Самодельная батарея: Батарейка своими руками — фото и описание медно-купоросный элемент

Содержание

Батарейка своими руками — фото и описание медно-купоросный элемент

Ради эксперимента и доказательства работы данного устройства давным давно я решил изготовить самодельную батарейку. Фотографии медно-купоросного элемента с моего старого сайта. Вдаваться в теорию не буду, лишь в общих чертах объясню принцип работы данной батарейки по простому (не научному).

Сама батарейка представляет из себя сосуд, я использовал стеклянные баночки, в котором находятся два электрода. Медный электрод снаружи, а внутри мембраны должен быть цинковый электрод, но так-как цинка у меня нет, я использовал алюминий ( алюминиевые банки из под напитков). В стеклянную банку нужно налить простую воду, а в мембрану раствор соли. Чтобы батарейка заработала в банку нужно добавить немного медного купороса ( продается в магазинах удобрений). Только купорос добавлять надо не в солевой раствор — не в мембрану где алюминий, а в чистую воду где медный электрод.

Вольтаж одной батарейки всего 0,4-0,5 вольта, если вместо алюминия использовать цинк то вольтаж одной банки будет около 1 вольт, по-этому чтобы получить нужный вольтаж нужно подсоединять несколько таких батареек последовательно. К примеру 6 банок дадут три вольта, 10 банок дадут 5 вольт.

Такая батарейка имела популярность у радиолюбителей в советское время, так-как она очень проста в изготовлении, и в отличие от других самодельных химических элементов имеет устойчивое напряжение. Ниже рисунок устройства самодельной батарейки, которая называется медно-купоросный элемент. Как видно все просто, мембраной разделены два цилиндра, один медный, а второй цинковый, на дне медный купорос. Чтобы элемент заработал в полную силу нужно мешалкой взболтать купорос.

По сути это как-бы не батарейка, а топливный элемент, в котором топливом служит медный купорос. Кстати батарейка работает всегда пока в ней купорос полностью не израсходуется не зависимо от того потребляете вы с нее энергию или нет.

>

Дома я решил повторить эту конструкцию. Нашел несколько маленьких стеклянных банок, из картона сделал мембраны. мембрану делал так, из картона сделал цилиндр, пришил нитками дно к нему, оно тоже из картона. Потом обтянул получившиеся стаканчики тканью и зашил нитами. Ниже фото этого безобразия, за эстетикой не гнался, хотелось быстрее сделать и проверить работоспособность батареек.


> . > > > > >

В качестве меди использовал медный провод. Дома насобирал проводов и ободрал изоляцию с них, и чистый медный провод наматывал на мембраны. Как видно на фото меди совсем немного ушло, медный электрод это плюсовой контакт батарейки.

Вместо цинка использовал алюминий, насобирал алюминиевых банок, зачистил их от надписей чтобы лучше контакт был с электролитом, в качестве которого солевой раствор. баночки порезал и скрутил в трубочку, подсоединил медный проводок, это минусовой контакт. Когда все части были сделаны я принялся за заправку банок и собственно сборку батареек.

Выставил банки, опустил мембраны с намотанными на них медными оголенными проводами. Потом приготовил раствор соли, примерно столовую ложку соли на 0,5 литра, и разлил раствор в мембраны всех банок, их у меня получилось 6 штук, потом в сами банки долил чистой воды. Соединил последовательно все банки и без купороса решил проверить есть ли хоть что нибудь, хоть какое напряжение. Так-как в наличие тогда не было мультиметра я решил подсоединить маленький фонарик, в котором 12 светодиодов, потребление каждого 20мА, в сумме 240 мА. Подсоединил и в итоге не увидел хотя бы тусклого свечения, а я почему-то надеялся что засветит.

Потом вынимая поочередно мембраны в банки подсыпал немного купороса и размешивал палочкой, на шесть баночек рассыпал столовую ложку купороса. Снова попробовал подсоединить фонарик и был очень обрадован, ура!, батарейки работают, фонарик горел в полную яркость, как от настоящих батареек.

>

Потом решил попробовать заряжать телефон, но от шести банок он не хотел заряжаться, сделал еще две банки и зарядка пошла, телефон стал заряжаться. Мне было интересно за сколько зарядится телефон, в итоге он полностью зарядился за 2 ч 40 мин. Емкость аккумулятора 750мА/ч, значит батарейка давала ток примерно 300мА/ч. В принципе неплохо для самодельной батарейки, да еще так плохо сделанной.

>

Далее я хотел проверить как долго на одной столовой ложке купороса проработает батарейка. Все банки промыл и добавил купорос, подсоединил фонарик и оставил, в итоге фонарик просветил четверо суток, потом еще продолжал светить, но уже очень тускло и я закончил эксперимент.

Как доказательство работы батарейки, или медно-купоросного элемента прилагаю видео.

В итоге что хочу сказать, данный способ получения энергии вполне работоспособен, даже эта грубая поделка дает энергию. А если сделать все как надо, то-есть нормальную медную пластину взять и из нее цилиндр согнуть, найти цинк, или алюминий по толще, взять банки по объемистей, тогда мощность будет в разы больше, а количество батареек можно увеличить хоть до 25 шт, тогда получится 12 вольт, и когда нужна батарея просто заправил и она заработала, все просто , легко и работает.

Сериал «Во все тяжкие»: сколько в нем реальной науки?

Автор фото, AMC

Подпись к фото,

Уолт Уитман, учитель химии и наркобарон

Известный американский телесериал Breaking Bad («Во все тяжкие») вступил в заключительную фазу — с 11 августа выходят в свет последние восемь эпизодов. Его обожатели строят сейчас предположения, чем закончится история школьного учителя из американской глубинки, который сделался сначала изготовителем метамфитамина, а затем главой преступной группировки. Но вот химика доктора Джонатана Хэйра интересует совсем другой вопрос — насколько достоверна научная подоплека этого незаурядного телеповествования.

«Химию нужно уважать», — говорит главный герой фильма Уолтер Уайт. Он в прошлом блестящий химик, которому по семейным обстоятельствам пришлось оставить научную карьеру и стать учителем химии в заурядной средней школе в городе Альбукерке в штате Нью-Мексико.

Обнаружив, что он болен неоперабельным раком легких, он решает обеспечить семью после своей смерти и принимается за изготовление опаснейшего наркотического средства — метамфетамина — в партнерстве со своим бывшим учеником Джесси Пинкманом.

Хотя отношения между ними поначалу настороженные, и Джесси весьма раздражает учительский тон Уолта, вскоре он убеждается, что его бывший учитель способен производить кристаллы метамфетамина высочайшего качества.

Уолт не может удержаться от учительского соблазна и превращает процесс изготовления или «варки» мефамфетамина в увлекательные уроки химии.

Насколько научно достоверными являются его уроки?

Голубые кристаллы

Изготовляемые Уолтом в походной лаборатории, укрытой в трейлере, кристаллы имеют необычный голубой оттенок и отличаются невероятной чистотой. Это увлекательная подробность, но обычно цвет кристалла не свидетельствует о его химической чистоте. Примеси в минералах типа кварца могут делать их розовыми или фиолетовыми (аметист), но обычно цвет является результатом взаимодействия электронов вещества с видимым светом и не является показателем беспримесности.

Фосфиновый газ

Автор фото, AMC

В одной из первых сцен телесериала Уолт оказывается в своей передвижной лаборатории, укрытой в пустыне Нью-Мексико, под дулами пистолетов двух гангстеров. Он на ходу приходит к мысли покончить с ними, бросив порошок красного фосфора в колбу с кипятком. Уолту удается выскочить из автофургона и запереть в нем гангстеров, которые гибнут от образовавшегося в результате реакции фосфинового газа.

Красный фосфор может реагировать с водородом, но не с горячей водой. Так что это не очень правдоподобно с научной точки зрения. Правда, белый фосфор может дать такую реакцию, но только в сочетании с гидроксидом натрия, широко распространенном в быту. Но об этом Уолт ничего не рассказывает Джесси.

Ванна для растворения трупов

Автор фото, AMC

На самом деле от газа гибнет только один из гангстеров. Уолт убивает другого, но теперь ему надо избавиться от трупа. В жуткой сцене Джесси наполняет ванну фтористоводородной кислотой, чтобы растворить в ней тело. Эта кислота, которая еще называется плавиковой, обладает необычными химическими свойствами. Она растворяет стекло и хранить ее приходится в пластиковых емкостях.

Это очень едкая кислота, но ее едкость определяется ее химическими свойствами, а не концентрацией, как говорится в фильме. К сожалению, Джесси не следует настойчивыми указаниям Уолта о приобретении пластиковой бочки, а просто сливает кислоту в обычную чугунную эмалевую ванну. В результате кислота не только растворяет труп, но проедает чугун и бетонное перекрытие, и остатки ванны обрушиваются в подвал.

Самопальная батарея

В другом эпизоде Уолт и Джесс занимаются «варкой» метамфетамина в пустыне, но когда настает время возвращаться, оказывается, что аккумулятор древнего автофургона безнадежно разрядился и мотор не завести. Уолт изготовляет из подручных средств — кислоты, металлических обломков и проводов — новую самодельную батарею и объясняет попутно химическую сторону вопроса Джесси. Если металлическую пару поместить в кислотный раствор или даже электролит типа морской воды, возникает электродвижущая сила.

Все, кому в детстве делали ртутные пломбы, знают о странном ощущении, которое возникает, если взять в рот кусочек алюминиевой фольги. Это классический пример из урока электрохимии. Слюна выполняет роль электролита, так как является слабой кислотой. Объяснения Уолта вполне правдоподобны, но, к сожалению, изготовленная им батарея не могла дать тока достаточной силы, чтобы провернуть стартер.

Гремучая ртуть

Автор фото, AMC

Еще один эпизод — в нем Уолт решает раз и навсегда покончить с гангстером и убийцей Туко. Он приходит к нему в контору и предлагает ему порцию кристаллов метамфетамина, но при этом требует немедленной оплаты. На самом деле пластиковый мешок с наркотиком, врученный им Туко, содержит кристаллы гремучей ртути. Уолт бросает его на пол и раздается мощный взрыв. Мы видим, как Уолт покидает пылающий дом с мешком денег в руках. Реально ли всё это? Может ли небольшое количество этого вещества произвести такой взрыв?

Гремучая ртуть или фульминат ртути действительно является весьма неустойчивым и взрывоопасным соединением, и в школьной химической лаборатории его можно изготовить без особого труда.

Но уже кристаллы с размерами более 3-5 мм являются крайне неустойчивыми и могут в любой момент взорваться. Пластиковый мешок, который Уолт вручает Туко, по виду содержит граммов 200 крупных кристаллов гремучей ртути. Такое количество должно взрываться от малейшего сотрясения, и у Уолта не было бы ни малейшего шанса донести его до места. Правда, если бы ему это каким-то чудом удалось, взрыв был бы действительно крайне мощным.

Термитная смесь

Уолт и Джесси выжигают замок в стальной двери, чтобы пробраться на склад с химикатами. Уолт рассказывает Джесси, что для этого он применил термитный заряд. Термит представляет собой смесь оксида железа с порошком алюминия или другого металла с высокой реактивной способностью. Температура их реакции обычно очень высока и термитная смесь широко используется при сварке железнодорожных рельсов, например, или при вскрытии сейфов. С научной точки зрения с этим эпизодом всё в порядке.

Как сделать аккумулятор для солнечных батарей своими руками

В солнечной электроэнергетике для аккумулирования и хранения вырабатываемой панелями электрической энергии используются аккумуляторные батареи. Требования к ним зависят от типа, масштабов и особенностей работы электростанции. Важным условием является способность АКБ принимать заряд малыми токами, т.к. именно с такими характеристиками поступает электроэнергия от солнечных панелей.

В продаже представлены разные АКБ для солнечных электростанций: свинцово-кислотные модели глубокого разряда типа AGM, GEL, OPzS, OPzV, а также литий-ионные АКБ с различными материалами анода и катода. Лучшими на сегодня признаны Li-ion батареи на основе литий-железо-фосфата – LiFePO4.

Собирают такие аккумуляторы для солнечных батарей своими руками или на заказ, по предварительно выбранной схеме. Сборка производится из элементов питания в форме цилиндра, призмы или пакетов. Схема соединения элементов питания зависит от их технических характеристик и заданных параметров батареи. Для набора напряжения аккумуляторы соединяют последовательно, а для суммирования емкости и силы тока – параллельно.

Преимущества LiFePO4 аккумуляторов

Основные преимущества LiFePO4 аккумуляторов как накопителей энергии в системах альтернативной электроэнергетики – это:

  • минимальный саморазряд;
  • эффективное сохранение накопленной энергии;
  • надежность и эффективность в работе;
  • устойчивость к естественному старению и деградации;
  • стойкое сохранение первоначальной емкости;
  • большой срок службы – более 3000 полных циклов заряд-разряд;
  • устойчивость к глубоким разрядам;
  • большой диапазон рабочих температур – от -30 до +50 °С;
  • высокие значения допустимых токов заряда/разряда;
  • простота сборки;
  • термическая и химическая стабильность;
  • абсолютная безопасность эксплуатации;
  • отсутствие риска возгорания и взрыва, даже при экстремальном нагреве, разгерметизации или коротком замыкании;
  • высокая плотность энергии – большая емкость при компактных размерах и легком весе.

Из LiFePO4 аккумуляторов можно собрать батарею с любыми необходимыми характеристиками, для дома или другого объекта, для частного или промышленного использования.

Подготовка к сборке LFP батареи

Чтобы сделать аккумуляторную батарею для домашней электростанции на солнечных панелях или другого объекта, нужно вначале рассчитать подходящие параметры АКБ. По выходному напряжению накопительные АКБ должны соответствовать фотоэлементам солнечных батарей. По энергетической емкости они должны удовлетворять энергетические потребности оборудования в темное время суток (как минимум) или в течение суток. К расчетному значению уровня потребления энергии нужно прибавить 40% на потери в батарее и инверторе и еще 50%, если электростанция будет использоваться круглый год.

Номинальное напряжение элементов питания LiFePO4 составляет 3,2 В, а емкость зависит от используемого типоразмера «банок». При работе с LFP элементами помните, что их напряжение не должно выходить за рамки диапазона 2–3,75 В.

Чтобы не допустить разбалансировки и преждевременного износа аккумуляторов в батарее, нужно использовать для сборки АКБ абсолютно одинаковые элементы – по типу, значениям емкости и напряжения, в идеале – даже по маркировке и дате выпуска.

Для контроля состояния аккумуляторов в АКБ обязательно нужна BMS плата. Она не допускает выхода рабочих параметров за допустимые пределы, отключает батарею от нагрузки при глубоком разряде и от источника питания при максимальном уровне заряда, а также выравнивает напряжение элементов и не допускает разбалансировки системы.

Изготовление самодельной LiFePO4 батареи

Краткая инструкция по сборке LFP батареи состоит из следующих шагов:

  1. Подготовить необходимые компоненты – одинаковые аккумуляторы в достаточном количестве, BMS плату, провода, штекеры, мультиметр, зарядное устройство. В зависимости от метода соединения элементов – никелевую ленту, аппарат для точечной сварки, холдеры, соединительные перемычки, болты или другие приспособления.
  2. Выбрать и утвердить схему сборки элементов – в зависимости от необходимых значений емкости и напряжения.
  3. Соединить элементы по выбранной схеме, учитывая полярность.
  4. Присоединить силовые и балансировочные провода.
  5. Вывести разъемы.
  6. Последовательно соединить балансировочные провода.
  7. Герметизировать батарею термоусадочной трубкой большого диаметра.
  8. Поместить ее в ящик, бокс или корпус с предварительно выполненными отверстиями для проводов.
  9. Присоединить BMS плату.
  10. Вывести провода. Присоединить разъемы.

Элементы для сборки литий-ионных АКБ есть в нашем интернет-магазине. Также мы изготавливаем LFP батареи с заданными характеристиками на заказ, с гарантией качества и доставкой по России.

Как сделать литиевый аккумулятор (батарею) своими руками

Категория: Поддержка по аккумуляторным батареям
Опубликовано 15. 04.2016 19:45
Автор: Abramova Olesya


Первым этапом создания литий-ионного аккумулятора является определение требований к значению напряжения и необходимому времени работы. Затем уточняются характеристики нагрузки, окружающей среды, габаритные размеры и вес. У современных портативных устройств будут повышенные требования к толщине аккумулятора, поэтому предпочтительным будет выбор призматического или даже бескорпусного форматов. Если же толщина не будет определяющим фактором, то выбор цилиндрических элементов типоразмера 18650 в качестве структурных частей позволит обеспечить более низкую стоимость и лучшую производительность (с точки зрения удельной энергоемкости, безопасности и долговечности). (Смотрите также BU-301a: Разнообразие форм электрических батарей).

Большинство аккумуляторов, используемых в медицинском оборудовании, электроинструменте, электровелосипедах и даже электромобилях, используют элементы типоразмера 18650. Казалось бы, использование этого цилиндрического элемента не особо практично из-за большого занимаемого им объема, но его сильные стороны, такие как развитая и массовая технология производства, а также низкая стоимость ватт-часа утверждают обратное.

Как уже говорилось выше, цилиндрическая форма элемента не является идеальной, поскольку она приводит к образованию пустого пространства в многоэлементных системах. Но если рассматривать вопрос с точки зрения необходимости охлаждения, то этот недостаток превращается в преимущество. К примеру, элементы типоразмера 18650 используются в электромобиле Tesla S85, где их суммарное количество достигает 7000 штук. Эти 7000 элементов формируют сложную аккумуляторную систему, где используется и последовательное соединение для увеличения напряжения, и параллельное – для увеличения силы тока. В случае выхода из строя одного элемента в последовательном соединении потеря мощности будет минимальна, а в параллельном такой элемент отключится системой защиты. Соответственно, нет зависимости всего аккумулятора от единичных элементов, что позволяет более стабильную эксплуатацию.

У производителей электромобилей нет единого мнения по поводу использования типоразмеров, но существует тенденция к использованию более крупных форматов, так как это уменьшает общее количество элементов в аккумуляторе и соответственно снижает стоимость системы защиты. Экономия может достигать 20-25 процентов. Но с другой стороны, использование больших элементов приводит к удорожанию суммарной стоимости кВт*ч. По данным за 2015 год, именно Tesla S85 с элементами типоразмера 18650 имеет более низкую стоимость ватт-часа в сравнении с электромобилями, использующими большие призматические аккумуляторы. В таблице 1 сравнивается стоимость кВт*ч различных электромобилей.

Модель Тип элемента Стоимость кВт*ч Удельная энергоемкость
Tesla S85, 90 кВт (2015)* 18650 $260/кВт*ч 250 Вт/кг
Tesla 48кВт Gen III 18650 $260/кВт*ч 250 Вт/кг
Лучшие модели с DoE/AABC бескорпусная/призматическая $350/кВт*ч 150-180 Вт/кг
Nissan Leaf, 30 кВт (2016)* бескорпусная/призматическая $455/кВт*4 80-96 Вт/кг
BMW i3 бескорпусная/призматическая нет данных 120 Вт/кг

Таблица 1: Сравнение стоимости ватт-часа различных моделей электромобилей. Массовое производство элементов типоразмера 18650 удешевляет использующие их аккумуляторы.

* В 2015-2016 году в Tesla S85 увеличилась мощность аккумулятора с 85 кВт*ч до 90 кВт*ч. В Nissan Leaf также произошло увеличение — с 25 кВт*ч до 30 кВт*ч.

Разрабатываемый аккумулятор должен соответствовать нормам безопасности не только при стандартной работе, но и в случае выхода из строя. Все источники энергии, и электрические батареи не исключение, в конечном итоге вырабатывают свой ресурс и приходят в негодность. Бывают и случаи преждевременного, непрогнозируемого выхода из строя. Например, после некоторых инциндентов, бортовой литий-ионный аккумулятор лайнера Боинг 787 помещен в специальный металлический контейнер с вентилированием наружу. В электромобилях Tesla аккумуляторный отсек дополнительно защищается стальной пластиной во избежание проникающих повреждений.

Большие аккумуляторные системы для высоконагруженных систем имеют принудительное охлаждение. Оно может быть реализовано в виде отвода тепла радиатором, а может включать в себя вентилятор для подачи холодного воздуха. Также существуют системы с жидкостным охлаждением, но они довольно дорогие, и используются, как правило, в электромобилях.

Уважающие себя производители электрических элементов не поставляют литий-ионные элементы несертифицированным компаниям-производителям аккумуляторов. Эта мера предосторожности вполне оправдана, так как схема защиты в конструируемом аккумуляторе может быть некорректно настроена ради завышения показателей, и элементы будут заряжаться и разряжаться не в безопасном интервале напряжений.

Стоимость сертифицированной аккумуляторной системы для воздушного транспорта или для иного коммерческого использования может составлять от $ 10000 до $ 20000. Столь высокая цена вызывает беспокойство, особенно зная о том, что производители периодически меняют используемые в таких системах электрические элементы. Аккумуляторная система с такими новыми элементами хоть и будет указана в качестве прямой замены более старой, снова будет требовать новых сертификатов.

Часто задают вопрос: ”Зачем нужна сертификация аккумулятора, если элементы, из которых он состоит, уже одобрены?”. Ответ довольно прост — конечное устройство, аккумулятор, также должно быть проверено на соответствие стандартам безопасности и правильность сборки. К примеру, неисправность той же схемы защиты может привести к возгоранию или даже взрыву, а ее тестирование возможно только в готовом аккумуляторе.


Аккумуляторы EverExceed

 

OPzS NI-CD OPzV
20 лет / 1500 циклов 25 лет / 2000 циклов 20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д.

Согласно правилам, установленным ООН, аккумулятор должен пройти механические и электрические тесты, чтобы соответствовать требованиям, регламентирующим возможность воздушной транспортировки. Эти правила (UN/DOT 38.3) работают совместно с рекомендациями Федерального Управления Гражданской Авиации (FAA), Департамента Транспорта США (US DOT) и Международной Ассоциации Воздушного Транспорта (IATA)*. Сертификация распространяется на первичные и вторичные литиевые батареи.

Правила ООН 38.3 включают в себя такие тесты:

  • Т1 — Имитация работы на высоте (первичные и вторичные батареи)

  • Т2 — Температурные испытания (первичные и вторичные батареи)

  • Т3 — Вибрация (первичные и вторичные батареи)

  • Т4 — Удар (первичные и вторичные батареи)

  • Т5 — Внешнее короткое замыкание (первичные и вторичные батареи)

  • Т6 — Механическое воздействие (первичные и вторичные батареи)

  • Т7 — Перезарядка (вторичные батареи)

  • Т8 — Принудительный разряд (первичные и вторичные батареи)

Испытуемые электрические батареи должны пройти испытания, не причинив вреда окружающему пространству, сохранение ими работоспособности после тестов не играет никакой роли. Эти испытания предназначены исключительно для тестирования безопасности, а не потребительских качеств. Уполномоченная лаборатория, проводящая эти тесты, нуждается в 24 образцах батарей, 12 новых и 12 прошедших 50 циклов заряда/разряда. Присутствие уже используемых аккумуляторов гарантирует более реалистичное качество выборки.

Высокая стоимость сертификации является неподъемной для небольших производителей литий-ионных батарей, поэтому конечная цена сертифицированных моделей довольно высока. Но у потребителей есть выбор — вместо сертифицированного литий-ионного вполне можно приобрести аккумулятор на основе никеля, транспортировка которого не регламентируется так строго. (Смотрите BU-704: Транспортировка электрических батарей.)

2. Рекомендации по работе с литий-ионными батареями
  • Соблюдайте осторожность при работе и тестировании аккумуляторов.

  • Не допускайте короткого замыкания, перезарядки, сдавливания, падения, проникновения посторонних предметов, применения обратной полярности, воздействия высокой температуры на аккумулятор.

  • Не разбирайте аккумулятор.

  • Используйте только оригинальные литий-ионные аккумуляторы и зарядные устройства.

  • Следует прекратить эксплуатацию аккумулятора и/или зарядного устройства при чрезмерном нагреве.

  • Следует помнить, что вещество электролита легковоспламеняемое и взрыв или возгорание аккумулятора может привести к травмам.

* Международная ассоциация воздушного транспорта работает с авиакомпаниями и воздушной транспортной отраслью для обеспечения безопасности, надежности и экономичности авиаперевозок.

Водяная батарея на 220 В


Химический источник питания, который будет изготовлен в этом мастер-классе обладает довольно существенной мощностью, чтобы получить с помощью него напряжение способное питать сетевые приборы на 220 В.
Наверняка вы видели статьи в интернете, где из лимона получают электричество, воткнув в него два электрода из разных металлов. Эта батарея будет построена по тем же принципам, только более масштабно.
Пойдем только не по пути увеличения секций элементов, а по пути увеличения площади электродов, что должно дать больший ток батареи, а следовательно и мощность всей установки.
В роли электролита будет использована вода и пищевая сода разведенная в ней.

Понадобится


  • Канализационная ПВХ труба, длиной приемно 1-1,2 м.
  • Две заглушки ПВХ.
  • Медный провод.
  • Оцинкованная полоска.
  • Кусок гофрированной трубы.
  • Тонкая трубка ПВХ.
  • Пара кусков пластика для подставок.
  • Клеммы две штуки.


Изготавливаем батарею работающую на воде


Нам необходимо собрать герметичный сосуд из трубы ПВХ — это будет корпус нашей батареи. Я решил по концам вставить закручивающиеся заглушки, чтобы их в любой момент можно было открутить. Газовой горелкой разогреваем край трубы.

Вставляем заглушку.

В результате получается вот такой аккуратный край с резьбой на конце.

В крышках заглушек вклеиваем куски тонкой трубы. Отверстие в них делать не нужно. Эти отрезки будет центрировать внутренний элемент и нужны лишь как крепления. Используем клей на основе эпоксидной смолы.

Вся батарея будет располагаться горизонтально, для этого приклеиваем своеобразные ножки по обеим сторонам.

Пришло время изготовить сам электродный элемент. Берем трубку с змеевидной фактурой и наматываем в ее желоб сначала медный провод.

Если у вас нет такой трубки — возьмите обычную гладкую, но в этом случае провод придется периодически фиксировать через определенный промежуток.
Затем в промежуток медному наматываем оцинкованную ленту.

Две этих ленты не должны соприкасаться между собой.
С одной стороны подключаемся и делаем вывод от медного провода. А с другой стороны делаем отвод от цинкового электрода.


Подсоединяем провода и делаем клеммы.

Устанавливаем элемент в трубу.

Закрываем крышкой, так чтобы трубка на крышке прошла внутрь трубы элемента с электродами.

Делаем электролит: в обычную воду добавляем пару столовых ложек соды. Далее заливаем в батарею.


Как видите, корпус покрашен черной эмалью. С боку сделан кран для спуска газов и слива жидкости. Закрываем второй крышкой.
На этом наш химический источник тока готов.

Результат работы солевой батареи


Результат работы таков, что напряжение холостого хода — 1,6 В. Ток короткого замыкания — 120 мА.
Теперь подключаем нагрузку. Это однотранзисторный повышающий преобразователь для питания светодиодов.

Светодиоды ярко светят, потребляя порядка 20 мА. Как видно, просадка получилась до 1,2 В.

Далее попробуем запитать лампу на 220 В мощностью 3 Вт.

Так же подключаем ее через преобразователь.

Светит нормально. Изначальная просадка по напряжению была до 0,8 В. Поработав пару часов составила — 0,6 В.
Такой батареи хватит на несколько часов работы. Вы можете собрать ее и поэкспериментировать с заменой электролита, сделав его не из соды, а из обычной поваренной соли. Заменить электроды из других металлов. Кто знает, может вы сможете получить большее напряжение и время работы. Удачи!

Смотрите видео


как сделать в домашних условиях, самодельная панель, как смастерить самому из пивных банок и других подручных средств, пошаговая инструкция

Использование энергии солнца ассоциируется по большей части с космическими аппаратами. А теперь еще с разными далекими странами, где ускоренно развивается «альтернативная энергетика». Но попробовать то же самое даже с самодельными устройствами по силам почти всем.

Особенности и разновидности устройства

Из экзотического устройства, предназначенного только для специальных нужд, солнечная батарея превратилась в уже относительно массовый источник энергии. И причина не только в экологических соображениях, но и в беспрерывном росте цен на электроэнергию из магистральных сетей. Более того, есть еще немало мест, где такие сети вовсе не протянуты и неизвестно когда они появятся. Самостоятельная забота о протягивании магистрали, объединение ради этого усилий большого числа людей вряд ли возможны. Тем более что даже при успехе предстоит окунуться в мир стремительной инфляции.

Важно понимать, что панели, вырабатывающие электричество, могут довольно сильно отличаться друг от друга.

И дело даже не в формате – внешний вид и геометрия как раз довольно близки. А вот химический состав отличается разительно. Наиболее массовые изделия выполнены из кремния, который доступен почти всем и стоит недорого. По производительности батареи не хуже как минимум более дорогих вариантов.

Существует такие три основных варианта кремния, как:

  • монокристаллы;
  • поликристаллы;
  • аморфное вещество.

Монокристалл, если исходить из сжатых технических объяснений – это наиболее чистый тип кремния. Внешне панель похожа на своеобразные пчелиные соты. Основательно очищенное вещество в твердом виде делят на особо тонкие пластины, каждая из которых имеет не больше 300 мкм. Чтобы они выполнили свою функцию, используют электродные сетки. Многократное усложнение технологии по сравнению с альтернативными решениями делает подобные источники энергии наиболее дорогими.

Несомненным преимуществом монокристаллического кремния является очень высокий КПД по меркам солнечной энергетики, составляющий приблизительно 20%. Поликристалл получают иначе, требуется сначала расплавить материал, а затем медленно понижать его температуру. Относительная простота методики и минимальный расход энергоресурсов при производстве положительно сказываются на стоимости. Минусом становится пониженная эффективность, даже в идеальном случае она составляет не более 18%. Ведь внутри самих поликристаллов есть немало структур, понижающих качество работы.

Аморфные панели почти не проигрывают обоим только что названным видам. Кристаллов тут нет вообще, есть вместо них «силан» – это соединение кремния с водородом, размещаемое на подложке. КПД составляет примерно 5%, что в значительной мере компенсируется многократно увеличенным поглощением.

Немаловажно и то, что аморфные батареи лучше других вариантов справляются со своей задачей при рассеянном солнечном освещении и в пасмурную погоду. Блоки являются эластичными.

Иногда можно встретить комбинацию монокристаллических или поликристаллических элементов с аморфным вариантом. Это помогает сочетать достоинства используемых схем и гасить практически все их недостатки. С целью снижения стоимости изделий сейчас все чаще используют пленочную технологию, которая предусматривает генерацию тока на базе теллурида кадмия. Само по себе это соединение является токсичным, но выброс яда в окружающую среду исчезающе мал. А также могут использоваться селениды меди и индия, полимеры.

Концентрирующие изделия повышают эффективность использования площади панели. Но это достигается только при использовании механических систем, обеспечивающих разворот линз вслед за солнцем. Применение фотосенсибилизирующих красителей потенциально помогает улучшить прием энергии Солнца, но пока это скорее общая концепция и разработки энтузиастов. Если нет желания экспериментировать, лучше выбрать более стабильную и проверенную конструкцию. Это относится как к самостоятельному изготовлению, так и к покупке готового продукта.

Самостоятельное изготовление

Из чего делают?

Сделать своими руками солнечную батарею уже не так сложно, как кажется. Принцип действия устройства основан на применении полупроводникового перехода, освещенное устройство должно создавать ток. Самостоятельно изготовить приемник не получится, для этого нужны сложные производственные манипуляции и специализированное оборудование. А вот выполнить силовую часть преобразователя из подручных средств и материалов – не составляет особого труда. Для получения энергии в собственном смысле слова потребуется пластина из кремния, поверхность которой покрыта сеткой диодов.

Все пластины должны рассматриваться как обособленные генерирующие модули. Важно понимать, что оптимальная эффективность достигается при условии постоянного направления на солнце, и что придется позаботиться о накоплении энергии. Хрупкая батарея должна быть надежно защищена от любых загрязнений, от попадания снега. Если это все же происходит, посторонние включения следует убирать максимально быстро. Первым шагом при работе становится подготовка рамы.

Ее в основном делают из дюралюминия, который обладает следующими особенностями:

  • не подвержен коррозии;
  • не повреждается излишней влажностью;
  • служит максимально долго.

Но необязательно делать именно такой выбор. Если проведена окраска и специальная обработка, неплохие результаты достигаются с использованием стали либо древесины. Не рекомендуется ставить очень крупные панели, что неудобно и повышает парусность. Чтобы зарядить кислотный аккумулятор на 12 В, нужно создать рабочее напряжение от 15 В. Соответственно, модулей по 0,5 В потребуется 30 штук.

Можно создать конструкцию из пивных банок. Корпуса выполняются из фанеры 1,5 см, а лицевая панель формируется из органического стекла или поликарбоната. Допускается применение стандартного стекла толщиной 0,3 см. Гелиоприемник формируется при окрашивании черным пигментом. Краска должна быть устойчивой к значительному нагреву. Крышки разрабатываются таким образом, чтобы обеспечивать повышенную эффективность обмена теплом.

Внутри банок воздух прогревается гораздо быстрее, чем на открытом месте. Важно: требуется отмывать емкости сразу, как только принято решение об их использовании.

Брать следует только алюминиевые банки, стальные не подойдут. Проверка производится простейшим образом – с использованием магнита. Донце пробивают, вводят пробойник или гвоздь (хотя можно и сверлить).

Суппорт вставляют и искажают соответственно рисунку. Верх банки разрезают, чтобы получилось что-то похожее на плавник. Он помогает воздушному потоку снимать максимум тепла с греющейся стенки. Потом банку обезжиривают любым моющим средством и приклеивают отрезанные ранее части друг к другу. Исключить промахи можно, используя шаблон из нескольких досок, приколоченных гвоздями под прямым углом.

Довольно часто используют конструкции из дисков. Они выступают неплохими фотоэлементами. Как вариант, ставятся пластины из меди. Электрическая схема, как уже говорилось, работает по тому же принципу, что и большинство транзисторов. Фольга призвана предотвращать чрезмерный разогрев. Как альтернативу в летние месяцы используют просто поверхность, отделываемую в светлые цвета.

Какие инструменты понадобятся?

Чтобы произвести самостоятельно все работы по монтажу солнечной батареи на 220 вольт, понадобятся следующие инструменты:

  • паяльники, электрифицированные на 40 Вт;
  • герметики на базе силикона;
  • скотч, приклеиваемый с двух сторон;
  • канифоль;
  • припой;
  • провод, по которому будет уходить ток;
  • флюс;
  • шина из меди;
  • крепежные элементы;
  • дрель;
  • прозрачный материал листовой;
  • фанера, органическое стекло либо текстолит;
  • диоды конструкции Шоттки.

Как изготовить?

Пошаговая инструкция предусматривает выводы с панелей на батареи посредством защитного диода, что помогает исключить саморазряд. Поэтому на вывод подается ток напряжением 14,3 В. Стандартный зарядный ток имеет силу 3,6 А. Его получение достигается при использовании 90 элементов. Подключение частей панели производится параллельно-последовательным способом.

Нельзя использовать в цепочках неодинаковое число элементов.

С поправочными коэффициентами за 12 часов солнечного освещения можно получить 0,28 кВт/ч. Элементы расставляются в 6 полос, для довольно свободного монтажа требуется рама величиной 90х50 см. К сведению – когда есть подготовленные рамы с иными размерами, лучше пересчитать потребность в элементах. Если это невозможно, то применяют детали другой величины, их размещают, варьируя длину и ширину ряда.

Работать желательно на совершенно ровном месте, куда удобно подходить с любой стороны. Рекомендуется заготовленные пластины поставить немного в стороне, где они будут застрахованы от падений и ударов. Даже взять панель непросто, их берут только по одной и очень аккуратно. Крайне важно при монтаже в домашних условиях электрических солнечных панелей для дома или для дач поставить надежное УЗО. Такие блоки делают использование системы безопаснее, сокращая риск травмирования электрическим током и возгорания.

Большинство специалистов рекомендуют приклеивать распаянные элементы в виде единой цепи. Подложка должна быть плоской, поскольку это обеспечивает надежность. Как вариант, можно вставить в раму и основательно укрепить лист стекла либо плексигласа. Это изделие требует обязательной герметизации. На подложку выкладывают элементы в заранее определенном порядке и приклеивают их с помощью двустороннего скотча.

Работающая сторона должна быть повернута к прозрачному материалу, а паяльные выводы оборачивают в другую сторону. Удобнее всего распаивать выводы, если рама выложена рабочей плоскостью на столе.

Когда пластины приклеены, кладут смягчающую подкладку, для нее используют следующие материалы:

  • резину в листах;
  • древесноволокнистые плиты;
  • картонки.

Теперь можно вставить в раму оборотную стенку и герметизировать ее. Замена кормовой стенки на компаунд, в том числе на эпоксидную смолу, вполне возможна. Но такой шаг нужно совершать только при условии, что панель не придется разбирать и чинить. Стандартный сегмент выдает примерно 50 Вт тока при благоприятных условиях. А этого уже достаточно для подпитки светодиодных светильников в небольших домах.

Чтобы обеспечить комфортную жизнь, придется за сутки расходовать от 4 кВт/ч электричества. Для жизнеобеспечения семьи из трех человек понадобится подавать уже 12 кВт/ч. Учитывая неизбежные добавки (когда, к примеру, одновременно работает стандартный набор техники и перфоратор) – требуется увеличить этот показатель еще на 2–3 кВт. Эти параметры и можно взять за основу при расчете необходимых параметров. Чтобы работа проходила нормально, необходимо добавлять в схему устройство, контролирующее заряд.

12 В постоянного тока, ведь именно такую мощность выдает типовая и самодельная батарея, переделать на 220 В переменного способен инвертор. Если нет желания его приобретать, придется комплектовать дом электроаппаратурой, рассчитанной на 12 либо 24 В. Так как низковольтные магистрали насыщаются сильным током, придется выбирать провода значительного сечения и не скупиться на изоляцию. Для накопления выработанного электричества применяют в основном свинцовые аккумуляторы, содержащие кислоту. Несмотря на все технологические усовершенствования, лучший вариант еще не предложен. Чтобы увеличить вырабатываемое напряжение, ставят 2 или 4 аккумулятора.

Наибольшие расходы повлечет приобретение самих панелей, улавливающих солнечные лучи. Сэкономить можно, если заказывать китайский товар в электронных магазинах. В целом такие предложения качественные, но необходимо внимательно знакомиться с репутацией продавцов, с поступающими об их деятельности отзывами. Можно выбирать работоспособные системы с незначительными дефектами. Производители их бракуют и выставляют на продажу, чтобы не тратиться на дорогостоящую утилизацию.

Важно: не стоит монтировать в одной сборке разные по габаритам или вырабатываемому току элементы. Наибольшая генерация в таком случае все равно будет ограничена «узким местом».

Самостоятельная сборка инвертора оправдана только в случае ограниченного потребления тока. А контроллеры зарядов и вовсе стоят мизерную сумму, так что их производство своими руками не оправдывается. Проектируя батарею, следует помнить, что ее элементы должны отделяться разрывом в 0,3–0,5 см.

Часто выбирают сооружения из алюминиевых профилей и органического стекла. Тогда готовят на основе металлического уголка каркас прямоугольной формы. Углы каркаса сверлят, чтобы потом легче было скреплять конструкцию. Изнутри периметр смазывается силиконовым реагентом. Теперь можно поставить лист прозрачного материала, который как можно плотнее прижимают к раме.

Углы коробки пронзают шурупами, удерживающими специальные уголки. Эти уголки не дадут оргстеклу произвольно изменять свое местоположение внутри изделия. Сразу после этого оставляют заготовку в покое и ждут, пока герметик высохнет. На этом предварительный этап завершен. До внедрения солнечных уловителей в корпус его основательно вытирают, чтобы не было малейших признаков загрязнения. Сами пластины тоже очищают, но делают это предельно осторожно.

До сборки конструкций с припаянными на заводе проводниками желательно оценить качество соединений и ликвидировать все обнаруженные деформации. Когда шины еще не соединены, первоначально паяют их к контактам на пластинах, и только после этого связывают взаимно.

Последовательность соединения является следующей:

  • измерение требуемого участка шины;
  • нарезка полосок согласно результату замера;
  • смазывают обрабатываемый контакт флюсом на всем протяжении с нужной стороны;
  • прикладывают шину аккуратно и точно, прогретым паяльником ведут по всей поверхности, которую нужно соединить;
  • переворачивают пластину и все те же манипуляции повторяют сначала.

Важно: чрезмерно сильный нажим при пайке недопустим, что может разрушить хрупкие элементы. Нужно исключить и прогрев паяльником тех частей, которые не соединяются.

Закончив работу, внимательно осматривают всю поверхность батареи и каждого соединения. Нельзя, чтобы там были даже малейшие дефекты. Оставшиеся выемки и впадины устраняются еще одним проходом паяльника, уже максимально нежным и с еще меньшим прижатием. Сам паяльник не должен быть мощным, скорее, наоборот – сильный прогрев противопоказан. При отсутствии опыта столь тонкой работы желательно подготовить размеченный фанерный лист. Он позволит избежать многих серьезных ошибок. В ходе пайки контактов нельзя упускать из вида их полярность, в противном случае система работать не будет.

Приклеиваемые части соединяются тоже в максимально щадящем режиме. Избыток клея нежелателен, требуется накладывать в центральных частях пластин самые маленькие капли, которые только можно сформировать.

Перекладывание пластин в корпус желательно делать вдвоем, поскольку в одиночку это не слишком удобно. Далее, следует соединить каждый провод с края пластины с общими магистралями для тока. Вынеся подготовленную панель на освещенный солнцем участок, меряется вольтаж в общих шинах, который должен быть в пределах проектных значений.

Есть и другой способ герметизировать солнечную панель. Небольшие количества герметиков из силикона наносятся в промежутки пластин и на внутренние края корпуса. Далее, руками внешние стороны фотоэлементов прижимают к оргстеклу, при этом добиваются идеальной плотности. Накладывают незначительный груз на каждый край, дожидаясь высыхания герметика. После этого смазывают каждый стык пластины и внутренней стороны рамки.

При этом герметик может касаться краев оборота пластин, но не любой другой их части. Боковая часть корпуса послужит для установки соединяющего разъема, который связывается с диодами Шоттки. Внешняя сторона закрывается экраном, делаемым из прозрачных материалов. Создаваемая конструкция продумывается так, чтобы внутрь не попадало даже небольшое количество влаги. Лицевая грань из органического стекла покрывается лаком.

Рекомендации по эксплуатации

Солнечная батарейка может прослужить очень долго и стабильно, поставляя ток в домашнюю проводку. Но многое зависит не только от качества ее сборки и последующего подключения. Очень важно эксплуатировать такой нежный генератор, как полагается. Желательно направить батареи, если они не снабжены подстраивающейся под солнце системой, четко на юг, что поможет уловить максимум энергии и сократить непроизводительные потери. Чтобы исключить ошибку, достаточно ставить генератор под тем углом к горизонту, который равен числу градусов широты в конкретном месте. Но поскольку солнечный диск в течение года меняет свое местоположение на небосводе, рекомендуется в весенние месяцы понижать угол, а при наступлении осени повышать его.

Дополнение следящей системой в бытовых условиях нецелесообразно. Она оправдывает вложения исключительно на промышленном уровне. Гораздо выгоднее поставить сразу несколько батарей, ориентированных на наиболее вероятные углы освещения. Ставя солнечные генераторы поверх плоской кровли, к примеру, из рубероида или из листового железа, стоит поднять их над плоскостью. Тогда обдув воздушным потоком снизу повысит эффективность работы. На волнистых крышах так поступать необязательно, хотя никакого вреда от подъема не будет.

Самые лучшие кровли – это те, что ориентированы к югу и оформлены в виде плоских скатов. В такой ситуации скат служит для присоединения нескольких уголков, размер которых совпадает с величиной модуля. Выход над коньком составляет примерно 0,7 м, а крепление модуля к уголкам производится с разрывом в 150–200 мм. Как вариант, можно свешивать батарею при помощи тех же уголков ниже кровельного ската. На волнистой поверхности уголки часто сменяют трубами тщательно подбираемого диаметра.

Монтаж генераторов на фронтоне лучше всего сочетать с покраской этого элемента и свесов в светлые тона.

Солнечные блоки стоит выставлять по горизонтали, что сократит разброс температуры между их нижней и верхней частью на 50%, если сравнивать с вертикальным монтажом. А значит не только увеличится фактический ресурс, но и удастся повысить результативность системы.

Место для монтажа должно обладает следующими особенностями:

  • как можно более освещенным;
  • имеющим минимальную тень;
  • хорошо продуваемым ветрами.

Полезные советы

Самодельная солнечная батарея может быть применена даже для отопления частного дома. Подобное оборудование можно монтировать, не требуя разрешения от государственных органов. Но даже при активном использовании оценить эффективность не получится раньше чем через 36 месяцев. Кроме того, такой вариант очень дорогой. Так как почти везде в России температура регулярно бывает отрицательной, придется дополнить гелиосистему теплоизоляцией.

Стабильное действие батарей обеспечивается в диапазоне температур от -40 до +90 градусов. Исправная работа гарантирована в среднем на 20 лет, а после этого эффективность резко сокращается. При выборе контроллера нужно учитывать разницу между мощными и слабыми электрическими системами. Если контроллера нет или он вышел из строя, придется непрерывно отслеживать заряды аккумуляторов. Невнимательность может сократить срок действия накопителя заряда.

Как сделать солнечную батаерю своими руками, смотрите в следующем видео.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ

Каждому из нас знакомы химические источники тока различных типов и форм. Но как это часто случается, мы редко задумываемся о том, как устроен этот совершенно привычный и обыденный предмет. А между тем, появление первых химических источников тока, положило начало превращению электричества из лабораторной диковинки в нашего повседневного помощника. 

В 1790 г. итальянский физиолог Луиджи Гальвани заметил, что лапка препарированной лягушки дергается, если к ней одновременно прикоснуться двумя инструментами из разных металлов. В то время уже было известно, что мышцы могут сокращаться под действием электрического тока, так, что Гальвани правильно приписал это явление действию электрического тока. Правда, он считал, что электрический ток появляется благодаря каким-то физиологическим процессам в лапке лягушки. 

Правильное объяснение этому явлению смог дать другой итальянский ученый Алессандро Вольта. Он установил, что это явление связано с наличием двух разнородных металлов, соприкасающихся с электролитом, в роли которого выступала кровь лягушки, а сама лапка играла лишь роль чувствительного индикатора электрического тока [1]. Опираясь на свои исследования Вольта в 1799г. создал первый химический источник тока. В этом устройстве Вольта использовал медный и цинковый электроды, погруженные в раствор серной кислоты.

Цинк бурно реагирует с кислотами. В раствор переходят не атомы цинка, а положительные ионы, так что в электроде остается избыток электронов, следовательно, цинковая пластина заряжается отрицательно. Вообще, большинство металлов при погружении в электролит заряжается отрицательно, на поверхности медной пластинки протекает подобный процесс. Но избыток отрицательных зарядов на медном электроде гораздо меньше, а значит, относительно цинкового электрода его потенциал получается более высоким. Если соединить внешним проводником медную и цинковую пластины, то электроны начнут перемещаться с цинковой пластины на медную, т.е. в цепи потечет электрический ток [2].

Электрическое напряжение, возникающее между электродами, зависит от того, из каких металлов изготовлены электроды и от их взаимодействия с электролитом. Напряжение, даваемое элементом, никак не зависит от площади пластин. 

Часто напряжения, даваемого одним гальваническим элементом, недостаточно. Тогда их можно соединять последовательно в батареи.

Вообще изготовить химический источник тока совсем нетрудно: надо поместить в электролит две пластинки из разных металлов [3]. Такие гальванические элементы возникают самопроизвольно. Например, намочил дождь крышу, покрытую оцинкованным железом, на железе наверняка имеются царапины, так, что и железо, и цинк вступили в контакт с водой, которая играет роль электролита. Цинк в такой паре начнёт активно разрушаться, а вот железо не пострадает, пока не разрушится весь цинк. Именно для этого и покрывают железо слоем цинка. 

По той же самой причине скручивать вместе медные и алюминиевые провода, это, мягко говоря, не самая лучшая идея. В месте контакта начнется гальваническая коррозия, которая приведет к росту электрического сопротивления контакта, что в свою очередь приведет к большему выделению тепла и еще более быстрой коррозии. Все вместе это может стать причиной разрушения соединения и даже пожара.

Нагляднее всего можно пронаблюдать гальваническую коррозию на примере контактов железа с цинком и медью в растворе соли. Железные скрепки были надеты на цинковую и медную пластины и погружены в раствор соли. 

Через сутки скрепка, соединенная с медной пластиной, покрылась ржавчиной. В то время, как скрепка, бывшая в контакте с цинком, совершенно не пострадала.

Ученые составили электрохимический ряд напряжений металлов. Чем дальше друг от друга отстоят металлы в этом ряду, тем более высокое напряжение дает гальванический элемент, составленный из этих металлов. Так пара золото – литий теоретически может дать электродвижущую силу (ЭДС) 4,72 В. Но такая пара в водной среде работать не сможет – литий это щелочной металл, легко реагирующий с водой, а золото стоит слишком дорого для подобного применения. 

На практике элемент Вольта обладает рядом серьёзных недостатков.

  1. Во-первых, электролитом ему служит весьма едкая жидкость – раствор серной кислоты. Жидкий электролит всегда представляет собой неудобство или даже опасность. Он может расплескаться, разлиться при повреждении корпуса.
  2. Во-вторых, на медном электроде такого элемента будет выделяться водород. Это явление называется поляризацией. По многим свойствам водород весьма близок к металлам, так что его пузырьки создадут дополнительную ЭДС поляризации, стремящейся вызвать ток противоположного направления [2]. Кроме того, пузырьки газа не пропускают электрический ток, что тоже ведет к ослаблению тока. Поэтому приходится периодически встряхивать сосуд, удаляя пузырьки механически, или вводя в состав электролита специальные деполяризаторы.
  3. В третьих, в процессе работы гальванического элемента Вольта, цинковый электрод постепенно растворяется. Теоретически, когда гальванический элемент не используют, разрушение цинкового электрода должно прекратиться, но поскольку почти всегда в составе цинка есть примеси других металлов, они при соприкосновении с электролитом играют роль второго электрода, образуя короткозамкнутый элемент, что ведет к гальванической коррозии цинкового электрода [2]. Для того, чтобы устранить этот недостаток, приходится использовать сверхчистый цинк или конструктивно предусматривать возможность извлечения цинкового электрода из электролита. Так что когда батарея не используется, электролит из нее следует сливать.

Но для демонстрационных целей всеми этими недостатками можно пренебречь, если заменить серную кислоту более безопасным электролитом.

Изготовление батарейки

При изготовлении демонстрационной батареи гальванических элементов будем использовать стандартную пару – медь и цинк. Медную фольгу можно найти в некоторых трансформаторах. В крайнем случае, можно сделать медный электрод из свернутой в спираль голой медной проволоки [4]. Цинк можно добыть из разрядившихся солевых элементов питания, как правило, в них остается достаточно много металлического цинка даже, когда элемент непригоден к дальнейшему использованию. Вместо раствора кислоты, возьмем 10% раствор поваренной соли. В качестве емкости для электролита взяты пластиковые емкости от витаминов объемом примерно 50-100 мл. 

В качестве контактов использованы винты, которые одновременно закрепляю электроды на крышке. При этом крайне желательно крепить медные электроды латунным винтом. Цинковую пластину можно без проблем крепить стальным винтом. Для герметизации под гайку подложена подходящая по размеру резиновая сантехническая прокладка.

Батарея из трех гальванических элементов позволяет питать светодиод.

Напряжение на одном элементе батареи составляет около 1 В.

Ток, отдаваемый в нагрузку, составляет около 0,23 мА

Такого тока достаточно для свечения светодиода. Однако на фотографии это свечение можно заметить, только если снимать при большой светочувствительности.

Такую батарею можно использовать в школе, например для выполнения лабораторной работы, по определению внутреннего сопротивления источника тока [5].

Литература

  1. Карцев В., Приключения знаменитых уравнений – М.: Просвещение, 2007 г.
  2. Элементарный учебник физики: учеб.пособие. в 3 т. под ред. Г.С.Ландсберга: т.2 Электричество и магнетизм – М.: Физматлит, 2006 г.
  3. Зверев И., Элемент? Элементарно!, «Юный техник» №6 2007 г.
  4. Юрьев П., ХИТ-парад, но отнюдь не музыкальный, «Юный техник» №2 1994 г.
  5. Лекомцев Д., Вокруг обычной батарейки, «Читаем, учимся, играем» №5 2014 г.

Автор материала Denev.

   Форум

   Форум по обсуждению материала ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ

🔋 Как сделать самодельный научный эксперимент по батареям

Ищете действительно крутой научный эксперимент для детей и практикуете его? Ваши дети будут поражены и поражены этим , как сделать проект по науке о батареях! Этот самодельный эксперимент с батареями — отличное введение в электричество для детей. В нем используется только пара простых материалов, которые позволят детям понять, как работают батареи, во время эксперимента с батареями . Этот научный проект о батареях идеально подходит для учеников первого, второго, третьего, четвертого, пятого и шестого классов.Даже родители, школьники на дому и учителя будут наслаждаться этим экспериментом с электричеством для детей .


Как сделать научный проект по батареям

Использование силы электричества — поистине одно из величайших достижений человечества. От внутреннего освещения до смартфонов — возможность использовать электрическую энергию в наших интересах полностью изменила ход истории человечества. Этот , как сделать научный проект по батареям , предоставляет детям простой и недорогой способ создать собственный самодельный эксперимент с батареями с использованием материалов, которые, вероятно, уже есть в их доме (пенни, алюминиевая фольга, бумажные полотенца, уксус и клейкая лента). ).С недорогими светодиодами дети могут использовать свои самодельные батарейки для питания полезного устройства и ощутить то волнение, которое, должно быть, испытывали первые изобретатели более двухсот лет назад. Попробуйте этот проект по науке о батареях с учениками 1, 2, 3, 4, 5 и 6 классов начальной и средней школы.

Электрические эксперименты для детей

Электричество — это форма энергии, которая исходит от заряженных частиц. Почти во всех электрических устройствах отрицательно заряженные частицы, называемые электронами, текут по проводу, создавая ток, который используется для питания устройства.У провода, который не подключен к источнику питания, нет причин создавать электрический ток. Когда батареи соединены в цепи, электроны хотят течь от отрицательного электрода (называемого анодом) к положительному электроду (называемому катодом), создавая ток, который питает нагрузку.

Внутри батареи между анодом и катодом помещен разделитель, чтобы электроны не перетекали напрямую от одного электрода к другому, заставляя электроны течь по внешнему проводу и питая наши устройства.Другое вещество, называемое электролитом, также помещается между анодом и катодом. Электролит способствует химическим реакциям, в результате которых анод становится отрицательно заряженным, а катод — положительно заряженным. В этом простом самодельном эксперименте анодом является алюминиевая фольга, катод — пенни, сепаратор — бумажное полотенце, а электролит — уксус.

Как сделать самодельный аккумулятор

Все, что вам нужно, это несколько простых материалов, чтобы попробовать самодельный аккумулятор :

  • Пенни (минимум 5, если вы хотите использовать свои батарейки для включения светодиода)
  • Алюминиевая фольга (требуется только небольшое количество, около фута (~ 1/3 метра) длины)
  • Полотенца бумажные (примерно 1 квадрат)
  • Винега р (Я использовал уксус белый дистиллированный, но тип не важен.Можно также использовать лимонный сок или соленую воду. Вам понадобится лишь небольшая сумма.)
  • Клейкая лента
  • Светодиод (необязательно, но это занятие веселее, если у вас есть что-то для питания. Я использовал зеленый светодиод, для освещения которого требуется всего 2 вольта. Для некоторых светодиодов может потребоваться больше).
  • Зажимы типа «крокодил» (опционально, упрощает подключение батареи в цепь, но вместо этого можно использовать полоски алюминиевой фольги. Я использовал только 2.)
  • Вольтметр (необязательно, но делает упражнение более значимым, если ребенок может измерить, какое напряжение вырабатывает их батарея.)

Эксперимент на самодельной батарее

Чтобы сделать самодельный аккумулятор, сначала оторвите квадратный кусок алюминиевой фольги примерно по 3 дюйма (8 см) с каждой стороны. Точные размеры не важны.

Сложите алюминиевую фольгу в квадрат размером примерно 2,5 см с каждой стороны. Опять же, точный размер не важен, но квадратный кусок алюминиевой фольги должен быть немного больше копейки.

Научный проект о батареях

Разорвите кусок бумажного полотенца примерно того же размера, что и алюминиевая фольга, и сложите его в квадрат такого же размера.

Батарейный эксперимент

Затем оторвите кусок клейкой ленты примерно такой же ширины, как бумажное полотенце (или немного больше).

DIY Аккумулятор

Положите пенни, квадрат бумажного полотенца и квадраты из алюминиевой фольги поверх клейкой ленты. Пенни должен немного торчать из клейкой ленты. Выровняйте бумажное полотенце с краем изоленты со стороны пенни (и полностью закройте его с другой стороны). Алюминиевая фольга должна свисать с другого конца изоленты и ни в коем случае не касаться пенни.

Как сделать аккумулятор

Оберните клейкую ленту, чтобы скрепить 3 слоя вместе, чтобы сделать вашу батарею DIY. Передняя и задняя части батареи должны выглядеть так:

Научный проект о батареях

Наконец, добавьте несколько капель уксуса на бумажное полотенце, чтобы он стал электролитом. Ваша батарея полностью заряжена.

Если у вас есть вольтметр, подключите положительный красный провод к медному пенни, а отрицательный черный провод к алюминиевой фольге.Поверните циферблат до минимального значения напряжения. Ваша батарея должна быть около половины вольта.

Самодельный научный эксперимент на батарейках

Если вы хотите зажечь светодиод, вам нужно сделать около 5 батареек. В зависимости от вашего конкретного светодиода вам может потребоваться больше или меньше.

Как сделать самодельный аккумулятор

Соедините батареи последовательно, прикрепив пенни одной батареи к алюминиевой фольге другой с помощью изоленты.

Используйте зажимы типа «крокодил», чтобы прикрепить концы батарей к светодиоду.Помните, что светодиод является направленным. Скорее всего, вам нужно будет прикрепить длинную ножку светодиода к концу пенни. Затем прикрепите короткую ножку к алюминиевой фольге, но если это не сработает, попробуйте поменять провода.

Вы можете использовать руки или другой тяжелый предмет (например, банан), чтобы убедиться, что все соединения надежно закреплены.

Как это круто!

Наука для детей

Хотите еще больше веселых научных экспериментов для детей? Вам НЕОБХОДИМО попробовать несколько из этих невероятно забавных научных экспериментов для детей! У нас так много забавных, творческих и простых научных экспериментов для детей младшего возраста:

Идеи для летнего списка желаний

Возможно, вы хотите заполнить свои календари занятий веселыми летними мероприятиями для детей.(Или попробуйте наш летний список желаний для мороженого) Не ​​пропустите другие мероприятия, которые обязательно нужно попробовать детям летних детских мероприятия :

Заряд от изменений: сделайте монетную батарею

Ключевые концепции
Химия
Электричество
Аккумулятор
Химическая реакция

Введение
Вы когда-нибудь задумывались, как именно ваш телефон, ноутбук или фонарик может работать без подключения к розетке? Откуда берется электроэнергия, которая заставляет работать все эти портативные устройства? Вы, наверное, знаете ответ: они используют батарейки! Но знаете ли вы, как работают эти батарейки? Батареи хранят электрическую энергию в форме химической энергии, что означает, что электрохимические реакции внутри батарей создают электричество.Это может показаться сложным, но это проще, чем вы думаете! В этом упражнении вы создадите простую самодельную батарею, используя только плотную бумагу, уксус, соль, пригоршню пенсов и стиральных машин, и докажете, что она работает, зажег светодиод!

Фон
Электричество — это наличие электрического заряда, который может быть как положительным, так и отрицательным. Электрический ток генерируется движущимися зарядами, обычно в форме электронов или ионов. В батареях эти движущиеся заряды создаются в результате химических реакций, то есть электрическая энергия получается из химической энергии.Основными компонентами батареи являются два электрода, обычно сделанные из углерода или двух разных металлов, и электролит, который представляет собой жидкость или пасту, контактирующую с обоими электродами. Электроды и электролит должны быть электрически проводящими, чтобы электроны и ионы могли переходить от одного электрода к другому. Теперь вопрос в том, откуда берутся электроны? Здесь в игру вступает химия.

Электроны генерируются посредством электрохимических окислительно-восстановительных реакций (окислительно-восстановительных), в которых отрицательные заряды (в форме электронов) передаются от одного химического вещества (или металла) к другому.Электроны и ионы, высвобождаемые во время этих реакций, проходят через электролит от одного электрода к другому. Во время этого процесса один электрод высвобождает электроны, а другой принимает их, замыкая электрическую цепь. Есть много разных типов батарей, которые используют разные химические реакции для генерации электронов; два общих — литий-ионный и никель-кадмиевый. В этом упражнении вы создадите медно-цинковую батарею, используя в качестве электролита раствор уксуса и соли. Как вы думаете, ваша батарея будет вырабатывать достаточно электроэнергии для питания светодиода?

Материалы

  • 20 металлических шайб (оцинковка; размер копейки)
  • 20 копеек (желательно блестящие)
  • Карандаш
  • Строительная бумага
  • Ножницы
  • Чаша
  • Уксус
  • Соль поваренная
  • Ложка
  • Маленький белый или красный светодиод
  • Бумажные полотенца
  • Рабочая зона, способная выдержать разливы уксуса
  • Калькулятор (опционально)
  • Алюминиевая фольга (опция)
  • Мультиметр (опция)


Подготовка

Примечание: В этом упражнении вы сделаете аккумулятор очень низкого напряжения.Эта самодельная батарея обеспечивает безопасное количество электроэнергии; Однако более высокое напряжение электричества может быть очень опасным и даже смертельным, и вам никогда не следует экспериментировать с коммерческими батареями или розетками.

  • Обведите карандашом 20 раз монетку на цветной бумаге.
  • Вырежьте все кусочки бумаги размером с монету.
  • Налейте немного уксуса в миску и добавьте достаточно соли, чтобы получился насыщенный раствор, а это значит, что не вся соль может раствориться.Смешайте ложкой.
  • Положите в миску 15 кусочков бумаги размером с монету и дайте им впитаться в уксусно-солевом растворе на пять минут.


Процедура

  • Возьмите одну шайбу и поместите ее на свое рабочее место. Из какого материала сделана шайба?
  • Возьмите пропитанный кусок плотной бумаги и поместите его на стиральную машину. Как вы думаете, почему строительную бумагу нужно замачивать в уксусно-солевом растворе?
  • Затем поместите еще одну шайбу на пропитанный кусок бумаги.
  • Затем поместите еще одну шайбу поверх этой шайбы. Добавьте еще один кусок пропитанной цветной бумаги, а затем добавьте еще две шайбы поверх него.
  • Повторяйте чередование пропитанной бумаги и двух шайб, пока вы не используете в общей сложности девять шайб. Вы должны закончить с двумя шайбами ​​поверх намоченного листа бумаги.
  • Протрите бумажным полотенцем стороны стека стиральной машины. Убедитесь, что сбоку он высох.
  • Также убедитесь, что пропитанная бумага не касается более одной шайбы с каждой стороны.
  • Возьмите светодиод и разведите два контактных штыря. Затем протолкните длинный стержень светодиода под стопку так, чтобы он плотно прилегал к шайбе внизу. Поместите короткий штифт поверх шайбы в стопку и прижмите ее. Следите за светодиодом. Загорается ли свет, когда вы подсоединяете штыри к верхней и нижней части стопки шайбы?
  • Сделайте вторую стопку таким же образом, но на этот раз используйте пенни вместо шайб. Из какого материала сделаны монеты?
  • Когда стопка пенни будет заполнена, высушите ее по бокам и убедитесь, что пропитанная бумага касается только одного пенни с каждой стороны.
  • Затем снова возьмите светодиод и подсоедините длинный стержень к нижней монете, а короткий стержень — к верхней. Вы видите, как загорается светодиод, когда вы касаетесь монет?
  • Сделайте третью стопку, но на этот раз начните с пенни внизу, поместите кусок пропитанной бумаги поверх монеты и затем добавьте шайбу поверх бумаги. Повторяйте, добавляя монету, пропитанную бумагу и шайбу, пока не израсходуете всего пять монет. У вас должна получиться монета, помещенная на шайбу.
  • Опять же, убедитесь, что высохли излишки жидкости от пропитанной бумаги на стороне стопки монетоприемника, и убедитесь, что пропитанная бумага касается только одной шайбы и монеты с каждой стороны.
  • Затем подсоедините длинный конец штырьков светодиода к монете в нижней части стопки, а короткий конец — к шайбе наверху стопки. Что происходит со светодиодом на этот раз?
  • Наконец, используйте кусочки сухой плотной бумаги и сделайте четвертую стопку, чередуя монету, кусок сухой бумаги, шайбу, монету, кусок сухой бумаги, шайбу, пока вы не израсходуете пять монет. Как вы думаете, имеет ли значение, влажный или сухой картон?
  • Возьмите светодиод еще раз и подсоедините длинный штырь к нижней части стопки, а короткий штифт к вершине. Светодиод горит на этот раз? Почему или почему нет?
  • Дополнительно: Сколько монет и шайб нужно, чтобы загорелся светодиод? Имеет ли вообще значение сумма? Попробуйте уменьшить количество монет и шайб в стопке. Какое минимальное количество монет и шайб вам нужно, чтобы загорелся светодиод?
  • Extra : Что произойдет, если вы замените шайбы другим материалом, например алюминиевой фольгой? Вы бы все равно получили исправную батарею? Нарежьте кусочки фольги размером с монету и сделайте стопку монет и алюминия, чтобы узнать!
  • Extra : Если у вас дома есть мультиметр, вы можете измерить напряжение аккумулятора и то, какой ток он вырабатывает. Как меняются напряжение и ток при добавлении монет в аккумулятор?

Наблюдения и результаты
Удалось ли вам загореться светодиод? Вероятно, не с первыми двумя стопками, которые состояли только из монет или шайб. Пенни покрыты медью, которая превращает вашу копейку в медный электрод для этого вида деятельности. Гальванизированные шайбы, с другой стороны, покрыты цинком, который является другим металлом и действует как цинковый электрод в вашей батарее.Ключ к функциональной батарее заключается в том, что между двумя электродами должна происходить электрохимическая реакция. Если оба электрода изготовлены из одного и того же материала, никакой реакции не произойдет и не будет генерироваться электричество.

Однако, когда вы чередуете монеты с шайбами, вы создаете батарею с двумя разными электродами — цинковым и медным. Теперь между цинком и медью может происходить электрохимическая реакция, которая высвобождает электроны, которые проходят через электролит (уксус и пропитанную солью строительную бумагу) для генерации электрического тока.Вот почему светодиод должен был загореться в третьей стопке, которую вы создали путем чередования монет и шайб. Когда вы удалили электролит и использовали вместо него кусочки сухой бумаги, электроны больше не могли перемещаться от одного электрода к другому, поэтому электрический ток не производился, и светодиод не загорался!

Очистка
Промойте монеты и стиральные машины водопроводной водой и высушите их. Позже вы можете использовать их повторно. Выбросьте пропитанный картон и протрите рабочее место.

Больше для изучения
Как аккумуляторы хранят и разряжают электричество ?, от Scientific American
Вырабатывают электричество с помощью лимонной батареи, от Scientific American
Типы батарей, от Австралийской академии наук
Химия батарей, от Университета Ватерлоо
Научная деятельность для всех возрастов !, от Science Buddies

Это задание предоставлено вам в сотрудничестве с Science Buddies

Самодельный аккумулятор 1800-х годов, который может понадобиться во время краха

Вы когда-нибудь задумывались, как наши предки 19 -го -го века поддерживали странно эффективные телеграфные и телефонные сети задолго до дней высокоэффективных батарей? Короткий ответ: они сделали это с помощью грубой силы и изобретательности.Длинный ответ — что-то гораздо более великолепное, и даже то, в чем современный поселенец мог бы черпать вдохновение для создания энергии для подзарядки небольшой электроники или — в случае кризиса — для запуска маломощных объектов.

Не поймите меня неправильно: нет абсолютно никакой разумной причины воссоздавать эти старые батареи 19 -го -го века, если у вас нет другого выбора. Лучше всего запасаться современными батареями, солнечными зарядными устройствами и гаджетами для выживания, но может наступить время, когда любой собранный из булыжников аккумулятор станет лучшим выбором, который вы можете сделать.

Источник изображения: W1TP.com

Названные батареей «гусиная лапка» (или гравитационной батареей) из-за формы цинковых электродов, эти батареи имели звездообразное медное основание, соединенное с проводом, который создавал положительное напряжение. Все это было установлено в большом стеклянном сосуде, наполненном сульфатом меди в качестве электролита. Пока что умный выживальщик или специалист по выживанию должен уметь собирать медь и цинк, чтобы сделать электроды, и стеклянную банку, чтобы вставить их. Но раствор сульфата меди найти труднее, хотя и под названием «синий». купорос »его иногда продают для обеспечения питательных веществ меди в кормах для животных и в качестве средства для уничтожения водорослей в бассейнах.Вы можете удалить это, или, если у вас есть доступ к напряжению около 6 вольт постоянного тока и серной кислоте, есть способы сделать это с помощью электролиза. Очевидно, что если вы рассчитываете выжить в условиях общественного коллапса, неплохо было бы либо создать химический склад до того, как правительство включит обычные химические вещества в список для наблюдения, либо подружиться с химиком, который знает, как создавать вещи с нуля.

Получите бесплатное резервное электричество — оно работает даже во время отключений электричества!

Батарея с разделенными частями.Источник изображения: W1TP.com

Но давайте предположим, что вам удалось придумать ингредиенты для батареи наших предков. Что с этим делать?

В ранней телеграфной сети использовались батареи, расположенные параллельно, при этом для поддержания цепи использовалось очень много из этих батареек на 1,5–2 вольта. Этот набор батарей может быть построен для обеспечения достаточной силы тока для передачи телеграфного, а затем и телефонного сигнала на такие расстояния, которые могут потребоваться. Они были громоздкими, с утечкой электролита при разряде и в целом были несколько неаккуратными.Обычно их помещали на деревянный стол со стеклянными изоляторами опоры батареи под ним, чтобы обеспечить изоляцию батареи, а также уловить часть пролитого электролита. В общем, эти батареи были примитивными, но очень эффективными.

Возвращаясь в современную эпоху или в неприятное будущее, когда вы хотите зарядить свою небольшую электронику или иметь какую-то систему питания для связи, создание этих грубых чудес XIX века потребует самоотверженности. Но что с ними делать?

История продолжается ниже

Источник изображения: MorseTelegraphClub.org

Это действительно зависит от того, сколько вы можете сделать. Каждая батарея имеет довольно низкое напряжение и низкую силу тока, и их мощность зависит от свежести и качества электролита, а также от качества электродов. Вам понадобится хороший мультиметр, чтобы проверить напряжение и силу тока для каждой батареи, которую вам удастся собрать. Лично я считаю, что основная ценность этих аккумуляторов заключается не столько в возможности заряжать ваш iPhone до разрушения (солнечные зарядные устройства делают это намного, намного лучше), так и в том, чтобы запускать какой-то коммуникационный массив.

Безумный гаджет для выживания превращает каждое окно в мощное солнечное зарядное устройство

Если у вас достаточно аккумуляторов, вы можете соединить их последовательно для работы маломощного радио или подключить их параллельно для собственного телеграфа или стационарный телефон. Они также имеют значение для того, чтобы светодиоды с низким потреблением энергии оставались включенными или в качестве дополнительного источника питания для других систем. Из-за их большого размера эти батареи имеют длительный срок службы, и если у вас достаточно опыта, чтобы их производить, вы можете утилизировать из них много ценных материалов в конце их жизненного цикла, чтобы помочь в изготовлении другой батареи.

Эти штуки великолепны, если у вас есть доступ к меди, цинку и серной кислоте, а оттуда мощность этих батарей ограничена только вашими ресурсами. Я думаю, что они лучше всего подходят для параллельного обеспечения низковольтных приложений, которые можно использовать для обслуживания небольшой электроники и аккумуляторных батарей в крайнем случае, но я бы больше всего сосредоточился на их использовании для создания вашей собственной сети связи, как когда-то они были задуманы.

Суровая реальность такова, что аккумуляторы грязные, и ничто не может заменить запас продуктов на солнечной энергии — или даже генератор на солнечной энергии.Тем не менее, хорошо быть готовым ко всем обстоятельствам. Мы стали культурно зависимыми от множества электрических устройств, и некоторые из этих устройств могут иметь решающее значение для общения во время коллапса. Если у вас есть возможность добавить устаревшие навыки к своему набору навыков, то изучение батареек прошлого может стать буквальным спасением.

Что бы вы посоветовали? Поделитесь этим в разделе ниже:

Готовы ли вы к выходу из строя энергосистемы? Подробнее здесь.

Как чистить клеммы батарей с помощью уже имеющихся у вас вещей

Вы моете, наносите воск и пылесосите свою машину, чтобы она оставалась острой. Но задумывались ли вы когда-нибудь о том, чтобы почистить вещи под капотом? Очистив клеммы аккумулятора, вы действительно можете помочь автомобильному аккумулятору работать сильнее и дольше! Мы покажем вам, как чистить клеммы и помочь предотвратить коррозию автомобильного аккумулятора всего за ПЯТЬ шагов — с материалами, которые у вас, вероятно, уже есть дома!

Материалы

  • Защитные перчатки, такие как кухонные перчатки
  • Сода пищевая
  • Вода
  • Старая зубная щетка
  • Тряпка
  • Вазелин

Шаг 1. Смешайте самодельное средство для чистки аккумуляторов.

Рецепт простой. Смешайте одну столовую ложку пищевой соды с одним стаканом воды и перемешайте, пока она полностью не перемешается.

Шаг 2: Отсоедините кабели от аккумулятора и осмотрите его.

Убедитесь, что ваш двигатель выключен. Откройте капот и сначала отсоедините отрицательный провод аккумуляторной батареи. Затем положительный кабель подключаем к аккумулятору. Некоторые батареи могут находиться в багажнике или под сиденьем.(Обратитесь к руководству пользователя для получения дополнительной информации.) Затем оцените свою батарею. Накопление, коррозия аккумулятора и грязь на клеммах могут сильно повлиять на работу двигателя и аккумулятора. Если вы заметили, что аккумуляторный отсек протекает, опух или вздувается, пропустите очистку и сразу же отправляйтесь в ближайший сервисный центр Firestone Complete Auto Care за новым аккумулятором. Ваш скоро уходит!

Шаг 3: Окуните зубную щетку в средство для чистки и начните чистку!

Возьмите старую зубную щетку, окуните ее в средство для очистки пищевой соды и начните чистить клеммы.Для этого потребуется немного смазки для локтей, и вам нужно будет постоянно счищать зубную щетку во время работы. Тщательно очистите клеммы, пока не будет удален весь налет. Не кладите зубную щетку обратно в ванную!

Шаг 4: Смойте остатки водой и высушите.

После того, как вы удалили всю коррозию и грязь с клемм, быстро промойте аккумулятор. Наполните распылитель небольшим количеством воды и опрыскайте клеммы.Если у вас нет пульверизатора, можно все протереть влажной тряпкой. Затем используйте другую тряпку, чтобы полностью высушить клеммы.

Шаг 5: Нанесите вазелин на клеммы и снова подсоедините кабели.

Когда клеммы высохнут, нанесите на них немного вазелина. Это смажет их, предотвратит дальнейшую коррозию и поможет укрепить соединение. Снова подключите положительный и отрицательный кабели, и все готово! Будьте осторожны, слишком много вазелина может вызвать плохое соединение.

Содержание автомобильного аккумулятора в чистоте может помочь сдвинуть дело с мертвой точки, когда автомобиль не заводится и заряд аккумулятора слабый. Чтобы не попасть в затруднительное положение, крайне важно следить за тем, чтобы аккумулятор оставался максимально заряженным. Зайдите в ближайший к вам сервисный центр Firestone Complete Auto Care для проверки аккумулятора в удобное для вас время! Наши специалисты сообщат вам, сколько «жизни» осталось в вашей батарее, чтобы вы могли спокойно отправиться в путь — и при необходимости установить новую батарею!

Как превратить металлолом в «самодельный» аккумулятор

Поделиться
Артикул

Вы можете поделиться этой статьей с указанием авторства 4.0 Международная лицензия.

Инженеры использовали кусочки металлических отходов и бытовую химию, чтобы создать первую в мире стально-латунную батарею, которая может накапливать энергию на уровне, сопоставимом со свинцово-кислотными батареями. Он также заряжается и разряжается со скоростью, сопоставимой со сверхбыстрой зарядкой суперконденсаторов.

«Я верю, что мы увидим день, когда жители отключатся от сети и будут производить свои собственные батареи.”

В статье, опубликованной в журнале ACS Energy Letters , они описывают секрет разблокировки производительности: анодирование.

Это обычная химическая обработка, используемая для придания алюминию прочной и декоративной отделки.

Когда обрезки стали и латуни анодируются с использованием обычной бытовой химии и электрического тока в жилых помещениях, исследователи обнаружили, что металлические поверхности реструктурируются в нанометровые сети из оксида металла, которые могут накапливать и выделять энергию при реакции с жидкостью на водной основе. электролит.

«Представьте, что тонны металлических отходов, выбрасываемых каждый год, можно было бы использовать для хранения энергии для возобновляемых источников энергии будущего, вместо того, чтобы стать бременем для заводов по переработке отходов и окружающей среды», — говорит Кэри Пинт, доцент кафедры механики. инженерия в Университете Вандербильта.

Пинт и его коллеги определили, что эти нанометровые области объясняют наблюдаемую ими быструю зарядку, а также исключительную стабильность батареи.Они проверили его в течение 5000 последовательных циклов зарядки — что эквивалентно более чем 13 годам ежедневной зарядки и разрядки — и обнаружили, что он сохранил более 90 процентов своей емкости.

Инженеры сделали аккумуляторные электроды из пыльцы

В отличие от недавнего взрыва литий-ионных батарей для сотовых телефонов, в стально-латунных батареях используются негорючие водные электролиты, содержащие гидроксид калия, недорогую соль, используемую в моющих средствах для стирки.

«Когда наша цель состояла в том, чтобы производить материалы, используемые в батареях, из бытовых принадлежностей настолько дешево, что крупномасштабные производственные мощности не имеют никакого смысла, мы должны были подойти к этому иначе, чем обычно в исследовательской лаборатории», Пинта говорит.

Батарейки своими руками, сделанные дома?

Исследовательская группа особенно взволнована тем, что этот прорыв может означать для производства батарей в будущем.

«Мы наблюдаем начало движения в современном обществе, ведущего к« культуре производителя », когда крупномасштабная разработка и производство продукции децентрализованы и ограничены отдельными людьми или сообществами.

«Пока что батареи остались вне этой культуры, но я верю, что мы увидим день, когда жители отключатся от сети и будут производить свои собственные батареи.Это тот масштаб, на котором зародились аккумуляторные технологии, и я думаю, что мы вернемся к нему », — говорит Пинт.

«Мы открываем новые горизонты с этим проектом, положительным результатом которого является не коммерциализация, а четкий набор инструкций, которые можно адресовать широкой публике».

Команда черпала вдохновение в «Багдадской батарее», простом устройстве, датируемом первым веком до нашей эры, которое, по мнению некоторых, является самой старой батареей в мире. Он состоял из керамического терракотового горшка, медного листа и железного стержня, которые были обнаружены вместе со следами электролита.

Хотя такая интерпретация артефактов противоречива, простой способ их создания повлиял на замысел исследовательской группы.

Следующим шагом команды является создание полномасштабного прототипа батареи, подходящей для использования в энергоэффективных умных домах.

«Мы открываем новые горизонты с этим проектом, где положительным результатом является не коммерциализация, а четкий набор инструкций, которые могут быть адресованы широкой публике. Это совершенно новый подход к исследованию аккумуляторов, и он может обойти барьеры, сдерживающие инновации в области хранения энергии в масштабе сети », — говорит Пинт.

НАСА и Национальный научный фонд оказали поддержку.

Источник: Университет Вандербильта

Превратите свои самодельные аккумуляторные батареи в солнечный генератор

Пару дней назад я показал, как сделать простую аккумуляторную батарею на 12 вольт. Самодельные аккумуляторные батареи недороги и просты в изготовлении. Сегодня я показываю, как просто заряжать аккумуляторные батареи солнечной энергией. Это то же самое, за что вы платите много денег, если покупаете коммерческий солнечный генератор.Я использую эти комплекты для ходовых огней, зарядки аккумуляторов и работы радиолюбителей. Их использование ограничено только вашим воображением.

Единственным недостатком этих комплектов является то, что батареи герметичные, свинцово-кислотные, и их необходимо заменять каждые несколько лет. Те, которые я сейчас использую, выпущены в 2012 году, и они все еще держат хороший заряд. У меня есть один из серийно выпускаемых солнечных генераторов, и когда он вышел из строя, я разобрал его и нашел свинцово-кислотную батарею, которую заменил. Если вы сделаете покупки в Интернете, вы можете найти батареи по хорошим ценам.

ПОДРОБНЕЕ : Техническое обслуживание свинцово-кислотных аккумуляторов, чтобы максимально эффективно использовать их

Для зарядки аккумуляторных батарей одна из солнечных панелей, которые я использую, — это раскатная солнечная панель Powerfilm Solar R14, которая вырабатывает рабочее напряжение 15,4 при 14 Вт и 0,9 ампера. Этого вполне достаточно для зарядки аккумуляторных батарей. Поскольку я иногда использую разные солнечные панели, у меня есть контроллер Sunforce на 7 ампер между панелями и аккумулятором. Это предотвращает перезаряд или разряд аккумуляторов.При такой настройке с панелью Powerfilm потребуется около 14 часов для зарядки обеих батарей, если они были полностью разряжены. Однако, имея контроллер, вы можете использовать практически любую солнечную панель, чем больше мощности она выдает, тем быстрее заряжаются аккумуляторные батареи.

Простое устройство для зарядки от солнечных батарей, которое вы можете использовать где угодно. Контроллер Sunforce

Поскольку я использую аккумуляторные блоки со светодиодной подсветкой и другим низковольтным оборудованием, я стараюсь по возможности использовать такие же разъемы. По возможности использую в качестве разъемов вилки прикуривателя; это обеспечивает большую универсальность.Они бывают готовыми во всех типах конфигураций.

Это очень простая установка, и ее копирование не займет много времени. Он также довольно портативный и не занимает много места в автомобиле. Вся система весит менее 20 фунтов. Он сделает всю работу коммерческого солнечного генератора того же размера за гораздо меньшую стоимость.

новых самодельных аккумуляторов Tesla сегодня тестируют на дорогах

Презентация

Tesla Battery Day содержит огромное количество информации.В нижней части этой статьи я добавлю некоторые из опубликованных нами статей, в которых пытались обобщить, дополнительно объяснить и разъяснить событие Battery Day. Во-первых, есть один момент, который не был прояснен в презентации, которую генеральный директор Tesla Илон Маск только что подтвердил в Twitter.

Презентация Battery Day заставила некоторых людей подумать, что Tesla уже производит несколько своих самодельных аккумуляторов для использования в автомобилях Tesla, другие люди думали, что Tesla все еще далека от внедрения собственных элементов в автомобили, и заставили других думать, что Tesla уже была произведена. откачивать 10 гигаватт-часов батарей в год и заправлять их в новые автомобили Tesla.Илон Маск только что пояснил в Твиттере, что новые батареи Tesla на самом деле сейчас находятся в автомобилях на дорогах — ну, на самом деле, в машинах, которые были на дорогах в течение последних нескольких месяцев. (Помните, что День батареи должен был произойти несколько месяцев назад.) Хотя не на 100% ясно, являются ли это просто тестовыми автомобилями или также некоторыми потребительскими автомобилями, похоже, подразумевается (и только логично), что это тестовые автомобили, все еще принадлежащие Тесла.

Поставщики. Мы сами занимаемся только высокоэнергетическим никелем, по крайней мере, на данный момент.Кроме того, возможно, из презентации было неясно, что у нас на самом деле уже несколько месяцев наши клетки упакованы в машины. Прототипы тривиальны, серийное производство затруднено.

— Илон Маск (@elonmusk) 26 сентября 2020 г.

Последняя строчка в этом твите также подразумевает, что компания все еще далека от массового производства. Наличие прототипов ячеек в автомобилях — это минимальное достижение в глазах Илона по сравнению с проблемой массового производства этих ячеек и их использования в тысячах и тысячах автомобилей каждый месяц.Похоже, что, поскольку он считает прототипы «тривиальными», это не было основным моментом презентации.

Чтобы получить гораздо больше информации об этих элементах, Кайл Филд написал для нас подробную статью, которую я рекомендую прочитать: «Все, что вам нужно знать о новой аккумуляторной батарее Tesla 4680».

Что касается производственных мощностей Tesla по производству аккумуляторов и того, где они находятся на данный момент, Маск и технический директор Tesla Дрю Баглино объяснили, где Tesla находится сегодня и где она намеревается быть в ближайшем будущем.

«Это не просто концепция или рендеринг», — сказал Баглино. «Мы начинаем наращивать производство этих элементов на нашем пилотном производственном предприятии мощностью 10 ГВтч, которое уже совсем скоро».

«Потребуется некоторое время, чтобы выйти на производственную мощность 10 ГВт-ч [в годовом исчислении]», — добавил Маск, отметив, что компания рассчитывает выйти на эту производственную мощность в течение следующих 12 месяцев. «Фактические производственные мощности со временем будут порядка 200 ГВтч или более».

Маск говорит о проблемах, связанных с массовым производством, исходя из нескольких лет производственного опыта, в том числе нескольких лет сложных.Но, как я отмечал два дня назад, «пилотная установка» Tesla на 10 ГВтч фактически стала бы 13-м по величине заводом литий-ионных аккумуляторов в мире, если бы она завтра была подключена к сети. Таким образом, Tesla рассчитывает выкачать значительный поток аккумуляторных элементов в ближайшие месяцы, независимо от того, называет ли она это полноценным заводом или «пилотным» заводом. Между тем, у него есть гораздо большие планы, которые могут даже сделать его крупнейшим производителем литий-ионных аккумуляторов в мире.

Для получения дополнительной информации по этим темам я рекомендую прочитать:

Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником, техническим специалистом или представителем CleanTechnica — или покровителем Patreon.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *