трехфазное питание, у вас есть вариант (глубокий карман) с установкой быстрого зарядного устройства постоянного тока мощностью 11 или, может быть, даже 22 кВт. Однако 11 кВт всего в 1,5 раза больше 7 кВт, поэтому дополнительная стоимость EVSE может не окупиться, а 22 кВт, вероятно, потребует обновления вашего кабеля питания — так что снова дополнительные расходы!

Брайс Гатон — эксперт по электромобилям и участник журнала The Driven and Renew Economy. Он работает в секторе электромобилей с 2008 года и в настоящее время работает инструктором / супервизором по электробезопасности электромобилей в Университете Мельбурна.Он также оказывает поддержку бизнесу, правительству и общественности по внедрению электромобилей через свою консалтинговую компанию по внедрению электромобилей EVchoice .

Соединение звездой в трехфазной системе — связь между фазой и линией, напряжением и током

В схеме Star Connection одинаковые концы (начало или конец) трех обмоток соединены с общей точкой, называемой звездой или нейтральной точкой. Трехлинейные проводники отходят от оставшихся трех свободных клемм, называемых линейными проводниками .

Провода подводятся к внешней цепи, образуя трехфазные трехпроводные системы, соединенные звездой. Однако иногда четвертый провод проводится от точки звезды к внешней цепи, называемый нейтральным проводом , образуя трехфазные четырехпроводные системы, соединенные звездой.

Состав:

Соединение звездой показано на схеме ниже:

Учитывая приведенный выше рисунок, оконечные клеммы a 2 , b 2 и c 2 трех обмоток соединены так, чтобы образовать звезду или нейтраль.Три проводника, обозначенные как R, Y и B, отходят от оставшихся трех свободных клемм, как показано на рисунке выше.

Ток, протекающий через каждую фазу, называется Фазный ток I ph , а ток, протекающий через каждый линейный провод, называется Line Current I L . Аналогичным образом, напряжение на каждой фазе называется Phase Voltage E ph , а напряжение на двух линейных проводниках известно как Line Voltage E L .

Зависимость между фазным напряжением и линейным напряжением при соединении звездой

Подключение звездой показано на рисунке ниже:

Поскольку система сбалансирована, сбалансированная система означает, что во всех трех фазах, то есть R, Y и B, через них протекает равное количество тока. Следовательно, три напряжения E NR , E NY и E NB равны по величине, но электрически смещены друг от друга на 120 °.

Диаграмма Phasor Star Connection показана ниже:

Стрелки на ЭДС и токе указывают направление, а не их фактическое направление в любой момент.

Сейчас,

Между любыми двумя линиями есть двухфазные напряжения.

По следам петли НРИН

Чтобы найти векторную сумму ENY и –ENR, мы должны перевернуть вектор ENR и сложить его с ENY, как показано на векторной диаграмме выше.

Следовательно,

Аналогично

Следовательно, при соединении звездой линейное напряжение в 3 раза больше фазного напряжения.

Связь между фазным током и линейным током при соединении звездой

Один и тот же ток протекает через фазную обмотку и в линейном проводе, поскольку он включен последовательно с фазной обмоткой.

Где будет фазный ток:

Линейный ток будет:

Следовательно, в трехфазной системе звездообразного соединения линейный ток равен фазному току.

Трехфазные сбалансированные схемы: вопросы и ответы

Этот набор вопросов и ответов по теории сети с множественным выбором (MCQ) посвящен «трехфазным сбалансированным схемам».

1. В сбалансированной трехфазной системе с треугольной нагрузкой, если предположить, что линейное напряжение равно V RY = V∠0⁰ в качестве опорного вектора.Тогда напряжение источника V YB составляет?
a) V∠0⁰
b) V∠-120⁰
c) V∠120⁰
d) V∠240⁰
Посмотреть ответ

Ответ: b
Пояснение: В качестве сетевого напряжения принимается V RY = V∠0⁰ как эталонный вектор. Тогда напряжение источника V YB будет V∠-120⁰.

2. В сбалансированной трехфазной системе с треугольной нагрузкой, если предположить, что линейное напряжение равно V RY = V∠0⁰ в качестве опорного вектора. Тогда напряжение источника V BR составляет?
a) V∠120⁰
b) V∠240⁰
c) V∠-240⁰
d) V∠-120⁰
Посмотреть ответ

Ответ: c
Пояснение: Как напряжение сети V RY = V∠0⁰ взят за эталонный вектор.Тогда напряжение источника V BR будет V∠-240⁰.

3. При подключении нагрузки по схеме треугольник соотношение между линейным напряжением и фазным напряжением составляет?
a) линейное напряжение> фазное напряжение
b) линейное напряжение <фазное напряжение
c) линейное напряжение = фазное напряжение
d) линейное напряжение> = фазное напряжение
Просмотр ответа

Ответ: c
Пояснение: при подключении нагрузки по схеме треугольника , соотношение между линейным напряжением и фазным напряжением определяется как линейное напряжение = фазное напряжение.

4.Если полное сопротивление нагрузки равно Z∠Ø, ток (I R ) равен?
a) (V / Z) ∠-Ø
b) (V / Z) ∠Ø
c) (V / Z) ∠90-Ø
d) (V / Z) ∠-90 + Ø
Посмотреть ответ

Ответ: a
Объяснение: Поскольку полное сопротивление нагрузки равно Z∠Ø, ток протекает в трех сопротивлениях нагрузки, а ток, протекающий в сопротивлении R, равен I R = V BR ∠0⁰ / Z∠Ø = ( V / Z) ∠-Ø.

5. Если полное сопротивление нагрузки равно Z∠Ø, полученное выражение для тока (I Y ) будет?
a) (V / Z) ∠-120 + Ø
b) (V / Z) ∠120-Ø
c) (V / Z) ∠120 + Ø
d) (V / Z)-120-Ø
Посмотреть ответ

Ответ: d
Объяснение: Поскольку полное сопротивление нагрузки равно Z∠Ø, ток протекает по трем сопротивлениям нагрузки, а ток, протекающий по сопротивлению Y, равен I Y = V YB ∠120⁰ / Z ∠Ø = (V / Z) ∠-120-Ø.

6. Если полное сопротивление нагрузки равно Z∠Ø, полученное выражение для тока (I B ) будет?
a) (V / Z) ∠-240 + Ø
b) (V / Z) ∠-240-Ø
c) (V / Z) ∠240-Ø
d) (V / Z) ∠240 + Ø
Посмотреть ответ

Ответ: b
Объяснение: Поскольку полное сопротивление нагрузки равно Z∠Ø, ток протекает в трех импедансах нагрузки, а ток, протекающий в импедансе B, равен I B = V BR ∠240⁰ / Z ∠Ø = (V / Z) ∠-240-Ø.

7. Трехфазная сбалансированная нагрузка, подключенная по схеме треугольника (4 + j8) Ом, подключена к сбалансированному источнику питания 400 В, 3 — Ø.Определите фазный ток I R . Предположим, что последовательность фаз равна R YB .
a) 44,74∠-63,4⁰A
b) 44,74∠63,4⁰A
c) 45,74∠-63,4⁰A
d) 45,74∠63,4⁰A
Посмотреть ответ

Ответ: a
Объяснение: Измерение сетевого напряжения V RY = V∠0⁰ в качестве ссылки V RY = 400∠0⁰V, V YB = 400∠-120∠V и V BR = 400∠-240V. Импеданс на фазу = (4 + j8) Ом = 8,94∠63,4⁰Ω. Фазный ток I R = (400∠0 o ) / (8.94∠63,4 o ) = 44,74∠-63,4⁰A.

8. Трехфазная сбалансированная нагрузка, подключенная по схеме треугольника (4 + j8) Ом, подключена к сбалансированному источнику питания 400 В, 3 — Ø. Определите фазный ток I Y .
a) 44,74∠183,4⁰A
b) 45,74∠183,4⁰A
c) 44,74∠183,4⁰A
d) 45,74∠-183,4⁰A
Посмотреть ответ

Ответ: c
Объяснение: Принимая линейное напряжение V RY = V ∠0⁰ в качестве ссылки V RY = 400∠0⁰V, V YB = 400∠-120⁰V и V BR = 400∠-240⁰V.Импеданс на фазу = (4 + j8) Ом = 8,94∠63,4⁰Ω. Фазный ток I Y = (400∠120 o ) / (8,94∠63,4 o ) = 44,74∠-183,4⁰A.

9. Трехфазная сбалансированная нагрузка, подключенная по схеме треугольника (4 + j8) Ом, подключена к сбалансированному источнику питания 400 В, 3 — Ø. Определите фазный ток I B .
a) 44,74∠303,4⁰A
b) 44,74∠-303,4⁰A
c) 45,74∠303,4⁰A
d) 45,74∠-303,4⁰A
Посмотреть ответ

Ответ: b
Объяснение: Измерение сетевого напряжения V RY = V∠0⁰ в качестве ссылки V RY = 400∠0⁰V, V YB = 400∠-120∠V и V BR = 400∠-240V.Импеданс на фазу = (4 + j8) Ом = 8,94∠63,4⁰Ω. Фазный ток I B = (400∠240 o ) / (8,94∠63,4 o ) = 44,74∠-303,4⁰A.

10. Определите мощность (кВт), потребляемую нагрузкой.
a) 21
b) 22
c) 23
d) 24
Посмотреть ответ

Ответ: d
Пояснение: Мощность определяется как произведение напряжения и тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *