РЗиА — это… Что такое РЗиА?
Релейная защита и автоматика — совокупность электрических аппаратов, осуществляющих автоматический контроль за работоспособностью Электроэнергетической системы(ЭЭС).
Релейная защита (РЗ) осуществляет непрерывный контроль за состоянием всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.
При возникновении ненормальных режимов РЗ также должна выявлять их и в зависимости от характера нарушения либо отключать оборудование, если возникла опасность его повреждения, либо производить автоматические операции, необходимые для восстановления нормального режима (например, включение после аварийного отключения с надеждой на самоустранение аварии или подключение резервного питания), либо осуществлять сигнализацию оперативному персоналу, который должен принимать меры к ликвидации ненормальности.
Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.
Требования к релейной защите
Быстродействие
Быстрое отключение повреждённого оборудования или участка электрической сети предотвращает повреждения или уменьшает их размеры, позволяет сохранить нормальную работу потребителей неповреждённой части сети, предотвращает нарушение параллельной работы генераторов.
Селективность (избирательность)
Селективность — способность релейной защиты выявлять место повреждения и отключать только его только ближайшими к нему выключателями. Это позволяет локализовать повреждённый участок и не прерывать нормальную работу других участков сети.
Чувствительность
Под чувствительностью релейной защиты понимается её способность реагировать на возможные повреждения в минимальных режимах работы системы электроснабжения, когда изменение воздействующей величины минимально.
Надёжность
Защита должна правильно и безотказно реагировать при всех повреждениях защищаемой сети и нарушениях нормального режима работы, для действия при которых она предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима работы, при которых действие данной защиты не предусмотрено и должна действовать другая защита. Это требование обеспечивается совершенством принципов защиты и конструкций аппаратов защиты, качеством деталей, простотой выполнения и уровнем эксплуатации.
Основные органы релейной защиты
Пусковые органы
Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.
Измерительные органы
Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.
Логическая часть
Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и выходов аналоговых микропроцессорных устройств защиты.
Пример логической части релейной защиты
Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки реле
Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.
См. также
Литература
- Чернобровов Н.В., Семенов В.А. «Релейная защита энергетических систем»: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1998. -800с.: ил.
- Павлов, Г.М. «Автоматизация энергетических систем» : Учеб.пособие / Г.М. Павлов .— Ленинград : Изд-во Ленингр. ун-та, 1977 .— 237 с. : ил .— Библиогр.: с.233-234.
- V. Electric Relays: Principles and applications, CRC Press, 2005, 704 pp
Wikimedia Foundation. 2010.
РЗА Википедия
Релейная защита — комплекс устройств, предназначенных для быстрого, автоматического (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).
Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.
Современные устройства защиты могут строиться на схеме, включающей в себя программируемый (микро)контроллер.
Основные виды защит[ | ]
Основные свойства релейной защиты[ | ]
Селективность (избирательность)[ | ]
Селективность — свойство релейной защиты, характеризующее способность выявлять именно поврежденный элемент электроэнергетической системы и отключать этот элемент от исправной части электроэнергетической системы (ЭЭС). Защита может иметь абсолютную или относительную селективность. Защиты с абсолютной селективностью действуют принципиально только при повреждениях в их зоне. Защиты с относительной селективностью могут действовать при повреждениях не только в своей, но и в соседней зоне. А селективность отключения поврежденного элемента ЭЭС при этом обеспечивается дополнительными средствами (например, выдержкой времени срабатывания).
Быстродействие[ | ]
Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.
Чувствительность[
сфера применения, проверка работы и надежности конструкции
В обыденном дилетантском понимании передача электрической энергии от источника генерации – гидроэлектростанции, атомных источников, ТЭС – передается на огромные российские расстояния сама собой по ЛЭПам или подземным кабелям до потребителей без сучка и задоринки.
Что может помешать крепким высоким мачтам, суперпрочным подвесным стеклянным изоляторам и многослойным, из различных видов стали и намотки, толстым проводам?! Ни снег, ни ураганы. Как бы ни так…
Краткое содержимое статьи:
А если не по-дилетантски
Специалисты-энергетики считают по-другому. На всей технологической цепочке производства, транспортировки и разделения электрического продукта возможны различные, в том числе и нередко непредсказуемые критические обстоятельства. И они могут создать такие производственные эксцессы, способные деструктировать техническое и технологическое оснащение или привести к психологическому стрессу дежурный состав за миг долей секунд.
Человек физиологически и психоэмоционально не в состоянии бывает оценить такую кратковременную ситуацию. Поэтому человеческих мозг в ряде функций энергетике заменили установки, способные по отклонению номинала электроустановок мгновенно распознавать предстоящее начало возникновения крушения. И в автоматическом контроле и установленным алгоритмам предотвращать катастрофы. Это свидетельство того, для чего нужна релейная защита.
Так с десятилетиями сложилась техническая лексика, а постоянный контроль за всеми ЛЭПами и съем с них напряжения в экстраординарных моментах ведут суперсовременные системы, которые по традиции именуют релейной защитой. Произошел термин от особых реле из базы защиты еще первых советских ЛЭП. Можете просмотреть фото релейной защиты.
Ступени релейной защиты (РЗ)
По-современному она теперь именуется РЗА – «А» обозначает «автоматика». Главные в них трансформаторы измерения тока (ТТ) и напряжения (ТН).
1.1 Назначение релейной защиты
Общая характеристика релейной защиты
Производство, распределение и потребление электрической энергии обеспечивается совокупностью элементов — электрических двигателей, генераторов, трансформаторов, воздушных линий электропередачи, кабелей, нагревательных приборов и т.д., называемых электроэнергетической системой (ЭС).
В процессе функционирования ЭС могут возникать повреждения, чаще всего короткие замыкания (КЗ), являющиеся наиболее опасными видами повреждения, возникающие из-за пробоя или перекрытия изоляции, обрывов проводов, ошибочных действий персонала (включение под напряжение заземленного оборудования, отключение разъединителей под нагрузкой) и других причин, сопровождаемые увеличением токов через отдельные элементы ЭС [2].
В большинстве случаев в месте короткого замыкания возникает электрическая дуга с высокой температурой, приводящая к большим разрушениям токоведущих частей, изоляторов и электрических аппаратов. При коротком замыкании к месту повреждения подходят большие токи (токи к. з.), измеряемые тысячами ампер, которые перегревают неповрежденные токоведущие части и могут вызвать дополнительные повреждения, т. е. развитие аварии. В большинстве случаев аварии или их развитие могут быть предотвращены быстрым отключением поврежденного участка электрической установки или сети при помощи специальных автоматических устройств, получивших название релейная защита, которая действуют на
отключение выключателей. При отключении выключателей поврежденного элемента гаснет электрическая дуга в месте короткого замыкания, прекращается прохождение тока короткого замыкания и восстанавливается нормальное напряжение на неповрежденной части электрической установки или сети. Благодаря этому сокращаются размеры или даже вовсе предотвращаются повреждения оборудования, на котором возникло короткое замыкание, а также восстанавливается нормальная работа неповрежденного оборудования.
Таким образом, основным назначением релейной защиты является отключение поврежденного оборудования или участка сети от остальной неповрежденной части электрической установки или сети.
В некоторых случаях нет необходимости немедленного отключения оборудования, так как эти явления не представляют непосредственной опасности для оборудования и могут самоустраниться. Например, могут возникать такие нарушения нормальных режимов работы, как перегрузка, замыкание на землю одной фазы в сети с изолированными нейтралями и другое. Преждевременное отключение оборудования в отмеченных выше случаях не только не принесет пользы, но может оказаться вредным. Поэтому при нарушении нормального режима работы достаточно дать предупредительный сигнал персоналу, либо произвести отключение оборудования, но обязательно с выдержкой времени, что является вторым назначением релейной защиты.
1.2 Основные требования к релейной защите
К релейной защите предъявляются следующие основные требования:
быстродействие;
селективность, или избирательность;
чувствительность;
надежность.
быстродействие
Быстрое отключение поврежденного оборудования или участка электрической установки предотвращает или уменьшает размеры повреждений, сохраняет нормальную работу потребителей неповрежденной части установки, энергосистемы в целом.
Время допустимое для отключения к.з. зависит от ряда факторов. Наиболее важным является величина остаточного напряжения на шинах электростанций и узловых подстанций, связывающих электростанции с энергосистемой. Чем меньше, остаточное напряжение, тем вероятнее нарушение устойчивости и, следовательно, тем быстрее нужно отключать к. з. Наиболее тяжелыми по условиям устойчивости являются трехфазные к. з. и двухфазные к. з. на землю в сети с глухозаземленной нейтралью, так как при этих повреждениях происходят наибольшие снижения всех междуфазных напряжений.
Современные устройства быстродействующей релейной защиты имеют время действия 0,04—0,1 с. Указанное быстродействие требуется в тех случаях, когда короткие замыкания сопровождаются глубоким понижением напряжения. В тех случаях, когда напряжение в неповрежденной части составляет 60—70% нормального, допускается повышать время действия защиты до 0,2—2 с [1].
2) селективность, или избирательность
Селективностью называется способность релейной защиты выявлять место повреждения и отключать его только ближайшими к нему выключателями.
Так, при к. з. в точке К1(рисунок 1) для правильной ликвидации аварии должна подействовать защита только на выключателе ВВи отключить этот выключатель. При этом остальная неповрежденная часть электрической установки останется в работе. Такое избирательное действие защиты называется селективным.
Рисунок 1 – Селективное отключение поврежденного участка при коротком замыкании в сети
Если же произойдет к. з. в точке K2при селективном действии защиты должна отключиться поврежденная линияI, линияIIостается в работе. При таком отключении все потребители сети сохраняют питание. Этот пример показывает, что если подстанция связана с сетью несколькими линиями, то селективное отключение к. з. на одной из линий позволяет сохранить связь этой подстанции с сетью, обеспечив тем самым бесперебойное питание потребителей.
Таким образом, для обеспечения надежного электроснабжения потребителей, селективное отключение повреждения является основным условием. Неселективное действие защиты приводит к развитию аварий. Такие отключения могут допускаться, но только в тех случаях, когда это диктуется необходимостью и не отражается на питании потребителей [1].
3) чувствительность
Защита должна обладать такой чувствительностью к тем видам повреждений и нарушений нормального режима работы в данной электрической установке или электрической сети, на которые она рассчитана, чтобы было обеспечено ее действие в самом начале возникновения повреждения, чем сокращаются размеры повреждения оборудования в месте к. з.
Чувствительность защиты должна также обеспечивать ее действие при повреждениях на смежных участках. Так, например, если при повреждении в точке по какой-либо причине не отключится выключатель, то должна подействовать защита следующего к источнику питания выключателя и отключить этот выключатель. Такое действие защиты называется дальним резервированием смежного или следующего участка. Дальнее резервирование является обязательным условием хотя бы для наиболее вероятного вида повреждения [1].
4) надежность
Требование надежности состоит в том, что защита должна правильно и безотказно действовать на отключение выключателей оборудования при всех его повреждениях и нарушениях нормального режима работы на действие при которых она предназначена и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима работы, при которых действие данной защиты не предусмотрено. Требование надежности обеспечивается совершенством принципов защиты и конструкций аппаратуры, добротностью деталей, простотой выполнения, а также уровнем эксплуатации [1].
Основные органы релейной защиты.
Релейная защита для выполнения функций, соответствующих её назначению, состоит, как правило, из измерительных (пусковых) органов и логической части.
Измерительные (пусковые) органы непосредственно и непрерывно контролируют состояние и режим работы защищаемого оборудования и реагируют на возникновение к.з. или нарушения нормального режима работы.
Логическая часть представляет собой схему, которая запускается измерительными (пусковыми) органами и формирует команды на отключение выключателей мгновенно или с выдержкой времени, запускает другие устройства, подаёт сигналы и производит прочие предусмотренные алгоритмом защиты действия.
Любую схему релейной защиты можно представить в виде функциональной схемы, приведенной на рисунке 7.
Рисунок 7 – Структурная схема релейной защиты.
Информация о состоянии защищаемого объекта (обычно в качестве контролируемых параметров выступает ток и напряжение) поступает на вход измерительного органа ИО от измерительных преобразователей ИП, в качестве которых обычно применяются трансформаторы тока и напряжения.
Измерительные органы непрерывно контролируют состояние и режим работы защищаемого объекта (ИО включают в себя реле тока, напряжения, мощности, сопротивления, частоты).
Логический орган защиты ЛО (логическая часть) обрабатывает сведения, поступившие от измерительного органа и формирует управляющее воздействие через исполнительные элементы ИЭ на коммутационную аппаратуру (выключатели В), звуковую и световую сигнализацию. (Логическая часть состоит в основном из реле времени и промежуточных реле).
Сигнальный орган СО фиксирует срабатывание защиты в целом или её отдельных элементов. (Сигнальный орган обычно выполняется с помощью указательных реле).
Реле
Основным элементом всякой схемы релейной защиты является реле. Под термином реле принято понимать автоматически действующий аппарат, предназначенный производить скачкообразное изменение состояния управляемой цепи при заданных значениях величины, характеризующей определенное отклонение режима контролируемого объекта.
Релейная защита и автоматика включает в себя комплекс реле различного назначения, которые действуют совместно в заданной последовательности (по заданной программе). Реле замыкают или размыкают различные электрические цепи или иным способом скачкообразно изменяют их состояние (например, скачкообразно изменяют их сопротивление), или механически воздействуют на силовые аппараты (выключатели и др.).
В устройствах релейной защиты применяются реле электрические, механические и тепловые.
Электрические реле реагируют на электрические величины – ток, напряжение, мощность, частоту, сопротивление, угол между током и напряжением или двумя токами, или двумя напряжениями.
Механическое реле реагируют на неэлектрические величины – давление, скорость истечения жидкости или газа, скорость вращения и т.д.
Тепловые реле реагируют на количество выделенного тепла или изменение температуры.
Наибольшее распространение в релейной защите и автоматике получили электрические реле.
Классификация электрических реле.
Все реле имеют: воспринимающий (измерительный) орган, который непосредственно воспринимает изменение электрических величин, подведённых к реле, и производит соответствующие им изменения в других органах реле; исполнительный орган, который, воздействует на внешние цепи, производит отключение выключателей, подачу предупредительных сигналов или запуск других реле. Частным случаем исполнительного органа являются контакты реле.
Некоторые реле имеют орган замедления или выдержки времени.
В зависимости от электрической величины, на которую реагирует воспринимающий орган, электрические реле бывают: токовые, напряжения, мощности, сопротивления, частоты и т.д.
По характеру изменения воздействующей величины реле делятся на реле максимальные и реле минимальные. Максимальные реле работают, когда значение воздействующей величины превосходят заданную, а минимальные – когда значение воздействующей величины снижается ниже заданной.
Все реле по назначению условно можно разделить на три группы:
Основные реле, непосредственно реагирующие на изменение контролируемых величин, например, напряжения, мощности, частоты, сопротивления и т.д. (реле тока, напряжения, мощности, частоты, сопротивления).
Вспомогательные реле, управляемые другими реле и выполняющие функции введения выдержек времени, размножения контактов, передачи команд от одних реле к другим, воздействия на выключатели и т.п. (реле времени, промежуточные реле).
Сигнальные (указательные) реле, фиксирующие действие защиты и управляющие звуковыми и световыми сигналами (указательные реле).
По способу включения воспринимающего органа различаются реле первичные, у которых воспринимающий орган включается непосредственно в цепь защищаемого элемента, и реле вторичные, у которых воспринимающий орган включается через измерительные трансформаторы тока или напряжения. На рисунке 8 изображены оба способа включения реле.
Рисунок 8 – Способы включения токовых реле
а) первичных; б) вторичных.
Наибольшее распространение имеют реле вторичные, преимущества которых по сравнению с первичными в том, что они изолированы от высокого напряжения, располагаются на некотором расстоянии от защищаемого объекта, в удобном для обслуживания месте.
Достоинством первичных реле является то, что для их включения не требуется измерительных трансформаторов и источников оперативного тока и контрольного кабеля.
По способу воздействия исполнительного органа различаются реле прямого действия, у которых исполнительный орган отключает выключатель путём прямого механического воздействия, и реле косвенного действия, исполнительный орган которых воздействует на привод выключателя с помощью оперативного тока.
Защита с вторичным реле прямого действия показана на рисунке 9 а). Реле 1 срабатывает, когда электромагнитная сила Fэ становится больше силы Fn противодействующей пружины. При срабатывании реле его подвижная система воздействует непосредственно (прямо) на расцепляющий рычаг 3 выключателя, после чего выключатель отключается под действием пружины 4.
Рисунок 9 – Вторичные реле
а) прямого действия; б) косвенного действия.
Защита с вторичным реле косвенного действия изображена на рисунке 9 б). При срабатывании реле 1 его контакты замыкают цепь обмотки электромагнита 2, называемого катушкой (соленоидом) отключения выключателя. Под действием напряжения U, подводимого к катушке отключения 2 от специального источника, сердечник 3 катушки отключения преодолевает сопротивление Fn пружины 5 и освобождает защелку 4 и выключатель отключается под действием пружины 6.
Для защиты с реле косвенного действия необходим вспомогательный источник – источник оперативного тока. Защита прямого действия не требует такого источника, но реле этой защиты должно развивать большие усилия для того, чтобы непосредственно расцепить механизм выключателя. Поэтому реле прямого действия не могут быть очень точными и имеют большое потребление мощности. Реле косвенного действия отличаются большой точностью и малым потреблением. Кроме того связь между несколькими реле проще организовать при помощи оперативного тока, а не механическим путём, поэтому практическое применение получили вторичные реле косвенного действия. В эту основную и наиболее многочисленную группу входят почти все типы реле тока, напряжения, мощности, сопротивления и частоты, а также реле времени, промежуточные и сигнальные реле.
Также широко применяются первичные реле прямого действия. В эту группу входят реле максимального тока, действующие мгновенно и с замедлением; реле минимального напряжения мгновенного действия и электротепловые реле (тепловые расцепители). Первичные реле прямого действия встраиваются непосредственно в выключатели, автоматы и магнитные пускатели.
По принципу действия электрические реле разделяются на следующие группы:
Электромагнитные реле, работа которых основана на воздействии магнитного потока обтекаемой током обмотки на ферромагнитный якорь;
Поляризованные реле – электромагнитное реле со вспомогательным поляризующим магнитным полем;
Магнитоэлектрические реле, работа которых основана на взаимодействии постоянного магнита и обтекаемой током обмотки;
Индукционные реле, работа которых основана на взаимодействии магнитных полей неподвижных обмоток с магнитными полями токов, индуктируемых в подвижном элементе;
Полупроводниковые реле, работа которых основана на использовании свойств полупроводниковых приборов.
принцип работы, применение для релейной защиты и схемы
До развития микропроцессорной техники для защиты подстанций напряжением свыше 1000 вольт применялись различные системы на реле. Они потребляли огромное количество энергии для собственных нужд, были сложны в настройке и не отличались надёжностью. Сегодня эту задачу выполняют системы логической защиты шин, построенные на электронных блоках.
Защита и автоматика ввода
Релейная защита и автоматика
РЗиА – это система, предназначенная для защиты подстанции от аварийного режима работы. Она представляет собой сложнейший комплекс электрических и электронных устройств. Релейная защита и автоматика непрерывно контролируют состояние сети и, при необходимости, производят в ней различные переключения.
Любая РЗиА обладает селективностью (избирательностью). Т.е. она отключает именно тот участок энергосистемы, на котором возник ненормальный или аварийный режим работы. Соответственно, без напряжения остаётся часть потребителей, а не все сразу. Особенно это необходимо в случаях, когда отключение подразумевает нарушение тех. процессов предприятий, сопровождающихся риском возникновения ЧС или финансовых убытков.
Также релейная защита характеризуется быстродействием. Под этим свойством подразумевают время, затраченное на отключение повреждённого участка линии. Быстродействие тесно связано с селективностью. Уставка допустимого времени протекания аварийной ситуации учитывается в настройках терминала РЗиА, и от него зависит, на каком именно участке линия будет отделена от общей системы.
Дополнительная информация. Быстродействие защиты является её важнейшей характеристикой. Для правильной настройки нужна золотая середина. Если выдержки времени подобраны так, что они слишком короткие или продолжительные, то система будет отключать линии, которые в этом не нуждаются, т.е. будут происходить ложные срабатывания.
Терминал РЗиА
Из чего состоит ЛЗШ
Отвечая на вопрос «ЛЗШ защита что это», можно сказать, что она включает в себя сложный комплекс аппаратных и программных средств, предназначенный для отключения линии при внештатном режиме работы. Все их условно можно разделить на 3 категории:
- Датчики – устройства, считывающие в реальном времени информацию о состоянии энергосистемы. Например, ток и напряжение на силовых шинах, частоту, сдвиг фазы и cosф нагрузки, а также температуру трансформаторов, окружающего воздуха и тому подобные показатели. Вся эта информация поступает в контроллер.
- Микропроцессорные терминалы – вычислительный орган системы. С натяжкой его можно назвать компьютером. Внешне представляет собой небольшую коробку с экраном, отображаемым состояние сети, и множеством кнопок для настройки прибора и его взаимодействия с человеком.
- Исполнительные органы – по аналогии с ПК это периферийные устройства. К ним относятся высоковольтные выключатели, вентиляторы и насосы систем охлаждения, различные приводы для коммутирующих устройств.
Упрощённо всё это работает следующим образом. На шинах подстанции возникает какая-либо внештатная ситуация, например, короткое замыкание. Трансформаторы тока регистрируют критическое превышение этого параметра. С них сигнал передаётся в микропроцессорный терминал, который его обрабатывает. При этом учитывается ток короткого замыкания, его продолжительность и ряд других характеристик. Затем терминал подаёт сигнал на исполнительный орган – вакуумный выключатель, который отключает участок линии, поражённый коротким замыканием.
Трансформаторы тока
Схемы организации ЛЗШ
Большинство комплексов логической защиты шин реализуется по последовательной или параллельной схеме. Каждая из них имеет свои достоинства и недостатки, но принцип работы ЛЗШ похож в обоих случаях.
При последовательной схеме отдельные контакты следуют друг за другом. Пока все из них замкнуты, на вход блокировки ЛЗШ поступает сигнал, предотвращающий срабатывание защиты. Если хоть один контакт релейного терминала разомкнётся, то общая цепочка будет нарушена.
Последовательная схема ЛЗШ
В случае с параллельной схемой контакты изначально находятся в нормально разомкнутом положении. Для срабатывания ЛЗШ также необходимо, чтобы один из них изменил своё состояние, т.е. замкнулся.
Параллельная схема ЛЗШ
Поведение ЛЗШ при внешнем КЗ
Принцип действия логической защиты шин основан на отсечке линии при возникновении в ней тока короткого замыкания. В данном случае подразумевается, что КЗ произошло где-то за пределами подстанции. Пока линия находится в нормальном режиме работы, контакты ЛЗШ формируют сигнал блокировки. Он препятствует срабатыванию защиты, поэтому система находится под напряжением. Как только происходит КЗ или серьёзная перегрузка по току, контакты ЛЗШ размыкаются. Происходит включение защиты. Расчёт времени отключения линии напрямую зависит от интенсивности КЗ и настроек, внесённых наладчиком в терминал РЗиА.
Дополнительная информация. На воздушных линиях электропередач возможны неустойчивые короткие замыкания. Они могут быть вызваны перехлёстом проводов из-за ветра. В таком случае замыкание носит кратковременный характер, после его исчезновения линия снова включается в работу устройством автоматического повторного включения (АПВ).
Работа ЛЗШ при КЗ на шинах
Другая цель применения ЛЗШ – это отключение напряжения при возникновении короткого замыкании на шинах. При этом речь идёт о КЗ, происходящем непосредственно на территории распределительного устройства (РУ) или подстанции. Данная ситуация имеет особенность. Замыкание происходит в непосредственной близи от трансформатора. Сопротивление шин до точки КЗ имеет минимальное значение. Ток замыкания будет крайне высоким, вплоть до десятков тысяч ампер. Терминал РЗиА, регистрируя такое большое значение, соберёт цепочку ЛЗШ быстрее, чем, если бы авария сформировалась где-то далеко от подстанции. Если по каким-либо причинам данный каскад защиты не отработает, то питание отключится тем, который стоит выше по цепи. При этом из работы выйдет вся секция. Срабатывание будет неселективным, что является нежелательным.
Надежность ЛЗШ
ЛЗШ, с точки зрения тестирования на работоспособность, имеет отличие от прочих видов защит. Она редко срабатывает при испытаниях сотрудниками измерительных лабораторий. Объясняется это тем, что ЛЗШ отводится менее значимая роль, соответственно, она имеет более длительные по времени выдержки срабатывания и просто не успевает опередить другие виды защит.
Чаще всего логическая защита шин даёт сбой вследствие КЗ трансформатора тока либо его виткового замыкания. К счастью, происходит такое довольно редко. В этом случае трансформатор просто не в состоянии корректно измерить протекающий через контролируемую им шину ток. Поэтому не может сформироваться сигнал блокировки защиты ЛЗШ, что приводит к её непреднамеренному срабатыванию.
Важно! Перед отключением проводов от трансформатора тока его выводы требуется замкнуть между собой. В противном случае в обмотке ТТ возможно наведение высоковольтного потенциала, который опасен для жизни обслуживающего персонала и может привести к повреждению оборудования.
ЛЗШ является сравнительно простой и действенной системой по обеспечению бесперебойной работы энергосистемы. Её применение ощутимо снижает негативные последствия аварийных ситуаций, а также существенно уменьшает риск их возникновения.
Видео
Сложные устройства релейной защиты и автоматики (РЗА). Определение.
Сложные устройства РЗА (Сложные устройства релейной защиты и автоматики) — все устройства РЗиА (РЗА), при работе с которыми требуется выполнение сложных программ типовых операций при выводе/вводе в работу, и которые, по классификации с «Нормативами численности промышленно-производственного персонала распределительных электрических сетей» 2004г., не являются простыми.
Определение простых устройств релейной защиты и автоматики (РЗА)
К простым устройствам РЗА относятся:
К простым устройствам должны относиться: МТЗ (кроме направленных) и токовые отсечки; защиты мин. и макс. напряжения без контроля перетока мощности; дифференциальные токовые отсечки и защиты с реле РПТ; трехфазные простые АПВ и АВР; газовые защиты и устройства защиты от замыканий на землю.
Все остальные устройства РЗАИ приведенные в формах должны быть отнесены к разряду сложных.[2]
Перечень сложных защит РЗА
Перечень в стадии разработки.
Описания в стандартах организаций
ОАО «СОЕЭС» Стандарт организации. РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА. ВЗАИМОДЕЙСТВИЕ СУБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ, ПОТРЕБИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПРИ СОЗДАНИИ (МОДЕРНИЗАЦИИ) И ОРГАНИЗАЦИИ ЭКСПЛУАТАЦИИ:
Сложное устройство РЗА – устройство РЗА со сложными внешними связями, для которого при выводе из работы для технического обслуживания (вводе в работу после технического обслуживания) требуется принятие мер, предотвращающих непредусмотренные воздействия на оборудование и другие устройства РЗА.
Примечания
- РД 153-34.0-35.617-2001. «Правила технического обслуживания устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110-750 кВ».
- «Нормативы численности промышленно-производственного персонала распределительных электрических сетей».
Просмотров всего: 2 100, Просмотров за день: 1