Расчет диаметра провода для плавких вставок предохранителей по току
Роль проводника в предохранителе выполняет плавкая вставка, которая при нормальном рабочем токе обеспечивает достаточную проводимость. Но, в случае чрезмерного превышения этого параметра, происходит перегрев с дальнейшим пережогом плавкой вставки.
Подбирается плавкая вставка как по типу защищаемой нагрузки, так и в соответствии с величиной номинального тока. Основным ее параметром является сечение, которое можно рассчитать следующим способом.
Теплота, выделяемая при перегорании проволоки рассчитывается по формуле:
W = I2*R*t
где I – сила тока в проводнике, R – сопротивление, t – время протекания (как правило, выбирается от 0,2 до 2 секунд, в зависимости от защищаемого оборудования).
Также количество теплоты можно выделить через массу проводника, при этом:
W = λ * m
где λ – удельная теплота плавления (выбирается из таблицы 1), а m – масса проволоки.
Таблица 1.
Металл | Удельная теплота плавления | Металл | Удельная теплота плавления | ||
кДж/кг | кал/г | кДж/кг | кал/г | ||
Алюминий | 393 | 94 | Платина | 113 | 27 |
Вольфрам | 184 | 44 | Ртуть | 12 | 2,8 |
Железо | 270 | 64,5 | Свинец | 24,3 | 5,8 |
Золото | 67 | 16 | Серебро | 87 | 21 |
Магний | 370 | 89 | Сталь | 84 | 20 |
Медь | 213 | 51 | Тантал | 174 | |
Натрий | 113 | 27 | Цинк | 112,2 | 26,8 |
Олово | 59 | 14 | Чугун | 96-140 | 23-33 |
Из этих формул можно вывести равенство:
I2*R*t = λ * m
Массу круглой проволоки можно вычислить по формуле:
где, π – константа, d – диаметр проволоки, l – длина проволоки, ρ – плотность металла
Если подставить значение массы и вывести диаметр, получим следующую формулу:
если принять, что R = ( ρ * l ) / s, где s — это сечение проводника, тогда получим:
Чтобы избежать утомительных расчетов и изнурительной работы с таблицами для вычисления диаметра плавкой вставки, гораздо удобнее воспользоваться онлайн калькулятором. В котором вам необходимо указать материал проволоки и допустимую величину тока.
Таблица диаметров плавких вставок
Если в предохранителе перегорает плавкая вставка, ее нужно заменить. Но что делать, если нет под рукой стандартизированных вставок? Как выбрать ток плавления вставки? Ток плавления – это удвоенное значение тока номинального тока потребителя. Так, если номинальная нагрузка составляет 10 А, выбираем ток плавкой вставки, равный 20 А. Надо иметь в виду, что предохранитель мгновенно не перегорает, ему нужно какое-то время. Поэтому пусковые токи двигателей или другие кратковременные повышенные токи не влияют на работу предохранителя.
I=80√d3 |
Выбор медной проволоки под предохранитель (калькулятор)
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
I пр = 80 √d3,
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
Самодельная плавкая встака из проводника ,выбор по сечению
Ни в коем случае нельзя принимать самостоятельное изготовление плавких вставок ЗА НОРМУ. Установку подобных изделий можно рассматривать как ВРЕМЕННУЮ МЕРУ.
Диаметры МЕДНОГО провода для плавкой вставки предохранителя
Диаметр, мм | Ток , А | Диаметр, мм | Ток , А |
Ø 0,05 мм | 0,6 А | Ø 0,71 мм | 47,8 А |
Ø 0,063 мм | 1,25 А | Ø 0,75 мм | 52 А |
Ø 0,071мм | 1,5 А | Ø 0,8 мм | 57,2 А |
Ø 0,08 мм | 1,8 А | Ø 0,85 мм | 62,7 А |
Ø 0,09 мм | 2,1 А | Ø 0,9 мм | 68,3 А |
Ø 0,1 мм | 2,5 А | Ø 0,95 мм | 68,6 А |
Ø 0,112 мм | 3 А | Ø 1,0 мм | 80 А |
Ø 0,124 мм | 3,5 А | Ø 1,06 мм | 87,3 А |
Ø 0,14 мм | 4,2 А | Ø 1,12 мм | 94,8 А |
Ø 0,16 мм | 5,1 А | Ø 1,18 мм | 102,5 А |
Ø 0,17 мм | 5,6 А | Ø 1,25 мм | 111,8 А |
Ø 0,18 мм | 6,1 А | Ø 1,32 мм | 121,3 А |
Ø 0,2 мм | 7,1 А | Ø 1,4 мм | 132,5 А |
Ø 0,224 мм | 8,4 А | Ø 1,45 мм | 139,7 А |
Ø 0,25 мм | 10 А | Ø 1,50 мм | 147 А |
Ø 0,28 мм | 11,8 А | Ø 1,6 мм | 161,9 А |
Ø 0,315 мм | 14,1 А | Ø 1,7 мм | 177,3 А |
Ø 0,335 мм | 15,5 А | Ø 1,8 мм | 193,2 А |
Ø 0,355 мм | 16,9 А | Ø 1,9 мм | 209,5 А |
Ø 0,4 мм | 20,2 А | Ø 2,0 мм | 226,2 А |
Ø 0,45 мм | 24,1 А | Ø 2,12 мм | 247 А |
Ø 0,5 мм | 28,2 А | Ø 2,24 мм | 268,2 А |
Ø 0,56 мм | 33,5 А | Ø 2,36 мм | 290 А |
Ø 0,63 мм | 40 А | Ø 2,5 мм | 316,2 А |
Ø 0,67 мм | 43,7 А |
|
Для ремонта предохранителей на ток защиты от 0.25 до 50А
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | 50.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволочки, мм | Медной | 0.01 | 0.02 | 0.04 | 0.07 | 0.10 | 0.18 | 0.20 | 0.25 | 0.32 | 0.39 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 | 0.73 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | 0.89 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | 1.60 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 | 2.45 |
Для ремонта предохранителей на ток защиты от 60 до 300А
Ток защиты предохранителя, Ампер | 60 | 70 | 80 | 90 | 100 | 120 | 160 | 180 | 200 | 225 | 250 | 275 | 300 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволочки, мм | Медной | 0.82 | 0.91 | 1.00 | 1.08 | 1.15 | 1.31 | 1.57 | 1.72 | 1.84 | 1.99 | 1.14 | 2.20 | 2.40 |
Алюминиевой | 1.00 | 1.10 | 1.22 | 1.32 | 1.42 | 1.60 | 1.94 | 2.10 | 2.25 | 2.45 | 2.60 | 2.80 | 2.95 | |
Стальной | 1.80 | 2.00 | 2.20 | 2.38 | 2.55 | 2.85 | 3.20 | 3.70 | 4.05 | 4.40 | 4.70 | 5.0 | 5.30 | |
Оловянной | 2.80 | 3.10 | 3.40 | 3.65 | 3.90 | 4.45 | 4.90 | 5.80 | 6.20 | 6.75 | 7.25 | 7.70 | 8.20 |
Диаметры медного провода для предохранителя
Диаметры медного провода для плавкой вставки предохранителя
Табличка, которая должна быть под руками у каждого электрика.
Диаметры медного провода для плавкой вставки предохранителя | |||
Номинальный диаметр медного провода, мм | Ток плавкой вставки предохранителя, А | Номинальный диаметр медного провода, мм | Ток плавкой вставки предохранителя, А |
0,05 | 0,6 | 0,71 | 47,8 |
0,063 | 1,25 | 0,75 | 52 |
0,071 | 1,5 | 0,8 | 57,2 |
0,08 | 1,8 | 0,85 | 62,7 |
0,09 | 2,1 | 0,9 | 68,3 |
0,1 | 2,5 | 0,95 | 68,6 |
0,112 | 3 | 1 | 80 |
0,124 | 3,5 | 1,06 | 87,3 |
0,14 | 4,2 | 1,12 | 94,8 |
0,16 | 5,1 | 1,18 | 102,5 |
0,17 | 5,6 | 1,25 | 111,8 |
0,18 | 6,1 | 1,32 | 121,3 |
0,2 | 7,1 | 1,4 | 132,5 |
0,224 | 8,4 | 1,45 | 139,7 |
0,25 | 10 | 1,5 | 147 |
0,28 | 11,8 | 1,6 | 161,9 |
0,315 | 14,1 | 1,7 | 177,3 |
0,335 | 15,5 | 1,8 | 193,2 |
0,355 | 16,9 | 1,9 | 209,5 |
0,4 | 20,2 | 2 | 226,2 |
0,45 | 24,1 | 2,12 | 247 |
0,5 | 28,2 | 2,24 | 268,2 |
0,56 | 33,5 | 2,36 | 290 |
0,63 | 40 | 2,5 | 316,2 |
0,67 | 43,7 |
Подбор предохранителя по сечению кабеля
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | – | – | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | – | – | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | – | – | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: |
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.
В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.
Поистине универсальное приспособление
Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.
Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t
+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.
Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.
Как правильно выбрать предохранитель
Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.
Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
- I nom – номинальный ток защиты, A.
- P max – максимальная мощность, W.
- U – напряжение питания, V.
Хотя лучше пользоваться специально созданными для этой цели таблицами.
Приведем некоторые данные из них:
- Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
- 50W – 0,25A.
- 100W – 0,5A.
- 150W – 1A.
- 250W – 2A.
- 500W – 3A.
- 800W – 4A.
- 1kW – 5A.
- 1,2kW – 6A.
- 1,6kW – 8A.
- 2kW – 10A.
- 2,5kW – 12A.
- 3kW – 15A.
- 4kW – 20A.
- 6kW – 30A.
- 8kW – 40A.
- 10kW – 50A.
Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.
Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.
Кулибиным на заметку
При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.
Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.
Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.
Обратимся к справочнику:
- Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
- 2A – 0,09 мм – 0,10 мм.
- 3A – 0,11мм – 0,14 мм.
- 5A – 0,16 мм – 0,19 мм.
- 7A – 0,20 мм – 0,25 мм.
- 10A – 0,25 мм – 0,30 мм.
- 15A – 0,33 мм – 0,40 мм.
- 20A – 0,40 мм – 0,48 мм.
- 25A – 0,46 мм – 0,56 мм.
- 30A – 0,52 мм – 0,64 мм.
- 35A – 0,58 мм – 0,70 мм.
- 40A – 0.63 мм – 0,77 мм.
- 45A – 0,68 мм – 0,83 мм.
- 50A – 0,73 мм – 0,89 мм.
Таким образом, данная проволока сгодится для предохранителя на 30A.
Имеется 3 способа ремонта трубчатого предохранителя:
- Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
- Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
- Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.
Описанную технологию можно успешно использовать для ремонта любых типов вставок.
Расчет плавкого предохранителя, вставки на любой ток, сечение
Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.
Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.
Наибольшее распространение получили плавкие предохранители. Они дешевы и просты в изготовлении и в случае короткого замыкания в сети обеспечивает защиту проводки от возгарания.
Когда перегорает плавкий предохранитель (плавкая вставка), требуется быстро его заменить. Не всегда имеется запасной предохранитель на нужный ток. Проще всего защитный предохранитель выполнить из провода соответствующего диаметра. Причем расчет диаметр провода для необходимого тока плавления (защиты) можно выбрать из таблицы, где приведены значения для разных металлов. В качестве основания для закрепления (припаивания) плавкой вставки может использоваться каркас перегоревшего.
Таблица 5.1 Значения по току плавления для проволоки из разных металловТок, А | Диаметр провода в мм | Ток, А | Диаметр провода в мм | ||||||
Медь | Алюмин. | Сталь | Олово | Медь | Алюмин. | Сталь | Олово | ||
1 | 0,039 | 0,066 | 0,132 | 0,183 | 60 | 0,82 | 1,0 | 1,8 | 2,8 |
2 | 0,069 | 0,104 | 0,189 | 0,285 | 70 | 0,91 | 1,1 | 2,0 | 3,1 |
3 | 0,107 | 0,137 | 0,245 | 0,380 | 80 | 1,0 | 1,22 | 2,2 | 3,4 |
5 | 0,18 | 0,193 | 0,346 | 0,53 | 90 | 1,08 | 1,32 | 2,38 | 3,65 |
7 | 0,203 | 0,250 | 0,45 | 0,66 | 100 | 1,15 | 1,42 | 2,55 | 3,9 |
10 | 0,250 | 0,305 | 0,55 | 0,85 | 120 | 1,31 | 1,60 | 2,85 | 4,45 |
15 | 0,32 | 0,40 | 0,72 | 1,02 | 160 | 1,57 | 1,94 | 3,2 | 4,9 |
20 | 0,39 | 0,485 | 0,87 | 1,33 | 180 | 1,72 | 2,10 | 3,7 | 5,8 |
25 | 0,46 | 0,56 | 1,0 | 1,56 | 200 | 1,84 | 2,25 | 4,05 | 6,2 |
30 | 0,52 | 0,64 | 1,15 | 1,77 | 225 | 1,99 | 2,45 | 4,4 | 6,75 |
35 | 0,58 | 0,70 | 1,26 | 1,95 | 250 | 2,14 | 2,60 | 4,7 | 7,25 |
40 | 0,63 | 0,77 | 1,38 | 2,14 | 275 | 2,2 | 2,80 | 5,0 | 7,7 |
45 | 0,68 | 0,83 | 1,5 | 2,3 | 300 | 2,4 | 2,95 | 5,3 | 8,2 |
50 | 0,73 | 0,89 | 1,6 | 2,45 |
Формула для расчета диаметра медной проволоки для предохранителя
Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.
Формула для расчета диаметра медной проволоки для ремонта предохранителягде
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.